

1 **Title:** Myostatin gene deletion alters gut microbiota stimulating fast-twitch glycolytic muscle
2 growth

3 **Short title:** MSTN KO–gut microbiota promote muscle growth

4 **Authors**

5 Zhao-Bo Luo^{2†}, Shengzhong Han^{2†}, Xi-Jun Yin^{2,3†}, Hongye Liu², Junxia Wang², Meifu Xuan²,
6 Chunyun Hao⁴, Danqi Wang⁴, Yize Liu¹, Shuangyan Chang², Dongxu Li⁴, Kai Gao², Huiling
7 Li³, Biaohu Quan^{2,3}, Lin-Hu Quan^{1*}, and Jin-Dan Kang^{2,3*}

8

9 **Affiliations**

10 ¹Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education,
11 College of Pharmacy, Yanbian University; Yanji, 133002, China.

12 ²Department of Animal Science, College of Agricultural, Yanbian University; Yanji, 133002,
13 China.

14 ³Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian
15 University; Yanji, 133002, China.

16 ⁴College of Integration Science, Yanbian University; Yanji, 133002, China.

17

18 [†]These authors contributed equally.

19

20 ^{*}Correspondence:

21 Lin-Hu Quan, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of
22 Education, College of Pharmacy, Yanbian University, Yanji, 133002, China, Tel./Fax:
23 +86-433-2436452, Email address: lhquan@ybu.edu.cn.

24 Jin-Dan Kang, Department of Animal Science, College of Agricultural, Yanbian University;
25 Yanji, 133002, China, Tel./Fax: +86-433-2435623, E-mail address: jdkang@ybu.edu.cn

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43 **Abstract** The host genome may influence the composition of the intestinal microbiota, and
44 intestinal microbiota performs an important role in muscle growth and development. Here, we
45 showed that Myostatin (MSTN), a key factor for muscle growth, deletion alters muscularis,
46 plica, and intestinal barrier in pigs. Mice transplanted with *MSTN*^{−/−} pig intestinal flora showed
47 increase in the cross-sectional area of myofibers and fast-twitch glycolytic muscle mass. The
48 microbes responsible for the production of short chain fatty acids (SCFAs) were enriched in
49 both *MSTN*^{−/−} pigs and recipient mice, and SCFAs levels were elevated in the colon contents.
50 We demonstrated that valeric acid can stimulate type IIb myofiber growth by activation of the
51 Akt/mTOR pathway via GPR43 and improve muscle atrophy induced by dexamethasone. This
52 is the first study to identify the *MSTN* gene-gut microbiota-SCFA axis and its regulatory role in
53 fast-twitch glycolytic muscle growth.

54

55

56

57

58

59

60

61

62

63

64

65 **Introduction**

66 The decline in muscle mass is a considerable health problem that deteriorates the quality of
67 life and increases disease occurrence and mortality (Newman et al., 2006; Srikanthan et al.,
68 2014). For instance, a decrease in muscle mass contributes to the onset of various diseases,
69 such as sarcopenia, obesity, diabetes, and cancer. Myostatin (MSTN), a transforming growth
70 factor β family member, is among the major regulators of skeletal muscle growth and
71 development (Chen et al., 2021). Substantial muscle hypertrophy was observed in *MSTN*
72 mutant animals and humans (McPherron et al., 1997; Ceccobelli et al., 2022; McPherron and
73 Lee, 1997; Kambadur et al., 1997; Mosher et al., 2007; Kang et al., 2017; Schuelke et al.,
74 2004). Recently various MSTN inhibitors, including monoclonal antibodies, have been tested
75 in clinical trials to treat muscle disorders, such as sarcopenia and cancer-associated cachexia
76 (Kim et al., 2021; Cho et al., 2022). Notably, *MSTN* is not only expressed in skeletal muscles,
77 but also in smooth muscles including the intestine, to participate in various metabolic
78 processes (Sundaresan et al., 2008; Verzola et al., 2017; Esposito et al., 2020; Kovanecz et al.,
79 2017). Previous studies have shown that *MSTN* mutation can alter the composition of
80 intestinal flora in pigs (Pei et al., 2021). However, the interaction between the gut microbiota
81 reshaped by *MSTN* deletion and the host is unclear.

82 Genetic variation can reshape the structure of the gut microbiota. Mutation in human
83 *SLC30A2* leads to reduced intestinal zinc transport and increased *Clostridiales* and
84 *Bacteroidales* abundance, causing mucosal inflammation and intestinal dysfunction (Kelleher
85 et al., 2022). Moreover, the gut *GLUT1* gene deletion altered the abundances of *Barnesiella*
86 *intestinis* and *Faecalibaculum rodentium*, promoted fat accumulation, and impaired sugar

87 tolerance (He et al., 2022). These results suggest that host genes can influence the gut
88 microbiota, thereby regulating physiological processes. Intestinal structural changes, such as
89 in intestinal length, epithelial thickness, and surface area by surgery, could affect intestinal
90 function and microbial composition (Seganfredo et al., 2017; Nicoletti et al., 2017; Agus et al.,
91 2018). Barrier defects were accompanied by major changes in the fecal microbiota and a
92 significantly decreased abundance of *Akkermansia muciniphila*, increasing the vulnerability
93 to gastrointestinal disorders (Sovran et al., 2019).

94 The intestinal microbiota plays a crucial role in muscle growth and development. For
95 example, urease gene-rich microbes, *Alistipes* and *Veillonella* respectively maintain muscle
96 mass in hibernating animals by promoting urea nitrogen salvage (Regan et al., 2022) and
97 metabolize lactic acid to provide energy for skeletal muscles for long periods of exercise and
98 increase endurance in runners (Scheiman et al., 2019). Short chain fatty acids (SCFAs) are gut
99 microbiota-derived metabolites that are involved in maintaining the integrity of the intestinal
100 mucosa, improving glucose and lipid metabolism, controlling energy expenditure, and
101 regulating the immune system and inflammatory responses (Agus et al., 2021; Besten et al.,
102 2013). SCFAs are absorbed in gut lumen and mediate host metabolic responses in various
103 organs, including skeletal muscle (Frampton et al., 2020). SCFAs play a vital role in skeletal
104 muscle mass maintenance (Lv et al., 2021; Chen et al., 2022), and are involved in the
105 regulation of lipid and glucose metabolism primarily through G protein-coupled receptors
106 (GPRs), such as GPR41, GPR43, and GPR109 (Stoddart et al., 2008; Hul et al., 2019).

107 Skeletal myofibers exhibit remarkable diversity and plasticity in energy metabolism and
108 contractile functions. Slow-twitch muscles are rich in mitochondria and have high oxidative

109 capacity, whereas fast-twitch muscles generate ATP primarily through glycolysis (Schiaffino
110 et al., 2011; Bassel-Duby et al., 2006). Aging and muscle atrophy result in a gradual decline
111 in muscle mass and strength accompanied by a higher proportion of type I myofibers, leading
112 to muscle weakness due to the preferential loss and atrophy of fast-twitch glycolytic type IIb
113 myofibers (Akasaki et al., 2014; Haber et al., 1992; Faulkner et al., 2007; Kirkendall et al.,
114 1998). Type IIb myofibers are larger in size and more glycolytic and generate high contractile
115 force, but have poorer resistance to fatigue than type I myofibers (Schiaffino et al., 2011). The
116 activation of Akt/mTOR was confirmed to promote the transition from oxidized to glycolytic
117 myofiber types by elevating the levels of glycolytic proteins HK2, PFK1, and PKM2 (Meng
118 et al., 2013; Izumiya et al., 2008; Verbrugge et al., 2020).

119 MSTN can affect the growth and function of skeletal muscles. This study aimed to
120 investigate whether the intestinal flora remodeled by *MSTN* deletion is involved in the
121 regulation of skeletal muscle growth. Because pigs are highly similar to humans in many
122 aspects such as physiology, disease progression and organ structure (Swindle et al., 2012), we
123 used *MSTN*^{-/-} pigs to investigate the effects of *MSTN* deletion on intestinal structure and the
124 relationship between intestinal microbiota and skeletal muscle growth and function and to
125 explore the underlying mechanisms involved in the regulation of muscle growth by the *MSTN*
126 gene–gut microbiota–skeletal muscle axis.

