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ABSTRACT

How transcription factors (TFs) navigate the complex nuclear environment to assemble
the transcriptional machinery at specific genomic loci remains elusive. Using single-
molecule tracking, coupled with machine learning, we examined the mobility of multiple
transcriptional regulators. We show that H2B and ten different transcriptional regulators
display two distinct low-mobility states. Our results indicate that both states represent
dynamic interactions with chromatin. Ligand activation results in a dramatic increase in
the proportion of steroid receptors in the lowest mobility state. Mutational analysis
revealed that only chromatin interactions in the lowest mobility state require an intact
DNA-binding domain as well as oligomerization domains. Importantly, these states are
not spatially separated as previously believed but in fact, individual H2B and TF
molecules can dynamically switch between them. Together, our results identify two
unique and distinct low-mobility states of transcriptional regulators that appear to
represent common pathways for transcription activation in mammalian cells.

INTRODUCTION

The eukaryotic genome is highly organized across several length scales. DNA wraps
around nucleosomes to form chromatin, which loops, forms topologically-associating
domains (TADs), chromosomes, and chromosome territories (7). This organization is
crucial for the regulation of gene expression. Genes that are present in more accessible
regions or within three-dimensional proximity of their cis-acting elements (enhancers,
promoters) are more likely to be expressed (2). Transcription factors (TFs) bind
consensus motifs within enhancers and promoter-proximal regions, and this binding
triggers the recruitment of cofactors, remodelers, co-repressors, or co-activators, all of
which act in concert to regulate target genes (3). This is a highly dynamic process with
TFs only transiently interacting with chromatin on a timescale of seconds (4-6). Chromatin
itself is a highly dynamic polymer, subject to thermal fluctuations and active forces such
as transcription (7), loop extrusion (8), DNA damage repair, and replication (9). How TFs
navigate this complex nuclear microenvironment to find their binding sites remains poorly
understood.

Over the past decade, single-molecule tracking (SMT) has emerged as a powerful tool to
interrogate the dynamics of proteins in living cells. In bacteria, TFs have been shown to
undergo a combination of 3D diffusion and 1D facilitated diffusion (sliding) to find their
target sites (70). Mammalian nuclei present a much bigger challenge to the TF search for
relevant motifs since the nucleus contains several levels of organization. Chromatin in
mammalian cells exhibits complex dynamic signatures, showing micron-scale coherence
on a timescale of 10 s (77) and recent SMT studies have found that transcription (72) and
loop extrusion (713) constrain chromatin mobility. Classification of fast TF and histone H2B
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trajectories into five mobility groups revealed a spatial patterning of mobility states (74),
with lower mobility states occupying the nuclear periphery and perinucleolar regions,
which are typically associated with heterochromatin. Similarly, fast SMT showed that
nucleosomes exhibit two mobility states on a timescale of 500 ms, which were then
modeled as spatially separate domains of ‘fast’ and ‘slow’ chromatin (75). In both these
studies, single-molecule trajectories were sampled rapidly (100 Hz (74) or 20 Hz (15))
and for short times (< 500 ms). However, TF dwell times have been shown to obey a
power-law distribution, with some binding events lasting for tens of seconds (76). To
identify mobility states that are important on these timescales, it is essential to study the
molecules that remain bound for similar times. Furthermore, chromatin is a viscoelastic
polymer showing different dynamic signatures at short and long timescales (11, 17). This
makes it important to complement these fast SMT studies with SMT studies sampling
longer TF binding events to get a more complete picture of chromatin and TF dynamics.

Despite extensive studies of chromatin dynamics, several questions remain open: Which
modes of chromatin mobility can we detect at timescales meaningful for TF binding? Are
these mobility states spatially separate or can individual nucleosomes switch between
them? Do TFs and coregulators exhibit similar mobility states as chromatin? For inducible
TFs, how do these states change upon ligand-activation? Which domains of TFs are key
determinants of mobility and chromatin interactions?

Here, we use SMT along with a systems-level machine-learning algorithm to address
these questions. First, we focus on H2B as a marker for chromatin, and find that H2B
exhibits two distinct low-mobility states. Individual H2B molecules dynamically switch
between these states, challenging the view that chromatin forms long-lasting and spatially
separated mobility domains. Next, we used our analysis framework to study steroid
receptors (SRs), which are hormone-inducible TFs. We find that SRs, along with other
coregulators, show the same two low-mobility states as H2B, indicating that TF motion is
correlated with that of chromatin. Like H2B, TFs and coregulators can also switch
between these two states. Upon activation of SRs, the bound fraction as well as the
proportion of molecules in the lowest mobility state increase significantly, indicating that
this state is associated with the active form of SRs. Focusing on the peroxisome
proliferator-activated receptor gamma 2 (PPARy2), we show that engagement with
chromatin in the lowest mobility state requires an intact DNA-binding domain (DBD) as
well as domains important for the formation of heterodimeric protein complexes that
enhance chromatin binding and transcriptional output. Finally, we discuss our results in
the context of recent studies and propose a new model for transcription factor dynamics
in mammalian cells.
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RESULTS

Chromatin mobility is characterized by dynamic switching between two distinct
low-mobility states

We performed SMT of cells expressing HaloTag-protein chimeras (with H2B serving as a
probe for chromatin) to determine the spatial mobility of proteins. We labeled the
HaloTag-protein chimeras with low concentrations (5 nM) of JFs49 dye (78), and imaged
cell nuclei using highly inclined laminated optical sheet (HILO) microscopy (79) (Fig. 1A).
We are most interested in the spatial mobility of bound events that last on the order of
tens of seconds as they were shown to be correlated with transcriptional outcomes (20).
Since photobleaching prevents rapid imaging for long times (27), we imaged the cells
every 200 ms, with short exposure times of 10 ms to minimize motion blur (Movie S1).
Particles were tracked using a custom algorithm (see Methods). A representative
temporal projection of an H2B SMT image stack along with particle tracks is shown in Fig.
1B.

To quantify and characterize the mobility of H2B, we used a systems-level classification
algorithm (perturbation expectation maximization version 2 (pEMv2)) to classify H2B
trajectories into different diffusive states (22). Given a collection of trajectories without
any a priori knowledge of the underlying diffusive states, pEMv2 utilizes machine learning
along with a Bayesian information (BIC) criterion to uncover a set of diffusive states from
a complex distribution of diffusivities. To minimize errors due to transitions within a track,
while retaining sufficient numbers of data points for classification, we split our tracks into
sub-tracks of length 7-frames (Fig. S1A) (23). Since pEMv2 is a probabilistic algorithm,
we assign each sub-track to the state for which it has the highest posterior probability,
filtering out sub-tracks with similar probabilities of belonging to multiple states (Fig. S1, B
and C) (see Methods for details). After classification by pEMv2, we removed any states
with a population fraction smaller than 5% (see Methods, Fig. S1, A and C). We then used
the ensemble mean-squared displacement (MSD) of these states to compare diffusive
states across proteins and conditions. The MSD curve serves as a good metric for the
exploration size and diffusivity of an ensemble of particles (24).
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Figure 1

