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ABSTRACT  

 

How transcription factors (TFs) navigate the complex nuclear environment to assemble 

the transcriptional machinery at specific genomic loci remains elusive. Using single-

molecule tracking, coupled with machine learning, we examined the mobility of multiple 

transcriptional regulators. We show that H2B and ten different transcriptional regulators 

display two distinct low-mobility states. Our results indicate that both states represent 

dynamic interactions with chromatin. Ligand activation results in a dramatic increase in 

the proportion of steroid receptors in the lowest mobility state. Mutational analysis 

revealed that only chromatin interactions in the lowest mobility state require an intact 

DNA-binding domain as well as oligomerization domains. Importantly, these states are 

not spatially separated as previously believed but in fact, individual H2B and TF 

molecules can dynamically switch between them. Together, our results identify two 

unique and distinct low-mobility states of transcriptional regulators that appear to 

represent common pathways for transcription activation in mammalian cells. 

INTRODUCTION 

 

The eukaryotic genome is highly organized across several length scales. DNA wraps 

around nucleosomes to form chromatin, which loops, forms topologically-associating 

domains (TADs), chromosomes, and chromosome territories (1). This organization is 

crucial for the regulation of gene expression. Genes that are present in more accessible 

regions or within three-dimensional proximity of their cis-acting elements (enhancers, 

promoters) are more likely to be expressed (2). Transcription factors (TFs) bind 

consensus motifs within enhancers and promoter-proximal regions, and this binding 

triggers the recruitment of cofactors, remodelers, co-repressors, or co-activators, all of 

which act in concert to regulate target genes (3). This is a highly dynamic process with 

TFs only transiently interacting with chromatin on a timescale of seconds (4-6). Chromatin 

itself is a highly dynamic polymer, subject to thermal fluctuations and active forces such 

as transcription (7), loop extrusion (8), DNA damage repair, and replication (9). How TFs 

navigate this complex nuclear microenvironment to find their binding sites remains poorly 

understood.  

 

Over the past decade, single-molecule tracking (SMT) has emerged as a powerful tool to 

interrogate the dynamics of proteins in living cells. In bacteria, TFs have been shown to 

undergo a combination of 3D diffusion and 1D facilitated diffusion (sliding) to find their 

target sites (10). Mammalian nuclei present a much bigger challenge to the TF search for 

relevant motifs since the nucleus contains several levels of organization. Chromatin in 

mammalian cells exhibits complex dynamic signatures, showing micron-scale coherence 

on a timescale of 10 s (11) and recent SMT studies have found that transcription (12) and 

loop extrusion (13) constrain chromatin mobility. Classification of fast TF and histone H2B 
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trajectories into five mobility groups revealed a spatial patterning of mobility states (14), 

with lower mobility states occupying the nuclear periphery and perinucleolar regions, 

which are typically associated with heterochromatin. Similarly, fast SMT showed that 

nucleosomes exhibit two mobility states on a timescale of 500 ms, which were then 

modeled as spatially separate domains of 8fast9 and 8slow9 chromatin (15). In both these 

studies, single-molecule trajectories were sampled rapidly (100 Hz (14) or 20 Hz (15)) 

and for short times (£ 500 ms). However, TF dwell times have been shown to obey a 

power-law distribution, with some binding events lasting for tens of seconds (16). To 

identify mobility states that are important on these timescales, it is essential to study the 

molecules that remain bound for similar times. Furthermore, chromatin is a viscoelastic 

polymer showing different dynamic signatures at short and long timescales (11, 17). This 

makes it important to complement these fast SMT studies with SMT studies sampling 

longer TF binding events to get a more complete picture of chromatin and TF dynamics. 

 

Despite extensive studies of chromatin dynamics, several questions remain open: Which 

modes of chromatin mobility can we detect at timescales meaningful for TF binding? Are 

these mobility states spatially separate or can individual nucleosomes switch between 

them? Do TFs and coregulators exhibit similar mobility states as chromatin? For inducible 

TFs, how do these states change upon ligand-activation? Which domains of TFs are key 

determinants of mobility and chromatin interactions? 

 

Here, we use SMT along with a systems-level machine-learning algorithm to address 

these questions. First, we focus on H2B as a marker for chromatin, and find that H2B 

exhibits two distinct low-mobility states. Individual H2B molecules dynamically switch 

between these states, challenging the view that chromatin forms long-lasting and spatially 

separated mobility domains. Next, we used our analysis framework to study steroid 

receptors (SRs), which are hormone-inducible TFs. We find that SRs, along with other 

coregulators, show the same two low-mobility states as H2B, indicating that TF motion is 

correlated with that of chromatin. Like H2B, TFs and coregulators can also switch 

between these two states. Upon activation of SRs, the bound fraction as well as the 

proportion of molecules in the lowest mobility state increase significantly, indicating that 

this state is associated with the active form of SRs. Focusing on the peroxisome 

proliferator-activated receptor gamma 2 (PPARg2), we show that engagement with 

chromatin in the lowest mobility state requires an intact DNA-binding domain (DBD) as 

well as domains important for the formation of heterodimeric protein complexes that 

enhance chromatin binding and transcriptional output. Finally, we discuss our results in 

the context of recent studies and propose a new model for transcription factor dynamics 

in mammalian cells. 
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RESULTS 

 

Chromatin mobility is characterized by dynamic switching between two distinct 

low-mobility states  

 

We performed SMT of cells expressing HaloTag-protein chimeras (with H2B serving as a 

probe for chromatin) to determine the spatial mobility of proteins. We labeled the 

HaloTag-protein chimeras with low concentrations (5 nM) of JF549 dye (18), and imaged 

cell nuclei using highly inclined laminated optical sheet (HILO) microscopy (19) (Fig. 1A). 

We are most interested in the spatial mobility of bound events that last on the order of 

tens of seconds as they were shown to be correlated with transcriptional outcomes (20). 

Since photobleaching prevents rapid imaging for long times (21), we imaged the cells 

every 200 ms, with short exposure times of 10 ms to minimize motion blur (Movie S1). 

Particles were tracked using a custom algorithm (see Methods). A representative 

temporal projection of an H2B SMT image stack along with particle tracks is shown in Fig. 

1B. 