127

128 **Results**

129 **MSTN deletion stimulates muscle hypertrophy and alters intestinal structure and**
130 **composition of gut microbiota in pigs**

131 We used *MSTN*^{−/−} pigs with 2 and 4 bp deletions in the two alleles of the *MSTN* gene (Figure
132 1-figure supplement 1A). They were generated using the TALEN genome editing technique
133 (Kang et al., 2017). We found that those pigs had higher skeletal muscle mass and myofiber
134 CSA but lost *MSTN* expression and reduced phosphorylation of smad2/3 in skeletal muscles
135 (Figure 1A-C). The protein expression of myosin heavy chain (MyHC) type IIb, MyoD and
136 glycolytic enzymes HK2, PFK1 and PKM2 were significantly increased in skeletal muscle
137 (Figure 1C, D). The expression of *MSTN* was not detected in intestine, whereas that of smooth
138 muscle proteins α-SMA and calponin-1 was increased (Figure 1E). We also observed an
139 increase in muscularis thickness and plica length of intestinal and upregulated expression of
140 tight junction-related genes *ZO-1* and *Occludin* (Figure 1F, G). These findings indicate that
141 *MSTN* knockout leads to changes in intestinal structure.

142 Because host genotypes and phenotypes in various mammals interact with the gut
143 microbiota (Kreznar et al., 2017), we speculated that *MSTN* deletion could affect the
144 composition of the gut microbiota by altering intestinal structure. Thus, fecal samples from
145 *MSTN*^{−/−} and wild-type (WT) pigs were examined to determine the diversity and abundance
146 of gut microbiota using 16s rRNA-based microbiota analysis. The alpha-diversity values
147 showed that the ACE in *MSTN*^{−/−} pigs are significantly lower than that in WT pigs; however,
148 Chao 1, Shannon, and Simpson indexes were no significant difference (Figure 1-figure
149 supplement 1B-E). These results suggest that *MSTN* deficiency can lead to a decrease in the
150 abundance of intestinal flora. The composition structure of the gut microbiota, as analyzed by
151 PCA, showed that the two groups can be clearly differentiated (Figure 1H). LEfSe analysis
152 confirmed a significant difference at the genus level in *Romboutsia* (Figure 1I). In addition,

153 *Treponema*, *Romboutsia*, and *Turicibacter* were significantly increased at the genus level
154 (Figure 1J). Notably, these altered genera are involved in SCFAs production (Kreznar et al.,
155 2017; Li et al., 2019b; Li et al., 2021; Li et al., 2019c; Bian et al., 2020). These results verify
156 that *MSTN* deficiency can alter the intestinal structure while promoting the growth of
157 microbes related to SCFAs production.

158 **Gut microbiota reshaped by *MSTN* gene deletion promotes fast-twitch glycolytic muscle
159 growth**

160 To determine the effect of the *MSTN*-deleted altered intestinal flora on skeletal muscle, we
161 transplanted fecal microbes from *MSTN*^{-/-} pigs and WT pigs into mice. Mice translated with
162 WT pig feces were named WT-M, and those with *MSTN*^{-/-} pig feces were named KO-M. After
163 eight weeks of normal chow feeding, KO-M had a higher muscle mass than to WT-M,
164 especially an enlarged gastrocnemius (GA) muscle (Figure 2A). The GA mass, but not that of
165 the soleus (SOL) or extensor digitorum longus (EDL), was significantly enhanced in KO-M
166 than in WT-M (Figure 2B). However, there was no significant difference in food intake,
167 physical activity, energy intake, or absorbed energy between the two mice groups (Figure
168 2-figure supplement 2A-E).

169 Quantitative analysis of fiber size of GA muscle revealed that the CSA of fiber is
170 significantly hypertrophic in KO-M, and that the distribution of fiber sizes in KO-M clearly
171 shifted toward larger fibers (Figure 2C, D). As shown in Figure 2E, the CSA of type IIb
172 myofibers in KO-M was markedly higher than that in WT-M. Correspondingly, the levels of
173 proteins MyHC IIb and MyoD and those of glycolytic enzymes HK2, PFK1 and PKM2 were
174 significantly increased in the GA muscle of KO-M, whereas the levels of MyHC I and IIa were

175 not significantly different (Figure 2F, G). Interestingly, we observed an increase in Akt and
176 mTOR phosphorylation in the skeletal muscle of KO-M (Figure 2H). The Akt/mTOR signaling
177 pathway affects type IIb myofiber hypertrophy (Izumiya et al., 2008; Dutchak et al., 2018),
178 suggesting an explanation for the increased GA mass in KO-M.

179 We also performed a series of physiological experiments to evaluate the strength and running
180 performance of fecal microbiota transplantation (FMT) mice. Similar to the expression profile
181 of type IIb myofibers, the grip force of KO-M increased compared with that of WT-M (Figure
182 2I). However, KO-M had a reduced capacity for running (Figure 2J). Owing to an enlargement
183 in type IIb myofibers, a type of fast-twitch glycolytic muscle, which resulted in a higher
184 explosive force and a lower endurance, KO-M had higher grip strength but shorter running
185 time. Collectively, these observations strongly indicate that KO-M have increased CSA of type
186 IIb myofibers and significantly enhanced fast-twitch glycolytic skeletal muscle mass.

187 ***MSTN*^{-/-} pigs FMT alter gut microbiota composition in mice**

188 To investigate the correlation between myofiber hypertrophy and intestinal microbiota in mice,
189 we analyzed their intestinal microorganisms. There were no significant differences in the ACE,
190 Chao 1, Shannon, and Simpson indexes for alpha-diversity (Figure 3-figure supplement 3A-D).
191 Principal coordinates analysis (PCoA) showed that the microbiota composition structure of the
192 two groups is clearly differentiated (Figure 3A). In addition, *Romboutsia* was significantly
193 enriched at the order-, family-, genus levels in KO-M intestinal flora (Figure 3B). The heat map
194 showed that abundance of 22 of the 35 increased genera and 13 decreased genera. *Romboutsia*,
195 which was upregulated in *MSTN*^{-/-} pigs, was also upregulated in KO-M (Figure 3C). KO-M
196 was similar to *MSTN*^{-/-} pigs, LEfSe analysis showed that *Romboutsia* abundance increased at

197 the genus level (Figure 3D). Functional prediction analysis showed that intestinal microbial
198 functions are concentrated in pathways related to metabolite synthesis (including K05349 and
199 K01952) in KO-M (Figure 3E). These results showed that the mice translated with *MSTN*^{-/-} pig
200 feces had increased *Romboutsia* abundance in the intestine.

201 **Gut microbes derivative-valeric acid promote myogenic differentiation of myoblasts**

202 As metabolites of the intestinal flora, SCFAs, can affect the growth and function of skeletal
203 muscle (Frampton et al., 2020). The results of our FMT experiments showed that *MSTN*
204 deletion-mediated intestinal microbiota significantly increases skeletal muscle mass and
205 simultaneous enrich *Romboutsia* which can produce SCFAs. Further analysis of fatty acids in
206 the colon contents of mice showed that SCFAs are enriched in KO-M than WT-M; particularly,
207 valeric acid and isobutyric acid were significantly enhanced in KO-M (Figure 4A). However,
208 medium-chain fatty acids (MCFAs) showed no significant differences between the two groups
209 (Figure 4B). Long-chain fatty acids (LCFAs) also showed no difference in WT-M and KO-M
210 overall, although FFA18:2 and FFA16:0 were significantly decreased in KO-M (Figure 4C).
211 The heatmap also confirmed that the differences in SCFAs between WT-M and KO-M (Figure
212 4D).