Fig. 1: Histone H2B shows two distinct low-mobility states. (A) Schematic of single-molecule tracking
experiment. (B) (left) Time projection of a representative H2B-Halo single-molecule tracking (SMT) movie
(right) Overlaid with tracks. (C) Ensemble mean-squared displacement (MSD) for histone H2B (Nceis = 149,
Nitracks = 25,298, Nsub-tracks = 88,934). Error bars denote the standard error of the mean. (D) Sample tracks
assigned to low-mobility state 1 (red), low-mobility state 2 (blue) for H2B. (E) Piecharts of proportions of
H2B sub-tracks assigned to different mobility states. (F) (left) Sample H2B track (right) Sub-tracks of length
3.6s color coded by state assignment (state 1 in red and state 2 in blue). (G) Temporal reconstruction of
the 50 longest tracks for histone H2B. (H) Transition probabilities for H2B among states 1, 2, and all other
states. Cyan swarmcharts represent transition probabilities calculated from 1000 randomized ensembles.
Number above the bars represent the proportion of randomized ftrials that have a higher transition
probability than the respective calculated transition probability.
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In adenocarcinoma 3617 cells (25), we found that the ensemble of H2B trajectories
converged to seven mobility states, but the bulk of sub-tracks were classified into two
states (Fig. S1C) based on the posterior probability of assignment to particular states (see
Methods). Inspection of the ensemble MSD for both these states (Fig. 1C; henceforth
referred to as states 1 and 2), as well as randomly sampled sub-tracks (Fig. 1D) shows
that state 2 has a higher exploration radius than that of state 1 and that these states are
distinct. States 1 and 2 each account for ~35% of all sub-tracks while ~30% of H2B
molecules are unbound (Fig. 1E) (see Methods). Our data agree with recent studies (15,
23), which showed that H2B exhibits two distinct mobility states. Ashwin et al. attributed
these states to distinct spatially separated domains of fast and slow chromatin (75).
However, the bulk of the data in that study represent relatively short tracks that last less
than 500 ms (15). While each of our sub-tracks is of a comparable length (1.2 s), the
parent tracks are longer, with some lasting up to 2 minutes (Fig. 1, F and G).

To determine whether the two mobility states correspond to spatially separated chromatin
domains that persist over seconds, we analyzed the dynamics of the two low mobility
states within individual tracks. We generated a temporal reconstruction of state dynamics
by coloring in sub-tracks by the color of the state they are assigned to (Fig. S1, D and E).
If indeed, the two mobility states are spatially separated, we would expect to see entire
tracks that belong to state 1 or 2. Strikingly, we found that the same H2B molecule
dynamically switches between both low mobility states as shown for a representative
track in Fig. 1F. Note that while we have picked spatially separated sub-tracks for ease
of visualization (Fig. 1F), state 1 and state 2 sub-tracks overlap throughout the parent
track (for example, Fig. S1D). More generally, across an ensemble of the 50 longest
tracks, we observed similar switching behavior between these two states (Fig. 1G).

We then quantified the transition probabilities for all tracks that contain at least three sub-
tracks (see Methods). To determine whether these transition probabilities are statistically
significant, we performed a permutation test: we generated 1000 ensembles of randomly
permuted sub-tracks and calculated the transition probabilities for these ensembles (see
Methods). This approach has been used previously to test the statistical significance of
transition matrices in atmospheric Markov chains (26). Our analysis shows that H2B
molecules in states 1 and 2 prefer to remain in the same state (Fig. 1H), and that this
occurs with a higher probability than would be expected from random ensembles with the
same population fractions (Fig. 1H). On the other hand, while we do observe transitions
from state 1 to state 2 and vice versa, our permutation test shows that these transitions
occur less frequently than in a random ensemble (Fig. 1H).
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Together, our data suggest that rather than forming spatially separated domains of higher
or lower mobility, chromatin can switch dynamically between these two mobility states.
However, this only becomes apparent when we track nucleosomes over longer
timescales.

SRs also exhibit two low-mobility states, with ligand-dependent population
fractions

Having established that chromatin has two dynamic mobility states, we turned our
attention to TFs. How is TF mobility different from that of H2B? Do active and inactive
forms of a TF behave differently? To answer these questions, we applied our analysis
framework to study multiple SRs, which are class | nuclear receptors that bind hormone
response elements (HREs) as homodimers or homotetramers (27, 28). Some SRs, like
the glucocorticoid receptor (GR) and the androgen receptor (AR), are predominantly
cytoplasmic in the absence of hormone with a small nuclear fraction, while the estrogen
receptor (ER) is mostly nuclear (29). In the case of the progesterone receptor (PR), it can
be either predominantly cytoplasmic or nuclear, depending on isoform (30). Agonist
binding triggers a conformational change, nuclear translocation (for GR, AR, and PR),
oligomerization, and binding to HREs. We tracked unliganded ER, and the small nuclear
fraction of unliganded GR, PR, and AR and contrasted these with their corresponding
ligand-activated receptors.

All tested SRs, with and without activation by hormone, exhibit two distinct low-mobility
states as well as a small population of one or two higher mobility states (Fig. 2, A to I, Fig.
S2). Since a majority of the sub-tracks belong to the two low-mobility states (Fig. S2), we
will focus on these for the rest of the study. As can be seen qualitatively from sample
tracks belonging to these states (Fig. 2A), and quantitatively from ensemble MSD plots
(Fig. 2, B to I), these states have different mobility signatures. On comparing these with
the states recovered for H2B, we find that all the examined SRs exhibit the same two low-
mobility states as H2B (Fig. 2, B to I). This implies that SR mobility states and chromatin
dynamics are correlated at our observed timescales.
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Fig. 2: Steroid receptors also exhibit two low-mobility states, with ligand-dependent population
fractions. (A) Sample tracks for the glucocorticoid receptor (GR). (left) Low-mobility state 1, (middle) low-
mobility state 2, (right) High-mobility state. (B — I) Ensemble mean-squared displacement for indicated
steroid receptor (solid lines) and histone H2B (dashed lines), error bars denote the standard error of the
mean: (B) Untreated GR (Nceiis = 35, Ntracks = 386, Nsub-tracks = 962). (C) Untreated estrogen receptor (ER)
(Ncetis = 49, Niracks = 4057, Nsub-tracks = 9551). (D) Untreated androgen receptor (AR) (Nceiis = 51, Niracks = 1394,
Nsub-tracks = 4001). (E) Untreated progesterone receptor (PR) (Ncelis = 37, Ntracks = 1371, Nsub-tracks = 3197). (F)
GR activated with dexamethasone (Nceis = 238, Ntracks = 30,652, Nsub-tracks = 81,172). (G) ER activated with
17B-estradiol (E2) (Nceiis = 50, Ntracks = 8147, Nsub-tracks = 24,299). (H) AR activated with dihydrotestosterone
(DHT) (Nceis = 38, Ntracks = 5160, Nsub-tracks = 12,697). (I) PR activated with progesterone (Prog) (Nceis = 41,
Nitracks = 4951, Nsub-tracks = 14,899). (J — M) Comparative barcharts showing population fractions of various
states for the indicated steroid receptors.