 

To quantify and characterize the mobility of H2B, we used a systems-level classification 

algorithm (perturbation expectation maximization version 2 (pEMv2)) to classify H2B 

trajectories into different diffusive states (22). Given a collection of trajectories without 

any a priori knowledge of the underlying diffusive states, pEMv2 utilizes machine learning 

along with a Bayesian information (BIC) criterion to uncover a set of diffusive states from 

a complex distribution of diffusivities. To minimize errors due to transitions within a track, 

while retaining sufficient numbers of data points for classification, we split our tracks into 

sub-tracks of length 7-frames (Fig. S1A) (23). Since pEMv2 is a probabilistic algorithm, 

we assign each sub-track to the state for which it has the highest posterior probability, 

filtering out sub-tracks with similar probabilities of belonging to multiple states (Fig. S1, B 

and C) (see Methods for details). After classification by pEMv2, we removed any states 

with a population fraction smaller than 5% (see Methods, Fig. S1, A and C). We then used 

the ensemble mean-squared displacement (MSD) of these states to compare diffusive 

states across proteins and conditions. The MSD curve serves as a good metric for the 

exploration size and diffusivity of an ensemble of particles (24).   
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Fig. 1: Histone H2B shows two distinct low-mobility states. (A) Schematic of single-molecule tracking 
experiment. (B) (left) Time projection of a representative H2B-Halo single-molecule tracking (SMT) movie 
(right) Overlaid with tracks. (C) Ensemble mean-squared displacement (MSD) for histone H2B (Ncells = 149, 
Ntracks = 25,298, Nsub-tracks = 88,934). Error bars denote the standard error of the mean. (D) Sample tracks 
assigned to low-mobility state 1 (red), low-mobility state 2 (blue) for H2B. (E) Piecharts of proportions of 
H2B sub-tracks assigned to different mobility states. (F) (left) Sample H2B track (right) Sub-tracks of length 
3.6s color coded by state assignment (state 1 in red and state 2 in blue). (G) Temporal reconstruction of 
the 50 longest tracks for histone H2B. (H) Transition probabilities for H2B among states 1, 2, and all other 
states. Cyan swarmcharts represent transition probabilities calculated from 1000 randomized ensembles. 
Number above the bars represent the proportion of randomized trials that have a higher transition 
probability than the respective calculated transition probability. 
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In adenocarcinoma 3617 cells (25), we found that the ensemble of H2B trajectories 

converged to seven mobility states, but the bulk of sub-tracks were classified into two 

states (Fig. S1C) based on the posterior probability of assignment to particular states (see 

Methods). Inspection of the ensemble MSD for both these states (Fig. 1C; henceforth 

referred to as states 1 and 2), as well as randomly sampled sub-tracks (Fig. 1D) shows 

that state 2 has a higher exploration radius than that of state 1 and that these states are 

distinct. States 1 and 2 each account for ~35% of all sub-tracks while ~30% of H2B 

molecules are unbound (Fig. 1E) (see Methods). Our data agree with recent studies (15, 

23), which showed that H2B exhibits two distinct mobility states. Ashwin et al. attributed 

these states to distinct spatially separated domains of fast and slow chromatin (15). 

However, the bulk of the data in that study represent relatively short tracks that last less 

than 500 ms (15). While each of our sub-tracks is of a comparable length (1.2 s), the 

parent tracks are longer, with some lasting up to 2 minutes (Fig. 1, F and G). 

 

To determine whether the two mobility states correspond to spatially separated chromatin 

domains that persist over seconds, we analyzed the dynamics of the two low mobility 

states within individual tracks. We generated a temporal reconstruction of state dynamics 

by coloring in sub-tracks by the color of the state they are assigned to (Fig. S1, D and E). 

If indeed, the two mobility states are spatially separated, we would expect to see entire 

tracks that belong to state 1 or 2. Strikingly, we found that the same H2B molecule 

dynamically switches between both low mobility states as shown for a representative 

track in Fig. 1F. Note that while we have picked spatially separated sub-tracks for ease 

of visualization (Fig. 1F), state 1 and state 2 sub-tracks overlap throughout the parent 

track (for example, Fig. S1D). More generally, across an ensemble of the 50 longest 

tracks, we observed similar switching behavior between these two states (Fig. 1G).  

 

We then quantified the transition probabilities for all tracks that contain at least three sub-

tracks (see Methods). To determine whether these transition probabilities are statistically 

significant, we performed a permutation test: we generated 1000 ensembles of randomly 

permuted sub-tracks and calculated the transition probabilities for these ensembles (see 

Methods). This approach has been used previously to test the statistical significance of 

transition matrices in atmospheric Markov chains (26). Our analysis shows that H2B 

molecules in states 1 and 2 prefer to remain in the same state (Fig. 1H), and that this 

occurs with a higher probability than would be expected from random ensembles with the 

same population fractions (Fig. 1H). On the other hand, while we do observe transitions 

from state 1 to state 2 and vice versa, our permutation test shows that these transitions 

occur less frequently than in a random ensemble (Fig. 1H).  
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Together, our data suggest that rather than forming spatially separated domains of higher 

or lower mobility, chromatin can switch dynamically between these two mobility states. 

However, this only becomes apparent when we track nucleosomes over longer 

timescales.  

 

SRs also exhibit two low-mobility states, with ligand-dependent population 

fractions 

 

Having established that chromatin has two dynamic mobility states, we turned our 

attention to TFs. How is TF mobility different from that of H2B? Do active and inactive 

forms of a TF behave differently? To answer these questions, we applied our analysis 

framework to study multiple SRs, which are class I nuclear receptors that bind hormone 

response elements (HREs) as homodimers or homotetramers (27, 28). Some SRs, like 

the glucocorticoid receptor (GR) and the androgen receptor (AR), are predominantly 

cytoplasmic in the absence of hormone with a small nuclear fraction, while the estrogen 

receptor (ER) is mostly nuclear (29). In the case of the progesterone receptor (PR), it can 

be either predominantly cytoplasmic or nuclear, depending on isoform (30). Agonist 

binding triggers a conformational change, nuclear translocation (for GR, AR, and PR), 

oligomerization, and binding to HREs. We tracked unliganded ER, and the small nuclear 

fraction of unliganded GR, PR, and AR and contrasted these with their corresponding 

ligand-activated receptors.  

 

All tested SRs, with and without activation by hormone, exhibit two distinct low-mobility 

states as well as a small population of one or two higher mobility states (Fig. 2, A to I, Fig. 

S2). Since a majority of the sub-tracks belong to the two low-mobility states (Fig. S2), we 

will focus on these for the rest of the study. As can be seen qualitatively from sample 

tracks belonging to these states (Fig. 2A), and quantitatively from ensemble MSD plots 

(Fig. 2, B to I), these states have different mobility signatures. On comparing these with 

the states recovered for H2B, we find that all the examined SRs exhibit the same two low-

mobility states as H2B (Fig. 2, B to I). This implies that SR mobility states and chromatin 

dynamics are correlated at our observed timescales. 
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Fig. 2: Steroid receptors also exhibit two low-mobility states, with ligand-dependent population 
fractions. (A) Sample tracks for the glucocorticoid receptor (GR). (left) Low-mobility state 1, (middle) low-
mobility state 2, (right) High-mobility state. (B 3 I) Ensemble mean-squared displacement for indicated 
steroid receptor (solid lines) and histone H2B (dashed lines), error bars denote the standard error of the 
mean: (B) Untreated GR (Ncells = 35, Ntracks = 386, Nsub-tracks = 962). (C) Untreated estrogen receptor (ER) 
(Ncells = 49, Ntracks = 4057, Nsub-tracks = 9551). (D) Untreated androgen receptor (AR) (Ncells = 51, Ntracks = 1394, 
Nsub-tracks = 4001). (E) Untreated progesterone receptor (PR) (Ncells = 37, Ntracks = 1371, Nsub-tracks = 3197). (F) 
GR activated with dexamethasone (Ncells = 238, Ntracks = 30,652, Nsub-tracks = 81,172). (G) ER activated with 
17³-estradiol (E2) (Ncells = 50, Ntracks = 8147, Nsub-tracks = 24,299). (H) AR activated with dihydrotestosterone 
(DHT) (Ncells = 38, Ntracks = 5160, Nsub-tracks = 12,697). (I) PR activated with progesterone (Prog) (Ncells = 41, 
Ntracks = 4951, Nsub-tracks = 14,899). (J 3 M) Comparative barcharts showing population fractions of various 
states for the indicated steroid receptors. 
 