213 To assess the influence of upregulated SCFAs on myoblast differentiation, the C2C12
214 myoblast cell line was treated for 24 h with 5 mM each of valeric acid and isobutyric acid
215 during differentiation. Immunofluorescence staining of MyHC showed that after
216 supplementation of valeric acid, C2C12 myoblasts produced thicker myotubes and notably
217 higher fusion index than the control cells, implying that valeric acid promotes myotube
218 formation (Figure 5A). Valeric acid treatment also improved the expression of MyoD and

219 MyoG and promoted the differentiation of C2C12 myoblasts (Figure 5B). Notably, the
220 phosphorylation levels of Akt and mTOR significantly increased after valeric acid treatment
221 (Figure 5C). However, isobutyric acid treatment did not show such effects and only increased
222 the myotube fusion index. Taken together, these results strongly demonstrate that valeric acid
223 can promote myogenic differentiation of myoblasts.

224 **Valeric acid stimulates type IIb myofibers growth**

225 We further elucidated the effect of valeric acid treatment on the phenotype of skeletal muscles
226 *in vivo*. Mice were administered with valeric acid (100 mg/kg) by daily oral gavage. Valeric
227 acid treatment significantly increased the mass of GA muscle, a fast-twitch glycolytic skeletal
228 muscle, compared with the control (Figure 6A, B). Consistently, following valeric acid
229 treatment, the CSA of the GA muscle was significantly larger, and there was a higher
230 proportion of large myofibers compared with the control (Figure 6C). In valeric acid-treated
231 mice, the protein expression of the MyHC IIb was significantly enhanced, that of MyHC I was
232 decreased, and that MyHC IIa showed no change (Figure 6D). In addition, valeric acid
233 treatment significantly upregulated the levels of glycolysis enzymes of HK2, PFK1, and PKM2
234 (Figure 6E) and the phosphorylation of Akt and mTOR in the GA muscle (Figure 6F).

235 To explore whether the regulatory pathway, mediated by valeric acid on muscle mass growth
236 would be dependent on fatty acid receptors, we examined the expression of SCFAs receptors in
237 skeletal muscle. Valeric acid increased the mRNA level of *GPR43* in GA muscle, whereas
238 those of *GPR41* and *GPR109a* did not significantly change (Figure 6G). SCFAs could activate
239 the Akt/mTOR pathway through GPR43 (Tang et al., 2022; Brown et al., 2003). These
240 findings suggest that valeric acid, a metabolite of gut microbes, can induce type IIb/glycolytic

241 myofiber growth and enhance GA mass by activating Akt/mTOR signalling through GPR43.
242 Furthermore, valeric acid-treated mice had a greater grip force (Figure 6H). Interestingly,
243 valeric acid treatment increased the length of the small intestine (Figure 6I), but had no effect
244 on food intake, physical activity, energy intake, or absorbed energy in mice (Figure 6-figure
245 supplement 4A-E).

246 **Valeric acid ameliorates dexamethasone (Dex)-induced skeletal muscle atrophy**

247 Glucocorticoids, such as dexamethasone, are often used to induce muscle atrophy models, and
248 are implicated in protein metabolism in skeletal muscle and are considered as a risk factor for
249 the development of muscle atrophy (Hong et al., 2019; Li et al., 2017). To further explore the
250 role of valeric acid in skeletal muscles, we constructed Dex-induced *in vivo* and *in vitro*
251 muscular atrophy models. Valeric acid administration partially ameliorated skeletal muscle
252 atrophy induced by Dex in mice and reduced the dissolution area with a clear morphology of
253 muscle fiber (Figure 7A). Meanwhile, valeric acid treatment significantly decreased the mRNA
254 and protein levels of muscular dystrophy factors Atrogin-1 and MuRF-1, which were induced
255 by Dex (Figure 7B, C). In C2C12 myoblasts, valeric acid treatment significantly increased
256 myotube diameter and fusion index, and inhibited the expression of atrophy factors, which can
257 improve Dex-induced myotube atrophy (Figure 7D, E). Overall, these finding indicate that
258 valeric acid has a positive effect on Dex-induced muscle atrophy.

259

260 **Discussion**

261 Host genetic variations can influence the microbiota composition, and the gut microbiota can
262 affect skeletal muscle growth and function. Here, we revealed that the gut microbiota

263 remodeled by *MSTN* gene deletion plays a key role in regulating skeletal muscle development.

264 *MSTN* gene knockout not only increased skeletal muscle mass, but also altered the intestinal

265 structure and composition of intestinal flora in pigs, as shown the loss of intestinal *MSTN*

266 expression, altered muscularis thickness, plica length, the increase expression of tight junction

267 genes *ZO-1* and *Occludin*, and enriched microbial population that produce SCFAs. We

268 transplanted the fecal microbiota of *MSTN*^{-/-} pigs into mice, and the recipient mice had

269 increased fast-twitch glycolytic muscle GA weight and increased levels of glycolysis proteins

270 HK2, PFK1, and PKM2 and type IIb myofibers hypertrophy, characterized by enhanced grip

271 strength and poor resistance to fatigue, accompanied by increased phosphorylation of the

272 Akt/mTOR signal. Similar to the donor pigs, recipient mice were enriched in microbes that

273 produce SCFAs. Furthermore, metabolomic analysis showed a significant increase in valeric

274 acid levels in the colon contents. We showed that the intestinal flora remodeled by *MSTN* gene

275 deletion is involved in fast-twitch glycolytic muscle growth via valeric acid, which activates

276 the Akt/mTOR pathway through the SCFAs receptor GPR43. Lastly, we demonstrated that

277 valeric acid have a beneficial effect on skeletal muscle atrophy induced by Dex (Figure 8).

278 *MSTN* regulates myogenic differentiation and skeletal muscle mass mainly by activating

279 classical Smad2/3 transcription factors (Chen et al., 2021). In this study, *MSTN*^{-/-} pigs

280 generated using TALEN genome editing had significantly inhibited activation of Smad,

281 increased CSA of type IIb myofibers, and overgrowth of skeletal muscle, which was

282 characterized by the ‘double-muscle’ phenotype. These findings are consistent with those of the

283 previous studies performed in *MSTN* mutant mice and cattle (McPherron et al., 1997;

284 Ceccobelli et al., 2022; McPherron and Lee, 1997; Kambadur et al., 1997).

285 MSTN expression has been detected not only in the skeletal muscles but also in smooth
286 muscles of blood vessels, penis, and other tissues and is co-localized with α -smooth muscle
287 actin, which can affect organ functions (Verzola et al., 2017; Esposito et al., 2020; Kovanecz
288 et al., 2017). Intestine tissues are from smooth muscle, and *MSTN* expression in intestine
289 tissues has been confirmed; however, its role in intestine is not clear (Sundaresan et al., 2008).
290 In this study, MSTN expression was detected in the intestine of WT pigs but not in that of
291 *MSTN*^{-/-} pigs. Importantly, this is the first study to show that *MSTN* knockout leads to a loss of
292 its expression in the intestine and increases the intestinal muscularis thickness and plica length
293 in pig intestine, indicating *MSTN* knockout-induced changes in intestinal morphology. The
294 muscularis is related to intestinal motility, and its thickness can represent the ability of
295 intestinal peristalsis; the height of the mucosal fold determines the intestinal absorption surface
296 area (Wang et al., 2019; Zhao et al., 2017; Geda et al., 2012). In this study, increases in small
297 intestinal muscularis thickness and plica length imply enhanced intestinal absorptive capacity
298 in *MSTN*^{-/-} pigs. Actually, *MSTN* gene mutation has also been found to affect the composition
299 of metabolites and microbial strains in the jejunum, which might provide more useable
300 nutrients for the host (Pei et al., 2021). The tight junction between adjacent intestinal epithelial
301 cells is a critical component of the intestinal barrier, which provide a form of cell–cell adhesion
302 in enterocytes and limit the paracellular transport of bacteria and/or bacterial products into the
303 systemic circulation (Ghosh et al., 2020). Previous studies have shown that a disruption in the
304 intestinal barrier leads to increased bacterial products of lipopolysaccharide into systemic
305 circulation, triggering an inflammatory response in specific tissues, such as skeletal muscle or
306 adipose tissue (Ghosh et al., 2020). On the other hand, enhancement of the intestinal barrier

