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Abstract  

Global signal regression effectively mitigates noise in fMRI data but also inadvertently removes 

neural signals of interest. We show distinct linear and quadratic lifespan global signal 

topography associations with age. We also show that global signal regression significantly 

influences age-functional connectivity strength associations. These findings have critical 

implications for lifespan network neuroscience investigations, given that a widely-used data 

denoising step differentially impacts brain connectivity effects in different age cohorts.  
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One of the biggest challenges in neuroscience is separating signal from noise (1). In 

functional neuroimaging generally, and in human connectomics investigations utilizing resting 

state functional MRI (fMRI) specifically, this challenge has been met with the development of 

processing pipelines that mitigate artifacts known to obscure the underlying neural signal (2). 

These pipelines denoise fMRI data by removing physiological, hardware-related, and head 

motion-related signals to identify functional network architectures in the human brain. The 

“global signal” constitutes the average signal intensity across all voxels in the brain (generally 

gray matter, but can include non-gray matter). Global signal regression has been widely adopted 

as a robust method for attenuating cardiac and respiratory noise and other non-random 

confounding signals (2) and has also been shown to improve prediction of behavior from 

functional connectivity (FC) indices in certain scenarios (4). However, the benefits from global 

signal regression may come at the expense of removing neural signals of interest.  

Several lines of emerging evidence suggest a cautious approach is warranted when 

exercising what is sometimes viewed as an aggressive data cleaning strategy. This is because the 

global signal also includes important neural activity. Animal studies show that the fMRI global 

blood-oxygen level-dependent (BOLD) signal is strongly associated with neuronal activity using 

photometry imaging of neurons (5) and intracranial electrical recordings (6). These physiological 

associations between the global signal and electrical activity may be rich sources of individual 

differences in cognition and behavior. Recently, we identified a dynamic spatiotemporal pattern 

explaining ~20% of resting-state BOLD variance that has a time series strongly associated (r = 

0.97) with the global signal in adult humans (7). This suggests that the global signal facilitates 

the propagation of cortex wide activity across brain networks encompassing a substantial portion 

of spontaneous brain function.  We have also shown that global signal topography, or the 

association between each voxel’s time series and the global signal, contains information related 

to trait-level cognition and behavior. In a population neuroscience study of >1000 subjects, 

global signal topography was related to an axis of positive and negative life outcomes and 

psychological function, particularly weighted in frontoparietal executive control network 

regions, in 22-37 year-old adults (8). These studies suggest a significant neural component of the 

global signal related to individual physiological and cognitive differences; it is not solely a 

source of pure noise to be discarded.   

These observations invigorate the claim that the global signal potentially has relevance 

for lifespan studies of the human connectome. In prior network neuroscience research, the 

question of how global signal topography varies with age has not been carefully considered. 

Consequently, existing findings documenting lifespan changes in FC influenced by global signal 

regression would need to be revisited to determine how such results were impacted on a systems-

wide basis. Thus, understanding the impact of global signal regression is important for 

interpreting both past and future studies focusing on age or lifespan FC associations. 

Using a large cross-sectional sample (601 subjects; 6-86 years old; 10 minute resting-

state fMRI scan) of publicly available data (NKI-enhanced; Figure 1), we demonstrate distinct 

linear and quadratic associations between global signal topography and age for the first time. To 

mitigate head motion concerns, all participants had an average framewise displacement (FD) < 

0.5 mm, high motion frames were censored (3) (FD > 0.5 mm), and FD was included as a 

covariate in all regression models (there was an age x FD linear interaction (p < 0.001) but no 

quadratic interaction (p = 0.9)). The thalamus and higher-level visual cortices show a positive 

linear relationship, where the association with the global signal is weakest for younger 

individuals and strongest for older individuals.  Temporal cortex and sensorimotor areas show 
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the opposite pattern, where the association with the global signal is strongest for younger 

individuals and weakest for older individuals (Figure 2). The lateral frontoparietal network 

has  a quadratic association with the global signal; these regions show stronger associations at 

early (< 20 years) and later (> 60 years) periods of life, and the weakest association in middle 

age. The opposite pattern emerges in the medial prefrontal cortex, caudate, and lower-level 

visual cortices, where the association with the global signal is weakest at early and later periods 

of life, and strongest in middle age. These results demonstrate distinct age-dependent large-scale 

network associations with the global signal.  

It is currently unclear to what extent these brain system-specific lifespan global signal 

spatial topographies are driven by vascular or neural properties within the context of the current 

study. Evidence for a neural origin related to the current results come from developmental 

trajectories of brain network composition and executive function behavioral performance. 

