bioRxiv preprint doi: https://doi.org/10.1101/2022.07.28.501936; this version posted August 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1

1 Thespectral under pinnings of pathogen spread on animal networks

2 Authors: Nicholas M. Fountain-Jones Mathew Silk=, Raima Appaw Rodrigo Hamede
3 Julie Rushmore Kimberly Vanderwad) Meggan Craft Scott Carvér & Michael
4 Charleston

5 Affiliations;

6 ! School of Natural Sciences, University of TasmaHiebart Australia 7001.
7 CEFE, University of Montpellier, CNRS, EPHE, IRDniVersity of Paul Valéry
8 Montpellier 3, Montpellier, France

9 *Centre for Ecology and Conservation, Universitfgéter, Penryn Campus, Penryn, UK

10 *Odum School of Ecology, University of Georgia, AtseGA USA.

11 5 Department of Veterinary Population Medicine, UWmsity of Minnesota, St Paul, MN,
12 USA

13 ® Department of Ecology, Evolution, and Behaviorjugnsity of Minnesota, St Paul, MN,
14 USA

15

16 *Nick.FountainJones@utas.edu.au

17

18 Abstract

19

20 Predicting what factors promote or protect popafeifrom infectious disease is a

21 fundamental epidemiological challenge. Social neksowhere nodes represent hosts and
22 edges represent direct or indirect contacts betwesm, are key to quantifying these aspects
23 of infectious disease dynamics. However, underatgrthe complex relationships between
24 network structure and epidemic parameters in ptiegispread has been out of reach. Here
25 we draw on advances in spectral graph theory aedpiretable machine learning, to build

26 predictive models of pathogen spread on a lardeat@n of empirical networks from across
27 the animal kingdom. Using a small set of networictral properties, we were able to predict
28 pathogen spread with remarkable accuracy for a veidge of transmissibility and recovery

29 rates. We validate our findings using well studiedt-pathogen systems and provide a
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30 flexible framework for animal health practitioneécsassess the vulnerability of a particular
31 network to pathogen spread.

32

33 Introduction

34
35 Capturing patterns of direct or indirect contacsaN®en hosts is crucial to model pathogen

36 spread in populations (Newman 2002; Craft 2015;ebah 2018, 2021). Increasingly,

37 contact network approaches, where hosts are nodiesdges reflect interactions between
38 hosts, play a central role in epidemiology andakgeecology (e.g., Meyessal. 2005;

39 Bansalet al. 2007; Eamest al. 2015; Whiteet al. 2017). Incorporating networks allows

40 models to capture the heterogeneity of contacisdest individuals that can provide more
41 nuanced and reliable estimates of pathogen spreddding in wildlife populations (e.qg.,

42 Meyerset al. 2006; Bansadt al. 2010; Craftet al. 2011). Formulating general rules for how
43 easy-to-calculate network structure properties praynote or restrict pathogen spread can
44 reveal important insights into how host behaviam mediate epidemic outcomes (&hal.
45 2017), and provide practitioners with a proxy fomhvulnerable a population is to disease
46 without extensive simulations (Sié al. 2017; Salet al. 2018). Further, network structural
47 properties can be incorporated into traditionatspsible—infected—recovered (SIR) models
48 to account for contact heterogeneity when predighiathogen dynamics across populations
49 (e.g., Meyerst al. 2005; Bansadt al. 2007).

50

51 However, it remains unclear whether one structtinatacteristic or a combination of

52 characteristics can reliably predict pathogen dynsmacross systems (Ametsal. 2011; Sah
53 etal. 2018). For example, species that are more sauidl o have more clustered or

54 “modular” networks, and this modularity has beemnfd to increase (Len&t al. 2012),

55 reduce (Salathé & Jones 2010) or have little effSahet al. 2018) on outbreak size across
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56 different biological systems. The average numlbeoatacts between hosts can be identical
57 across networks and yet still result in substagtaifferent outbreak patterns (Amesal.

58 2011). Even the apparent size of the network, afterstrained by limitations of sampling,
59 can impact estimates of pathogen spread, partigutawildlife populations (McCabe &

60 Nunn 2018). As network characteristics, such awordt size and modularity, are often

61 correlated (Newman 2006; Skkal. 2017) and can have complex impacts on spreadetSah
62 al.2017; McCabe & Nunn 2018; Porter 2020), deterngmiatwork characteristics that

63 promote large outbreaks, for example, remains damental question in infectious disease
64 biology (Sahet al. 2018).

65

66 Searching for general relationships between netwwtlcture and pathogen spread in animal
67 populations is further challenged, as the relatigns also affected by pathogen traits, such
68 as infectiousness and recovery rate. For exammdularity appears to make no difference
69 to disease outcomes for highly infectious pathog8abet al. 2017) Diseases with long

70 recovery rates can increase outbreak size acrossme as wel(Shuet al. 2016) Given

71 that we rarely have reliable estimates of pathdggts in wild populations (e.qg., for different
72 probabilities of infection per contact, or recoveates) anyway, any predictive model of the
73 relationship between spread and network structaddvdeally be generalizable across

74 pathogens.