307 function effectively reduced intestinal inflammation, resulting in the alleviation of skeletal
308 muscle loss in cancer cachexia (Sakakida et al., 2022). In this study, *MSTN*^{−/−} pigs had a
309 significantly increased expression of tight junction genes *ZO-1* and *Occludin* in intestine. It is
310 indicated that *MSTN* gene deletion can improve the intestinal physical barrier of pigs.
311 Importantly, changes in the intestinal environment and barrier function can alter microbial
312 composition of the gut (Seganfredo et al., 2017; Nicoletti et al., 2017; Sekirov et al., 2010).
313 The intestinal microflora composition of *MSTN*^{−/−} pigs was analyzed, and we found that
314 *Romboutsia*, *Treponema*, and *Turicibacter* were significantly enriched. Several studies have
315 suggested that these microbes are involved in SCFAs production (Li et al., 2019b; Li et al.,
316 2021; Li et al., 2019c; Bian et al., 2020). SCFAs are absorbed from the intestinal tract and play
317 a metabolic regulatory role in different organs, which are recognized as a potential regulator of
318 skeletal muscle metabolism and function (Frampton et al., 2020). Additionally, *Romboutsia*
319 (Li et al., 2021; Yanni et al., 2020) and *Turicibacter* (Watanabe et al., 2021) are closely
320 associated with metabolic disorders, such as hypertension, diabetes, dysregulation of skeletal
321 muscle energy metabolism, and obesity. Therefore, we believe that the deletion of the *MSTN*
322 gene in the intestine alters the intestinal structure, thus affecting the composition of intestinal
323 flora.
324 FMT can transfer both host gut characteristics and metabolic phenotypes from pigs to mice
325 (Yang et al., 2018; Diao et al., 2016; Yan et al., 2016). To verify the effect of the intestinal
326 flora remodeled by *MSTN* gene deletion on skeletal muscle, the intestinal flora of *MSTN*^{−/−} and
327 WT pigs were transplanted into mice. Interestingly, we found that mice transplanted with
328 *MSTN*^{−/−} pigs feces had increased GA muscle mass and muscle fiber area (Figure 2). We

329 further found that the area of type IIb myofibers increased significantly, indicating that the
330 increased GA weight and muscle fiber area can be attributed to the growth of type IIb
331 myofibers. Previous studies have found that Akt1 transgene activation specifically increases
332 GA weight and type IIb myofiber growth through mTOR-dependent pathway (Izumiya et al.,
333 2008). This is consistent with our study, where the significant activation of the Akt1/mTOR
334 pathway was observed with increased GA mass and IIb myofiber CSA in KO-M. In addition,
335 augment of type IIb myofibers lead to an increase in grip strength but a reduction in endurance
336 on a treadmill test (Izumiya et al., 2008). In this study, as expected, KO-M had significantly
337 enhanced grip strength but poor resistance to fatigue. Preservation or restoration of type IIb
338 myofibers may delay age-related changes, mainly by reducing fat mass and liver steatosis and
339 correcting glucose metabolism injury (Akasaki et al., 2014). Importantly, we found that
340 SCFAs producing microbes, *Romboutsia*, enriched in *MSTN*^{-/-} pigs are also significantly
341 enriched in recipient mice (Figure 3B-D). The concentration of SCFAs was significantly
342 increased in the colon contents. Gut microbiota transplantation from pathogen-free mice into
343 germ-free mice was reported to increase skeletal muscle mass and reduce muscle atrophy
344 markers, thus improving oxidative metabolic capacity. Moreover, the microbial
345 metabolites-SCFAs treatment can also attenuate skeletal muscle impairments, especially in the
346 GA muscle (Lahiri et al., 2019). During hibernation, the urease-producing microbes, *Alistipes*,
347 enriched in the gut of ground squirrels can prevent muscle loss (Regan et al., 2022). These
348 results strongly suggest that the intestinal flora remodeled by *MSTN* gene deletion is involved
349 in the growth of fast-twitch glycolytic muscle mass and function, which may be related to the
350 enrichment of SCFAs-producing microbes.

351 SCFAs are the main metabolites of intestinal microbiota and are involved in multiple
352 physiological processes of the host (Donohoe et al., 2011; Canfora et al., 2015). Compared
353 with untreated mice, SCFAs-treated germ-free mice showed improved muscle strength (Lahiri
354 et al., 2019). In addition, acetic acid, a kind of SCFA, can change fiber types and regulate
355 mitochondrial metabolism of skeletal muscle (Pan et al., 2015). Similarly, we observed that
356 valeric acid treatment increases myotube formation in myoblasts and the skeletal muscle mass
357 of GA in mice, especially with respect to type IIb muscle fiber formation rate. SCFAs play a
358 downstream regulatory role mainly by binding to their receptors (Stoddart et al., 2008; Hul et
359 al., 2019). To explore the possible mechanism of action of valeric acid in skeletal muscles, we
360 analyzed GPRs expression and found a considerable increase in GPR43 levels following
361 valeric acid treatment. The GPR43 receptor can activate the Akt and mTOR signaling pathway
362 (Bian et al., 2020; Dutchak et al., 2018), which may explain the activation of the Akt signaling
363 pathway detected in this study (Figure 6). Aging and long-term and high-dose glucocorticoid
364 therapy could induce skeletal muscle atrophy, mainly manifesting as skeletal muscle mass loss
365 and priority loss of type IIb muscle fibers (Akasaki et al., 2014; Haber et al., 1992; Faulkner et
366 al., 2007; Kirkendall et al., 1998). We found that valeric acid treatment ameliorates
367 Dex-induced myotube atrophy and partially repairs skeletal muscle atrophy (Figure 7).

368 In conclusion, this is the first study to demonstrate that *MSTN* gene deletion in pig intestine
369 alters intestinal structure and function, leading to changes in the composition of intestinal
370 microbiota. We further demonstrate that *MSTN* gene deletion-mediated remodeling of the
371 intestinal flora increases the growth of fast-twitch glycolytic muscles. Finally, we illustrate that
372 the microbiota metabolite valeric acid can promote myoblast differentiation and fast-twitch

373 glycolytic myofiber growth by activating the Akt/mTOR pathway through the SCFAs receptor
374 GPR43 and have a beneficial effect for skeletal muscle atrophy induced by Dex. These findings
375 increase our understanding of the host genetic variation in regulating gut microbiota, and
376 provide new insights for the treatment of muscle-related diseases, such as muscular dystrophy
377 and sarcopenia.

378

379 **Materials and methods**

380 **Animals**

381 The animal study was approved by the Ethics Committee of Yanbian University (approval
382 number SYXK2020-0009). We generated *MSTN*^{-/-} pigs with 2 and 4 bp deletions in the two
383 alleles of *MSTN* gene by TALEN genome editing technique and somatic cell nuclear transfer
384 and these pigs were used in this experiment (Kang et al., 2017). Pigs were fed a standard
385 commercial diet and housed in the same environmentally controlled room in a swine breeding
386 farm. Male C57BL/6J mice aged four weeks were purchased from Vital River Laboratory
387 Animal Technology (Beijing, China). Chow diet (Beijing HuaFuKang Bioscience, Beijing,
388 China) and water were provided ad libitum. Mice were administered with valeric acid (100
389 mg/kg, Shanghai Aladdin, China) by oral gavage or water (vehicle) starting at four weeks of
390 age, and tissues were collected after five weeks of treatment.