 

To better understand the biological origin of these mobility states for SRs, we compared 

the population fractions of the states before and after hormone activation. All four SRs 

show an increase in the overall bound fraction upon activation (Fig. 2, J to M). All SRs 

show a dramatic increase in the proportion of the lowest mobility state, state 1: 10-fold for 

GR (Fig. 2J); 3.3-fold for ER (Fig. 2K); 3.5-fold for AR (Fig. 2L); and 4-fold for PR (Fig. 

2M). These are accompanied with a smaller increase in the relative proportion of state 2: 

2.5-fold (GR), 2.1-fold (ER), 1.5-fold (AR), and 2.2-fold (PR) (Fig. 2, J to M). It should be 

noted that 3617 cells do not express endogenous AR and PR (31, 32), and therefore may 

not provide a native chromatin context for AR and PR binding. This likely results in the 

relatively low population fractions observed for state 1 in these cells (Fig. 2, L and M). 

Taken together, these data suggest that state 1, the lowest mobility state of SRs, better 

correlates with their activation status than state 2, which implies that either binding of 

activated SR to chromatin constrains its mobility and/or activated SRs are more capable 

of interacting with chromatin in state 1. 

 

pEMv2 is a systems-level analysis that produces discrete mobility states and posterior 

probability distributions that maximize a defined log-likelihood function (22). We used an 

alternative method to test the generality of our observed mobility states. Given a collection 

of trajectories, we can calculate the van Hove correlation (vHc) function or step-size 

distribution. The calculated vHc can then be approximated as a superposition of Gaussian 

basis functions (see Methods), from which we can iteratively calculate the distribution of 

MSDs that gives rise to the calculated vHc. We used the iterative algorithm developed by 

Richardson (33) and Lucy (34) and successfully implemented it to study nucleosome 

dynamics (15) and to calculate the distribution of MSD (or equivalently the diffusivity 

distribution). We refer to this analysis as 8RL analysis9 in the rest of the manuscript. We 

find once again that the predicted MSD distribution for H2B, shown here for a time lag of 

0.8 s (Fig. S3, A and B) has two main populations, confirming the two states recovered 

from pEMv2. The bimodal distribution of MSDs was observed for other time lags (0.6 s - 

1.2 s) as well (not shown), indicating the generality of our findings. Similar analysis for 

hormone-activated SRs (GR, ER, AR, PR) also showed two distinct low-mobility states 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.25.501476doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501476
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

supporting our pEMv2 results (Fig. S3, C to J). Consistent with the thinly populated higher 

mobility states detected by pEM, we observe some higher mobility states in the 

distribution of MSDs as well (Fig. S3). 

 

SRs dynamically switch between the two low-mobility states 

 

Since we observe H2B molecules switching between the two low-mobility states, we next 

examined whether SRs also exhibited similar switching behaviors. Visual inspection of 

tracks showed that the same Dex-activated GR molecule could switch between these two 

mobility states (Fig. 3, A and B), with the state 2 sub-tracks exhibiting larger jumps (Fig. 

3B). We then compared the switching behavior of SRs before and after hormone 

stimulation.  

 

Upon activation by hormone, we observed an increase in overall dwell times (indicated 

by larger track durations of the longest tracks) of all SRs, as has been reported previously 

(21) (Fig. 3, C to F). We find that similar to H2B, SRs also exhibit switching between the 

two lowest mobility states (Fig. 3, C to F). In addition to showing the same ensemble MSD 

(Fig. 2, B to I), TFs and H2B both exhibit dynamic transitions between the two low-mobility 

states (Fig 1, F to H, and Fig. 3, C to F), supporting the hypothesis that the low-mobility 

states represent different modes of chromatin engagement. Quantifying the probability of 

transitions between these states, we observed that GR (Fig. S4, A and B), ER (Fig. S4, 

C and D), and PR (Fig. S4, E and F) molecules in states 1 and 2 prefer to remain in the 

same state, while transitions into state 2 are dominant for AR (Fig. S4, G and H).  Ligand 

activation results in an ~13% increase in state 1 to state 1 transitions for GR and a 

corresponding 6% increase for ER (Fig. S4, A to D), while AR and PR show very subtle 

differences with and without agonist (Fig. S4, E to H). For unliganded SRs, state 2 to state 

1 transitions are not significantly different at the 99% confidence level from those obtained 

for ensembles of random permutations (Fig. S4, A, C, E, G) (see Methods). However, 

upon ligand activation, these transitions occur with a higher probability than 

corresponding transitions for unliganded SRs (Fig. S4) but occur less frequently than the 

random ensemble. These data suggest that activation of SRs by hormone results in an 

increase in transitions into state 1 and that these transition probabilities are significantly 

different from those in a random ensemble.  

 

Collectively, our data show that SRs exhibit two distinct mobility states, which correlate 

with the mobility states of chromatin. Further, SRs and histones frequently switch between 

these states, underscoring the fact that these states are not spatially separated. Ligand 

activation dramatically increases the population fraction of state 1. Taken together, these 

imply that state 1 represents a mobility state that is important for hormone-mediated gene 

regulation. 
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Fig. 3: Transcription factors dynamically switch between two low-mobility states. (A) Sample GR 
track. (B) Sub-tracks of length 2.4s from the same track as in (A) color-coded by state assignment (state 1 
in red and state 2 in blue). (C 3 F) Temporal reconstruction for the 50 longest tracks for steroid receptors. 
(left) without hormone (right) upon activation by hormone. (C) Glucocorticoid receptor. (D) Estrogen 
receptor. (E) Androgen receptor. (F) Progesterone receptor. 

 

Other transcriptional regulators also exhibit two distinct mobility states 

 

Since we observed two distinct mobility states for SRs, which represent different modes 

of chromatin engagement, we hypothesized that other transcriptional regulators should 

also exhibit these two states. To test this hypothesis, we performed SMT experiments 

and subsequent analysis on several nuclear proteins with different functions. 
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Fig. 4: Other transcriptional regulators also exhibit two distinct low-mobility states. (A 3 E) For 
indicated coregulators (left) Mean-squared displacement plots for indicated transcriptional coregulator 
(solid lines) and histone H2B (dashed lines), error bars denote the standard error of the mean; (right) 

piecharts indicating proportions for the various detected mobility states. (A) RELA/p65 activated with TNFa 
(Ncells = 67, Ntracks = 9524, Nsub-tracks = 24,634). (B) GRIP1 (Ncells = 36, Ntracks = 4847, Nsub-tracks = 14,010). (C) 
MED26 (Ncells = 57, Ntracks = 11,429, Nsub-tracks = 29,085). (D) BRG1/SMARCA4 (Ncells = 22, Ntracks = 3179, 
Nsub-tracks = 8112). (E) CTCF (Ncells = 69, Ntracks = 10,457, Nsub-tracks = 34,503). 