75

76  Advances in spectral graph theory offer an addiiset of measures based onghectrum

77 of a network rather than average node or edge &trddutes. A graph spectrum is the set of
78 eigenvalues (often denoted with a Greek lambdeof a matrix representation of a network
79 (see Text Box 1 for further definitions for termiogy in bold). Theoretical studies have

80 shown relationships between particular eigenvadunesconnectivity across networks are


https://doi.org/10.1101/2022.07.28.501936
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.28.501936; this version posted August 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

4

81 independent of pathogen propagation models (Pradtath2010). For example, networks
82 with a highFiedler value (the second smallest eigenvalue of the netwdrkislacian
83 matrix) are “more connected” than those with low valdiesas been found that, in
84 ecological networks for example, if the Fiedleruaais sufficiently large, removing edges
85 will have little effect on overall network conneaty (Kumaret al. 2019), but whether this
86 lack of effect is mirrored by pathogen dynamiceas yet clear. Another quantity of interest
87 s spectral radius — the largest absolute value of the eigenvalu@s afljacency matrix.
88 The link between the spectral radius and epidemicéd dynamics is better understood, with
89 theoretical work showing that this value closelyrans both epidemic behaviour and
90 network connectivity (Prakash al. 2010) and has been used to understand vulneyadilit
91 cattle networks to disease (Darbatral. 2018). For example, networks with the same number
92 of edges and nodes but higher spectral radisae more vulnerable to outbreaks than
93 networks with low spectral radius;{~1). We hypothesize that spectral measures such as
94 these have great potential to improve our abittpredict dynamics of pathogen spread on
95 networks, where previous methods such as modulaaig proved inadequai&ahet al.
96 2017)
97
98 We assess the predictive capability of spectraleamtompared to other structural attributes
99 such asnodularity (Newmans’ QNewman 2006)usingadvances in machine learning to
100 construct non-linear models of simulated pathogeaad across a large collection of
101 empirical animal networks including those from fk@mal Social Network Repository
102 (ASNR) (Sahet al. 2019). The ASNR is a large repository of empirmahtact networks that
103 provides novel opportunities to test the utilityspiectral values in predicting spread across a
104 wide variety of, mostly animal, taxa across a spectof social systems -- from eusocial ants

105 (Arthropoda: Formicidae) to more solitary specieshsas the desert tortoigédpherus
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agassizii). Farmed domestic animals were not included inamalyses. We combined
networks from this resource with other publishetivogks, including badgerdMeles meles)
(Weberet al. 2013), giraffes Giraffa camelopardalis) (VanderWaakt al. 2014) and
chimpanzeesRan troglodytes) (Rushmoreet al. 2013) to generate a dataset of over 600
unweighted networks from 51 species. We then sitedlpathogen spread using a variety of
SIR parameters and harnessed recent advancestivanate interpretable machine learning
models MrIML; (Fountain-Jonest al. 2021)) to construct predictive models across SIR
parameter space. As many species were represaniedltiple networks, often over
different populations and or timepoints and coréd in different ways (e.g., some edges
reflected spatial proximity rather than direct @mt}, we included species and network
construction variables in our models to accounttiese correlations in addition to exploring
the diversity of network structures across the ahkmgdom. Our interpretable machine
learning models identify putative threshold valt@sthe vulnerability of a network to

pathogen spread that can be used by practitiooensderstand outbreak risk across systems.

We test how well our network structure estimategathogen spread, trained on SIR
simulation results, generalize to more complex @gdm dynamics in the wild We utilize

two well studied wildlife-pathogen systems to asdesw our predictions compare to
empirical estimates of spreadycobacterium bovis (the bacterium that causes bovine
tuberculosis (bTB)) in badger populations and diagial tumour disease (DFTD) in
Tasmanian devilSarcophilus harrisii) populations (Hamedet al. 2009). We demonstrate
that using spectral measures of network structioreeacan provide a useful proxy for disease
vulnerability with estimates of prevalence compégab those empirically derived. Further,
we provide a user-friendly app that utilizes ourdels to provide practitioners with

predictions, for example, of the prevalence of th@gen across a variety of spread scenarios
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131 using a user-supplied network without the needdiogthy simulation. The url for this

132 “Shiny” app ishttps://spreadpredictr.shinyapps.io/spreadpredictr/

133


https://doi.org/10.1101/2022.07.28.501936
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.28.501936; this version posted August 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

7

134 Text Box 1. Terminology used in this paper.

135 A graph (or “network”) is a collection oihodes and a collection odédges connecting the

136 nodes in pairs, e.g., nodesy joined by edgexy). We define theize of the network —

137 usuallyn, as the number of nodes (this usage differs frimarcstrict mathematical

138 definitions, but we feel this is more intuitivejwo nodes are said to ladjacent if they are
139 connected by an edge, and the number of vertigaseatt to a given vertexis called its

140 degree, degk). Edges may be directed, in which case e’ggié different from edgey(x),
141 but in our analyses we treat themuadirected, so &y)=(y,x). Graphs can be represented
142 naturally by matrices whose rows and columns atexad by the nodes (1,2,n); the

143  obvious one is thadjacency matrix A, whose i(j)-th entryA; is 1 if nodes andj are

144 adjacent, and O otherwisi&.is symmetric ana x n, as are all the matrices in this work.
145 Another useful matrix is theéegree matrix D, in whichDj; is the degree of nodef i=j, and O
146 otherwise. Théaplacian matrixL is the most complex one we use herein, but idyeasi
147 calculated usingj; = Djj — A;.

