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43  Abstract The host genome may influence the composition efitibestinal microbiota, and
44  intestinal microbiota performs an important rolemoscle growth and development. Here, we
45  showed that Myostatin (MSTN), a key factor for masgrowth, deletion alters muscularis,
46 plica, and intestinal barrier in pigs. Mice tramspkd withMSTN'™ pig intestinal flora showed
47  increase in the cross-sectional area of myofibedsfast-twitch glycolytic muscle mass. The
48  microbes responsible for the production of shodimthHatty acids (SCFAs) were enriched in
49  bothMSTN’ pigs and recipient mice, and SCFAs levels wereagdel in the colon contents.
50 We demonstrated that valeric acid can stimulate tip myofiber growth by activation of the
51  Akt/mTOR pathway via GPR43 and improve muscle diyopduced by dexamethasone. This
52 isthe first study to identify th®1ISTNgene-gut microbiota-SCFA axis and its regulatotg i

53  fast-twitch glycolytic muscle growth.
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I ntroduction

The decline in muscle mass is a considerable headthlem that deteriorates the quality of

life and increases disease occurrence and ritgr{dlewman et al., 2006; Srikanthan et al.,

2014). For instance, a decrease in muscle masshuges to the onset of various diseases,

such as sarcopenia, obesity, diabetes, and cavigestatin (MSTN), a transforming growth

factor B family member, is among the major regulators oélelal muscle growth and

development (Chen et al., 2021). Substantial mubkgfgertrophy was observed MSTN

mutant animals and humans (McPherron et al., 188¢cobelli et al., 2022; McPherron and

Lee, 1997; Kambadur et al., 1997; Mosherakt 2007; Kang et al., 2017; Schuelke et al.,

2004). Recently various MSTN inhibitors, includingnoclonal antibodies, have been tested

in clinical trials to treat muscle disorders, s@ashsarcopenia and cancer-associated cachexia

(Kim et al., 2021; Cho et al., 2022). Notall§STNis not only expressed in skeletal muscles,

but also in smooth muscles including the intestitte,participate in various metabolic

processes (Sundaresan et al., 2008; Verzola &0dl7; Esposito et al., 2020; Kovanecz et al.,

2017). Previous studies have shown tMSBTN mutation can alter the composition of

intestinal flora in pigs (Pei et al., 2021). Howev&e interaction between the gut microbiota

reshaped biSTNdeletion and the host is unclear.

Genetic variation can reshape the structure ofghie microbiota. Mutation in human

SLC30A2 leads to reduced intestinal zinc transport andreimed Clostridiales and

Bacteroidalesabundance, causing mucosal inflammation and inedsiysfunction (Kelleher

et al., 2022). Moreover, the g@LUT1 gene deletion altered the abundanceBarhesiella

intestinis and Faecalibaculum rodentiumpromoted fat accumulation, and impaired sugar
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tolerance (He et al., 2022). These results sugtesdt host genes can influence the gut
microbiota, thereby regulating physiological praas Intestinal structural changes, such as
in intestinal length, epithelial thickness, andface area by surgery, could affect intestinal
function and microbial composition (Seganfredolgt2z917; Nicoletti et al., 2017; Agus et al.,
2018). Barrier defects were accompanied by maj@anghs in the fecal microbiota and a
significantly decreased abundanceAtdkermansia muciniphilancreaseing the vulnerability
to gastrointestinal disorders (Sovran et al., 2019)

The intestinal microbiota plays a crucial role irusole growth and development. For
example, urease gene-rich microbABstipesand Veillonella respectively maintain muscle
mass in hibernating animals by promoting urea gérosalvage (Regan et al., 2022) and
metabolize lactic acid to provide energy for skaletuscles for long periods of exercise and
increase endurance in runners (Scheiman 2@l9). Short chain fatty acids (SCFASs) are gut
microbiota-derived metabolites that are involvednaintaining the integrity of the intestinal
mucosa, improving glucose and lipid metabolism, ticdliing energy expenditure, and
regulating the immune system and inflammatory raspe (Agus et al., 2021; Besten et al.,
2013). SCFAs are absorbed in gut lumen and mediaseé metabolic responses in various
organs, including skeletal muscle (Framptoalgt2020). SCFAs play a vital role in skeletal
muscle mass maintenance (Lv et al.,, 2021; Chenl.e@22), and are involved in the
regulation of lipid and glucose metabolism primatihrough G protein-coupled receptors
(GPRs), such as GPR41, GPR43, and GPR109 (Stastddrt 2008; Hul et al., 2019).

Skeletal myofibers exhibit remarkable diversity gudsticity in energy metabolism and

contractile functions. Slow-twitch muscles are rinhmitochondria and have high oxidative
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109 capacity, whereas fast-twitch muscles generate g¥TiRarily through glycolysis (Schiaffino
110 et al., 2011; Bassel-Duby et al., 2006). Aging amascle atrophy result in a gradual decline
111 in muscle mass and strength accompanied by a hagbportion of type | myofibers, leading
112 to muscle weakness due to the preferential lossamghy of fast-twitch glycolytic type Ilb
113 myofibers (Akasaki et al., 2014; Haber et 4092; Faulkner et al., 2007; Kirkendall et al.,
114  1998). Type lIb myofibers are larger in size andenglycolytic and generate high contractile
115  force, but have poorer resistance to fatigue thipa t myofibers (Schiaffino et al., 2011). The
116  activation of Akt/mTOR was confirmed to promote thansition from oxidized to glycolytic
117  myofiber types by elevating the levels of glycatygiroteins HK2, PFK1, and PKM2 (Meng
118  etal., 2013; Izumiya et al., 2008; Verbrugge gt2020).