To better understand the biological origin of these mobility states for SRs, we compared
the population fractions of the states before and after hormone activation. All four SRs
show an increase in the overall bound fraction upon activation (Fig. 2, J to M). All SRs
show a dramatic increase in the proportion of the lowest mobility state, state 1: 10-fold for
GR (Fig. 2J); 3.3-fold for ER (Fig. 2K); 3.5-fold for AR (Fig. 2L); and 4-fold for PR (Fig.
2M). These are accompanied with a smaller increase in the relative proportion of state 2:
2.5-fold (GR), 2.1-fold (ER), 1.5-fold (AR), and 2.2-fold (PR) (Fig. 2, J to M). It should be
noted that 3617 cells do not express endogenous AR and PR (31, 32), and therefore may
not provide a native chromatin context for AR and PR binding. This likely results in the
relatively low population fractions observed for state 1 in these cells (Fig. 2, L and M).
Taken together, these data suggest that state 1, the lowest mobility state of SRs, better
correlates with their activation status than state 2, which implies that either binding of
activated SR to chromatin constrains its mobility and/or activated SRs are more capable
of interacting with chromatin in state 1.

pEMV2 is a systems-level analysis that produces discrete mobility states and posterior
probability distributions that maximize a defined log-likelihood function (22). We used an
alternative method to test the generality of our observed mobility states. Given a collection
of trajectories, we can calculate the van Hove correlation (vHc) function or step-size
distribution. The calculated vHc can then be approximated as a superposition of Gaussian
basis functions (see Methods), from which we can iteratively calculate the distribution of
MSDs that gives rise to the calculated vHc. We used the iterative algorithm developed by
Richardson (33) and Lucy (34) and successfully implemented it to study nucleosome
dynamics (75) and to calculate the distribution of MSD (or equivalently the diffusivity
distribution). We refer to this analysis as ‘RL analysis’ in the rest of the manuscript. We
find once again that the predicted MSD distribution for H2B, shown here for a time lag of
0.8 s (Fig. S3, A and B) has two main populations, confirming the two states recovered
from pEMv2. The bimodal distribution of MSDs was observed for other time lags (0.6 s -
1.2 s) as well (not shown), indicating the generality of our findings. Similar analysis for
hormone-activated SRs (GR, ER, AR, PR) also showed two distinct low-mobility states
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supporting our pEMv2 results (Fig. S3, C to J). Consistent with the thinly populated higher
mobility states detected by pEM, we observe some higher mobility states in the
distribution of MSDs as well (Fig. S3).

SRs dynamically switch between the two low-mobility states

Since we observe H2B molecules switching between the two low-mobility states, we next
examined whether SRs also exhibited similar switching behaviors. Visual inspection of
tracks showed that the same Dex-activated GR molecule could switch between these two
mobility states (Fig. 3, A and B), with the state 2 sub-tracks exhibiting larger jumps (Fig.
3B). We then compared the switching behavior of SRs before and after hormone
stimulation.

Upon activation by hormone, we observed an increase in overall dwell times (indicated
by larger track durations of the longest tracks) of all SRs, as has been reported previously
(21) (Fig. 3, C to F). We find that similar to H2B, SRs also exhibit switching between the
two lowest mobility states (Fig. 3, C to F). In addition to showing the same ensemble MSD
(Fig. 2, B to I), TFs and H2B both exhibit dynamic transitions between the two low-mobility
states (Fig 1, F to H, and Fig. 3, C to F), supporting the hypothesis that the low-mobility
states represent different modes of chromatin engagement. Quantifying the probability of
transitions between these states, we observed that GR (Fig. S4, A and B), ER (Fig. S4,
C and D), and PR (Fig. S4, E and F) molecules in states 1 and 2 prefer to remain in the
same state, while transitions into state 2 are dominant for AR (Fig. S4, G and H). Ligand
activation results in an ~13% increase in state 1 to state 1 transitions for GR and a
corresponding 6% increase for ER (Fig. S4, A to D), while AR and PR show very subtle
differences with and without agonist (Fig. S4, E to H). For unliganded SRs, state 2 to state
1 transitions are not significantly different at the 99% confidence level from those obtained
for ensembles of random permutations (Fig. S4, A, C, E, G) (see Methods). However,
upon ligand activation, these transitions occur with a higher probability than
corresponding transitions for unliganded SRs (Fig. S4) but occur less frequently than the
random ensemble. These data suggest that activation of SRs by hormone results in an
increase in transitions into state 1 and that these transition probabilities are significantly
different from those in a random ensembile.

Collectively, our data show that SRs exhibit two distinct mobility states, which correlate
with the mobility states of chromatin. Further, SRs and histones frequently switch between
these states, underscoring the fact that these states are not spatially separated. Ligand
activation dramatically increases the population fraction of state 1. Taken together, these
imply that state 1 represents a mobility state that is important for hormone-mediated gene
regulation.
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Fig. 3: Transcription factors dynamically switch between two low-mobility states. (A) Sample GR
track. (B) Sub-tracks of length 2.4s from the same track as in (A) color-coded by state assignment (state 1
in red and state 2 in blue). (C — F) Temporal reconstruction for the 50 longest tracks for steroid receptors.
(left) without hormone (right) upon activation by hormone. (C) Glucocorticoid receptor. (D) Estrogen
receptor. (E) Androgen receptor. (F) Progesterone receptor.

Other transcriptional regulators also exhibit two distinct mobility states

Since we observed two distinct mobility states for SRs, which represent different modes
of chromatin engagement, we hypothesized that other transcriptional regulators should
also exhibit these two states. To test this hypothesis, we performed SMT experiments
and subsequent analysis on several nuclear proteins with different functions.

11


https://doi.org/10.1101/2022.07.25.501476
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.25.501476; this version posted July 25, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

>
w

10 x107? 10 x107?
= RELA - TNFa GRIP1
= 8 8
)
2 6 6
k)
o 4 4
5
g 2 2t/ e
TR S s e e
0 (8] 222 ot sl -l | T SR
0 02 04 06 08 1.0 1.2 0 02 04 06 08 1.0 1.2
C -2 D -2
10 x10 10 x10
e MED26 SMARCA4
= 8 8
=)
2 s 6
@
.g 4 4
[}
2 2t/  _e—w—Es 2
i
0 0 el b
0 02 04 06 08 1.0 1.2 0 02 04 06 08 1.0 1.2
E Time (s)
10 x10?
€ | CTCF
= 8 -
a Low-mobility state 1
D g Low-mobility state 2
% High mobility state 1
o 4
5
2 2 b AR Coregulator
I sgomspemRE=T T e H2B
. -
0 02 04 06 08 1.0 1.2
Time (s)
Figure 4