391 To establish the Dex-induced muscle atrophy model, male C57BL/6J mice aged eight
392 weeks were intraperitoneally injected with 20 mg/kg Dex every other day for two weeks, and
393 saline injections were used for the control group. Dex-induced skeletal muscle atrophy was
394 determined by weight loss in mice (Hong et al., 2019; Li et al., 2017). A total of 100 mg/kg of

395 valeric acid was provided orally to mice every day two weeks before Dex injection until the
396 full experiment cycle. Mice were raised in a pathogen free environment at a controlled
397 ambient $21\pm1^\circ\text{C}$, 40–60% relative humidity, and 12/12 h cycle of alternating day and night. In
398 all experiments, the animals were fasted overnight before they were euthanized.

399 **Fecal microbiota transplantation**

400 Fecal samples were collected daily from six-month old *MSTN*^{-/-} and wild-type (WT) donor
401 pigs in the morning. In a sterile environment, they were homogenized and suspended using
402 sterile saline (250 mg/mL), and the mixture was centrifuged at $800 \times g$ for 5 min. Antibiotics
403 mixture (50 $\mu\text{g}/\text{mL}$ streptomycin, 100 U/mL penicillin, 170 $\mu\text{g}/\text{mL}$ gentamycin, 100 $\mu\text{g}/\text{mL}$
404 metronidazole, 125 $\mu\text{g}/\text{mL}$ ciprofloxacin; all from Sigma) was added to sterile drinking water
405 and was given daily for one week before FMT. From five weeks of age, each group of
406 recipient mouse was gavaged with 200 μL of the corresponding bacterial suspension every
407 day for eight weeks until tissue collection.

408 **Analysis of gut microbiota**

409 The fecal samples used for microbiota analysis were collected separately from donor pigs at
410 six-month old and recipient mice after eight weeks of FMT. Methods used to analyze the
411 diversity and taxonomic profiles of gut microbiota in donor pigs and recipient mice have been
412 described previously (Quan et al., 2020). Briefly, the CTAB method was used extract the total
413 genomic DNA from fecal bacteria. DNA sample with a final concentration of 1 $\text{ng}/\mu\text{L}$ was
414 used for bacterial 16s rRNA gene amplification sequencing (V3-V4 regions). The Illumina
415 NovaSeq platform (Novogene, Beijing, China) was used to determine the sequencing
416 abundance and diversity of the intestinal flora in pigs and mice. The library quality was

417 assessed using a Qubit® 2.0 Fluorometer (Thermo Scientific) and Agilent Bioanalyzer 2100
418 system.

419 Paired-end reads were allocated according to the unique barcodes of the sample and
420 truncated by cutting off the barcode and primer sequences. FLASH (v1.2.7) was used to
421 merge the overlapped reads between paired-end reads. According to the QIIME (V1.9.1)
422 quality control process, high-quality clean tags were obtained from qualitative filtration of the
423 original reads under specific filtration conditions. The effective tags were finally collected by
424 comparing the sample tags with the reference database (Silva database) after the detection and
425 removal of chimera sequences using the UCHIME algorithm. The QIIME software was used
426 to calculate all indices in the samples, and R (v2.15.3) was used for bioinformatic analyses of
427 the sequences. The same operational taxonomic units had at least 97% similarity in sequences.
428 Alpha diversity, beta diversity, and principal component analysis (PCA) were described
429 according to the unweighted unifrac distances.

430 **Cell culture**

431 C2C12 myoblasts (1×10^5 cells/well) were cultured in six-well culture plates in Dulbecco's
432 modified Eagle's medium (DMEM; Invitrogen-Gibco), containing 10% fetal bovine serum
433 (Sigma), 100 U/mL penicillin and 100 U/mL streptomycin (Invitrogen-Gibco) for
434 proliferation. For differentiation, C2C12 myoblasts at 80% confluence were induced to
435 differentiate in DMEM with 2% horse serum (Invitrogen); valeric acid and isobutyric acid
436 were added to the differentiation medium for 24 h. Cells were supplemented with a fresh
437 differentiation medium every two days. Myotubes were obtained on day 5 of the
438 differentiation phase.

439 To establish the Dex-induced myotube atrophy model, myoblasts were treated with 100
440 $\mu\text{m/L}$ of Dex at the beginning of differentiation for 24 h, and 5 mM/L valeric acid was added
441 to the treatment group. Myoblasts were cultured in a fresh differentiation medium for five
442 days. Myotubes were stained with anti-MyHC antibody (MyHC, A4.1025, Sigma), and Alexa
443 Fluor 488-labelled goat anti-mouse IgG was used as secondary antibody (Jackson
444 ImmunoResearch Laboratories). The nuclei were counterstained with 10 $\mu\text{g}/\mu\text{L}$ DAPI
445 (D-9106, Beijing Bioss Biotechnology). The diameter and the number of nuclei of the
446 differentiated myotubes were measured using Image J (1.51q, National Institutes of Health,
447 USA). For each group, five pictures were randomly taken from each well of the six-well
448 plates. The diameters of the three different parts of each myotube were measured, and the
449 average value was calculated. To determine the C2C12 fusion index, the number of nuclei in
450 the myotubes were calculated and divided by the total number of nuclei and multiplied by
451 100.

452 **Histological analysis**

453 Skeletal muscle and intestine morphology were detected by hematoxylin eosin (HE) staining.
454 The longissimus dorsi and intestine tissues from *MSTN*^{-/-} and WT pigs were from 5 μm thick
455 paraffin-embedded sections. Images were obtained using a light microscope (BX53, Olympus,
456 Japan).

457 Liquid nitrogen-cooled isopentane was used to rapid freeze the skeletal muscle tissues,
458 which were embedded in the OCT compound (Sakura Finetech USA Inc.). Cryostat sections
459 (10 μm) were prepared from the mid-belly of the muscle tissue. Fiber-type of skeletal muscle
460 was stained using MyHC type I (BA-D5, DSHB, Douglas Houston), MyHC type IIa (SC-71,

461 DSHB, Douglas Houston), MyHC type IIb (BF-F3, DSHB, Douglas Houston), and laminin
462 (ab11575, Abcam) monoclonal antibodies. Alexa Fluor 647 conjugate goat anti-mouse IgG2b,
463 Alexa Fluor 488 conjugate goat anti-mouse IgG1, Alexa Fluor 555 conjugate goat anti-mouse
464 IgM, or Alexa Fluor 594 conjugate goat anti-rabbit IgG were used as secondary antibodies.
465 The nuclei were counterstained with 10 µg/µL of DAPI. Fluorescence was detected using a
466 confocal laser scanning microscope (FV3000, Olympus, Japan). Image J software was used to
467 measure the thickness and the cross-sectional area (CSA) of the myofibers. The damage area
468 of skeletal muscle fiber was evaluated by calculating the ratio of muscle fiber ablation area to
469 the total muscle fiber CSA.

470 **Quantitative real-time PCR**

471 Total RNA was extracted from liquid nitrogen quick-frozen tissue using a Total RNA
472 Extraction Kit (LS1040; Promega) as per the manufacturer's protocol. After evaluating the
473 concentration and purity of RNA, an equal amount of RNA was used for reverse transcription.
474 Information on the primers used is available in supplementary materials. Real-time PCR was
475 performed on Mx3005P system (Agilent, Santa Clara, CA, USA), and the relative gene
476 expression levels were calculated using the $2^{-\Delta\Delta CT}$ method and normalized to that of the
477 control group.

478 **Western blotting**

479 The cells and tissues were homogenized in RIPA buffer (Beyotime). Equal amounts of protein
480 were calculated and loaded according to the concentration of protein that was detected by a
481 BCA kit (Beyotime, Shanghai, China). Subsequently, immunoblot analysis was performed
482 following standard procedures. Protein samples were electrophoresed, transferred, blocked

483 and incubated with the following primary antibodies: phospho-Akt (Ser473), phospho-mTOR
484 (Ser2448), phospho-Smad2 (Ser465/467)/Smad3 (Ser423/425), Akt, mTOR, Smad2/3, and
485 HK2 from Cell Signaling Technology; PFK1 and PKM2 from Shanghai Absin, Inc.; MyHC
486 type I, MyHC type Iia, and MyHC type IIb from DSHB; MSTN, MyoD, MyoG, α -SMA,
487 calponin-1, MuRF-1, atrogin-1, actin, and tubulin from Beijing Bioss Biotechnology, Inc..
488 The ChemiDocTM MP Imaging System and Image Lab software (Bio-Rad, Shanghai, China)
489 were used to analyze the blot bands.