 

RELA/p65 is an important subunit of the NF-kB transcription factor, which is activated in 

response to many external stimuli (35). Glucocorticoid receptor-interacting protein 1 

(GRIP1), also known as nuclear receptor coactivator 2 (NCoA2) is a coregulatory protein 

that is recruited to DNA by nuclear receptors in response to ligand-activation (36). GRIP1 
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facilitates nuclear receptor-mediated gene regulation by acetylating histone tails, thereby 

modulating chromatin accessibility (36). Mediator of RNA polymerase II transcription 

subunit 26 (MED26) is a subunit of the Mediator complex that assists RNA polymerase 

II-mediated transcription by recruiting accessory proteins that promote transcriptional 

elongation (37). SMARCA4 (also known as BRG1) is an ATP-dependent remodeler that 

is a part of the SWI/SNF complex. SMARCA4 modulates gene expression by changing 

chromatin accessibility through its remodeling activity (38). CCCTC-binding factor (CTCF) 

is important for 3D genome organization, leading to the formation of enhancer-promoter 

loops and regulating the structure of topologically-associating domains (1).  

 

For this diverse set of transcriptional proteins with widely varying functions, we observed 

two qualitatively similar low-mobility states as histone H2B (Fig. 4, Fig. S5). As seen with 

SRs, these transcriptional regulators also switch between the two low-mobility states (Fig. 

S6), with molecules preferentially transitioning to the same state (Fig. S6), except RELA 

and SMARCA4, which show a slight preference to switch from state 1 to state 2 (Fig. S6, 

A and D, right). These data suggest that all detected TF and coregulator dynamics 

correlate with the mobility of the local chromatin environment. 

 

State 1 of the PPARg2 requires an intact DNA-binding- and oligomerization-

domain  

 

To understand the factors that determine the partitioning of TFs into the two mobility 

states, we focused on the peroxisome proliferator-activated receptor gamma 2 (PPARg2), 

which is a class II nuclear receptor that binds chromatin as a heterodimer with retinoid X 

receptors (RXR) (39) (Fig. 5A, right (inset)). In particular, the existence of well 

characterized interacting partners and DNA-binding and heterodimerization mutants 

allows for a systematic study of PPARg29s mobility states. We chose 3T3-L1 mouse pre-

adipocytes as our model cell line to study PPARg2 because PPARg2 is functionally 

important for adipogenesis (40, 41). This allows us to study a TF with functional relevance 

in its native chromatin context.  

 

PPARg2 is one of two PPARg isoforms expressed from the PPARG gene. PPARg2 

contains 30 additional amino acids on its N-terminal end as compared to PPARg1 (Fig. 

5B). PPARg1 is expressed in almost all tissues but PPARg2 is predominantly found in 

adipose tissue and is important for adipocyte differentiation, fatty acid storage, glucose 

metabolism, and is a known therapeutic target for diabetes (42, 43). During adipogenesis, 

PPARg2 and CCAAT enhancer-binding protein alpha (C/EBPa) act in concert to regulate 

genes essential for the process (44).  
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Fig. 5: State 1 for PPARg2 requires intact DNA-binding domain and the ability to form heterodimeric 
complexes. (A) (left) Ensemble mean-squared displacement (MSD) of H2B (dashed lines, Ncell = 54, Ntracks 

= 8522, Nsub-tracks = 29,262) and wildtype PPARg2 (solid lines, Ncells = 127, Ntracks = 20,983, Nsub-tracks = 
62,848), error bars indicate the standard error the mean (SEM); (right) Temporal reconstruction of the 50 

longest tracks along with (inset) a cartoon depicting PPARg2 binding to PPAR response elements (PPRE). 
(B) Schematic of point mutations to abrogate the DNA-binding domain and heterodimerization domains of 
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PPARg2. (C 3 E) (left) Ensemble MSD for indicated PPARg2 mutant. Error bars denote the SEM; (right) 

Temporal reconstruction of the 50 longest tracks colored by state assignment: (C) PPARg2-DNA-binding 

domain mutant (PPARg2-DBDmut) (Ncells = 38, Ntracks = 3721, Nsub-tracks = 9872), (D) PPARg2-

heterodimerization mutant (PPARg2-HETmut) (Ncells = 28, Ntracks = 1728, Nsub-tracks = 4049), (E) PPARg2-

DBD + HET mutant (Ncells = 46, Ntracks = 1695, Nsub-tracks = 4046). (F) Assisted loading model for C/EBPa 

mediated PPARg2 loading. (G) (left) Ensemble MSD for PPARg2-WT with overexpression of GFP-C/EBPa 
(Ncells = 89, Ntracks = 18,912, Nsub-tracks = 63,842), error bars denote the SEM; (right) Temporal reconstruction 

of the 50 longest tracks. (H) Comparative population fractions for all PPARg2 variants.  

 

We first transiently expressed HaloTag-fused H2B and PPARg2 chimeras in 3T3-L1 cells, 

performed SMT and analyzed the data with the above-described workflow. As observed 

in 3617 cells, PPARg2 and H2B exhibit two distinct and overlapping low-mobility states 

(Fig. 5A, left). Both PPARg2 and H2B in 3T3-L1 cells exhibit switching between the two 

lowest mobility states as seen for other TFs and H2B (Fig. 5A, right, S7, A and B). While 

H2B molecules in both state 1 and state 2 preferentially transition to the same state (Fig. 

S7A), PPARg2 molecules in state 1 remain in state 1 ~70% of the time but show an equal 

transition probability from state 2 into both states 1 and 2 (Fig. S7B). 

 

To test the role of the DNA-binding domain (DBD) and the heterodimerization domain 

(HET) in the two low-mobility states, we first mutated the 159th cysteine to a serine 

(C159S, henceforth referred to as DBDmut), which has been shown to disrupt the zinc 

finger and prevent sequence-specific chromatin interactions in vitro (45) (Fig. 5, B and C 

(right, inset)). Disruption of the DBD results in a dramatic reduction in the overall bound 

fraction and particularly, the population fraction of state 1 as compared to that of wildtype 

PPARg2 (Fig. 5, C and H). However, we do not completely lose the bound fraction or the 

binding in state 1 (Fig. 5, C and H). This is consistent with previous studies that showed 

that RXR binding to the 39 half-site of PPAR response elements is more important than 

PPARg2 binding to the 59 half-site for the PPARg2:RXR complex to stabilize engagement 

with chromatin (45). We also observed an ~18% increase in the probability of state 2 

molecules to remain in state 2, along with a concomitant decrease of ~19% in the state 2 

to state 1 transition probability (Fig. S7, B and C). This suggests that the DBD is important 

for PPARg2 to transition from state 2 to state 1. 