119 MSTN can affect the growth and function of skeletaliscles. This study aimed to
120  investigate whether the intestinal flora remodeld MSTN deletion is involved in the
121 regulation of skeletal muscle growth. Because pigs highly similar to humans in many
122  aspects such as physiology, disease progressioargad structure (Swindle et al., 2012), we
123 usedMSTN' pigs to investigate the effects MISTNdeletion on intestinal structure and the
124  relationship between intestinal microbiota and stedl muscle growth and function and to
125  explore the underlying mechanisms involved in ggutation of muscle growth by th¢STN
126  gene—gut microbiota—skeletal muscle axis.

127

128  Results

129 MSTN deletion gtimulates muscle hypertrophy and alters intestinal structure and

130  composition of gut microbiotain pigs
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We usedISTN'™ pigs with 2 and 4 bp deletions in the two alle&she MSTNgene (Figure
1-figure supplement 1A). They were generated utiegTALEN genome editing technique
(Kang et al., 2017). We found that those pigs hgtidr skeletal muscle mass and myofiber
CSA but lost MSTN expression and reduced phospatioyl of smad2/3 in skeletal muscles
(Figure 1A-C). The protein expression of myosinvyeahain (MyHC) type Ilb, MyoD and
glycolytic enzymes HK2, PFK1 and PKM2 were sigrafitly increased in skeletal muscle
(Figure 1C, D). The expression of MSTN was not cketgk in intestine, whereas that of smooth
muscle protein®-SMA and calponin-1 was increased (Figure 1E). W® @bserved an
increase in muscularis thickness and plica lengtintestinal and upregulated expression of
tight junction-related genegO-1 andOccludin (Figure 1F, G). These findings indicate that
MSTNknockout leads to changes in intestinal structure.

Because host genotypes and phenotypes in variousmabs interact with the gut
microbiota (Kreznar et al., 2017), we speculatedt tMISTN deletion could affect the
composition of the gut microbiota by altering iriteal structure. Thus, fecal samples from
MSTN'" and wild-type (WT) pigs were examined to deterntine diversity and abundance
of gut microbiota using 16s rRNA-based microbiotmlgsis. The alpha-diversity values
showed that the ACE iMSTN'" pigs are significantly lower than that in WT pidwever,
Chao 1, Shannon, and Simpson indexes were no isimif difference (Figure 1-figure
supplement 1B-E). These results suggest MaTNdeficiency can lead to a decrease in the
abundance of intestinal flora. The compositiondtie of the gut microbiota, as analyzed by
PCA, showed that the two groups can be clearheudifitiated (Figure 1H). LEfSe analysis

confirmed a significant difference at the genuslem RomboutsigFigure 1l1). In addition,
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Treponema Romboutsia and Turicibacter were significantly increased at the genus level
(Figure 1J). Notably, these altered genera areledoin SCFAs production (Kreznar et al.,
2017; Li et al., 2019b; Li et al., 2021; Li et &019c; Bian et al., 2020These results verify
that MSTN deficiency can alter the intestinal structure whpgromoting the growth of
microbes related to SCFAs production.

Gut micr obiota reshaped by MSTN gene deletion promotes fast-twitch glycolytic muscle
growth

To determine the effect of tHdSTNdeleted altered intestinal flora on skeletal meisele
transplanted fecal microbes froMiSTN'™ pigs and WT pigs into mice. Mice translated with
WT pig feces were named WT-M, and those WIBTN'™ pig feces were named KO-M. After
eight weeks of normal chow feeding, KO-M had a kigimuscle mass than to WT-M,
especially an enlarged gastrocnemius (GA) musa@uf€ 2A). The GA mass, but not that of
the soleus (SOL) or extensor digitorum longus (EDAs significantly enhanced in KO-M
than in WT-M (Figure 2B). However, there was non#figant difference in food intake,
physical activity, energy intake, or absorbed epdrgtween the two mice groups (Figure
2-figure supplement 2A-E).

Quantitative analysis of fiber size of GA musclevaa@led that the CSA of fiber is
significantly hypertrophic in KO-M, and that thesttibution of fiber sizes in KO-M clearly
shifted toward larger fibers (Figure 2C, D). As whoin Figure 2E, the CSA of type llb
myofibers in KO-M was markedly higher than thadifT-M. Correspondingly, the levels of
proteins MyHC Ilb and MyoD and those ofygblytic enzymes HK2, PFK1 and PKM2 were

significantly increased in the GA muscle of KO-Mhaveas the levels of MyHC | and lla were
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175  not significantly different (Figure 2F, G). Intetiegly, we observed an increase in Akt and
176  mTOR phosphorylation in the skeletal muscle of KQgure 2H). The Akt/mTOR signaling
177  pathway affects type IIb myofiber hypertrophy (Izyenet al., 2008; Dutchak et al., 2018),
178  suggesting an explanation for the increased GA mas©-M.

179 We also performed a series of physiological expenit®ito evaluate the strength and running
180  performance of fecal microbiota transplantation {Hivhice. Similar to the expression profile
181  of type lIb myofibers, the grip force of KO-M inased compared with that of WT-M (Figure
182  2I). However, KO-M had a reduced capacity for ramgn{Figure 2J). Owing to an enlargement
183  in type llb myofibers, a type of fast-twitch glygtic muscle, which resulted in a higher
184  explosive force and a lower endurance, KO-M haddriggrip strength but shorter running
185 time. Collectively, these observations stronglyiéate that KO-M have increased CSA of type
186 lIb myofibers and significantly enhanced fast-tlWwiglycolytic skeletal muscle mass.