148 Theeigenvalues of a matrix are solutions to the matrix equatiwm= v, whereM is a

149 matrix andv a vector of the appropriate size. Solvingvgiields). These eigenvalues,

150 ordered by their size, form ttgpectrum of a graph, as derived using any of the matriass |
151 described. ThE&iedler value of a graph is the second-smallest eigenvalue ahd the

152 spectral radius is the largest eigenvalue Af

153 Measures oModularity such as the Newmad® coefficient capture the strength of division
154  within a network by quantifying the density of edgeithin and between subgroups. When
155 there is no division within the network as the dignsf edges is the same between and within
156  subgroup®Q = 0, whereas higher values@findicate stronger divisions (Newman 2006). As

157 Q scales with network size (small networks being galheless modular), relative
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158 modularity Qr«) allows for comparison across network sizes bynatizing Q using the
159 maximum possible modularity for the netwo@.£x) (Sahet al. 2017).

160
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161 Results
162
163 Diversity of network structures

164 We identified substantial variation in network stiwre across animal taxa. The static

165 unweighted animal social networks in our databasged from nearly completely

166 unconnected (Spectral radius~ 1, Fiedler value ~0, not included in our pregiEimodels)

167 to highly connected (Spectral radius~ 160, Fiedler value ~ 140, Fig. 1). Similarlyeth

168 networks ranged from homogeneous (i.e., not mod@ari=0, see the Text box for a

169 definition) to highly modular and subdivided {Q> 0.8,). Our principal component analysis
170 (PCA) identified key axes of structural variatiar@ss empirical networks (Fig. 2). The first
171 principal component (PC1) distinguished networks tiad a large diameter and mean path
172 length and were highly modular (negative valuagnfnetworks with a high mean degree
173 and transitivity (positive values, Fig. 2, see EaBP). The second principal component (PC2)
174 separated networks based on network size (numberd&s), maximum degree and the

175 network duration (i.e., the time period over whibk network data was collected, Fig. 2).

176 The eusocial ant network€gmponotus fellah, Insecta: Hymenoptera) and mammal

177 networks tended to cluster separately (Fig. 1)h wie other taxonomic classes dispersed
178 between these groups (Fig. 1) or species (sesSEifpr clustering by species). The

179 networks’ spectral properties (the Fiedler valué spectral radius) explained a unique

180 portion of structural variance that did not coveith other variables (see Table S1 for vector
181 loadings and Fig S2 for all pair-wise correlatio®e found variables such as mean degree
182 and transitivity the most correlated with the othariables and were excluded from further
183 analysis (Tables S2, Fig S2).

184


https://doi.org/10.1101/2022.07.28.501936
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.28.501936; this version posted August 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

10

a) Lowes: spectral radius b) Lowest Fiedler va ue ¢) Intermediate spectral radius/high Fiedler

M.. s * er ©%s

e ao 0
® @ °e @ 0] e
2 % o
oo \® 00 o0 g
@ Q ® @ Q0 ]
@ &3
) 0o ®9 @ @ ! ‘
o 2.0 &0 ? :
e @ .. o o @ @
g
o0
[Spectaltadius BERE Busidiain -6
—008 = 0.08 F\edler =29
d) High spectral rad us/intermediate Fiadle~ ) High spectral radius/high Fiedler fl
- e a B - 150 - €
™ % e et
& ™
© d
o L
AT !i - 103
, ‘(E
"o
. o
R &
a > e 50 _
% B
o . N
=13567 2 = 45823 . a
p— N o o N
e fis, =88 “ =139.67 0 £o 100
185

186 Fig.1: Examples of networks analysed in this study wittha)lowest spectral radius

187 (baboondPapio cynocephalus contact network), b) the lowest Fiedler value (sd&crotus
188 agrestistrap sharing network), c) intermediate spectralusdalues but high Fiedler value
189 (Chimpanzedan troglodytes contact network), d) high spectral radius/interragdFiedler
190 value Camponotus fellah colony contact network) and e) high values of bagasures

191 (anothelC. fellah colony contact network). The mean values acrdsgealorks were 34.80
192 and 7.31 for the spectral radius and Fiedler vedgpectively. f) summary of values across
193 networks (a-e). Silhouettes were sourced from ghglfttp://phylopic.org). Note that

194 disconnected nodes were not included in the arsalysi

195
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197 Fig. 2: Principal components analysis (PCA) biplot shaytimat network structure largely

198 clusters by taxonomic class. Points are colourethkg. Points closer together in Euclidean
199 space have networks more similar in structure.tBaire scaled by network size. The length
200 and direction of vectors (black arrows) shows haahevariable relates to each principal

201 component with larger vectors having higher loadiog that axis. The PCA was constructed
202 just using continuous network characteristics. &stages next to PC scores indicate how
203 much variability in the data is accounted for bgteaxis. Cent*: Centralization. See Table
204 S1 for axis loadings and Fig. S1 for the speciestelustering. See Tables S2 & S3 for

205 variable definitions. Silhouettes for some of thwyong networks were sourced from

206 phylopic @ttp://phylopic.org). s = scaled. Cent = Centralization.