 

Mutation of the 470th leucine to arginine (L470R, henceforth referred to as HETmut) 

eliminates the heterodimerization interface with RXR (46, 47) (Fig. 5, B and D (right, 

inset)). We analyzed this construct to find very similar results as those obtained for the 

DBD mutant. The overall bound fraction was much smaller than that of PPARg2-WT, but 

the same as that of PPARg2-DBDmut (Fig. 5H). The relative proportion of state 1 was 

also similar to that of PPARg2-DBDmut (7%) indicating that monomeric PPARg2 is still 

capable of interacting with chromatin, potentially through its intact DBD (Fig. 5H).   
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By introducing both the DBD and HET mutations simultaneously (PPARg2-DBD+HETmut; 

Fig. 5, B and E (right, inset)), we observed that the PPARg2-DBD+HETmut has an even 

smaller bound fraction and a vanishingly small proportion of state 1 as compared to those 

for PPARg2-WT (Fig. 5, E and H). Like PPARg2-DBDmut, PPARg2-HETmut has an 

impaired ability to transition from state 2 to state 1 (Fig. S7D). As compared to PPARg2-

WT, PPARg2-DBD+HETmut shows a 31-40% decrease in transitions into state 1 and a 

34-38% increase in transitions into state 2 (Fig. S7E). PPARg2-DBD+HETmut molecules 

preferentially switch to state 2 from all states (Fig. S7E). Since we have seen that an 

increase in the proportion of state 1 along with increased transitions into state 1 (from 

both states 1 and 2) are associated with the active form of SRs (Figs. 2, 3, S4), these 

data also support the hypothesis that TF engagement with chromatin in state 1 correlates 

with transcriptional activity. Since these mutations reduce the ability of PPARg2 to interact 

with chromatin, we also tested the opposite perturbation: what happens to the two states 

if we facilitate PPARg2 binding? 

 

C/EBPa and PPARg2 have been shown to participate in dynamic assisted loading at 

closed chromatin sites by recruiting remodelers (41) (Fig. 5F). To further test our 

hypothesis, we over-expressed GFP-fused C/EBPa, which should promote PPARg2-

chromatin interactions in state 1 (Fig. 5F). Consistent with our hypothesis, over-

expression of C/EBPa resulted in an increase in the overall bound fraction of PPARg2 

(Fig. 5H) and a 1.4-fold increase in the proportion of state 1 (Fig. 5H). In contrast to the 

PPARg2-DBD+HETmut data, over-expression of GFP-C/EBPa results in a 9-16% 

increase in transitions into state 1 along with an 11-17% decrease in transitions to state 

2, with all states showing a preference to switch to state 1 (Fig. S7F). Taken together, our 

data indicate that binding in state 1 requires an intact DBD and heterodimerization 

domain, and that this state is correlated with the active form of the TF. 

 

Tracks with different exploration radii exhibit different switching characteristics 

 

After analyzing sub-tracks using pEMv2, we found that all tested molecules dynamically 

switch between two low-mobility states. We then used the Richardson-Lucy (RL) analysis 

to confirm that two states can be recovered from the calculated vHc function (Fig. S3). 

Since the RL analysis produces a distribution of MSDs, we can use the minima in the 

MSD distribution to classify entire trajectories into lower or higher mobility populations 

(Fig. S8). We can then separately analyze the transitions between pEMv2 states for 

tracks with different overall mobilities (as measured by their MSD at 0.8 s; see Fig. S8).  
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Fig. 6: Tracks with different exploration radii exhibit distinct switching patterns. (A 3 F) Temporal 
reconstruction of the 50 longest tracks of single molecules with (A 3 C) overall lower mobility and (D 3 F) 
overall higher mobility. The tracks are color-coded to show the pEM identified states of the 1.2 s segments 
making up entire track. State 1 is depicted in red and state 2 in blue. Higher mobility states are colored 
green and yellow:  (A, D) H2B. (B, E) Glucocorticoid receptor (GR) activated with Dex. (C, F) Estrogen 

receptor (ER) activated with 17b-estradiol (E2). (G 3 L) Transition probabilities calculated for molecules that 
are less mobile overall (G 3 I) and more mobile (J 3 L). Transitions into pEM state 1 are shown in red, those 
into state 2 are shown in blue, and others in gray. Cyan swarmcharts show the results of the transition 
probability calculation for 1000 randomly permuted ensembles. Numbers above the bars display the 
proportion of these trials with a transition probability higher than the respective calculated transition 
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probability: (G, J) H2B, (H, K) GR activated with Dex. (I, L) ER activated with E2. (M) Fraction of segments 
in pEM state 1 (red), pEM state 2 (blue) and pEM state 3 (green) for trajectories classified in lower and 
higher mobility states for indicated species. 

 

Analysis of these populations revealed that molecules which were overall less mobile 

(i.e., with MSD at 0.8 s time lag lower than 0.0075 µm2) were predominantly in state 1 

(Fig. 6, A to C). Molecules with an overall higher mobility (i.e., with MSD at 0.8 s time lag 

between 0.0075 and 0.028 µm2) exhibited appreciable fractions of state 1 (Fig. 6, D to F). 

Molecules with overall lower mobility preferentially transition to state 1 (Fig. 6, G to I), 

while those with an overall higher mobility exhibit a significantly higher probability of 

switching between these two states (Fig. 6, J to L). This can also be seen by comparing 

the population fractions of the different mobility states within the two cohorts (Fig. 6M). 

Combining track-level and sub-track-level analyses thus provide a powerful tool to 

distinguish between persistent and transient engagement with state 1. 

 

DISCUSSION 

 

Single-molecule tracking is a powerful technique to study intranuclear dynamics of 

individual proteins at the nanoscale with high temporal resolution. Here, using SMT along 

with a machine learning-based classification algorithm, we identify two distinct low-

mobility states for histone H2B (Fig. 1). Previous studies have also found multiple mobility 

states for H2B (14, 15). However, unlike (14), our model is not constrained to a fixed 

number of states. We allow our algorithm to explore up to 15 different states and find that 

only two states meet our statistical criteria (Fig. S1C). Moreover, unlike the other report 

which studies dynamics up to 500 ms (15), we examine longer timescales on the order of 

tens of seconds and up to two minutes. Even though we analyze 1.2 s sub-tracks using 

pEMv2, tracking the same molecule over longer times allows us to identify hitherto hidden 

transitions between the two low mobility states. We find that unlike previous models (15), 

H2B does not form spatially separated domains of 8fast9 and 8slow9 chromatin. Instead, 

H2B molecules dynamically switch between the two low mobility states (Fig. 1, F to H). 

 

We showed that multiple TFs and coregulators switch between the same two mobility 

states as H2B (Figs. 2 to 5). These data indicate that presumed 8bound9 events can exhibit 

distinct mobility states. Using ligand-activated SRs, we determine that the lowest mobility 

state is associated with the active form of the TF (Fig. 2). PPARg2 mutants show that 

chromatin engagement in state 1 requires an intact DNA-binding domain and an RXR 

heterodimerization domain (Fig. 5). To confirm that this state is associated with an active 

TF, we showed that over-expression of EGFP-C/EBPa, a TF that is known to cooperate 

with PPARg2 at the chromatin level and facilitate its binding, leads to an increase in the 

proportion of PPARg2 molecules in state 1.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.25.501476doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501476
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

 
Fig. 7: Two state model for chromatin and transcriptional regulators. (A) Over short timescales (~ 
1.2s), chromatin mobility is constrained within chromatin exploration domains. (B) Within these domains, 
transcription factors (TFs)/cofactors engage with chromatin and the TF-chromatin complex can exist in one 
of two mobility states. The left panel represents the higher mobility state (state 2), which has an exploration 
diameter of ~250 nm 3 350 nm at 1.2s. The trajectory shows the motion of a single TF/cofactor molecule 
over time. The lower mobility state (state 1) has an exploration diameter of ~130 nm 3 180 nm and the 
motion of a single TF/cofactor molecule is represented in the right panel. Chromatin and associated 
TFs/cofactors can dynamically switch between these two mobility states. TF binding can promote a switch 
from state 2 to state 1 or unbind from state 2 chromatin and bind to state 1 chromatin within the localized 
chromatin domain. (C) The mean squared displacement (MSD) plot of tracks classified by perturbation 
expectation maximization (pEMv2) is used to visualize the two different mobility states under the timescale 

of a single sub-track (1.2 s). The exploration diameter of the states is estimated as d=2$MSD	(1.2s). 
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Taken together, our data suggest a two-state model for chromatin and TF mobility. 