187 MSTN pigsFMT alter gut microbiota composition in mice

188  To investigate the correlation between myofiberdryphy and intestinal microbiota in mice,
189  we analyzed their intestinal microorganisms. Thesee no significant differences in the ACE,
190 Chao 1, Shannon, and Simpson indexes for alphasityéFigure 3-figure supplement 3A-D).
191  Principal coordinates analysis (PCoA) showed thaticrobiota composition structure of the
192  two groups is clearly differentiated (Figure 3A) &ddition,Romboutsiawas significantly
193  enriched at the order-, family-, genus levels in-KiOntestinal flora (Figure 3B). The heat map
194  showed that abundance of 22 of the 35 increasesrgemd 13 decreased gen&amboutsia
195  which was upregulated IISTN'" pigs, was also upregulated in KO-M (Figure 3C).-KIO

196  was similar toMSTN'" pigs, LEfSe analysis showed tli@mboutsiaabundance increased at
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the genus level (Figure 3D). Functional predictiralysis showed that intestinal microbial
functions are concentrated in pathways relateddtabolite synthesis (including K05349 and
K01952) in KO-M (Figure 3E). These results showeat the mice translated wiliSTN'" pig
feces had increasé&’kbmboutsiabundance in the intestine.

Gut microbesderivative-valeric acid promote myogenic differentiation of myaoblasts

As metabolites of the intestinal flora, SCFAS, edfect the growth and function of skeletal
muscle (Frampton et al., 2020). The results of BMT experiments showed thMSTN
deletion-mediated intestinal microbiota signifidgnincreases skeletal muscle mass and
simultaneous enricRomboutsiavhich can produce SCFAs. Further analysis of fatfigs in
the colon contents of mice showed that SCFAs arietead in KO-M than WT-M; particularly,
valeric acid and isobutyric acid were significarglyhanced in KO-M (Figure 4A). However,
medium-chain fatty acids (MCFAs) showed no sigaifitdifferences between the two groups
(Figure 4B). Long-chain fatty acids (LCFASs) alsmgled no difference in WT-M and KO-M
overall, although FFA18:2 and FFA16:0 were sigaifity decreased in KO-M (Figure 4C).
The heatmap also confirmed that the differencé&dRAs between WT-M and KO-M (Figure
4D).

To assess the influence of upregulated SCFAs onblago differentiation, the C2C12
myoblast cell line was treated for 24 h with 5 mik of valeric acid and isobutyric acid
during differentiation. Immunofluorescence stainingf MyHC showed that after
supplementation of valeric acid, C2C12 myoblastsdpced thicker myotubes and notably
higher fusion index than the control cells, implyithat valeric acid promotes myotube
formation (Figure 5A). Valeric acid treatment alsaproved the expression of MyoD and

10
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MyoG and promoted the differentiation of C2C12 mgsks (Figure 5B). Notably, the

phosphorylation levels of Akt and mTOR significgnithcreased after valeric acid treatment

(Figure 5C). However, isobutyric acid treatment dad show such effects and only increased

the myotube fusion index. Taken together, theseltestrongly demonstrate that valeric acid

can promote myogenic differentiation of myoblasts.

Valeric acid stimulatestype I Ib myofiber sgrowth

We further elucidated the effect of valeric aceatment on the phenotype of skeletal muscles

in vivo. Mice were administered with valeric acid (100 kg)/by daily oral gavage. Valeric

acid treatment significantly increased the massAfmuscle, a fast-twitch glycolytic skeletal

muscle, compared with the control (Figure 6A, BpnSistently, following valeric acid

treatment, the CSA of the GA muscle was signifisatarger, and there was a higher

proportion of large myofibers compared with the tcoih(Figure 6C). In valeric acid-treated

mice, the protein expression of the MyHC Ilb wag#icantly enhanced, that of MyHC | was

decreased, and that MyHC lla showed no change i(&i@D). In addition, valeric acid

treatment significantly upregulated the levelslg€glysis enzymes of HK2, PFK1, and PKM2

(Figure 6E) and the phosphorylation of Akt and mTi@fhe GA muscle (Figure 6F).

To explore whether the regulatory pathway, mediatedaleric acid on muscle mass growth

would be dependent on fatty acid receptors, we éedrthe expression of SCFASs receptors in

skeletal muscle. Valeric acid increased the mRN&ll®f GPR43in GA muscle, whereas

those 0iGPR41andGPR109adid not significantly change (Figure 6G). SCFAsidoactivate

the Akt/mTOR pathway through GPR43 (Tang et al.220Brown et al., 2003). These

findings suggest that valeric acid, a metabolitguifmicrobes, can induce type llib/glycolytic

11
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241  myofiber growth and enhance GA mass by activatikfrATOR signalling through GPR43.

242  Furthermore, valeric acid-treated mice had a gregtip force (Figure 6H). Interestingly,

243  valeric acid treatment increased the length ofstihall intestine (Figure 61), but had no effect

244  on food intake, physical activity, energy intake absorbed energy in mice (Figure 6-figure

245  supplement 4A-E).

246 Valeric acid ameliorates dexamethasone (Dex)-induced skeletal muscle atrophy

247  Glucocorticoids, such as dexamethasone, are ofied o induce muscle atrophy models, and

248  are implicated in protein metabolism in skeletalkoie and are considered as a risk factor for

249  the development of muscle atrophy (Hong et al.,.92Q1 et al., 2017). To further explore the

250 role of valeric acid in skeletal muscles, we camgted Dex-inducedn vivo and in vitro

251  muscular atrophy models. Valeric acid administramartially ameliorated skeletal muscle

252  atrophy induced by Dex in mice and reduced theotliien area with a clear morphology of

253 muscle fiber (Figure 7A). Meanwhile, valeric adidatment significantly decreased the mRNA

254  and protein levels of muscular dystrophy factorogin-1 and MuRF-1, which were induced

255 by Dex (Figure 7B, C). In C2C12 myoblasts, valex@d treatment significantly increased

256  myotube diameter and fusion index, and inhibiteddkpression of atrophy factors, which can

257 improve Dex-induced myotube atrophy (Figure 7D, @Yyerall, these finding indicate that

258  valeric acid has a positive effect on Dex-inducadsote atrophy.