Functional connections typically show a curvilinear pattern of network development; long-

distance within-network connections strengthen and between-network connections segregate into 

the 3rd and 4th decade of life (9). The opposite pattern continues into old age, where between-

network integration and within-network segregation increase (10, 11, 12). The FC strength of 

nodes within the lateral frontoparietal network closely resembles executive function performance 

across the lifespan (13). That is, FC strength within nodes of the frontoparietal network is 

strongest when executive function performance is highest and within-network connectivity 

strength is weakest when executive function performance is lowest across the lifespan. These 

lifespan changes in network integration and segregation that mirror executive function 

behavioral performance, both show a similar quadratic relationship as the association between 

the frontoparietal network and the global signal in the current study. These findings suggest an 

association between the global signal spatial topography changes observed in the current results 

with known lifespan characterizations of brain network and behavioral changes.  

Evidence for a vascular origin of the global signal related to the current results come 

from research orthogonalizing CO2 and stimulus presentation showing that the lateral 

frontoparietal, medial frontoparietal, and visual networks have dissociable vascular and neural 

fMRI BOLD activity within a task paradigm (14). Additional fMRI research shows that vascular 

effects of aging can also be both global and brain region dependent (15). Thus, it may be 

possible that this divergence among large scale network global signal topography is driven by 

such vascular processes or the previously described executive function performance association 

with the frontoparietal network. It is not possible to disentangle the two within the current study, 

but the differentiation of global signal lifespan topography in a network specific manner is an 

important consideration for the judicious application of global signal regression in future 

studies.  

Accordingly, we also show that the processing step of global signal regression has a 

significant influence on the amount and magnitude of linear and quadratic FC associations with 

age (Figure 3). Negative linear effects for between-network connections related to the default 

mode network (DMN) are drastically reduced, with some negative within-network DMN effects 

turning into positive linear effects. Additionally, within- and between-network connections 

related to the sensorimotor and visual networks are strengthened, and the frontoparietal network 

shows stronger negative linear effects with the sensorimotor and visual networks. Quadratic 

effects related to global signal regression show a general increase in the number of within- and 

between-network connections for the DMN and ventral attention networks. Thus, global signal 
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regression exerts a strong influence on both linear and quadratic FC-age associations on both 

within- and between-network connections across the lifespan. 

The changing global signal topography across the lifespan and the influence of global 

signal regression on age-FC associations makes interpretation of lifespan studies using global 

signal regression complex. As the sample age-range increases, there is a greater possibility that 

different brain areas and networks will be influenced. For example, global signal regression may 

have a greater influence on the frontoparietal network in child and older adult samples compared 

with young adult samples. Additionally, global signal regression applied to data collected 

from young individuals may not influence thalamic and occipital cortex activity as much as 

global signal regression applied to older adults. Thus, global signal regression may have system-

specific implications in age-FC investigations. Further, it is unknown to what extent global 

signal regression is beneficial or detrimental for identifying cognition-related brain activity. It is 

not possible to determine if the global signal is driving activity in specific networks, or vice-

versa. Regardless, consideration of how global signal regression influences lifespan results are 

warranted, as even the physiological component of the global signal is a rich source of individual 

differences in brain function (7).  

 In sum, we show that age is strongly associated with the spatial topography of the global 

signal in resting-state fMRI data. Due to the importance and controversy over global signal 

regression, researchers should take care to consider the implications of its application beyond 

artifact mitigation. As the field of fMRI marches forward, understanding how global signal 

regression affects statistical analyses will continue to be of paramount importance for lifespan 

network neuroscience investigations. 
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Figure 1: Demographic information and average global signal topography across randomly chosen age 
groups. Left: Histograms of age, scatterplots showing significant linear age-framewise displacement (FD) 

associations, and pie charts of sex distribution. There is a significant linear age x FD interaction (p < 

0.001) but not a quadratic age x FD interaction (p = 0.9) Right: Average global signal spatial topography 

across every 10 years of the lifespan. The strongest associations are present in the occipital and lateral 
frontal brain areas. The global signal topography matches previous research showing strong associations 

between the global signal and visual areas (Li et al., 2019; Bolt et al., In Press) as well as frontoparietal 

areas (Zhang et al., 2019; Li et al., 2020) across all age groups showing that average global signal 
topography is relatively stable across the lifespan.  

 

 
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.27.501804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.27.501804
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Linear and quadratic associations between the global signal and voxel-wise time-series. 