207
208  Spectral properties predict pathogen spread across epidemic scenarios
209

210 We found that network characteristics alone couddiigt pathogen transmission dynamics
211 remarkably well (Figs. 3 & Fig S3). We constructaddels inMrIML to predict the

212 maximum proportion of nodes infected in the netwavkr 100 time steps (hereafter

213 ‘proportion infected’). With these models we copledict the proportion infected in a

214 network using both spectral measures and spe@estylalone (Fig. 3a). Network size,

215 relative modularity and centralization, for examplere less important in predicting

216 proportion infected across all SIR model parametenbinations tested (Fig. 2a). Nonlinear

217 relationships were likely important for predictiohproportion infected, as random forests
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218 (RF) had the highest predictive performance ovéfable S4) and substantially

219 outperformed linear regression in tkelML framework (root mean square error (RMSE)
220 0.13 vs 0.03). Variable importance and predictorditional effects were consistent between
221 the machine learning algorithms, so we subsequantyysed the best performing RF model.
222 Across all SIR parameter combinations, we foundrdinear relationship between

223 proportion infected and spectral radius, with tiierage prediction of proportion infected

224 increasing by ~30% across the range of spectralgadlues (holding all other variables

225 constant in the model, Fig. 3b). In contrast wentba more modest effect of the Fiedler

226 value, with the proportion of infected only increson average ~3% across the observed
227 range of values for all SIR parameters (Fig 3c).diefind a sharp increase in the proportion
228 infected in networks when the Fiedler value was tean about 15 (Fig. 3c). However, there
229 was variation in the relationship between the propo infected and these spectral values
230 across transmissiofi)(and recovery probabilitieg,(Figs. 3d-e). For example, when the

231 probability of transmission was relatively high< 0.2) and recovery low (= 0.04) the

232 proportion infected across networks was ~80% aedtsgl radius had a relatively minor

233 effect (Fig. 3d). A network’s spectral radius hastanger effect when the probability of

234 recovery was higher & 0.4) across all values pf The increase in proportion infected when
235 the Fiedler value was low (< 15) was not appardrgmspread was slower and chances of
236 recovery higher (e.gB, = 0.025 or 0.01y = 0.4; Fig 3e). The spectral radius and Fiedler

237 value patterns overall were similar, with largelues reducing the time-to-peak prevalence
238 (hereafter ‘time to peak’, Fig. S3). However, madity played a greater role in our time to
239 peak models, with the time to peak being longenfore modular networks above a,Q

240 threshold of ~ 0.75 (Fig. S4).

241
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Fig. 3: Plots showing the predictive performance, vagabiportance and the functional

form of relationships for our best-performigIML proportion infected model. See Table
S4 for model performance estimates across algasithfime colour of the labels indicates
what type of predictor it is (blue = spectral, redon-spectral network structural variables,
gold = network metadata, see Tables S2 & S3). eyt radius and the Fiedler value
(followed by species) are the most important pitedscof proportion of individuals infected
across all simulations (importance threshold >@rig overall model performance was high
(average B= 0.96 and root mean square error (RMSE) = 0.02¢).Average predictive
surface showing the relationship between spectogdeyties and proportion infected across
all epidemic values (95% confidence intervals ieygr Rug plot on the x axis of the panels
on the right shows the distribution of each chamagtic across empirical networks. d-e) The
accumulated local effects (ALE) plot revealed that strongly non-linear relationships
between both spectral properties and proporticecieti were mediated by transmission and
recovery probabilities/Ve chose these SIR parameter valfies {ransmission probability,

= recovery probability) to ensure major outbreagsuored on the empirical networks. Net
construct = Network construction method.
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260 Smplifying our models with global surrogates
261

262  When we further interrogated our moderdgite (0.05) transmission models, we found that the
263 spectral radius and Fiedler value overall alsogdagy dominant role in our predictions of

264 spread. To quantify the putative mechanisms thdedie our model predictions — ‘to

265 decloak the black box’ — and gain insight into loissinteractions between predictors, we
266 constructed surrogate decision trees as a proxyuiomore complex RF model. We trained
267 our surrogate decision tree on the predictions®RF model rather than the network

268 observations directly. In each case, the surradgtesion tree approximated the predictions
269 of our models (thousands of decision trees) rentdykaell (Global R > 0.95, see (Molnar

270 2018) for details). The spectral radius and, tesaér extent, the Fiedler value and modularity
271 values dominated surrogate trees for all SIR patemsets (Fig. 5, Figs. S5 & S6). For

272 example, for networks with a Fiedler vaki®.86 and a spectral radi&i20 (as was the case
273 for 51% of our networks, Fig. 4b) the estimated imaxn proportion of the network infected
274 was 0.92 (Fig. 4b). The duration over which theadea&s collected also was included in the
275 surrogate model, with networks collected over >dags having higher estimates of

276 proportion infected (Fig. 4b).

277
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279 Fig. 4 Global surrogate decision trees for our moderatesmissionf{ = 0.05) proportion
280 infected with a) high and b) low recovery probapi(y = 0.4 and 0.04 respectively).
281 Threshold values of each variable are includedohdree. The boxes at the tips of the trees
282 indicate the estimates of average peak time orgotign of the network infected across
283 simulations (top value) and percentage of networksir dataset to be assigned to this tip.
284 For example, 50% of our empirical networks had spétadius values 26 and for these
285 networks we found on average, a maximum of 0. #A@@hetwork infected after 100 time
286 steps. Tip boxes are coloured light to dark bluseaon network vulnerability to pathogen
287 spread (e.g., longer time to peak = light blueph@l fit = R for how well the surrogate
288 model replicates the predictions of the trained ehdBee Figs. S5 for the complete list of
289 global surrogate models and Fig. S6 for ‘time takysurrogates. Colour of the label
290 indicates what type of predictor it is (blue = dp&l¢ red = non-spectral structural variables,
291 gold = network metadata, see Tables S2 & S3).

292
293 Do our structural estimates generalize to more complex spread scenarios?