259

260 Discussion

261  Host genetic variations can influence the micrabimdmposition, and the gut microbiota can

262  affect skeletal muscle growth and function. Heres wmvealed that the gut microbiota

12
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263 remodeled byMSTNgene deletion plays a key role in regulating dkélmuscle development.
264  MSTNgene knockout not only increased skeletal mus@ssmbut also altered the intestinal
265  structure and composition of intestinal flora iggpias shown the loss of intestinal MSTN
266  expression, altered muscularis thickness, plicgtlgrthe increase expression of tight junction
267 genesZO-1 and Occludin and enriched microbioal population that producg-&s. We
268 transplanted the fecal microbiota BfSTN'™ pigs into mice, and the recipient mice had
269 increased fast-twitch glycolytic muscle GA weightdancreased levels of glycolysis proteins
270  HK2, PFK1, and PKM2 and type lIb myofibers hypeptng, characterized by enhanced grip
271  strength and poor resistance to fatigue, accomgalyeincreased phosphorylation of the
272 Akt/mTOR signal. Similar to the donor pigs, reciftienice were enriched in microbes that
273  produce SCFAs. Furthermore, metabolomic analysisvel a significant increase in valeric
274  acid levels in the colon contents. We showed tiairitestinal flora remodeled by MSTN gene
275  deletion is involved in fast-twitch glycolytic muscgrowth via valeric acid, which activaties
276  the Akt/mTOR pathway through the SCFAs receptor &RR.astly, we demonstrated that
277  valeric acid have a beneficial effect on skeletakate atrophy induced by Dex (Figure 8).

278 MSTN regulates myogenic differentiation and skeletascle mass mainly by activating
279  classical Smad2/3 transcription factors (Chen et 2021). In this studyMSTN’ pigs
280 generated using TALEN genome editing had signitigamhibited activation of Smad,
281 increased CSA of type Ilb myofibers, and overgrowth skeletal muscle, which was
282  characterized by the ‘double-muscle’ phenotype s€tisndings are consistent with those of the
283  previous studies performed MSTN mutant mice and cattle (McPherron et al., 1997;
284  Ceccobelli et al., 2022; McPherron and Lee, 19%mKadur et al., 1997).

13
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285 MSTN expression has been detected not only in kbéetml muscles but also in smooth
286  muscles of blood vessels, penis, and other tisandss co-localized witlh-smooth muscle
287  actin, which can affect organ functions (Verzolaakt 2017; Esposito et al., 2020; Kovanecz
288 et al., 2017). Intestine tissues are from smootlsablel andMSTN expression in intestine
289  tissues has been confirmed; however, its rolet&stime is not clear (Sundaresan et al., 2008).
290  In this study, MSTN expression was detected initlestine of WT pigs but not in that of
291  MSTN' pigs. Importantly, this is the first study to shthvatMSTNknockout leads to a loss of
292  its expression in the intestine and increasestestinal muscularis thickness and plica length
293  in pig intestine, indicatindSTN knockout-induced changes in intestinal morpholobiye
294  muscularis is related to intestinal motility, artd thickness can represent the ability of
295 intestinal peristalsis; the height of the mucoedld fietermines the intestinal absorption surface
296  area (Wang et al., 2019; Zhao et al., 2017; Gedd ,e2012). In this study, increases in small
297 intestinal muscularis thickness and plica lengtpljnenhanced intestinal absorptive capacity
298  in MSTN' pigs. Actually, MSTNgene mutation has also been found to affect theposition

299  of metabolites and microbial strains in the jejunpumhich might provide more useable
300 nutrients for the host (Pei et al., 2021). Thettjghction between adjacent intestinal epithelial
301 cellsis a critical component of the intestinalrizr which provide a form of cell-cell adhesion
302 in enterocytes and limit the paracellular transpdthacteria and/or bacterial products into the
303  systemic circulation (Ghosh et al., 2020). Previstuslies have shown that a disruption in the
304 intestinal barrier leads to increased bacteriadpots of lipopolysaccharide into systemic
305 circulation, triggering an inflammatory responsespecific tissues, such as skeletal muscle or
306 adipose tissue (Ghosh et al., 2020). On the othed henhancement of the intestinal barrier
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function effectively reduced intestinal inflammatjoresulting in the alleviation of skeletal
muscle loss in cancer cachexia (Sakakida et aR2an this studyMSTN’" pigs had a
significantly increased expression of tight junotgenesZO-1andOccludinin intestine. It is
indicated thatMSTN gene deletion can improve the intestinal physigatrier of pigs.
Importantly, changes in the intestinal environmant barrier function can alter microbial
composition of the gut (Seganfredo et al., 201 ¢oNitti et al., 2017; Sekirov et al., 2010).
The intestinal microflora composition &iSTN'" pigs was analyzed, and we found that
RomboutsiaTreponemagand Turicibacter were significantly enriched. Several studies have
suggested that these microbes are involved in SQFéduction (Li et al., 2019b; Li et al.,
2021; Li et al., 2019c; Bian et al., 2020). SCFAs absorbed from the intestinal tract and play
a metabolic regulatory role in different organsjchhare recognized as a potential regulator of
skeletal muscle metabolism and function (Framptbalge 2020). AdditionallyRomboutsia
(Li et al., 2021; Yanni et al., 2020) afdrricibacter (Watanabe et al., 2021) are closely
associated with metabolic disorders, such as hgpsidn, diabetes, dysregulation of skeletal
muscle energy metabolism, and obesity. Therefoeebe@lieve that the deletion of tSTN
gene in the intestine alters the intestinal stmagtthus affecting the composition of intestinal
flora.