Each dot denotes an individual subject’s z-scored unstandardized beta representing the association 

between the global signal and each cluster’s average time series across its constituent voxels. Top Left: 

Positive linear associations were present in the thalamus, occipital, and parietal cortices. Top Right: 

Positive quadratic associations were present across nodes of the frontoparietal network, frontal eye fields, 
and putamen. Bottom Left: Negative linear associations were present in the medial prefrontal cortex, 

sensorimotor, temporal cortex, frontal cortex, and basal ganglia. Bottom Right: Negative quadratic 

associations were present in the medial prefrontal cortex, occipital cortex, and the caudate. These 
differences in global signal topography according to age and network suggest that global signal regression 

may have a systematic influence on networks according to age.  
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Figure 3: Influence of global signal regression on Age-FC strength and amount of significant 

connections. Linear and quadratic unstandardized betas representing the association between functional 

connectivity strength and age with and without global signal regression for the 400 ROI Schaefer 

Parcellation. Warm colors indicate larger unstandardized betas (stronger associations) and cool colors 

indicate smaller unstandardized betas (weaker associations) for connections surviving FDR correction (q 
< 0.001). White indicates connections not surviving FDR correction. DA = dorsal attention network; VA 

= ventral attention network; SM = sensorimotor network. Global signal regression results in stronger 

linear effects for visual-sensorimotor connections, weaker linear effects for within- and between-network 
default mode connections, and weaker connections between the frontoparietal control network and visual-

sensorimotor areas. Global signal regression also results in more negative quadratic betas for connections 

within the ventral attention network, sensorimotor network, and default mode network in addition to more 
negative quadratic betas between the dorsal and ventral attention networks.  

 

zGSregressed quadratic age unstandardBeta

-5

-4

-3

-2

-1

0

1

2

3

4

5

10
-5zNonGSregressed quadratic age unstandardBeta

-5

-4

-3

-2

-1

0

1

2

3

4

5

10
-5

zGSregressed linear age unstandardBeta

-5

-4

-3

-2

-1

0

1

2

3

4

5

10
-3

zNonGSregressed linear age unstandardBeta

-5

-4

-3

-2

-1

0

1

2

3

4

5

10
-3

Control

Default

DA

Visual

SM

VA

Limbic

Control

Default

DA

Visual

SM

VA

Limbic

Control

Default

DA

Visual

SM

VA

Limbic

Control

Default

DA

Visual

SM

VA

Limbic

No Global Signal Regression Global Signal Regression

Quadratic Age Betas

Linear Age Betas

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.27.501804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.27.501804
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 
 

1) Uddin, L. Q. (2020). Trends in Cognitive Sciences, 24(9), 734-746. 

 

2) Ciric, R., Rosen, A.F., Erus, G., Cieslak, M., Adebimpe, A., Cook, P.A., Bassett, D.S., Davatzikos, C., 

Wolf, D.H. and Satterthwaite, T.D., 2018. Nature protocols, 13(12), pp.2801-2826. 
 

3) Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L. and Petersen, S.E., 2012. Neuroimage, 59(3), 

pp.2142-2154. 
 
4) Li, J., Kong, R., Liégeois, R., Orban, C., Tan, Y., Sun, N., Holmes, A.J., Sabuncu, M.R., Ge, T. and 
Yeo, B.T., 2019. NeuroImage, 196, pp.126-141 
 

5) Ma, Y., Ma, Z., Liang, Z., Neuberger, T. and Zhang, N., 2020. Brain Structure and Function, 225(1), 

pp.227-240. 

 

6) Schölvinck, M.L., Maier, A., Ye, F.Q., Duyn, J.H. and Leopold, D.A., 2010. Proceedings of the National 

Academy of Sciences, 107(22), pp.10238-10243.  

 
7) Bolt, T., Nomi, J.S., Bzdok, D., Chang, C., Yeo, B.T., Uddin, L.Q., and Kielholz, S.D. (2022) Nature 
Neuroscience.  

 

8) Li, J., Bolt, T., Bzdok, D., Nomi, J.S., Yeo, B.T., Spreng, R.N. and Uddin, L.Q., 2019. Scientific reports,  

9(1), pp.1-10. 

 

9) Fair, D.A., Cohen, A.L., Power, J.D., Dosenbach, N.U., Church, J.A., Miezin, F.M., Schlaggar, B.L. and 

Petersen, S.E., 2009. PLoS computational biology, 5(5), p.e1000381. 

 

10) Vij, S.G., Nomi, J.S., Dajani, D.R. and Uddin, L.Q., 2018. Neuroimage, 173, pp.498-508. 

 

11) Zuo, X.N., He, Y., Betzel, R.F., Colcombe, S., Sporns, O. and Milham, M.P., 2017. Trends in 

cognitive sciences, 21(1), pp.32-45. 