Chromatin is a viscoelastic polymer that has been shown to exhibit sub-diffusive 

dynamics (17). On our experimental timescales, chromatin explores a finite region of 

space we call a chromatin exploration domain (CED) (Fig. 7A). Within these CEDs, 

chromatin can exist in one of the two mobility states. On a timescale of 1.2 s, the lowest 

mobility state has an exploration diameter of ~130-180 nm while the higher mobility state 

has an exploration diameter of ~250-350 nm (Fig. 7, B and C). Chromatin can transition 

between these two mobility states due to processes yet to be determined. We have shown 

that TFs in their inactive form or with mutated DBDs and heterodimerization domains can 

primarily engage with chromatin in state 2. On the other hand, we find that active TFs can 

transition from state 2 chromatin to state 1 chromatin and vice versa. 

 

The mobility state of TF that is interacting with chromatin can passively follow transitions 

in the mobility state of chromatin but whether TF binding can cause changes in chromatin 

mobility remains unclear. However, there is mounting experimental evidence in favor of 

this. RNA Pol II-mediated transcription has been shown to constrain nucleosome mobility 

(7, 12). Consistent with this result, TF binding and subsequent recruitment of the 

transcriptional machinery could trigger a transition of the local chromatin polymer (and of 

the bound TF) from state 2 to state 1 (Fig. 7B). Similarly, loop extrusion and nucleosome-

nucleosome interactions have also been shown to constrain nucleosome mobility (13). 

However, directly establishing this will require advances in imaging to allow simultaneous 

tracking of a TF and a specific genomic locus at high spatial and temporal resolution. 

 

We hypothesize that any transition to state 1 is the result of a combination of processes, 

comprising of but not limited to TF binding, RNA Pol II elongation, and loop extrusion. The 

following predictions emerge from this model. Inhibition of RNA Pol II with 

pharmacological drugs such as a-amanitin or DRB, both of which inhibit RNA Pol II 

elongation through different mechanisms, should result in an increase in the population 

fraction of state 2 and a reduction in the population fraction of state 1. Without our 

classification scheme, this would appear as an increase in the overall MSD of H2B, as 

recently reported (12). Similarly, rapid degradation of the RNA Pol-II subunit RPB1 or the 

cohesin complex subunit RAD21, using the auxin-inducible degron system would also 

result in an increase in the population fraction of state 2 relative to that of state 1 (12, 13). 

 

As we have shown previously, TFs exhibit power-law distributed dwell times (16, 20). This 

broad distribution of dwell times renders it impossible to distinguish between specific and 

non-specific binding based on residence times alone. Different response elements are 

likely to present TFs with a broad affinity landscape. On the other hand, measuring the 

spatial mobility of TFs allowed us to identify two distinct mobility states across several 
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classes of TFs in two cell lines. This opens new lines of inquiry hitherto unavailable 

through SMT.  

 

Can we distinguish between specific and non-specific binding? The most elegant 

approach to answer this question would be to simultaneously track a single TF binding to 

a reporter gene along with transcriptional readout using an MS2- or PP7-stem loop 

system (20). Sparse labeling of TFs renders such events highly unlikely, but our data 

provide some clues to address this question. After classifying whole tracks into two states 

using the RL analysis, we find that tracks with overall lower mobility are preferentially in 

state 1 and exhibit much less switching than tracks with overall higher mobility (Fig. 6). If 

specific binding events occur preferentially within state 1, the long state 1 events in these 

low mobility tracks could represent specific binding while the transient state 1 events in 

the higher mobility tracks could represent TF hops from state 2 chromatin to state 1 

chromatin.  

 

In this study we have focused on long binding events. A long-standing question in the 

field is how TFs scan the 4D genome in search of their binding sites. TF motifs are 

typically 8-20 bp in length and are embedded within a sea of non-specific sequences (5). 

Theoretical considerations show that if TFs were to rely solely on Brownian motion to 

encounter their binding sites, they would take days to find a single specific binding site 

(5). Biophysical models of this apparent paradox suggest that bulk diffusion allows TFs 

to localize close to their specific sites, following which, they rely on 1D sliding, facilitated 

diffusion, and hopping to find their target motifs (48, 49). While these models are very 

provocative, little direct experimental evidence is currently available. As imaging 

technologies develop, and we push temporal and spatial resolutions to scales that are 

relevant for these processes, analysis tools presented here can help uncover modes of 

motion that remain elusive in conventional SMT studies. Applying these techniques to 

study TF dynamics in the context of development, disease, and evolution can provide a 

window into fundamental biological processes through the lens of individual transcription 

factors, paving the way for the development of targeted therapeutics for diseases driven 

by TFs gone awry.  

 

Limitations 

 

To get a complete picture of TF dynamics from search to binding, we must be able to 

image with very high spatiotemporal resolution. Sparse labeling allows us to achieve sub-

pixel localization, but our temporal resolution still suffers from photobleaching. We 

mitigate some of this by imaging with longer dark periods (200 ms) to capture long-lived 

binding events. However, this does not allow us to capture fast diffusing molecules since 

they diffuse out of the imaging volume on these timescales. MINFLUX tracking (50, 51) 
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is currently the most promising nanoscopy technique that offers nanometer scale spatial 

resolution with a temporal resolution of hundreds of microseconds. Developments in 

fluorophore chemistry that improve the brightness and photo-stability of fluorophores will 

make longer imaging more feasible on instruments such as MINFLUX, and researchers 

will be able to interrogate both long- and short-time behaviors in the same set of tracks. 

 

While our analysis provides evidence for two distinct mobility states in the nucleus, our 

MSD curves span only 6 timelags. With only 6 timelags, we cannot comment on the nature 

of the mobility states. To use the MSD to reliably distinguish between different physical 

models such as sub-diffusion, fractional Brownian motion, and confined diffusion, we 

need at least three decades of timelags (52). Non-MSD approaches to estimate diffusive 

parameters perform better than traditional MSD analyses but still require at least two 

decades of timelags (53). It is possible to achieve these long timescales by tracking sub-

nuclear structures like telomeres, which can be labeled by the binding of multiple 

fluorescent proteins such as telomeric repeat factor 2 (TRF2) (54). However, 

photobleaching keeps these timescales outside the purview of SMT experiments. As can 

be seen from our analysis of long tracks, even with 200 ms dark periods, we can only 

span a 20-fold range of timelags.  