Fig. 4: Other transcriptional regulators also exhibit two distinct low-mobility states. (A — E) For
indicated coregulators (left) Mean-squared displacement plots for indicated transcriptional coregulator
(solid lines) and histone H2B (dashed lines), error bars denote the standard error of the mean; (right)
piecharts indicating proportions for the various detected mobility states. (A) RELA/p65 activated with TNFa
(Ncells = 67, Ntracks = 9524, Nsub-tracks = 24,634) (B) GRIP1 (Ncells = 36, Ntracks = 4847, Nsub-tracks = 14,010) (C)
MED26 (Ncells = 57, Ntracks = 11,429, Nsub-tracks = 29,085) (D) BRG1/SMARCA4 (Ncells = 22, Ntracks = 3179,
Nsub-tracks = 81 12) (E) CTCF (Ncells =69, Ntracks = 10,457, Nsub-tracks = 34,503)

RELA/p65 is an important subunit of the NF-kB transcription factor, which is activated in
response to many external stimuli (35). Glucocorticoid receptor-interacting protein 1
(GRIP1), also known as nuclear receptor coactivator 2 (NCoA2) is a coregulatory protein
that is recruited to DNA by nuclear receptors in response to ligand-activation (36). GRIP1
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facilitates nuclear receptor-mediated gene regulation by acetylating histone tails, thereby
modulating chromatin accessibility (36). Mediator of RNA polymerase |l transcription
subunit 26 (MED26) is a subunit of the Mediator complex that assists RNA polymerase
ll-mediated transcription by recruiting accessory proteins that promote transcriptional
elongation (37). SMARCA4 (also known as BRG1) is an ATP-dependent remodeler that
is a part of the SWI/SNF complex. SMARCA4 modulates gene expression by changing
chromatin accessibility through its remodeling activity (38). CCCTC-binding factor (CTCF)
is important for 3D genome organization, leading to the formation of enhancer-promoter
loops and regulating the structure of topologically-associating domains (7).

For this diverse set of transcriptional proteins with widely varying functions, we observed
two qualitatively similar low-mobility states as histone H2B (Fig. 4, Fig. S5). As seen with
SRs, these transcriptional regulators also switch between the two low-mobility states (Fig.
S6), with molecules preferentially transitioning to the same state (Fig. S6), except RELA
and SMARCA4, which show a slight preference to switch from state 1 to state 2 (Fig. S6,
A and D, right). These data suggest that all detected TF and coregulator dynamics
correlate with the mobility of the local chromatin environment.

State 1 of the PPARY2 requires an intact DNA-binding- and oligomerization-
domain

To understand the factors that determine the partitioning of TFs into the two mobility
states, we focused on the peroxisome proliferator-activated receptor gamma 2 (PPARy2),
which is a class Il nuclear receptor that binds chromatin as a heterodimer with retinoid X
receptors (RXR) (39) (Fig. 5A, right (inset)). In particular, the existence of well
characterized interacting partners and DNA-binding and heterodimerization mutants
allows for a systematic study of PPARy2’s mobility states. We chose 3T3-L1 mouse pre-
adipocytes as our model cell line to study PPARy2 because PPARy2 is functionally
important for adipogenesis (40, 41). This allows us to study a TF with functional relevance
in its native chromatin context.

PPARy2 is one of two PPARYy isoforms expressed from the PPARG gene. PPARy2
contains 30 additional amino acids on its N-terminal end as compared to PPARy1 (Fig.
5B). PPARy1 is expressed in almost all tissues but PPARy2 is predominantly found in
adipose tissue and is important for adipocyte differentiation, fatty acid storage, glucose
metabolism, and is a known therapeutic target for diabetes (42, 43). During adipogenesis,
PPARy2 and CCAAT enhancer-binding protein alpha (C/EBPa.) act in concert to regulate
genes essential for the process (44).
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Figure 5
Fig. 5: State 1 for PPARY2 requires intact DNA-binding domain and the ability to form heterodimeric

complexes. (A) (left) Ensemble mean-squared displacement (MSD) of H2B (dashed lines, Nce =

54 , Ntracks

= 8522, Nsub-tracks = 29,262) and wildtype PPARYy2 (solid lines, Nceis = 127, Ntracks = 20,983, Nsub-tracks =
62,848), error bars indicate the standard error the mean (SEM); (right) Temporal reconstruction of the 50
longest tracks along with (inset) a cartoon depicting PPARy2 binding to PPAR response elements (PPRE).
(B) Schematic of point mutations to abrogate the DNA-binding domain and heterodimerization domains of
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PPARy2. (C — E) (left) Ensemble MSD for indicated PPARy2 mutant. Error bars denote the SEM; (right)
Temporal reconstruction of the 50 longest tracks colored by state assignment: (C) PPARy2-DNA-binding
domain mutant (PPARy2-DBDmut) (Ncets = 38, Ntacks = 3721, Nsubtracks = 9872), (D) PPARy2-
heterodimerization mutant (PPARy2-HETmut) (Nceis = 28, Ntracks = 1728, Nsub-tracks = 4049), (E) PPARy2-
DBD + HET mutant (Nceiis = 46, Ntracks = 1695, Nsub-tracks = 4046). (F) Assisted loading model for C/EBPa
mediated PPARy2 loading. (G) (left) Ensemble MSD for PPARy2-WT with overexpression of GFP-C/EBPa
(Ncenis = 89, Niracks = 18,912, Nsub-tracks = 63,842), error bars denote the SEM; (right) Temporal reconstruction
of the 50 longest tracks. (H) Comparative population fractions for all PPARy2 variants.

We first transiently expressed HaloTag-fused H2B and PPARYy2 chimeras in 3T3-L1 cells,
performed SMT and analyzed the data with the above-described workflow. As observed
in 3617 cells, PPARy2 and H2B exhibit two distinct and overlapping low-mobility states
(Fig. 5A, left). Both PPARy2 and H2B in 3T3-L1 cells exhibit switching between the two
lowest mobility states as seen for other TFs and H2B (Fig. 5A, right, S7, A and B). While
H2B molecules in both state 1 and state 2 preferentially transition to the same state (Fig.
S7A), PPARy2 molecules in state 1 remain in state 1 ~70% of the time but show an equal
transition probability from state 2 into both states 1 and 2 (Fig. S7B).

To test the role of the DNA-binding domain (DBD) and the heterodimerization domain
(HET) in the two low-mobility states, we first mutated the 159™ cysteine to a serine
(C159S, henceforth referred to as DBDmut), which has been shown to disrupt the zinc
finger and prevent sequence-specific chromatin interactions in vitro (45) (Fig. 5, B and C
(right, inset)). Disruption of the DBD results in a dramatic reduction in the overall bound
fraction and particularly, the population fraction of state 1 as compared to that of wildtype
PPARy2 (Fig. 5, C and H). However, we do not completely lose the bound fraction or the
binding in state 1 (Fig. 5, C and H). This is consistent with previous studies that showed
that RXR binding to the 3’ half-site of PPAR response elements is more important than
PPARYy2 binding to the 5’ half-site for the PPARy2:RXR complex to stabilize engagement
with chromatin (45). We also observed an ~18% increase in the probability of state 2
molecules to remain in state 2, along with a concomitant decrease of ~19% in the state 2
to state 1 transition probability (Fig. S7, B and C). This suggests that the DBD is important
for PPARy2 to transition from state 2 to state 1.