FMT can transfer both host gut characteristicsmpthbolic phenotypes from pigs to mice
(Yang et al., 2018; Diao et al., 2016; Yan et 2016). To verify the effect of the intestinal
flora remodeled bi1STNgene deletion on skeletal muscle, the intestingof MSTN' and
WT pigs were transplanted into mice. Interestingly found that mice transplanted with
MSTN'" pigs feces had increased GA muscle mass and mfisetearea (Figure 2). We
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329  further found that the area of type llb myofibemsreased significantly, indicating that the
330 increased GA weight and muscle fiber area can tébated to the growth of type llb
331  myofibers. Previous studies have found that Akéhs$gene activation specifically increases
332  GA weight and type llb myofiber growth through mT@Rpendent pathway (Izumiya et al.,
333  2008). This is consistent with our study, where slgmificant activation of the Aktl/mTOR
334  pathway was observed with increased GA mass anahylifiber CSA in KO-M. In addition,
335 augment of type lIb myofibers lead to an increasgrip strength but a reduction in endurance
336  on a treadmill test (Izumiya et al., 2008). In thiady, as expected, KO-M had significantly
337 enhanced grip strength but poor resistance touati@reservation or restoration of type llb
338  myofibers may delay age-related changes, mainigeycing fat mass and liver steatosis and
339  correcting glucose metabolism injury (Akasaki et, &014). Importantly, we found that
340 SCFAs producing microbe®Romboutsia enriched inMSTN'™ pigs are also significantly
341  enriched in recipient mice (Figure 3B-D). The cartcation of SCFAs was significantly
342 increased in the colon contents. Gut microbiotagpéantation from pathogen-free mice into
343 germ-free mice was reported to increase skeletalcleumass and reduce muscle atrophy
344  markers, thus improving oxidative metabolic capacitMoreover, the microbial
345  metabolites—SCFAs treatment can also attenuatetakeiuscle impairments, especially in the
346 GA muscle (Lahiri et al., 2019). During hibernatidime urease-producing microbgdistipes
347  enriched in the gut of ground squirrels can preveuascle loss (Regan et al., 2022). These
348  results strongly suggest that the intestinal flermodeled byMSTNgene deletion is involved
349  in the growth of fast-twitch glycolytic muscle maamsd function, which may be related to the
350  enrichment of SCFAs—producing microbes.
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351 SCFAs are the main metabolites of intestinal mimt@band are involved in multiple
352  physiological processes of the host (Donohoe et28ll1; Canfora et al., 2015). Compared
353  with untreated mice, SCFAs-treated germ-free mimengd improved muscle strength (Lahiri
354 et al., 2019). In addition, acetic acid, a kindSEEFA, can change fiber types and regulate
355  mitochondrial metabolism of skeletal muscle (Paralet 2015). Similarly, we observed that
356  valeric acid treatment increases myotube formatianyoblasts and the skeletal muscle mass
357 of GA in mice, especially with respect to type ituscle fiber formation rate. SCFAs play a
358  downstream regulatory role mainly by binding toitmeceptors (Stoddart et al., 2008; Hul et
359 al., 2019). To explore the possible mechanism tbaof valeric acid in skeletal muscles, we
360 analyzed GPRs expression and found a considerabtease in GPR43 levels following
361 valeric acid treatment. The GPR43 receptor canvaetiihe Akt and mTOR signaling pathway
362  (Bian et al., 2020; Dutchak et al., 2018), whichyraaplain the activation of the Akt signaling
363  pathway detected in this study (Figure 6). Agind &mg-term and high-dose glucocorticoid
364  therapy could induce skeletal muscle atrophy, paimnifesting as skeletal muscle mass loss
365  and priority loss of type llb muscle fibers (Akasekal., 2014; Haber et al., 1992; Faulkner et
366 al., 2007; Kirkendall et al., 1998). We found thaleric acid treatment ameliorates
367 Dex-induced myotube atrophy and partially repdiedetal muscle atrophy (Figure 7).

368 In conclusion, this is the first study to demontsthhatMSTNgene deletion in pig intestine
369  alters intestinal structure and function, leadingchanges in the composition of intestinal
370  microbiota. We further demonstrate tHdSTN gene deletion-mediated remodeling of the
371  intestinal flora increases the growth of fast-twitgycolytic muscles. Finally, we illustrate that
372  the microbiota metabolite valeric acid can prommitgoblast differentiation and fast-twitch
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373  glycolytic myofiber growth by activating the Akt/ndR pathway through the SCFAs receptor
374 GPRA43 and have a beneficial effect for skeletalaleustrophy induced by Dex. These findings
375 increase our understanding of the host geneticatiani in regulating gut microbiota, and
376  provide new insights for the treatment of muscletesl diseases, such as muscular dystrophy
377 and sarcopenia.

378

379 Materialsand methods

380 Animals

381 The animal study was approved by the Ethics Coremitf Yanbian University (approval
382 number SYXK2020-0009). We generateé® TN’ pigs with 2 and 4 bp deletions in the two
383 alleles ofMSTNgene by TALEN genome editing technique and soneaticnuclear transfer
384 and these pigs were used in this experiment (Kara.£2017). Pigs were fed a standard
385 commercial diet and housed in the same environrigmzantrolled room in a swine breeding
386 farm. Male C57BL/6J mice aged four weeks were pased from Vital River Laboratory
387  Animal Technology (Beijing, China). Chow diet (Beij HuaFuKang Bioscience, Beijing,
388  China) and water were provided ad libitum. Mice evadministered with valeric acid (100
389 mg/kg, Shanghai Aladdin, China) by oral gavage atew(vehicle) starting at four weeks of
390 age, and tissues were collected after five weelkeatment.

391 To establish the Dex-induced muscle atrophy monhle C57BL/6J mice aged eight
392  weeks were intraperitoneally injected with 20 mgid@x every other day for two weeks, and
393  saline injections were used for the control groDpx-induced skeletal muscle atrophy was
394  determined by weight loss in mice (Hong et al.,20Q1 et al., 2017). A total of 100 mg/kg of
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valeric acid was provided orally to mice every dap weeks before Dex injection until the
full experiment cycle. Mice were raised in a pathiogree environment at a controlled
ambient 21+11, 40-60% relative humidity, and 12/12 h cycle aéalating day and night. In
all experiments, the animals were fasted overrbgfivre they were euthanized.