 

Our study and all the SMT studies cited here (12-15, 20, 21, 23, 24) have been conducted 

in 2-dimensional cross-sections of the nucleus. It is possible for diffusing molecules to 

appear confined when projected in 2D. The higher mobility states recovered from pEMv2 

for most TFs (colored green and yellow in all the figures) could represent a combination 

of this population of diffusive molecules along with tracking errors. This is supported by 

the fact that the proportion of these states is unchanged under all the perturbations. The 

only way to conclusively determine what these states represent will be to perform fast 3D 

tracking.  

 

Finally, 2D tracking poses another significant challenge. When imaging molecules at the 

nuclear periphery or in perinucleolar regions, these molecules will undergo diffusion along 

an effective 2D surface. When these events are imaged in 2D, we are looking at the one-

dimensional intersection of the surface and the focal plane. These events will 

preferentially appear to be in a very low mobility state since this is effectively one-

dimensional motion. One must be careful to attribute these to the more compact nature 

of heterochromatin (14) without performing appropriate comparisons with 3D tracking. 
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MATERIALS AND METHODS 

Cell lines and cell culture 

3617 mouse adenocarcinoma cells (25) were grown in high glucose Dulbecco9s modified 

Eagle medium (DMEM, Gibco, #11960044) supplemented with 10% fetal bovine serum 

(FBS), 2 mM L-glutamine (Gibco #25030081), 1% MEM non-essential amino acids (Gibco 

#11140050), and 1 mM sodium pyruvate (Gibco, #11360070) at 37°C in a CO2 controlled 

incubator. 3617 cells contain stably integrated GFP-GR under a tetracycline-off system 

(55). To prevent the expression of GFP-GR, these cells were grown in the presence of 5 

µg/mL of tetracycline. 

 

3T3-L1 cells were cultured in DMEM supplemented with 10% calf serum (Gibco 

#26170043), 1% MEM non-essential amino acids, 1 mM sodium pyruvate, 50 U/mL 

penicillin and 50 µg/mL streptomycin (Gibco, #15070063) at 37°C in a CO2 controlled 

incubator. 

 

Plasmid constructs 

H2B 

pHalo-H2B was generated by PCR amplification of the H2B coding region from an H2B-

GFP template and cloned into a pFC14A backbone (Promega, Madison, WI, USA) to fuse 

the HaloTag to the C-terminus of H2B (56).  

 

Steroid receptors 

The pHaloTag-GR plasmid expresses rat GR fused to HaloTag (Promega, Madison, WI, 

USA) in the C-terminus regulated by a CMVd1 promoter and has been described 

previously (57). pHalo-PR expresses human PR isoform beta fused with HaloTag at the 

N-terminus, regulated by a CMV promoter (21). pHalo-PR open reading frame (ORF) 

clone was purchased from Promega (Promega #FHC24423). pHalo-ER expresses 

human ERa fused to HaloTag in the C-terminus regulated by a CMVd1 promoter and has 

been described previously (21, 58). pHalo-AR expresses human AR with HaloTag fused 

to the C-terminus. This plasmid was custom-made by Promega and has been reported 

previously (21).  

 

PPARg2 and mutants 

pHalo-PPARg2 expresses human PPARg isoform 2 fused to HaloTag in the N-terminus 

under a CMVd1 promoter (Promega ORF clone #FHC08305). PPARg2 mutants were 

generated by nucleotide substitution using the QuikChange II XL Site Directed 

Mutagenesis Kit (Stratagene, La Jolla, CA, USA) following manufacturer9s protocol. PCR 

primers were designed using QuikChange Primer Design Program. All mutations were 

verified by sequencing. 
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Coregulators 

pHalo-RELA expresses human NF-kB subunit p65 fused with HaloTag at the N-terminus 

in a pFN22K backbone. This construct was purchased from Promega. pHalo-GRIP1 

expresses mouse GRIP1 with an N-terminus HaloTag fusion regulated by a CMVd1 

promoter. This was generated by PCR amplification of the GRIP1 coding region from an 

EGFP-GRIP1 template and subsequent cloning into a pFN22K backbone using SgfI and 

PmeI restriction sites (21). pHalo-SMARCA4 expresses human SMARCA4 with HaloTag 

fused to the N-terminus under a CMVd1 promoter (Promega ORF FHC12075). pHalo-

MED26 expresses human MED26 fused with a HaloTag at the N-terminus and was a kind 

gift from Joan Conaway9s lab. pHalo-CTCF expresses mouse CTCF with HaloTag fused 

to the C-terminus. This was generated by PCR amplification of the CTCF coding region 

from a CTCF-EGFP template (59) and cloned into the pHalo-GR backbone, which was 

cut using the PvuI and XhoI restriction enzymes (New England Biolabs, Ipswich, MA) and 

has been described previously (16). 

 

EGFP construct 

EGFP-C/EBPa expresses rat C/EBPa with an EGFP fusion on the N-terminus (this was 

a kind gift from Fred Schaufele, University of California San Francisco, San Francisco, 

CA, USA) and has been described previously (60). 

 

Transient Transfections and agonist treatments 

3617 and 3T3-L1 cells were plated in LabTek II (ThermoFisher, Waltham, MA, USA) or 

Cellvis (Mountain View, CA, USA) chamber slides for 24 hours before transfection.  

For 3617 cells, the indicated plasmids were transiently transfected using jetPRIME 

reagent (PolyPlus, New York, NY, USA) following manufacturer9s protocol. The protocol 

was optimized to prevent over-expression of HaloTag-protein chimeras (21). Cells were 

incubated in the jetPRIME reaction mixture containing 500 ng of DNA for 4 hours. The 

medium was then replaced with phenol red-free DMEM medium containing charcoal-

stripped FBS (Life Technologies, Carlsbad, CA, USA) supplemented with 2 mM L-

glutamine, 1% MEM non-essential amino acids, 1 mM sodium pyruvate, and 5 µg/mL 

tetracycline, and the cells were allowed to recover overnight.  

 

For 3T3-L1 cells, 24 hours after plating, the medium was changed to optiMEM (Gibco, 

#31985070) and the cells were transfected with the indicated HaloTag- and/or EGFP-

protein chimeras using Lipofectamine 2000 reagent (Invitrogen, Waltham, MA, USA) 

following manufacturer9s protocol. Briefly, for HaloTag-protein fusions, we used 750 ng 

DNA per 100 µL of Lipofectamine 2000 transfection mix. For EGFP-protein constructs, 

we used 4.5 µg of DNA per 100 µL of transfection mix. After incubating the cells in the 

transfection mix for 4 hours, the medium was replaced with fresh phenol red-free growth 

medium, and the cells were allowed to recover overnight. 
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Prior to imaging, the cells were incubated in medium containing 5 nM Janelia Fluor 549 

(JF549) HaloTag ligand (18, 61) for 20 min. The cells were then washed three times with 

phenol red-free medium and returned to the incubator for 10 more minutes. Cells were 

then washed once more. 3617 cells were either left untreated or treated with 100 nM of 

the indicated hormone: dexamethasone (Dex), 17b-estradiol (E2), dihydrotestosterone 

(DHT), or progesterone (Prog) for 20 min before imaging. Dex, E2, DHT, and Prog were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). 3617 cells expressing Halo-RELA 

were treated with 30 ng/mL of TNFa (Sigma-Aldrich, St. Louis, MO, USA) for 30 min 

before imaging. 3T3-L1 cells were all treated with 1 µM BRL49653/rosiglitazone (Rosi; 

Cayman Chemical Company, Ann Arbor, MI, USA) for 1 hour. 