Mutation of the 470™ leucine to arginine (L470R, henceforth referred to as HETmut)
eliminates the heterodimerization interface with RXR (46, 47) (Fig. 5, B and D (right,
inset)). We analyzed this construct to find very similar results as those obtained for the
DBD mutant. The overall bound fraction was much smaller than that of PPARy2-WT, but
the same as that of PPARy2-DBDmut (Fig. 5H). The relative proportion of state 1 was
also similar to that of PPARy2-DBDmut (7%) indicating that monomeric PPARy2 is still
capable of interacting with chromatin, potentially through its intact DBD (Fig. 5H).
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By introducing both the DBD and HET mutations simultaneously (PPARy2-DBD+HETmut;
Fig. 5, B and E (right, inset)), we observed that the PPARy2-DBD+HETmut has an even
smaller bound fraction and a vanishingly small proportion of state 1 as compared to those
for PPARy2-WT (Fig. 5, E and H). Like PPARy2-DBDmut, PPARy2-HETmut has an
impaired ability to transition from state 2 to state 1 (Fig. S7D). As compared to PPARy2-
WT, PPARy2-DBD+HETmut shows a 31-40% decrease in transitions into state 1 and a
34-38% increase in transitions into state 2 (Fig. S7E). PPARy2-DBD+HETmut molecules
preferentially switch to state 2 from all states (Fig. S7E). Since we have seen that an
increase in the proportion of state 1 along with increased transitions into state 1 (from
both states 1 and 2) are associated with the active form of SRs (Figs. 2, 3, S4), these
data also support the hypothesis that TF engagement with chromatin in state 1 correlates
with transcriptional activity. Since these mutations reduce the ability of PPARYy2 to interact
with chromatin, we also tested the opposite perturbation: what happens to the two states
if we facilitate PPARy2 binding?

C/EBPa and PPARy2 have been shown to participate in dynamic assisted loading at
closed chromatin sites by recruiting remodelers (41) (Fig. 5F). To further test our
hypothesis, we over-expressed GFP-fused C/EBPa, which should promote PPARy2-
chromatin interactions in state 1 (Fig. 5F). Consistent with our hypothesis, over-
expression of C/EBPa resulted in an increase in the overall bound fraction of PPARy2
(Fig. 5H) and a 1.4-fold increase in the proportion of state 1 (Fig. 5H). In contrast to the
PPARy2-DBD+HETmut data, over-expression of GFP-C/EBPa results in a 9-16%
increase in transitions into state 1 along with an 11-17% decrease in transitions to state
2, with all states showing a preference to switch to state 1 (Fig. S7F). Taken together, our
data indicate that binding in state 1 requires an intact DBD and heterodimerization
domain, and that this state is correlated with the active form of the TF.

Tracks with different exploration radii exhibit different switching characteristics

After analyzing sub-tracks using pEMv2, we found that all tested molecules dynamically
switch between two low-mobility states. We then used the Richardson-Lucy (RL) analysis
to confirm that two states can be recovered from the calculated vHc function (Fig. S3).
Since the RL analysis produces a distribution of MSDs, we can use the minima in the
MSD distribution to classify entire trajectories into lower or higher mobility populations
(Fig. S8). We can then separately analyze the transitions between pEMv2 states for
tracks with different overall mobilities (as measured by their MSD at 0.8 s; see Fig. S8).
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Fig. 6: Tracks with different exploration radii exhibit distinct switching patterns. (A — F) Temporal
reconstruction of the 50 longest tracks of single molecules with (A — C) overall lower mobility and (D — F)
overall higher mobility. The tracks are color-coded to show the pEM identified states of the 1.2 s segments
making up entire track. State 1 is depicted in red and state 2 in blue. Higher mobility states are colored
green and yellow: (A, D) H2B. (B, E) Glucocorticoid receptor (GR) activated with Dex. (C, F) Estrogen
receptor (ER) activated with 17B-estradiol (E2). (G — L) Transition probabilities calculated for molecules that
are less mobile overall (G — 1) and more mobile (J — L). Transitions into pEM state 1 are shown in red, those
into state 2 are shown in blue, and others in gray. Cyan swarmcharts show the results of the transition
probability calculation for 1000 randomly permuted ensembles. Numbers above the bars display the
proportion of these trials with a transition probability higher than the respective calculated transition
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probability: (G, J) H2B, (H, K) GR activated with Dex. (I, L) ER activated with Ez. (M) Fraction of segments
in pEM state 1 (red), pEM state 2 (blue) and pEM state 3 (green) for trajectories classified in lower and
higher mobility states for indicated species.

Analysis of these populations revealed that molecules which were overall less mobile
(i.e., with MSD at 0.8 s time lag lower than 0.0075 um?) were predominantly in state 1
(Fig. 6, A to C). Molecules with an overall higher mobility (i.e., with MSD at 0.8 s time lag
between 0.0075 and 0.028 um?) exhibited appreciable fractions of state 1 (Fig. 6, D to F).
Molecules with overall lower mobility preferentially transition to state 1 (Fig. 6, G to 1),
while those with an overall higher mobility exhibit a significantly higher probability of
switching between these two states (Fig. 6, J to L). This can also be seen by comparing
the population fractions of the different mobility states within the two cohorts (Fig. 6M).
Combining track-level and sub-track-level analyses thus provide a powerful tool to
distinguish between persistent and transient engagement with state 1.

DISCUSSION

Single-molecule tracking is a powerful technique to study intranuclear dynamics of
individual proteins at the nanoscale with high temporal resolution. Here, using SMT along
with a machine learning-based classification algorithm, we identify two distinct low-
mobility states for histone H2B (Fig. 1). Previous studies have also found multiple mobility
states for H2B (714, 15). However, unlike (74), our model is not constrained to a fixed
number of states. We allow our algorithm to explore up to 15 different states and find that
only two states meet our statistical criteria (Fig. S1C). Moreover, unlike the other report
which studies dynamics up to 500 ms (75), we examine longer timescales on the order of
tens of seconds and up to two minutes. Even though we analyze 1.2 s sub-tracks using
pEMv2, tracking the same molecule over longer times allows us to identify hitherto hidden
transitions between the two low mobility states. We find that unlike previous models (15),
H2B does not form spatially separated domains of ‘fast’ and ‘slow’ chromatin. Instead,
H2B molecules dynamically switch between the two low mobility states (Fig. 1, F to H).