Fecal microbiota transplantation

Fecal samples were collected daily from six-morithMSTN’" and wild-type (WT) donor
pigs in the morning. In a sterile environment, thegre homogenized and suspended using
sterile saline (250 mg/mL), and the mixture wastiiiiged at 800 x g for 5 min. Antibiotics
mixture (50ug/mL streptomycin, 100 U/mL penicillin, 17@y/mL gentamycin, 100 ug/mL
metronidazole, 125 ug/mL ciprofloxacin; all frong&ia) was added to sterile drinking water
and was given daily for one week before FMT. Frawe fweeks of age, each group of
recipient mouse was gavaged with 200 of the corresponding bacterial suspension every
day for eight weeks until tissue collection.

Analysisof gut microbiota

The fecal samples used for microbiota analysis wefkected separately from donor pigs at
six-month old and recipient mice after eight weekd=MT. Methods used to analyze the
diversity and taxonomic profiles of gut microbigtadonor pigs and recipient mice have been
described previously (Quan et al., 2020). Brietthg CTAB method was used extract the total
genomic DNA from fecal bacteria. DNA sample witHi@al concentration of 1 ngL was
used for bacterial 16s rRNA gene amplification seaing (V3-V4 regions). The lllumina
NovaSeq platform (Novogene, Beijing, China) wasduse determine the sequencing
abundance and diversity of the intestinal florapigs and mice. The library quality was
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417  assessed using a Qubit@ 2.0 Fluorometer (Thernen®a) and Agilent Bioanalyzer 2100
418  system.

419 Paired-end reads were allocated according to thiguenbarcodes of the sample and
420 truncated by cutting off the barcode and primeruseges. FLASH (v1.2.7) was used to
421  merge the overlapped reads between paired-end.réaderding to the QIIME (V1.9.1)
422  quality control process, high-quality clean tagsenebtained from qualitative filtration of the
423  original reads under specific filtration conditioihe effective tags were finally collected by
424  comparing the sample tags with the reference ds¢affilva database) after the detection and
425  removal of chimera sequences using the UCHIME dlyor The QIIME software was used
426  to calculate all indices in the samples, and R1v3&) was used for bioinformatic analyses of
427  the sequences. The same operational taxonomichadtst least 97% similarity in sequences.
428  Alpha diversity, beta diversity, and principal camnpgnt analysis (PCA) were described
429  according to the unweighted unifrac distances.

430  Cdl culture

431 C2C12 myoblasts (1 x i@ells/well) were cultured in six-well culture pdatin Dulbecco’s
432  modified Eagle’s medium (DMEM; Invitrogen-Gibco)pmtaining 10% fetal bovine serum
433  (Sigma), 100 U/mL penicillin and 100 U/mL streptacity (Invitrogen-Gibco) for
434  proliferation. For differentiation, C2C12 myoblasas 80% confluence were induced to
435  differentiate in DMEM with 2% horse serum (Invitexg); valeric acid and isobutyric acid
436 were added to the differentiation medium for 24Cells were supplemented with a fresh
437  differentiation medium every two days. Myotubes eveobtained on day 5 of the
438  differentiation phase.
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To establish the Dex-induced myotube atrophy mongioblasts were treated with 100
um/L of Dex at the beginning of differentiation f24 h, and 5 mM/L valeric acid was added
to the treatment group. Myoblasts were cultured ifiesh differentiation medium for five
days. Myotubes were stained with anti-MyHC antibsllyHC, A4.1025, Sigma), and Alexa
Fluor 488-labelled goat anti-mouse 1gG was used sasondary antibody (Jackson
ImmunoResearch Laboratories). The nuclei were epstained with 10ug/uL DAPI
(D-9106, Beijing Bioss Biotechnology). The diametand the number of nuclei of the
differentiated myotubes were measured using Ima@e51q, National Institutes of Health,
USA). For each group, five pictures were randonallgen from each well of the six-well
plates. The diameters of the three different pafteach myotube were measured, and the
average value was calculated. To determine the 22@sion index, the number of nuclei in
the myotubes were calculated and divided by thal tmamber of nuclei and multiplied by
100.

Histological analysis

Skeletal muscle and intestine morphology were dedeloy hematoxylin eosin (HE) staining.
The longissimus dorsi and intestine tissues fM8TN’~ and WT pigs were from 5 pum thick
paraffin-embedded sections. Images were obtainieg aslight microscope (BX53, Olympus,
Japan).

Liquid nitrogen-cooled isopentane was used to rdpdze the skeletal muscle tissues,
which were embedded in the OCT compound (Sakurat&eh USA Inc.). Cryostat sections
(10 pm) were prepared from the mid-belly of the ahisissue. Fiber-type of skeletal muscle
was stained using MyHC type | (BA-D5, DSHB, Dougtdsuston), MyHC type lla (SC-71,
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DSHB, Douglas Houston), MyHC type lIb (BF-F3, DSHBouglas Houston), and laminin
(ab11575, Abcam) monoclonal antibodies. Alexa FiF conjugate goat anti-mouse IgG2b,
Alexa Fluor 488 conjugate goat anti-mouse IgG1 xAl€luor 555 conjugate goat anti-mouse
IgM, or Alexa Fluor 594 conjugate goat anti-rablgic were used as secondary antibodies.
The nuclei were counterstained with i@/uL of DAPI. Fluorescence was detected using a
confocal laser scanning microscope (FV3000, Olymgapan). Image J software was used to
measure the thickness and the cross-sectional@®&) of the myofibers. The damage area
of skeletal muscle fiber was evaluated by calcogathe ratio of muscle fiber ablation area to
the total muscle fiber CSA.