490 **SCFAs analysis**

491 Colon contents were collected at the time of mouse tissue sample collection after eight weeks
492 of FMT. SCFAs were extracted from mouse feces using 1:1 acetonitrile:water solution and
493 derivatized using 3-nitrophenylhyrazones. SCFAs were analyzed using a Jasper HPLC
494 coupled to a Sciex 4500 MD system (LipidALL Technologies Co., Ltd, Changzhou, China).
495 In brief, a Phenomenex Kinetex C₁₈ column (100 \times 2.1 mm, 2.6 μ m) was used to separate
496 individual SCFA. The mobile phase A consisted of 0.1% formic acid aqueous solution, and
497 the mobile phase B consisted of 0.1% formic acid acetonitrile. Octanoic acid-1-¹³C₁
498 (Sigma-Aldrich) and butyric-2,2-d₂ (CDN Isotopes) were used as internal standards for
499 quantitation (Li et al., 2019a).

500 **Statistical analysis**

501 Statistical analysis was performed using SPSS (17.0, IBM, Armonk, NY, USA) and GraphPad
502 Prism (San Diego, CA, USA). Data are presented as the mean \pm SEM, and were compared
503 using a repeated measure two-way analysis of variance (ANOVA), one-way ANOVA, or
504 Student's *t*-test. Statistical significance was set at **P*<0.05, ***P*<0.01, ****P*<0.001.

505 **Acknowledgments**

506 The author would like to appreciate Yanbian University for its support to Tumen River
507 Scholars.

508 **Additional information**

509 **Competing interests**

510 The authors declare that they have no competing interests.

511 **Funding**

512 This work was supported by the 13th Five-Year Plan Science and Technology Research
513 Project of Education Department of Jilin Province of China (JJKH20200520KJ,
514 JJKH20210586KJ); Innovative and Entrepreneurial Talent in Jilin Province of China
515 (2020022); the Higher Education Discipline Innovation Project (111 Project, D18012).

516 **Author contributions**

517 L-HQ, J-DK, Z-BL and X-JY conceived the project, contributed to experimental design;
518 L-HQ, J-DK, Z-BL and SH performed experiments, interpreted the results, prepared the
519 figures and wrote the manuscript; SH, HL and H-LL contributed to writing and editing; JW,
520 CH, DW, YL and DL performed animal studies; Z-BL, KG and BQ performed animal tissue
521 analysis; SC and MX performed cellular experiments; all authors discussed the results and
522 approved the manuscript.

523 **Ethics approval and consent to participate**

524 The animal study was approved by the Ethics Committee of Yanbian University (approval
525 number SYXK2020-0009).

526 **Additional files**

527 **Supporting information**

528 Supplementary Figures and Table.

529 Supplementary methods.

530 **Availability of data and materials**

531 The raw reads of 16s rRNA gene sequences have been submitted to the NCBI BioSample

532 database (Porcine data: PRJNA743164; Mice data: PRJNA743401).

533 All sample metadata and intermediate analysis files are available at

534 <https://www.scidb.cn/s/YRZ32q>.

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549 **References**

550 Agus A, Clément K, Sokol H. 2021. Gut microbiota-derived metabolites as central regulators
551 in metabolic disorders. *Gut* **70**, 1174-1182. DOI: <https://doi:10.1136/gutjnl-2020-323071>,
552 PMID: 33272977

553 Agus A, Planchais J, Sokol H. 2018. Gut Microbiota Regulation of Tryptophan Metabolism in
554 Health and Disease. *Cell Host Microbe* **23**, 716-724. DOI:
555 <https://doi:10.1016/j.chom.2018.05.003>, PMID: 29902437

556 Akasaki Y, Ouchi N, Izumiya Y, Bernardo BL, Lebrasseur NK, Walsh K. 2014. Glycolytic
557 fast-twitch muscle fiber restoration counters adverse age-related changes in body
558 composition and metabolism. *Aging cell* **13**, 80-91. DOI: <https://doi:10.1111/acel.12153>,
559 PMID: 24033924

560 Bassel-Duby R, Olson EN. 2006. Signaling pathways in skeletal muscle remodeling. *Annu.
561 Rev. Biochem* **75**, 19-37. DOI: <https://doi:10.1146/annurev.biochem.75.103004.142622>,
562 PMID: 16756483

563 Besten Gd, Eunen Kv, Groen AK, Venema K, Reijngoud DJ, Bakker BM. 2013. The role of
564 short-chain fatty acids in the interplay between diet, gut microbiota, and host energy
565 metabolism. *J. Lipid. Res* **54**, 2325-2340. DOI: <https://doi:10.1194/jlr.R036012>, PMID:
566 23821742

567 Bian X, Yang L, Wu W, Lv L, Jiang X, Wang Q, Wu J, Li Y, Ye J, Fang D, Shi D, Wang K,
568 Wang Q, Lu Y, Xie J, Xia J, Li L. 2020. *Pediococcus pentosaceus* LI05 alleviates
569 DSS-induced colitis by modulating immunological profiles, the gut microbiota and
570 short-chain fatty acid levels in a mouse model. *Microb. Biotechnol* **13**, 1228-1244. DOI:

571 https://doi:10.1111/1751-7915.13583, PMID: 32363766

572 Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI,

573 Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR,

574 Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ.

575 2003. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by

576 propionate and other short chain carboxylic acids. *J. Biol. Chem.* **278**, 11312-11319. DOI:

577 <https://doi:10.1074/jbc.M211609200>, PMID: 12496283

578 Canfora EE, Jocken JW, Blaak EE. 2015. Short-chain fatty acids in control of body weight

579 and insulin sensitivity. *Nat. Rev. Endocrinol.* **11**, 577-591. DOI:

580 <https://doi:10.1038/nrendo.2015.128>, PMID: 26260141

581 Ceccobelli S, Perini F, Trombetta MF, Tavoletti S, Lasagna E, Pasquini M. 2022. Effect of

582 Myostatin Gene Mutation on Slaughtering Performance and Meat Quality in Marchigiana

583 Bulls. *Animals* **12**, 518-529. DOI: <https://doi:10.3390/ani12040518>, PMID: 35203227

584 Chen F, Li Q, Chen Y, Wei Y, Liang J, Song Y, Shi I, Wang J, Mao L, Zhang B, Zhang Z. 2022.

585 Association of the gut microbiota and fecal short-chain fatty acids with skeletal muscle mass

586 and strength in children. *FASEB J* **36**, e22109. DOI: <https://doi:10.1096/fj.202002697RRR>,

587 PMID: 34941012

588 Chen MM, Zhao YP, Zhao Y, Deng SL, Yu K. 2021. Regulation of Myostatin on the Growth

589 and Development of Skeletal Muscle. *Front Cell Dev Biol* **9**, 785712. DOI: <https://doi:10.3389/fcell.2021.785712>, PMID: 35004684

591 Cho MR, Lee S, Song SK. 2022. A Review of Sarcopenia Pathophysiology, Diagnosis,

592 Treatment and Future Direction. *J. Korean. Med. Sci.* **37**, e146. DOI:

593 <https://doi:10.3346/jkms.2022.37.e146>, PMID: 35535373

594 Diao H, Yan HL, Xiao Y, Yu B, Yu J, He J, Zheng P, Zeng BH, Wei H, Mao XB, Chen DW.

595 2016. Intestinal microbiota could transfer host Gut characteristics from pigs to mice. *BMC*

596 *Microbiol* **16**, 238-253. DOI: <https://doi:10.1186/s12866-016-0851-z>, PMID: 27729007