 

12) Setton, R., Mwilambwe-Tshilobo, L., Girn, M., Lockrow, A.W., Baracchini, G., Hughes, C., Lowe, A.J., 

Cassidy, B.N., Li, J., Luh, W-M., Bzdok, D., Leah, R.M., Ge, T., Margulies, D.S., Music, B., Bernhardt, 
B.C., Stevens, W.D., De Brigard, Fl., Kund, P., Turner, G.R., Spreng, R.N. (2022) Cerebral Cortex.  

 

13) Ferguson, H.J., Brunsdon, V.E. and Bradford, E.E., 2021. Scientific reports, 11(1), pp.1-17. 

 

14) Bright, M.G., Whittaker, J.R., Driver, I.D. and Murphy, K., 2020. NeuroImage, 217, p.116907. 

 

15) Tsvetanov, K.A., Henson, R.N., Jones, P.S., Mutsaerts, H., Fuhrmann, D., Tyler, L.K., Cam-CAN and 

Rowe, J.B., 2021. Psychophysiology, 58(7), p.e13714. 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.27.501804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.27.501804
http://creativecommons.org/licenses/by-nc-nd/4.0/


Online Materials and Methods 

Subjects and fMRI data 

 A 10-minute resting-state scan (TR = 1.4 sec, 10 minutes) was analyzed for six hundred 

and one subjects (6-85 years old; 240 males) without a current DSM diagnosis from the Nathan 

Kline Institute enhanced publicly available data repository (1). All participants had an average 

framewise displacement < 0.5 mm.  Imaging was performed on a Siemens Trio 3.0T scanner that 

collected a T1 anatomical image and multiband (factor of 4) EPI sequenced resting-state fMRI 

data (2x2x2 mm, 40 interleaved slices, TR = 1.4s, TE = 30 ms, flip angle = 65°, FOV = 224 mm, 

404 volumes). Participants were instructed to keep their eyes open and fixate on a cross centered 

on the screen (http://fcon_1000.projects.nitrc. org/indi/enhanced/mri_protocol.html). All 

participants had less than 0.5 mm average framewise displacement (FD). There was a significant 

linear FD-age association (standardized ³ = 0.35, p = 1.23E-18) but no quadratic FD-age 

association (p = 0.9) (Figure 1). Therefore, FD was used as a nuisance covariate in all analyses.  

 

fMRI preprocessing 

Data were preprocessed using FSL, AFNI, and SPM functions through DPARSF-A in 

DPABI (2). The first five images were removed to allow the MRI signal to reach equilibrium. 

Data were despiked using AFNI 3dDespike, realigned and normalized with DPARSF-A into 

3mm MNI space, and then smoothed (6mm FWHM). The ICA-FIX classifier (3, 4) was trained 

on hand-classified independent components separated into noise and non-noise categories 

(random sampling by choosing subjects separated by ~10 years of age) by visual inspection. The 

resulting component classifications were then fed into the ICA-FIX classification algorithm to 

classify noise and non-noise components from individual subject data before conducting 

nuisance regression of classified noise components from the resting-state scans in MNI space. 

Next, the Friston 24 motion parameters and linear trends were regressed out of the data, before 

the application of a band-pass filter (0.01 to .10 Hz) to isolate low-frequency fluctuations that 

characterize resting-state BOLD signals.  

 

Global Signal Topography and the General Linear Model 

 The global signal was calculated as the mean time-series of all gray matter voxels within 

a SPM gray matter a priori mask. The association between the global signal time series and the 

time series at each voxel was calculated using linear regression and produced whole-brain voxel-

wise beta maps for each subject. Frames where FD (5) exceeded 0.5 mm were not included in the 

regression model. The whole-brain voxel-wise subject maps were then smoothed (6mm FWHM). 

Two general linear models (GLM) were then run in FSL using whole-brain voxel-wise beta maps 

as the DVs. IVs for the first GLM consisted of linear age, mean FD, and sex, and the IVs for the 

second GLM consisted of linear age, quadratic age, mean FD, and sex. 

 

Influence of Global Signal Regression on Network Node Association Strength Across the lifespan 

In order to determine how global signal regression influences the association between age 

and FC strength between two network nodes, two regression models were run on data with and 

without global signal regression. The DVs for both regression models were the within-subject z-

transformed Pearson correlation matrix for each pair of ROI time series in the Schaefer 

parcellation (400 ROIs: (6)). The first model consisted of age, FD, and sex as IVs while the 

second model used age, age squared, FD, and sex as IVs (FDR corrected q < 0.001).  
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