294 To further validate our predictions, we examined/oar models predictell. bovis spread
295 across badger networks with empirical estimatesguShapley values (Shapley, 1951).
296 Shapley values are a game-theoretic approach torexpe relative contribution of each
297 predictor on individual networks (sé&ethods). While M. bovisin badgers often has a

298 prolonged latent period and individuals do not¢gfly recover, generallyl. bovis is a slow-
299 spreading infection, with anoRf between 1.1 and 1.3 (Delahayal. 2013). Thus, we

300 interrogated our most similar mod@l£ 0.05,y = 0.04, R= 1.25). Our model predicted the

301 proportion of infected badgers in the network t@bks, which was much lower than the
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302 average proportion infected across all networkkigexd in our study (0.71, Fig. 5a). This

303 difference was largely driven by the badger netvgolidwv Fiedler value (0.096, much lower
304 than the mean of 7.31 across all networks) and lésser degree, by the small spectral radius
305 (8.10 compared to a mean of 34.8 across all nesyéiilg. 5a). This is comparable to

306 contemporaneous estimatesvbfbovis prevalence in this population, e.g., 41% of baslger

307 tested in the network study tested positive (Webat. 2013).

308

309 We further validated our approach using two Tasaradevil contact networks (calibrated to
310 reflect potential DFTD transmission) not includadur training data (Fig. 5) and compared
311 to model estimate of spread to empirical obsermatin similar populations. Based on our
312 model that most closely mirrored devil facial tumdisease DFTD dynamicB € 0.2,y =

313 0.04, R=5, see Hamedst al. (2012)) we estimated the proportion infected t®85-0.88
314 for mating and non-mating seasons respectivelyutting the devil networks’ Fiedler value
315 and spectral radius into the corresponding globabgate model provides an estimate of
316 0.89 of individuals in the network infected (Fidn)5The spectral values were the most

317 important predictors in this model (Fig. 5c¢). Exkough our simulations were not

318 formulated to model DFTD (e.qg., devils rarely reeofrom DFTD), our machine-learning
319 estimates closely predicted the empirical findifigghis disease. In comparable populations
320 across the island where the disease was monitefed=ithe onset of the disease, maximum
321 prevalence estimates ranged from 0.7-1.0 in fonakxmatured devils2 y.o0.) ~100

322 weeks after disease arrival (McCallwtral. 2009). Our predictions of proportion infected
323 were not particularly sensitive to transmissibibitstimates as in our model. For example,
324 with a 50% reduction in the probability of transsia @@ = 0.1) our estimate of proportion

325 infected was still similar to empirical estimat@s8@, Fig. S5a). Taken together, our findings
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326 show how the spectral values of contact networfex af valuable and informative

327 “shorthand” for how vulnerable different animalwetks are to outbreaks.

328
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330 Fig. 5: The spectral radius and the Fiedler underpinnedrnesample prediction of the

331 proportion infected estimates in our a) badgert@oylout-of-sample Tasmanian devil

332 contact networks. a) Shapley valug¥that quantify how each variable shaped simulated
333 proportion infected{ = 0.05,y = 0.04) in an empirical badger network. NegatihaBey

334 values indicate that the variable reduced the ptmpoinfection relative to other variables
335 included in the model. See Fig S7 for other Shapidye analyses of other contrasting
336 networks. b) Surrogate decision tree for the mdu best approximated Tasmanian devil
337 facial tumour disease (DFTDR,= 0.2,y = 0.04). Red lines indicate the branches of tee tr
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338 corresponding to the spectral values from theplaftels. The red outlined box is the

339 estimated proportion infected for both networksCojresponding variable importance plot
340 showing the spectral radius and Fiedler value ¥adld by data duration were the most

341 important predictors in the model. Colour of thiedis indicates what type of predictor it is
342 (blue = spectral, red = non-spectral structuraiabdes, gold = network metadata, see Tables
343 S2/S3). Panels on the left are the corresponditwganks. Net construct = Network

344 construction method. *: for sexually mature indivéds in comparable populations over

345 similar time scales to the simulations (McCallanal. 2009).

346

347 Discussion
348

349 Here, we show that the spectral radius and Fiegliere of a network can be a remarkably
350 strong predictor for population vulnerability tordrse epidemics varying in key

351 epidemiological parameters. We demonstrate howngegal machine learning and

352 simulation approach can effectively predict pathogetbreak dynamics on a large collection
353 of empirical animal contact networks. We not ondyribnstrate the high predictive power of
354 a network’s spectral properties but also show dhiatpredictions can be a useful tool for
355 estimating spread in systems with complex disegeardics. Our findings offer insights into
356 how nuances in social organisation translate irfferdnces in pathogen spread across the
357 animal kingdom. Furthermore, our global surrogatelets provide animal health

358 practitioners with an intuitive framework to gaapid insights into the vulnerability of

359 populations to the spread of emerging infectiossases.

360

361 Across real-world contact networks, we found thattetworks’ spectral properties (Fiedler
362 distance and spectral radius) were powerful proikiepathogen spread. The strong

363 relationship between spectral radius and epideméshold has been demonstrated for

364 theoretical networks (Prakashal. 2010) and has been used to assess vulnerabiligtibé
365 movement networks to spread of bovine brucelld3&tjonet al. 2018). We expand these
366 findings to show that the spectral radius is thetmaportant predictor in our models of

367 epidemic behaviour across diverse animal sociaésys While we examined only SIR
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368 propagation through our networks, theoretical tessuggest that our findings will extend to
369 other propagation mechanics such as SIS, (sustepifected-susceptible) and SEIR

370 (susceptible, exposed, infected, recovered) (Phedtasd. 2010). Given that both the badger
371 M. bovisand DFTD systems have more complex propagatiomamecs compared to SIR,
372 our models could still predict disease dynamicsath disease systems reasonably well. We
373 that note that for DFTD, disease simulation motleds assume homogeneous mixing of
374 hosts provide similar estimates of disease dynatoiogtwork-based simulations (Hamestle
375 al. 2012). However, Hamed al. (2012) found the outcome of simulated DFTD epidesmi
376 sensitive to estimates of latent period and trassilnility parameters, whereas our network
377 structure approach provided realistic estimatgg@falence with minimal reliance on

378 parameter values.