 

Microscopy 

All samples were imaged on a custom-built HILO microscope in the LRBGE Optical 

Microscopy Core at NCI, NIH. Detailed information can be found in (61). Briefly, the 

microscope has a 150 X 1.45 numerical aperture objective (Olympus Scientific Solutions, 

Waltham, MA, USA); an Okolab stage-top incubator for temperature and 5% CO2 control 

(Okolab, Pozzuoli NA, Italy). The microscope is equipped with a 561 nm laser (iFLEX-

Mustang, Excelitas Technologies Corp., Waltham, MA, USA) and an acousto-optical 

tunable filter (AOTFnC-400.650, AA Optoelectronic, Orsay, France) (19, 61). Images 

were collected using an EM-CCD camera (Evolve 512, Photometrics, Tucson, AZ, USA) 

every 200 ms (5 Hz frame rate) with an exposure time of 10 ms for a total of 2 min (600 

frames) with a laser power of 0.96 mW (16). 

 

Tracking 

Particle detection and tracking are performed using TrackRecord v6, a custom tracking 

software written in MATLAB (version 2016a, The MathWorks Inc, Natick, MA, USA) that 

is publicly available at https://github.com/davidalejogarcia/PL_HagerLab/ and has been 

extensively described previously (16, 20, 21, 56, 61). The image stacks were filtered using 

top-hat, Wiener, and Gaussian filters. A hand-drawn region-of-interest (ROI) was used to 

demarcate the boundary of the nucleus. The particle detection intensity threshold was 

determined to be the lowest threshold at which less than 5% of detected molecules had 

a signal-to-noise ratio of 1.5 or less. Sub-pixel localization was achieved by fitting the 

detected particles to a two-dimensional Gaussian. Detected particles were then tracked 

using a nearest-neighbor algorithm (62) with a maximum allowed jump of 4 pixels, 

maximum allowed gap of 1 frame, and shortest track of 6 frames. Including motion blur, 

pEM estimates the localization precision to be ~20 nm for state 1 and ~40 nm for state 2 

(22, 63). The higher mobility states have a localization precision of ~70 nm. 
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Identification of distinct diffusive states using pEMv2 

Perturbation-expectation maximization v2 (pEMv2) (22) was used to classify the single-

molecule trajectories into multiple diffusive states. pEMv2 requires tracks to be divided 

into sub-tracks of equal length. We split our trajectories into sub-tracks of length 7 frames 

since longer tracks increase the likelihood of transitions within a sub-track. We ran pEMv2 

independently on each protein and treatment to avoid forcing different datasets to 

converge on the same mobility states. No prior assumptions on the number of diffusive 

states or the types of diffusive motion were made (22). pEMv2 was allowed to explore 

between 1 and 15 states, with 20 reinitializations and 200 perturbations. The maximum 

number of iterations was set to 10,000 with a convergence criterion of 10-7 for the change 

in the log-likelihood function. Convergence of pEMv2 was verified through multiple runs. 

The covariance matrix was allowed to have three features. 

 

After classification by pEMv2, each sub-track is assigned a posterior probability to belong 

to each of the states. For example, if pEMv2 converges to three states, each sub-track 

would have three posterior probabilities3one for each determined state. We assign each 

sub-track to the state for which it has the highest posterior probability (Fig. S1A).  

 

A sub-track could have similar posterior probabilities to belong to two or more states. For 

instance, in our mock example with three states (Fig. S1A), we could have a sub-track 

with a posterior probability distribution of (0.9, 0.05, 0.05) in which case we would assign 

the sub-track to state 1. However, we could also have a sub-track with a posterior 

probability distribution of (0.5, 0.4, 0.1), in which case, while we would assign the sub-

track to state 1, it has a very high probability to belong to state 2 as well. To mitigate this, 

we calculated DPP, which is the difference of the two highest posterior probabilities for 

each sub-track and excluded sub-tracks with DPP £ 0.2 from the ensemble MSD and 

population fraction calculations (Fig. S1B).  

 

Calculation of the unbound fraction 

States that account for less than 5% of all sub-tracks are excluded from the calculation of 

the population fraction (Fig. S1C). For consistent comparison of population fractions of 

steroid receptors before and after hormone treatment or PPARg2 wildtype against 

mutants, we needed an estimate of the unbound fraction. Following the methodology 

outlined in (16, 56), we used the respective H2B jump histograms to calculate two jump 

distance thresholds for each cell line: Rmin is the jump distance of 99% of H2B molecules 

between consecutive frames and Rmax is the jump distance of 99% of H2B molecules 

between six frames (equal to the shortest track). Jump events larger than Rmin over 

consecutive frames or larger than Rmax over six frames were classified as unbound. For 

each species, the unbound fraction was then calculated as the ratio of the total number 
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of unbound events to the total number of tracked molecules. For 3617 cells, Rmin = 250 

nm and Rmax = 330 nm. For 3T3-L1 cells, Rmin = 270 nm and Rmax = 390 nm. 
 

Transition probabilities 

For the calculation of transition probabilities, since most of the tracks belong to low-

mobility states 1 and 2, all the other states detected by pEMv2 were grouped together 

into a third <other= state. This allows us to calculate the transition probability among three 

states: low-mobility state 1, low-mobility state 2, and <other= states. For each track, the 

number of transitions between each pair of these states is calculated using a custom 

MATLAB script. Only tracks with at least three sub-tracks were included in this analysis. 

These transition counts are then added up to obtain a transition matrix � where the 

element �(�, �) is the number of transitions from state � to state �. This matrix is then 

normalized to obtain the transition matrix �! where �!(�, �) = "($,&)

3 "($,&)!
"#$

. 

 

To test whether these transition probabilities are different from those recovered from a 

randomized ensemble with the same population fraction, the sub-track state assignments 

are randomly shuffled, and the transition probabilities �)!(�, �) are calculated for this 

randomized ensemble. This process is repeated 1000 times and the statistical 

significance for a transition probability �!(�, �) is reported as the proportion of randomized 

trials with �)!(�, �) > �!(�, �).  
 

Estimation of the MSD distribution using the Richardson-Lucy algorithm 

The single particle tracking data was used to calculate the self-part of the van Hove 

correlation function (vHc) as �)(�, �) = �)+�(�$ 2 |��(� + �) 2 �$(�)|+, where ri is the 

position of the ith nucleosome and �) = +�+��)(�, �) is a normalization constant.  The vHc 

is assumed to be a superposition of Gaussian functions, �(�,�) = : ,

-.
; exp	(2 /%

.
) as 

�)(�, �) = +�(�, �)�(�,�) ��, where �(�) is the distribution of mean-squared 

displacements of the population of nucleosomes. The Richardson-Lucy algorithm is used 

to extract �(�) from the empirical vHc as follows (15): from an initial distribution, �0(�) =
exp	(2 .

.&
), �12,(�, �) at the (n+1)th iteration was iteratively obtained from  

�12, = �1 @ �)(�, �)
�1

)(�, �) �(�,�)�+ � 

 

with the constraint that �1(�, �) > 0 and normalized. The minima of �(�, �) were used to 

classify individual nucleosome tracks into different mobility states.  
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