Quantitativereal-time PCR

Total RNA was extracted from liquid nitrogen quittkzen tissue using a Total RNA
Extraction Kit (LS1040; Promega) as per the martufac’s protocol. After evaluating the
concentration and purity of RNA, an equal amouriRNA was used for reverse transcription.
Information on the primers used is available indementary materials. Real-time PCR was
performed on Mx3005P system (Agilent, Santa Cl&@A, USA), and the relative gene
expression levels were calculated using the“2 method and normalized to that of the
control group.

Western blotting

The cells and tissues were homogenized in RIPAebBeyotime). Equal amounts of protein
were calculated and loaded according to the corationt of protein that was detected by a
BCA kit (Beyotime, Shanghai, China). Subsequerittynunoblot analysis was performed
following standard procedures. Protein samples vedeetrophoresed, transferred, blocked
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and incubated with the following primary antibodiphospho-Akt (Ser473), phospho-mTOR
(Ser2448), phospho-Smad2 (Ser465/467)/Smad3 (SE2Z®3 Akt, mTOR, Smad2/3, and
HK2 from Cell Signaling Technology; PFK1 and PKM®rh Shanghai Absin, Inc.; MyHC
type I, MyHC type lia, and MyHC type IIb from DSHBJSTN, MyoD, MyoG, a-SMA,
calponin-1, MuRF-1, atrogin-1, actin, and tubuliorh Beijing Bioss Biotechnology, Inc..
The ChemiDoc™ MP Imaging System and Image Lab so#wBio-Rad, Shanghai, China)
were used to analyze the blot bands.

SCFAsanalyss

Colon contents were collected at the time of mdisseie sample collection after eight weeks
of FMT. SCFAs were extracted from mouse feces udirigacetonitrile:water solution and
derivatized using 3-nitrophenylhdyrazones. SCFAsewanalyzed using a Jasper HPLC
coupled to a Sciex 4500 MD system (LipidALL Techogies Co., Ltd, Changzhou, China).
In brief, a Phenomenex Kinetexolumn (100 x 2.1 mm, 2.6 pm) was used to separate
individual SCFA. The mobile phase A consisted df%e.formic acid agueous solution, and
the mobile phase B consisted of 0.1% formic aciétamtrile. Octanoic acid-13C;
(Sigma-Aldrich) and butyric-2,2,d(CDN Isotopes) were used as internal standards for
guantitation (Li et al., 2019a).

Statigtical analysis

Statistical analysis was performed using SPSS (1BM, Armonk, NY, USA) and GraphPad
Prism (San Diego, CA, USA). Data are presentechasriean =+ SEM, and were compared
using a repeated measure two-way analysis of vaigANOVA), one-way ANOVA, or
Student’s-test Statistical significance was set &<0.05, **P<0.01, ***P<0.001.
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Figure 1. MSTNdeletion stimulates muscle hypertrophy and altéestinal structure

and composition of gut microbiota in pigs (n=F). andB) Representative images of

MSTN’™ pigs and hematoxylin eosin staining longissimussidavlagnification is

200x. Scale bar, 100m. MSTN'" pigs showed skeletal muscle hypertrophy and

significantly increased the muscle fiber are@) Relative to WT pigsMSTN'™ pigs

showed no expression of MSTN, downregulate phosgétosn of Smad2/3 and

MyHC lla, and upregulate MyHC llb and MyoD in losgimus dorsi (Mus).)

MSTN' pigs showed increased glycolysis enzymes HK2, PRl PKM2 in

longissimus dorsi (Mus).H) The protein expression of MSTN was not detected i

intestine (Int) while thex-SMA and Calponin-1 were increased NASTN' pigs
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compared with the WT pigsF) Relative expression of tight junction gern®&3-1and
Occludin were enhanced in small intestineMSTN'™ pigs. G) Hematoxylin eosin
staining of intestinal morphology. The dotted lindicates the length of the plica and
the solid line indicates the thickness of muscaladagnification is 40x. Scale bar,
500 um. MSTN'™ pigs showed an increase of muscularis thicknesgbeal length in
small intestine. M) Plots shown were generated using the weightesiorernf the
Unifrac-based PCA. ] Discriminative taxa determined by LEfSe betweevo t
groups (log10 LDA>4.8).J) Comparison proportion of genus levels in fecdected
by pyrosequencing analysis showBgponemaRomboutsiaand Turicibacter were
increased iINMSTN'™ pigs. Statistical analysis is performed using Sttidet-test
between WT anMSTN'™ pigs. Data are means + SEMx ¢ 0.05; **p < 0.01; ***p

< 0.001; NS, not statistically significant.
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Figure 2. Mice fecal microbiota transplantation fradSTNdeletion pigs induces type
lIb myofiber growth.Mice were treated with porcine fecal microbiota éight weeks
by daily oral gavage after combined antibioticaitneent for a week. WT-M, WT pigs
fecal microbiota-received mice (n=8); KO-M,MSTN’~ pigs fecal
microbiota-received mice (n=8)A) Representative images of gross appearance and
GA of WT-M and KO-M. B) GA mass was increased in KO-M while SOL and EDL
were not different between WT-M and KO-MC)( Representative images of GA
sections stained with laminin. Magnification is 400Scale bar, 50um. (D)
Quantification analysis of myofiber CSA showed tK&-M was larger than WT-M.
(E) Representative images of GA sections stained MitRIC | (pink), lla (red), lib
(green) antibodies and nucleuses were stained DARI (blue). Magnification is
200x. Scale bar, 100m. Quantification of myofiber displayed MyHC IIlb BSwvere

increased in KO-M.K) KO-M showed upregulate the level of MyHC IIb aigoD
40


https://doi.org/10.1101/2022.07.24.501334
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.24.501334; this version posted July 25, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

851

852

853

854

855

856

857

available under aCC-BY 4.0 International license.