379

380 For some networks and epidemiological parametpesitsal radius alone was not sufficient
381 to predict spread, and the Fiedler value and moitiKtill played an important role. The

382 Fiedler value and spectral radius of the networ&eseveorrelated, but below opi= 0.7

383 threshold (Fig. S2). One potential reason for ihihat the Fiedler value seems to be less
384 sensitive to nodes with high connectivity compawethe spectral radius (Fig. 1); however,
385 the mathematical relationship between these twebatdc measures of connectivity is poorly
386 understood (Tang & Priebe 2016). Combined, ourajlsbrrogate models and accumulated
387 effects plots pointed to networks such as the dwtilvorks with spectral radii > ~8 and

388 Fiedler values > 1 being more vulnerable to pathageead (the effect of the Fiedler value
389 on spread was much weaker overall). The spectoplepties were dominant for the fast-

390 spreading pathogen models (e.g., example systemeyeas network size and modularity
391 played a more important role in our models for nglosvly spreading pathogens (e.g., Figs.

392 S5 & S6).
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393

394 When modular structure played a role in diseaseashin our study, we detected similar
395 patterns to those found by Settal. (2017). As in Sakt al. (2017), we found that epidemic
396 progression was only slowed in highly modular neksqQe > ~0.7) when the probability
397 of transmission between nodes was Ifw (0.025). Such subdivided networks were rare in
398 our data and are commonly associated with highreagation (small groups or sub-groups)
399 and high subgroup cohesion (Salal. 2017). The reduced importance of modularity reéati
400 to spectral radius is due to within-group connetibeing crucial for epidemic outcomes in
401 many contexts (Saét al. 2017). Spectral values may have higher predigieréormance, as
402 they summarize connectivity across the networkisithieg between- and within-group

403 connections. Interpreting how modularity alone ictpd epidemic outcomes was difficult on
404 these empirical networks, as all modularity measwrere strongly correlated with mean
405 degree, diameter and transitivity (Fig. 2, Fig..S2j)e extent of these correlations can vary
406 wildly based on other aspects of network structune they all have interacting effects on
407 disease dynamics (Zhang & Zhang 2009; Artes. 2011). However, the spectral radius
408 captures epidemiologically important aspects ofwoet structure on its own without having
409 to untangle whether different aspects of netwankcstire are correlated.

410

411 More broadly, our study provides a framework fowhnterpretable machine learning can
412 predict spread across networks for a wide variégpademic parameters. While our RF

413  MrIML model had much higher predictive performance coatto the corresponding linear
414 models, further investigation of these models mtedicritical insight into how network

415 structure impacted pathogen spread. This framewmuld identify general trends of disease
416 vulnerability, specific thresholds for pathogenstwgertain characteristics, as well as the

417 drivers of spread for individual networks.
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418
419 To help practitioners apply our model to differaost-pathogen systems, we developed an

420 R-Shiny applfttps://spreadpredictr.shinyapps.io/spreadpredli€ur web app allows users

421 to make predictions of spread for diverse trangonsand recovery probabilities on a contact
422 network of interest without the need for simulati&wen when the underlying mechanism of
423 spread was mis-specified, as with our case studiganodel could provide reasonable

424 estimates of the proportion of the population itdecdhat align closely with empirical data.
425 While currently limited to pathogens with SIR tremssion dynamics, future versions of the
426 app will include, for example, SI and SEIR mechanWe stress that for practitioners to

427 make accurate predictions for a particular pathpgentact definitions and the duration of
428 data should be calibrated or multiple thresholdsvoat constitutes a transmission contact
429 assessed (see Craft 2015). For example, for taflegghetwork we included edges that

430 represented individuals seen once together overiagpof a year, and predictions of

431 pathogen spread on this network would likely bé&abefd for pathogens requiring more

432 sustained contact (VanderWahkl. 2014). Nonetheless, this study shows the utility o

433 linking network simulation and interpretable maehiearning approaches to tease apart the
434 drivers of spread across empirical wildlife netwsork

435

436 As this is a broad, comparative study of simulgtathogen spread on 603 empirical

437 networks across taxonomic groups, we made impaosianilifying assumptions. For

438 example, as there were large differences in hovethgirical network edges were weighted
439 across taxa (e.g., some networks were weighteditact duration and others by contact
440 frequency) our approach treated all contacts aaléqunweighted networks, as is done in
441 similar studies (Amest al. 2011; Salet al. 2017). We also simulated spread across static

442 networks, making the assumptions (i) that aggregagtworks are representative or social
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443 patterns at epidemiologically-relevant timescales @) that network change happens more
444  slowly than pathogen spread. Including predictiohspread that account for the dynamic
445 nature of contact structure and pathogen-medidtadges in behaviour is an important

446 future extension of this work. However, applyinghdynic network models such as temporal
447 exponential random graph models (Krivitsky & Hanckc@014) to estimate spread is

448 computationally demanding and challenging in a carative setting due to idiosyncrasies in
449 the model-fitting process. While of high predictiwedue, our models did not capture all

450 aspects of uncertainty. For example, we assumddresievork was fully described, with no
451 missing nodes or edges, which is almost alwaysheotase for wildlife studies. How

452 sensitive spectral properties are to missing dasamiopen question. However, promisingly,
453 removing edges from ecological networks with higedker values does not appear to

454  strongly impact the stability of the network (Kunetual. 2019).