We showed that multiple TFs and coregulators switch between the same two mobility
states as H2B (Figs. 2 to 5). These data indicate that presumed ‘bound’ events can exhibit
distinct mobility states. Using ligand-activated SRs, we determine that the lowest mobility
state is associated with the active form of the TF (Fig. 2). PPARy2 mutants show that
chromatin engagement in state 1 requires an intact DNA-binding domain and an RXR
heterodimerization domain (Fig. 5). To confirm that this state is associated with an active
TF, we showed that over-expression of EGFP-C/EBPa, a TF that is known to cooperate
with PPARy2 at the chromatin level and facilitate its binding, leads to an increase in the
proportion of PPARy2 molecules in state 1.
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Fig. 7: Two state model for chromatin and transcriptional regulators. (A) Over short timescales (~
1.2s), chromatin mobility is constrained within chromatin exploration domains. (B) Within these domains,
transcription factors (TFs)/cofactors engage with chromatin and the TF-chromatin complex can exist in one
of two mobility states. The left panel represents the higher mobility state (state 2), which has an exploration
diameter of ~250 nm — 350 nm at 1.2s. The trajectory shows the motion of a single TF/cofactor molecule
over time. The lower mobility state (state 1) has an exploration diameter of ~130 nm — 180 nm and the
motion of a single TF/cofactor molecule is represented in the right panel. Chromatin and associated
TFs/cofactors can dynamically switch between these two mobility states. TF binding can promote a switch
from state 2 to state 1 or unbind from state 2 chromatin and bind to state 1 chromatin within the localized
chromatin domain. (C) The mean squared displacement (MSD) plot of tracks classified by perturbation
expectation maximization (pEMv2) is used to visualize the two different mobility states under the timescale

of a single sub-track (1.2 s). The exploration diameter of the states is estimated as d=2,/MSD (1.2s).
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Taken together, our data suggest a two-state model for chromatin and TF mobility.
Chromatin is a viscoelastic polymer that has been shown to exhibit sub-diffusive
dynamics (77). On our experimental timescales, chromatin explores a finite region of
space we call a chromatin exploration domain (CED) (Fig. 7A). Within these CEDs,
chromatin can exist in one of the two mobility states. On a timescale of 1.2 s, the lowest
mobility state has an exploration diameter of ~130-180 nm while the higher mobility state
has an exploration diameter of ~250-350 nm (Fig. 7, B and C). Chromatin can transition
between these two mobility states due to processes yet to be determined. We have shown
that TFs in their inactive form or with mutated DBDs and heterodimerization domains can
primarily engage with chromatin in state 2. On the other hand, we find that active TFs can
transition from state 2 chromatin to state 1 chromatin and vice versa.

The mobility state of TF that is interacting with chromatin can passively follow transitions
in the mobility state of chromatin but whether TF binding can cause changes in chromatin
mobility remains unclear. However, there is mounting experimental evidence in favor of
this. RNA Pol lI-mediated transcription has been shown to constrain nucleosome mobility
(7, 12). Consistent with this result, TF binding and subsequent recruitment of the
transcriptional machinery could trigger a transition of the local chromatin polymer (and of
the bound TF) from state 2 to state 1 (Fig. 7B). Similarly, loop extrusion and nucleosome-
nucleosome interactions have also been shown to constrain nucleosome mobility (713).
However, directly establishing this will require advances in imaging to allow simultaneous
tracking of a TF and a specific genomic locus at high spatial and temporal resolution.

We hypothesize that any transition to state 1 is the result of a combination of processes,
comprising of but not limited to TF binding, RNA Pol Il elongation, and loop extrusion. The
following predictions emerge from this model. Inhibition of RNA Pol Il with
pharmacological drugs such as a-amanitin or DRB, both of which inhibit RNA Pol Il
elongation through different mechanisms, should result in an increase in the population
fraction of state 2 and a reduction in the population fraction of state 1. Without our
classification scheme, this would appear as an increase in the overall MSD of H2B, as
recently reported (72). Similarly, rapid degradation of the RNA Pol-Il subunit RPB1 or the
cohesin complex subunit RAD21, using the auxin-inducible degron system would also
result in an increase in the population fraction of state 2 relative to that of state 1 (12, 13).

As we have shown previously, TFs exhibit power-law distributed dwell times (76, 20). This
broad distribution of dwell times renders it impossible to distinguish between specific and
non-specific binding based on residence times alone. Different response elements are
likely to present TFs with a broad affinity landscape. On the other hand, measuring the
spatial mobility of TFs allowed us to identify two distinct mobility states across several
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classes of TFs in two cell lines. This opens new lines of inquiry hitherto unavailable
through SMT.

Can we distinguish between specific and non-specific binding? The most elegant
approach to answer this question would be to simultaneously track a single TF binding to
a reporter gene along with transcriptional readout using an MS2- or PP7-stem loop
system (20). Sparse labeling of TFs renders such events highly unlikely, but our data
provide some clues to address this question. After classifying whole tracks into two states
using the RL analysis, we find that tracks with overall lower mobility are preferentially in
state 1 and exhibit much less switching than tracks with overall higher mobility (Fig. 6). If
specific binding events occur preferentially within state 1, the long state 1 events in these
low mobility tracks could represent specific binding while the transient state 1 events in
the higher mobility tracks could represent TF hops from state 2 chromatin to state 1
chromatin.

In this study we have focused on long binding events. A long-standing question in the
field is how TFs scan the 4D genome in search of their binding sites. TF motifs are
typically 8-20 bp in length and are embedded within a sea of non-specific sequences (5).
Theoretical considerations show that if TFs were to rely solely on Brownian motion to
encounter their binding sites, they would take days to find a single specific binding site
(5). Biophysical models of this apparent paradox suggest that bulk diffusion allows TFs
to localize close to their specific sites, following which, they rely on 1D sliding, facilitated
diffusion, and hopping to find their target motifs (48, 49). While these models are very
provocative, little direct experimental evidence is currently available. As imaging
technologies develop, and we push temporal and spatial resolutions to scales that are
relevant for these processes, analysis tools presented here can help uncover modes of
motion that remain elusive in conventional SMT studies. Applying these techniques to
study TF dynamics in the context of development, disease, and evolution can provide a
window into fundamental biological processes through the lens of individual transcription
factors, paving the way for the development of targeted therapeutics for diseases driven
by TFs gone awry.

Limitations

To get a complete picture of TF dynamics from search to binding, we must be able to
image with very high spatiotemporal resolution. Sparse labeling allows us to achieve sub-
pixel localization, but our temporal resolution still suffers from photobleaching. We
mitigate some of this by imaging with longer dark periods (200 ms) to capture long-lived
binding events. However, this does not allow us to capture fast diffusing molecules since
they diffuse out of the imaging volume on these timescales. MINFLUX tracking (50, 57)
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is currently the most promising nanoscopy technique that offers nanometer scale spatial
resolution with a temporal resolution of hundreds of microseconds. Developments in
fluorophore chemistry that improve the brightness and photo-stability of fluorophores will
make longer imaging more feasible on instruments such as MINFLUX, and researchers
will be able to interrogate both long- and short-time behaviors in the same set of tracks.

While our analysis provides evidence for two distinct mobility states in the nucleus, our
MSD curves span only 6 timelags. With only 6 timelags, we cannot comment on the nature
of the mobility states. To use the MSD to reliably distinguish between different physical
models such as sub-diffusion, fractional Brownian motion, and confined diffusion, we
need at least three decades of timelags (562). Non-MSD approaches to estimate diffusive
parameters perform better than traditional MSD analyses but still require at least two
decades of timelags (563). It is possible to achieve these long timescales by tracking sub-
nuclear structures like telomeres, which can be labeled by the binding of multiple
fluorescent proteins such as telomeric repeat factor 2 (TRF2) (54). However,
photobleaching keeps these timescales outside the purview of SMT experiments. As can
be seen from our analysis of long tracks, even with 200 ms dark periods, we can only
span a 20-fold range of timelags.