in GA. (G) The expression of glycolysis enzymes HK2, PFKH &KM2 were
increased in KO-M GA.H) The Akt/mTOR pathway was activated in KO-M GA. (
and J) Grip strength was enhanced while running time wesuced in KO-M
compared with WT-M. Statistical analysis is perfedrusing Studentistestbetween
WT-M and KO-M groups. Data are means = SEM.< 0.05; *p < 0.01; NS, not

statistically significant.
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859  Figure3. MSTN' pigs fecal microbiota transplantation alters mbota composition
860  in mice.Transplanting fecal microbiota ®MSTN'" pigs and WT pigs separately to
861 mice (n=8). A) Plots shown were generated using the weightediorerof the
862  Unifrac-based PCoAB) Comparison proportion of order, family and getexels of
863 Romboutsiain feces detected by pyrosequencing analy€i$.Heatmap shows the
864 abundance of top 35 microbial genuses levels wgfigiantly altered by WT and
865 MSTN' donor pigs between WT-M and KO-M group®)(Discriminative taxa
866 determined by LEfSe between two groups (logl0 LDA}»3 (E) Functional
867  prediction shows that intestinal microbial funcgoare concentrated in functional
868 pathways related to metabolite synthesis after | fen&robiota transplantation.
869  Statistical analysis is performed using Studetiest between WT-M and KO-M

870 groups. Data are means + SENJ.< 0.05.
871
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Figure 4. MSTN'™ pigs fecal microbiota transplantation alters el of fatty acids
in mice (n=7). A) Fecal microbiota transplantation increased cdiaial SCFAs
(particularly valeric acid and isobutyric acid) iKO-M. (B) Fecal microbiota
transplantation has no effect on MCFAs between WEaM KO-M. C) Fecal
microbiota transplantation decreased colon FFARB® FFA16:0 of LCFAs in KO-M.
(D) Heatmapshowed the difference of SCFAs between WT-M and MCBtatistical
analysis is performed using Studert®st Data are means + SEMp X 0.05; NS,

not statistically significant.
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Figure 5. Valeric acid treatment promotes myogenic differaimn of myoblast (n=6).
(A) Representative images of immunofluorescenceedawith a specific antibody to
identify MyHC (green) of myotubes and the nucleusege stained with DAPI (blue).
Magpnification is 100x. Scale bar, 2@dn. Quantification analysis displayed valeric
acid treatment increased the diameter and fusidexirof myotube, while isobutyric
acid only increased the myotube fusion ind&y.\aleric acid treatment increased the
expression of MyoD and MyoG in C2C12 myoblasts) {aleric acid treatment
activated the Akt/mTOR pathway. Statistical analysi performed using one-way
ANOVA. Data are means + SEMp*< 0.05; *p < 0.01; **p < 0.001; NS, not

statistically significant.
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895  Figure 6. Valeric acid induced type llb myofiber growth amttieased GA mass in
896 mice. Mice were treated with valeric acid (100 mg/kg) fime weeks by daily oral
897 gavage (n=8-9).A) Representative images of gross appearance andf@aAntrol

898 and valeric acid treated miceB)( Valeric acid treatment increased GA mass) (
899 Representative images of GA sections stained vathirlin, showed valeric acid
900 treatment increased CSA of myofiber. Magnificatisn200x. Scale bar, 100m.

901  Western blot analysis showed that valeric acidtineat increased the levels @)(

902 MyHC lIb, (E) glycolysis enzymes HK2, PFK1 and PKM2, ar) @ctivated the
903  Akt/mTOR pathway in GA compared with control mi¢&) Real-time PCR analysis
904 indicated that valeric acid treatment enhancedivelanRNA expression of SCFAs
905 receptor GPR43in GA. (H) Valeric acid treatment improved grip strength) (
906 Representative images of cecum, small intesting,cafon of mice, showed valeric

907 acid treatment inceresed small intestine lengtatisSical analysis is performed using
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908  Student'st-test Data are means + SEMp ¥ 0.05; **p < 0.01; **p < 0.001; NS, not

909  statistically significant.
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Figure 7. Valeric acid ameliorates Dex-induced skeletal meiseld myotube atrophy.
Mice were treated with intraperitoneal injection26f mg/kg Dex every 2 day for two
weeks and 100 mg/kg of valeric acid was fed oraltgry day before two weeks of
Dex injection (n=5). Myotube atrophy was inducedhw100 uM/L of Dex, and 5
mM/L of valeric acid was supplied at the same tifne6). (A) Hematoxylin eosin
staining of GA morphology. Magnification is 40x. &8 bar, 50Qum. Quantification
analysis showed that Dex induced the myofiber d@mnagd valeric acid treatment
decreased the percentage of damage a@gaNéstern blot analysis showed that Dex
induced the expression of Atrogin-1 and MuRF-1 i, @hile valeric acid treatment
reduced the level of theseC)( Real-time PCR analysis of relative expression of
atrophy genesAtrogin-1 and MuRF-1) in GA, showed valeric acid treatment could
inhibit the expression of these genes induced by. IP) Immunofluorescence

stained with a specific antibody was used to idemityHC (green) of myotube and
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the nucleus were stained with DAPI (blue). Magaifion is 100x. Scale bar, 2Q@n.

Quantification analysis showed valeric acid treattremuld improve the reduction of
myotubes diameter and fusion index induced by O&j}. Western blot analysis
showed valeric acid treatment could inhibit the respion of Atrogin-1 induced by
Dex in C2C12 myotubes and had no effect on MuRReligced by Dex. Statistical
analysis is performed using one-way ANOVA witkast Significant Difference test
Data are expressed as means + SEM<0.05; *p < 0.01; **p < 0.001; NS, not

statistically significant.
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935  Figure 8. Schematic illustration. Intestine MSTN deficiencljeged the intestinal

936  structure, reshaped gut microbiota, and gut miotabmetabolite-valeric acid can
937 activate Akt/mTOR pathway through GPR43 to stinmldast-twitch glycolytic
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