455

456  Another limitation of this study is that our modeligl not account for uncertainty in

457 predictions. Currently, more probabilistic modalsls as BART (Bayesian Additive

458 Regression Trees) (Carlson 2020) are not availatitee MrIML framework, but future

459 extensions may allow for methods such as BART tmberporated (Fountain-Jonetsal.

460 2021). However, one advantage of our approachaisftin the RF model (proportion

461 infected), host species (and the other categorarébles, see Table S3) could be added as a
462 categorical predictor rather than hot-encoded 48 @redictors (one binary predictor for
463 each species (-1)). This simplified interpretatiahsut how host species affect pathogen
464 spread differently, while accounting for nonindegemce of intra-species networks (e.g.,
465 networks for host species A from different popwlas of that species or from different

466 timepoints) (Salet al. 2019). A large proportion of the networks (~158ne from one taxon

467 (C. fellah); removing this one taxon did not qualitativelyaokye our findings. While this
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468 study demonstrates the power of repositories ssitheaASNR, there are large biases in the
469 taxa covered that must be accounted for in modettsire. Starting to fill in these taxonomic
470 gaps in a systematic way will increase the utditgomparative approaches such as ours and

471 make them generalizable across taxa and populations

472

473  This paper provides a significant step towardseztspl understanding of pathogen spread in
474 animal networks. In particular, we show that thec$gal radius of an animal network is a

475 powerful predictor of spread for diverse hosts pathogens that can be a valuable shortcut
476 for stakeholders to understand the vulnerabilitgrimal networks to disease. We also

477 demonstrate how multivariate interpretable machkéaening models can provide novel

478 insights into spread across scales. Moreoversthidy identified the key axes of network

479 structural variation across the animal kingdom taatt inform future comparative network
480 research. As rapid advances in location-basediigeind bio-logging (Katzner & Arlettaz
481 2020) make network data more readily availableitdlife managers, approaches like this

482 one will be of increasing value.

483
484 Methods
485 Networks

486 We downloaded all animal contact networks fromAlS&R on 13" January 2022 (Sadt al.
487 2019) and combined these with other comparableighdd animal contact networks

488 (Rushmorest al. 2013; Webeet al. 2013; VanderWaad al. 2014). We binarized each

489 network, extracted the largest connected compoaadtexcluded networks with fewer than

490 10 individuals. This left us with 603 networks frat8 species.

491
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492 From each network we calculated a variety of neftvetructure variables using the R

493 packagegraph (Csardi & Nepusz 2006) (see Table S2). As thessarks were constructed
494 using a wide variety of techniques, we also ex¢édchetadata from the ASNR or the

495 publication associated with the network (Table SBpse variables were also added to the
496 models. We used Principal Components Analysis (Pagibts to examine the drivers of

497 variation in network structure and visualise howwweks clustered by taxonomic class. We
498 removed networks with missing metadata (8 netwaaksl) screened for correlations between
499 variables. As many of the machine learning varslle less sensitive to collinearity

500 (Fountain-Jonest al. 2019) we used a pairwise correlation threshold. 6fand removed

501 variables from the pair with the highest overaliretation (Table S2).

502 Smulations
503

504 To simulate the spread of infection on each netwaglused our R package “EpicR”

505 (Epidemics by computers in R; available on GitHub gidi/github.com/mcharleston/epicr

506 The simulations use a standard discretisationefifR model, in which time proceeds in

507 “ticks,” for example representing days. Initiallgeindividual was chosen at uniform random
508 to be infected (1) and all others were suscep{iBle At each time step, one of two changes of
509 state can happen to each individual (representedrimde), depending on its current state.
510 An ‘S’ individual will become infected (I) with arpbability (1 — (1 —B)"), wherek is the

511 number of currently infected neighbours it hasptbeerwise stay as S; an ‘I’ individual will

512 recover (R) with probability or remain as I. Recovered (R) individuals stafRas

513 In classical deterministic SIR models as a seiftéréntial equations} andy are
514 instantaneous rates; here, they are probabiliBesimme step, so at a coarse level, they are

515 comparable.
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516 On each network, we performed 1000 simulationsgudifierent combinations of

517 transmissionf{ = 0.01, 0.025, 0.05, 0.1, 0.2) and recovery priitiab (y = 0.04, 0.4). We

518 chose these values to broadly reflect a rangeasfasts from high to low transmissibility

519 and slow to fast recovery (Leung 2021) and ensargeloutbreaks (>10% on individuals

520 infected, see Fig S8 for the analysis with a widwatety of recovery rates) (Sahal. 2017).