597 Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, Bultman SJ. 2011. The

598 microbiome and butyrate regulate energy metabolism and autophagy in the mammalian

599 colon. *Cell Metab* **13**, 517-526. DOI: <https://doi:10.1016/j.cmet.2011.02.018>, PMID:

600 21531334

601 Dutchak PA, Estill-Terpack SJ, Plec AA, Zhao X, Yang C, Chen J, Ko B, Deberardinis RJ, Yu

602 Y, Tu BP. 2018. Loss of a Negative Regulator of mTORC1 Induces Aerobic Glycolysis and

603 Altered Fiber Composition in Skeletal Muscle. *Cell Rep* **23**, 1907-1914. DOI:

604 <https://doi:10.1016/j.celrep.2018.04.058>, PMID: 29768191

605 Esposito P, Verzola D, Porta E, Milanesi S, Grignano MA, Avella A, Gregorini M, Abelli M,

606 Ticocozzelli E, Rampino T, Garibotto G. 2020. Myostatin in the Arterial Wall of Patients with

607 End-Stage Renal Disease. *J. Atheroscler. Thromb* **27**, 1039-1052. DOI:

608 <https://doi:10.5551/jat.51144>, PMID: 32173683

609 Faulkner JA, Larkin LM, Claflin DR, Brooks SV. 2007. Age-related changes in the structure

610 and function of skeletal muscles. *Clin. Exp. Pharmacol. Physiol* **34**, 1091-1096. DOI:

611 <https://doi:10.1111/j.1440-1681.2007.04752.x>, PMID: 17880359

612 Frampton J, Murphy KG, Frost G, Chambers ES. 2020. Short-chain fatty acids as potential

613 regulators of skeletal muscle metabolism and function. *Nat. Metab* **2**, 840-848. DOI:

614 <https://doi:10.1038/s42255-020-0188-7>, PMID: 32694821

615 Geda F, Rekecki A, Decostere A, Bossier P, Wuyts B, Kalmar ID, Janssens GPJ. 2012.
616 Changes in intestinal morphology and amino acid catabolism in common carp at mildly
617 elevated temperature as affected by dietary mannanoligosaccharide. *Anim. Feed Sci. Technol*
618 **178**, 95-102. DOI: <https://doi.org/10.1016/j.anifeedsci.2012.09.008>

619 Ghosh SS, Wang J, Yannie PJ, Ghosh S. 2020. Intestinal Barrier Dysfunction, LPS
620 Translocation, and Disease Development. *J. Endocr. Soc* **4**, bvz039. DOI:
621 <https://doi.org/10.1210/jendso/bvz039>, PMID: 32099951

622 Haber RS, Weinstein SP. 1992. Role of glucose transporters in glucocorticoid-induced insulin
623 resistance. GLUT4 isoform in rat skeletal muscle is not decreased by dexamethasone.
624 *Diabetes* **41**, 728-735. DOI: <https://doi.org/10.2337/diab.41.6.728>, PMID: 1587399

625 He QW, Zhang Y, Ma D, Zhang WQ, Zhang HP. 2022. Lactobacillus casei Zhang exerts
626 anti-obesity effect to obese glut1 and gut-specific-glut1 knockout mice via gut microbiota
627 modulation mediated different metagenomic pathways. *European journal of nutrition* **61**,
628 2003-2014. DOI: <https://doi.org/10.1007/s00394-021-02764-0>, PMID: 34984487

629 Hong Y, Lee JH, Jeong KW, Choi CS, Jun HS. 2019. Amelioration of muscle wasting by
630 glucagon-like peptide-1 receptor agonist in muscle atrophy. *J. Cachexia Sarcopenia Muscle*
631 **10**, 903-918. DOI: <https://doi.org/10.1002/jcsm.12434>, PMID: 31020810

632 Hul MV, Cani PD. 2019. Targeting Carbohydrates and Polyphenols for a Healthy Microbiome
633 and Healthy Weight. *Curr. Nutr. Rep.* **8**, 307-316. DOI:
634 <https://doi.org/10.1007/s13668-019-00281-5>, PMID: 31161579

635 Izumiya Y, Hopkins T, Morris C, Sato K, Zeng L, Viereck J, Hamilton JA, Ouchi N,
636 LeBrasseur NK, Walsh K. 2008. Fast/Glycolytic muscle fiber growth reduces fat mass and

637 improves metabolic parameters in obese mice. *Cell Metab* **7**, 159-172. DOI:
638 <https://doi:10.1016/j.cmet.2007.11.003>, PMID: 18249175

639 Kambadur R, Sharma M, Smith TP, Bass JJ. 1997. Mutations in myostatin (GDF8) in
640 double-muscled Belgian Blue and Piedmontese cattle. *Genome Res* **7**, 910-916. DOI:
641 <https://doi:10.1101/gr.7.9.910>, PMID: 9314496

642 Kang JD, Kim S, Zhu HY, Jin L, Guo Q, Li XC, Zhang YC, Xing XX, Xuan MF, Zhang GL,
643 Luo QR, Kim YS, Cui CD, Li WX, Cui ZY, Kim JS, Yin XJ. 2017. Generation of cloned
644 adult muscular pigs with myostatin gene mutation by genetic engineering. *RSC Advances* **7**,
645 12541-12549. DOI: <https://doi:10.1039/C6RA28579A>

646 Kelleher SL, Alam S, Rivera OC, Barber-Zucker S, Zarivach R, Wagatsuma T, Kambe T,
647 Soybel DI, Wright J, Lamendella R. 2022. Loss-of-function SLC30A2 mutants are
648 associated with gut dysbiosis and alterations in intestinal gene expression in preterm infants.
649 *Gut. Microbes* **14**, 2014739. DOI: <https://doi:10.1080/19490976.2021.2014739>, PMID:
650 34965180

651 Kim JW, Kim R, Choi H, Lee SJ, Bae GU. 2021. Understanding of sarcopenia: from
652 definition to therapeutic strategies. *Arch. Pharma. Res* **44**, 876-889. DOI:
653 <https://doi:10.1007/s12272-021-01349-z>, PMID: 34537916

654 Kirkendall DT, Garrett WE Jr. 1998. The effects of aging and training on skeletal muscle. *Am
655 J Sports Med* **26**, 598-602. DOI: <https://doi:10.1177/03635465980260042401>, PMID:
656 9689386

657 Kovanecz I, Masouminia M, Gelfand R, Vernet D, Rajfer J, Gonzalez-Cadavid NF. 2017.
658 Myostatin, a profibrotic factor and the main inhibitor of striated muscle mass, is present in

659 the penile and vascular smooth muscle. *Int. J. Impot. Res.* **29**, 194-201. DOI:
660 <https://doi:10.1038/ijir.2017.22>, PMID: 28539643

661 Kreznar JH, Keller MP, Traeger LL, Rabaglia ME, Schueler KL, Stapleton DS, Zhao W,
662 Vivas EI, Yandell BS, Broman AT, Hagenbuch B, Attie AD, Rey FE. 2017. Host Genotype
663 and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes.
664 *Cell Rep* **18**, 1739-1750. DOI: <https://doi:10.1016/j.celrep.2017.01.062>, PMID: 28199845

665 Lahiri S, Kim H, Garcia-Perez I, Reza MM, Martin KA, Kundu P, Cox LM, Selkrig J, Posma
666 JM, Zhang H, Padmanabhan P, Moret C, Gulyás B, Blaser MJ, Auwerx J, Holmes E,
667 Nicholson J, Wahli W, Pettersson S. 2019. The gut microbiota influences skeletal muscle
668 mass and function in mice. *Sci. Transl. Med.* **11**, eaan5662. DOI:
669 <https://doi:10.1126/scitranslmed.aan5662>, PMID: 31341063