Our study and all the SMT studies cited here (72-15, 20, 21, 23, 24) have been conducted
in 2-dimensional cross-sections of the nucleus. It is possible for diffusing molecules to
appear confined when projected in 2D. The higher mobility states recovered from pEMv2
for most TFs (colored green and yellow in all the figures) could represent a combination
of this population of diffusive molecules along with tracking errors. This is supported by
the fact that the proportion of these states is unchanged under all the perturbations. The
only way to conclusively determine what these states represent will be to perform fast 3D
tracking.

Finally, 2D tracking poses another significant challenge. When imaging molecules at the
nuclear periphery or in perinucleolar regions, these molecules will undergo diffusion along
an effective 2D surface. When these events are imaged in 2D, we are looking at the one-
dimensional intersection of the surface and the focal plane. These events will
preferentially appear to be in a very low mobility state since this is effectively one-
dimensional motion. One must be careful to attribute these to the more compact nature
of heterochromatin (74) without performing appropriate comparisons with 3D tracking.
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MATERIALS AND METHODS

Cell lines and cell culture

3617 mouse adenocarcinoma cells (25) were grown in high glucose Dulbecco’s modified
Eagle medium (DMEM, Gibco, #11960044) supplemented with 10% fetal bovine serum
(FBS), 2 mM L-glutamine (Gibco #25030081), 1% MEM non-essential amino acids (Gibco
#11140050), and 1 mM sodium pyruvate (Gibco, #11360070) at 37°C in a CO2 controlled
incubator. 3617 cells contain stably integrated GFP-GR under a tetracycline-off system
(55). To prevent the expression of GFP-GR, these cells were grown in the presence of 5
ug/mL of tetracycline.

3T3-L1 cells were cultured in DMEM supplemented with 10% calf serum (Gibco
#26170043), 1% MEM non-essential amino acids, 1 mM sodium pyruvate, 50 U/mL
penicillin and 50 pug/mL streptomycin (Gibco, #15070063) at 37°C in a CO2 controlled
incubator.

Plasmid constructs

H2B

pHalo-H2B was generated by PCR amplification of the H2B coding region from an H2B-
GFP template and cloned into a pFC14A backbone (Promega, Madison, WI, USA) to fuse
the HaloTag to the C-terminus of H2B (56).

Steroid receptors

The pHaloTag-GR plasmid expresses rat GR fused to HaloTag (Promega, Madison, WI,
USA) in the C-terminus regulated by a CMVd1 promoter and has been described
previously (67). pHalo-PR expresses human PR isoform beta fused with HaloTag at the
N-terminus, regulated by a CMV promoter (27). pHalo-PR open reading frame (ORF)
clone was purchased from Promega (Promega #FHC24423). pHalo-ER expresses
human ERa fused to HaloTag in the C-terminus regulated by a CMVd1 promoter and has
been described previously (21, 58). pHalo-AR expresses human AR with HaloTag fused
to the C-terminus. This plasmid was custom-made by Promega and has been reported
previously (27).

PPARy2 and mutants

pHalo-PPARYy2 expresses human PPARYy isoform 2 fused to HaloTag in the N-terminus
under a CMVd1 promoter (Promega ORF clone #FHC08305). PPARy2 mutants were
generated by nucleotide substitution using the QuikChange Il XL Site Directed
Mutagenesis Kit (Stratagene, La Jolla, CA, USA) following manufacturer’s protocol. PCR
primers were designed using QuikChange Primer Design Program. All mutations were
verified by sequencing.
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Coregulators

pHalo-RELA expresses human NF-«kB subunit p65 fused with HaloTag at the N-terminus
in a pFN22K backbone. This construct was purchased from Promega. pHalo-GRIP1
expresses mouse GRIP1 with an N-terminus HaloTag fusion regulated by a CMVd1
promoter. This was generated by PCR amplification of the GRIP1 coding region from an
EGFP-GRIP1 template and subsequent cloning into a pFN22K backbone using Sgfl and
Pmel restriction sites (27). pHalo-SMARCA4 expresses human SMARCA4 with HaloTag
fused to the N-terminus under a CMVd1 promoter (Promega ORF FHC12075). pHalo-
MED26 expresses human MED26 fused with a HaloTag at the N-terminus and was a kind
gift from Joan Conaway’s lab. pHalo-CTCF expresses mouse CTCF with HaloTag fused
to the C-terminus. This was generated by PCR amplification of the CTCF coding region
from a CTCF-EGFP template (59) and cloned into the pHalo-GR backbone, which was
cut using the Pvul and Xhol restriction enzymes (New England Biolabs, Ipswich, MA) and
has been described previously (76).

EGFP construct

EGFP-C/EBPa expresses rat C/EBPa with an EGFP fusion on the N-terminus (this was
a kind gift from Fred Schaufele, University of California San Francisco, San Francisco,
CA, USA) and has been described previously (60).

Transient Transfections and agonist treatments

3617 and 3T3-L1 cells were plated in LabTek Il (ThermoFisher, Waltham, MA, USA) or
Cellvis (Mountain View, CA, USA) chamber slides for 24 hours before transfection.

For 3617 cells, the indicated plasmids were transiently transfected using jetPRIME
reagent (PolyPlus, New York, NY, USA) following manufacturer’s protocol. The protocol
was optimized to prevent over-expression of HaloTag-protein chimeras (27). Cells were
incubated in the jetPRIME reaction mixture containing 500 ng of DNA for 4 hours. The
medium was then replaced with phenol red-free DMEM medium containing charcoal-
stripped FBS (Life Technologies, Carlsbad, CA, USA) supplemented with 2 mM L-
glutamine, 1% MEM non-essential amino acids, 1 mM sodium pyruvate, and 5 ug/mL
tetracycline, and the cells were allowed to recover overnight.

For 3T3-L1 cells, 24 hours after plating, the medium was changed to optiMEM (Gibco,
#31985070) and the cells were transfected with the indicated HaloTag- and/or EGFP-
protein chimeras using Lipofectamine 2000 reagent (Invitrogen, Waltham, MA, USA)
following manufacturer’s protocol. Briefly, for HaloTag-protein fusions, we used 750 ng
DNA per 100 uL of Lipofectamine 2000 transfection mix. For EGFP-protein constructs,
we used 4.5 ug of DNA per 100 uL of transfection mix. After incubating the cells in the
transfection mix for 4 hours, the medium was replaced with fresh phenol red-free growth
medium, and the cells were allowed to recover overnight.
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Prior to imaging, the cells were incubated in medium containing 5 nM Janelia Fluor 549
(JFs49) HaloTag ligand (78, 67) for 20 min. The cells were then washed three times with
phenol red-free medium and returned to the incubator for 10 more minutes. Cells were
then washed once more. 3617 cells were either left untreated or treated with 100 nM of
the indicated hormone: dexamethasone (Dex), 17p-estradiol (E2), dihydrotestosterone
(DHT), or progesterone (Prog) for 20 min before imaging. Dex, E2, DHT, and Prog were
purchased from Sigma-Aldrich (St. Louis, MO, USA). 3617 cells expressing Halo-RELA
were treated with 30 ng/mL of TNFa (Sigma-Aldrich, St. Louis, MO, USA) for 30 min
before imaging. 3T3-L1 cells were all treated with 1 uM BRL49653/rosiglitazone (Rosi;
Cayman Chemical Company, Ann Arbor, MI, USA) for 1 hour.