521 For each simulation we recorded two complementpiyesnic measures to capture disease
522 burden and speed of spread: a) the maximum presslerached, or the maximum proportion
523 of individuals infected in the network after 10@& steps and b) time to outbreak peak (i.e.,
524  which time step had the maximum number of infet)oliVe chose 100 time steps to ensure
525 that the epidemic ended and there were no remainfagted nodes. One randomly chosen
526 individual was infected at the beginning of thedismion. The average maximum proportion
527 infected and time to outbreak across all simulatifom each parameter combination were

528 used as the response variables in the machineriganodels,

529
530 Machine lear ning pipeline
531

532  We used a recently developed multi-response irg@ple machine learning approgbir
533 IML, Fountain-Joned al. 2020) to predict outbreak characteristics usingiag structure
534 variables. OuMrIML approach had the advantage of allowing us to kap@hstruct and
535 compare models across a variety of machine-leammayithms for each of our response

536 variables as well as assess generalized predaiifaces across epidemic parameters.

537

538 To test the robustness of our results, we compaeegerformance of four different
539 underlying supervised regression algorithms inMiML models. We compared linear

540 models (LMs), support vector machines (SVMs), randorests (RF) and gradient boosted
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541 models (GBMs) as they operate in markedly differgays that can affect predictive

542 performance (Fountain-Jonetsal. 2019; Machadet al. 2019). Categorical predictors such
543 as ‘species’ were hot-encoded for some modelsedede(see Table S4). As both types of
544 responses in our models were continuous, we comiphegperformance of each algorithm
545 using the average’And root mean squared error (RMSE) across all rssso(hereafter, the
546 ‘global model’). As we included models that were filusing sums of squares, ouf R

547 estimate depended on the squared correlation betiiveeobserved and predicted values
548 (Kvalseth 1985). As ants (Insecta: Formicinae) vweser-represented, we compared model
549 performance and interpretation with and withoustheetworks. To calculate each

550 performance metric, we used 10-fold cross valigetioprevent overfitting each model. We
551 tuned hyperparameters for each model (where apptepusing 100 different hyper-

552 parameter combinations (a 10x10 grid search) aledtee the combination with the lowest
553 RMSE. The underlying algorithm with the highestdicgve performance was interrogated

554  further.
555

556 We interpreted this final model using a varietyraddel-agnostic techniques within the

557 MrIML framework. We assessed overall and model-spedfi@ble importance using a

558 variance-based method (Greenvetll. 2018). We quantified vo each variables alters

559 epidemic outcomes using accumulated local effeddt&$) (Apley & Zhu 2016). In brief,

560 ALEs isolate the effect of each network charadtiersn epidemic outcomes using a sliding
561 window approach calculating the average changeadigtion across the values range (while
562 holding all other variables constant) (Molnar 2018)Es are less sensitive to correlations
563 and straightforward to interpret as points on thé& Aurve are the difference from the mean

564 prediction (Apley & Zhu 2016; Molnar 2018; Fountaioneset al. 2021).
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565

566 To further examine the predictive performance oftdack-box models (SVM, RF and
567 GBM) we calculated a global surrogate decision (hezeafter ‘global surrogate’) to

568 approximate the predictions of our more comple&d models. Global surrogates are
569 generated by training a simpler decision tree épthdictions (instead of observations) of
570 the more complex ‘black box’ models using the nekngiructure data. How well the

571 surrogate model performed compared to the compledehris then estimated using.Bee

572 Molnar (2018) for detalils.
573

574 Lastly, we gained more insight into model behavimod how network structure impacted
575 epidemic outcomes on individual networks, includiygcalculating Shapley values

576  (Strumbelj & Kononenko 2014). Shapley values ugarae theoretic approach to play off
577 variables in the model with each other based ain tloatribution to the prediction (Shapley
578 1953). For example, negative Shapley values inglittedt the observed value ‘contributed to
579 the prediction’ by reducing the proportion infectadime to peak in an outbreak for a

580 particular network. See Molnar (2018) for a mortaded description and (Fountain-Jorees
581 al. 2019; Worsley-Tonkst al. 2020) for how they can be interpreted in epideagimal

582 settings.
583

584 We validated our results using networks with weltdmented disease dynamics. The

585 European badger network was included in our trgidliata, and we selected the propagation
586 model with a slow recovery rate € 0.04) and intermediate transmissibilify= 0.05) that

587 provided an equivalent/similarpiRL.1-1.3) toM. bovisin the studied badger population

588 (Delahayet al. 2013). It should be noted here thatbovis infection has SEI(R)(D)
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589 dynamics, being frequently latent in badgers faglperiods with infection only resolving in
590 some individuals (the most infectious individuaiéhwprogressed disease have elevated
591 mortality (Corneret al. 2011)). We compared the proportion infected retdriny our model
592 to various contemporaneous estimatesiobovis prevalence (Delahast al. 2013; Buzdugan
593 etal. 2017) in the long-term study that contact netwaaita were collected in (McDonadtl

594 al.2018).

595 The Tasmanian devil networks were not includedhettaining data. To compare

596 predictions, we extracted the predict function frii@ model that was the most similar to
597 estimates of DFTD dynamics based on empirical (fata0.2,y = 0.04, R= 5) (McCallum
598 etal. 2009; Hamedet al. 2012). DFTD has SEI(D) dynamics in devil populasiphowever,
599 accurately estimating the latent period is impdssiés there is (as of May 2022) no

600 diagnostic tool to detect DFTD prior to visual dgten of the tumours (Hamedaeal. 2012).
601 As we wanted to make predictions on a specieswbided in our dataset, we reran the
602 models excluding the species predictor and the hpmtéormance, and results were very

603 similar. Seenttps://github.com/nfj1380/igraphEfor our complete analytical pipeline.
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