Microscopy

All samples were imaged on a custom-built HILO microscope in the LRBGE Optical
Microscopy Core at NCI, NIH. Detailed information can be found in (67). Briefly, the
microscope has a 150 X 1.45 numerical aperture objective (Olympus Scientific Solutions,
Waltham, MA, USA); an Okolab stage-top incubator for temperature and 5% CO2 control
(Okolab, Pozzuoli NA, Italy). The microscope is equipped with a 561 nm laser (iFLEX-
Mustang, Excelitas Technologies Corp., Waltham, MA, USA) and an acousto-optical
tunable filter (AOTFnC-400.650, AA Optoelectronic, Orsay, France) (19, 67). Images
were collected using an EM-CCD camera (Evolve 512, Photometrics, Tucson, AZ, USA)
every 200 ms (5 Hz frame rate) with an exposure time of 10 ms for a total of 2 min (600
frames) with a laser power of 0.96 mW (16).

Tracking

Particle detection and tracking are performed using TrackRecord v6, a custom tracking
software written in MATLAB (version 2016a, The MathWorks Inc, Natick, MA, USA) that
is publicly available at https://github.com/davidalejogarcia/PL _HagerLab/ and has been
extensively described previously (16, 20, 21, 56, 61). The image stacks were filtered using
top-hat, Wiener, and Gaussian filters. A hand-drawn region-of-interest (ROI) was used to
demarcate the boundary of the nucleus. The particle detection intensity threshold was
determined to be the lowest threshold at which less than 5% of detected molecules had
a signal-to-noise ratio of 1.5 or less. Sub-pixel localization was achieved by fitting the
detected particles to a two-dimensional Gaussian. Detected particles were then tracked
using a nearest-neighbor algorithm (62) with a maximum allowed jump of 4 pixels,
maximum allowed gap of 1 frame, and shortest track of 6 frames. Including motion blur,
pEM estimates the localization precision to be ~20 nm for state 1 and ~40 nm for state 2
(22, 63). The higher mobility states have a localization precision of ~70 nm.
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Identification of distinct diffusive states using pEMv2

Perturbation-expectation maximization v2 (pEMv2) (22) was used to classify the single-
molecule trajectories into multiple diffusive states. pEMv2 requires tracks to be divided
into sub-tracks of equal length. We split our trajectories into sub-tracks of length 7 frames
since longer tracks increase the likelihood of transitions within a sub-track. We ran pEMv2
independently on each protein and treatment to avoid forcing different datasets to
converge on the same mobility states. No prior assumptions on the number of diffusive
states or the types of diffusive motion were made (22). pEMv2 was allowed to explore
between 1 and 15 states, with 20 reinitializations and 200 perturbations. The maximum
number of iterations was set to 10,000 with a convergence criterion of 10~ for the change
in the log-likelihood function. Convergence of pEMv2 was verified through multiple runs.
The covariance matrix was allowed to have three features.

After classification by pEMv2, each sub-track is assigned a posterior probability to belong
to each of the states. For example, if pEMv2 converges to three states, each sub-track
would have three posterior probabilities—one for each determined state. We assign each
sub-track to the state for which it has the highest posterior probability (Fig. S1A).

A sub-track could have similar posterior probabilities to belong to two or more states. For
instance, in our mock example with three states (Fig. S1A), we could have a sub-track
with a posterior probability distribution of (0.9, 0.05, 0.05) in which case we would assign
the sub-track to state 1. However, we could also have a sub-track with a posterior
probability distribution of (0.5, 0.4, 0.1), in which case, while we would assign the sub-
track to state 1, it has a very high probability to belong to state 2 as well. To mitigate this,
we calculated APP, which is the difference of the two highest posterior probabilities for
each sub-track and excluded sub-tracks with APP < 0.2 from the ensemble MSD and
population fraction calculations (Fig. S1B).

Calculation of the unbound fraction

States that account for less than 5% of all sub-tracks are excluded from the calculation of
the population fraction (Fig. S1C). For consistent comparison of population fractions of
steroid receptors before and after hormone treatment or PPARy2 wildtype against
mutants, we needed an estimate of the unbound fraction. Following the methodology
outlined in (16, 56), we used the respective H2B jump histograms to calculate two jump
distance thresholds for each cell line: Rmin is the jump distance of 99% of H2B molecules
between consecutive frames and Rmax is the jump distance of 99% of H2B molecules
between six frames (equal to the shortest track). Jump events larger than Rmin over
consecutive frames or larger than Rmax over six frames were classified as unbound. For
each species, the unbound fraction was then calculated as the ratio of the total number
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of unbound events to the total number of tracked molecules. For 3617 cells, Rmin = 250
nm and Rmax = 330 nm. For 3T3-L1 cells, Rmin = 270 nm and Rmax = 390 nm.

Transition probabilities

For the calculation of transition probabilities, since most of the tracks belong to low-
mobility states 1 and 2, all the other states detected by pEMv2 were grouped together
into a third “other” state. This allows us to calculate the transition probability among three
states: low-mobility state 1, low-mobility state 2, and “other” states. For each track, the
number of transitions between each pair of these states is calculated using a custom
MATLAB script. Only tracks with at least three sub-tracks were included in this analysis.
These transition counts are then added up to obtain a transition matrix T where the
element T(i,j) is the number of transitions from state i to state j. This matrix is then
normalized to obtain the transition matrix P, where P.(i,j) = 2—;1(;"()1,’],).

To test whether these transition probabilities are different from those recovered from a
randomized ensemble with the same population fraction, the sub-track state assignments
are randomly shuffled, and the transition probabilities P,(i,j) are calculated for this
randomized ensemble. This process is repeated 1000 times and the statistical
significance for a transition probability P, (i, j) is reported as the proportion of randomized
trials with 2, (i, j) > P.(i, j).

Estimation of the MSD distribution using the Richardson-Lucy algorithm

The single particle tracking data was used to calculate the self-part of the van Hove
correlation function (vHc) as Gy(r,7) = A(5(r; — |ri(t + ©) — r;(t)]), where ri is the
position of the i'" nucleosome and A; = [ d?rG(r, t) is a normalization constant. The vHc

is assumed to be a superposition of Gaussian functions, q(r, M) = (ﬁ) exp (— jw—z) as
Gs(r,t) = [ P(M,7)q(r,M)dM, where P(M) is the distribution of mean-squared
displacements of the population of nucleosomes. The Richardson-Lucy algorithm is used
to extract P(M) from the empirical vHc as follows (75): from an initial distribution, P°(M) =

exp (— Mﬁo), P™*1(M, 1) at the (n+1)" iteration was iteratively obtained from

Gy(r,7)
n+l _ pn S\ 2
P j2 fGnS(T'T)q(r,M)d r

with the constraint that P (M, t) > 0 and normalized. The minima of P(M, ) were used to
classify individual nucleosome tracks into different mobility states.
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