670 Li B, Li L, Li M, Lam SM, Wang G, Wu Y, Zhang H, Niu C, Zhang X, Liu X, Hambly C, Jin
671 W, Shui G, Speakman JR. 2019a. Microbiota Depletion Impairs Thermogenesis of Brown
672 Adipose Tissue and Browning of White Adipose Tissue. *Cell Rep* **26**, 2720-2737. DOI:
673 <https://doi:10.1016/j.celrep.2019.02.015>, PMID: 30840893

674 Li H, Li H, Xie P, Li Z, Yin Y, Blachier F, Kong X. 2019b. Dietary supplementation with
675 fermented Mao-tai lees beneficially affects gut microbiota structure and function in pigs.
676 *AMB Express* **9**, 26-39. DOI: <https://doi:10.1186/s13568-019-0747-z>, PMID: 30778768

677 Li J, Chan MC, Yu Y, Bei Y, Chen P, Zhou Q, Cheng L, Chen L, Ziegler O, Rowe GC, Das S,
678 Xiao J. 2017. miR-29b contributes to multiple types of muscle atrophy. *Nat. Commun* **8**,
679 15201. DOI: <https://doi:10.1038/ncomms15201>, PMID: 28541289

680 Li JW, Fang B, Pang GF, Zhang M, Ren FZ. 2019c. Age- and diet-specific effects of chronic

681 exposure to chlorpyrifos on hormones, inflammation and gut microbiota in rats. *Pestic.*

682 *Biochem. Physiol.* **159**, 68-79. DOI: <https://doi:10.1016/j.pestbp.2019.05.018>, PMID: 31400786

684 Li Y, Zafar S, Salih Ibrahim RM, Chi HL, Xiao T, Xia WJ, Li HB, Kang YM. 2021. Exercise

685 and food supplement of vitamin C ameliorate hypertension through improvement of gut

686 microflora in the spontaneously hypertensive rats. *Life Sci.* **269**, 119097. DOI: 687 <https://doi:10.1016/j.lfs.2021.119097>, PMID: 33482189

688 Lv WQ, Lin X, Shen H, Liu HM, Qiu X, Li BY, Shen WD, Ge CL, Lv FY, Shen J, Xiao HM,

689 Deng HW. 2021. Human gut microbiome impacts skeletal muscle mass via gut microbial

690 synthesis of the short-chain fatty acid butyrate among healthy menopausal women. *J.*

691 *Cachexia Sarcopenia Muscle* **12**, 1860-1870. DOI: <https://doi:10.1002/jcsm.12788>, PMID: 692 34472211

693 McPherron AC, Lawler AM, Lee SJ. 1997. Regulation of skeletal muscle mass in mice by a

694 new TGF-beta superfamily member. *Nature* **387**, 83-90. DOI: <https://doi:10.1038/387083a0>,

695 PMID: 9139826

696 McPherron AC, Lee SJ. 1997. Double muscling in cattle due to mutations in the myostatin

697 gene. *Proc. Natl. Acad. Sci. USA* **94**, 12457-12461. DOI: 698 <https://doi:10.1073/pnas.94.23.12457>, PMID: 9356471

699 Meng ZX, Li S, Wang L, Ko HJ, Lee Y, Jung DY, Okutsu M, Yan Z, Kim JK, Lin JD. 2013.

700 Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose

701 homeostasis through Deltor-mediated Akt activation. *Nat. Med.* **19**, 640-645. DOI: 702 <https://doi:10.1038/nm.3144>, PMID: 23563706

703 Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA.

704 2007. A mutation in the myostatin gene increases muscle mass and enhances racing

705 performance in heterozygote dogs. *PLoS Genet* **3**, e79. DOI:

706 <https://doi:10.1371/journal.pgen.0030079>, PMID: 17530926

707 Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB,

708 Tylavsky FA, Rubin SM, Harris TB. 2006. Strength, but not muscle mass, is associated with

709 mortality in the health, aging and body composition study cohort. *J. Gerontol A. Biol. Sci.*

710 *Med. Sci* **61**, 72-77. DOI: <https://doi:10.1093/gerona/61.1.72>, PMID: 16456196

711 Nicoletti CF, Cortes-Oliveira C, Pinhel MAS, Nonino CB. 2017. Bariatric Surgery and

712 Precision Nutrition. *Nutrients* **9**, 974-987. DOI: <https://doi:10.3390/nu9090974>, PMID:

713 28878180

714 Pan JH, Kim JH, Kim HM, Lee ES, Shin DH, Kim S, Shin M, Kim SH, Lee JH, Kim YJ.

715 2015. Acetic acid enhances endurance capacity of exercise-trained mice by increasing

716 skeletal muscle oxidative properties. *Biosci Biotechnol Biochem* **79**, 1535-1541. DOI:

717 <https://doi:10.1080/09168451.2015.1034652>, PMID: 26000971

718 Pei Y, Chen C, Mu Y, Yang Y, Feng Z, Li B, Li H, Li K. 2021. Integrated Microbiome and

719 Metabolome Analysis Reveals a Positive Change in the Intestinal Environment of *Myostatin*

720 Edited Large White Pigs. *Front. Microbiol* **12**, 628685. DOI:

721 <https://doi:10.3389/fmicb.2021.628685>, PMID: 33679652

722 Quan LH, Zhang C, Dong M, Jiang J, Xu H, Yan C, Liu X, Zhou H, Zhang H, Chen L, Zhong

723 FL, Luo ZB, Lam SM, Shui G, Li D, Jin W. 2020. Myristoleic acid produced by enterococci

724 reduces obesity through brown adipose tissue activation. *Gut* **69**, 1239-1247. DOI:

725 https://doi:10.1136/gutjnl-2019-319114, PMID: 31744910

726 Regan MD, Chiang E, Liu YX, Tonelli M, Verdoorn KM, Gugel SR, Suen G, Carey HV,

727 Assadi-Porter FM. 2022. Nitrogen recycling via gut symbionts increases in ground squirrels

728 over the hibernation season. *Science* **28**, 460-463. DOI: <https://doi:10.1126/science.abb2950>,

729 PMID: 35084962

730 Sakakida T, Ishikawa T, Doi T, Morita R, Endo Y, Matsumura S, Ota T, Yoshida J, Hirai Y,

731 Mizushima K, Higashimura Y, Inoue K, Okayama T, Uchiyama K, Takagi T, Abe A, Inoue R,

732 Itoh Y, Naito Y. 2022. Water-soluble dietary fiber alleviates cancer-induced muscle wasting

733 through changes in gut microenvironment in mice. *Cancer Sci* **113**, 1789-1800. DOI:

734 <https://doi:10.1111/cas.15306>, PMID: 35201655

735 Scheiman J, Luber JM, Chavkin TA, Donald TM, Tung A, Pham LD, Wibowo MC, Wurth RC,

736 Punthambaker S, Tierney BT, Yang Z, Hattab MW, Avila-Pacheco J, Clish CB, Lessard S,

737 Church GM, Kostic AD. 2019. Meta-omics analysis of elite athletes identifies a

738 performance-enhancing microbe that functions via lactate metabolism. *Nat. Med* **25**,

739 1104-1109. DOI: <https://doi:10.1038/s41591-019-0485-4>, PMID: 31235964

740 Schiaffino S, Reggiani C. 2011. Fiber types in mammalian skeletal muscles. *Physiol. Rev* **91**,

741 1447-1531. DOI: <https://doi:10.1152/physrev.00031.2010>, PMID: 22013216

742 Schuelke M, Wagner KR, Stolz LE, Hübner C, Riebel T, Kömen W, Braun T, Tobin JF, Lee SJ.

743 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. *N. Engl. J.*

744 *Med* **350**, 2682-2688. DOI: <https://doi:10.1056/NEJMoa040933>, PMID: 15215484

745 Seganfredo FB, Blume CA, Moehlecke M, Giongo A, Casagrande DS, Spolidoro JVN,

746 Padoin AV, Schaan BD, Mottin CC. 2017. Weight-loss interventions and gut microbiota

747 changes in overweight and obese patients: a systematic review. *Obes. Rev* **18**, 832-851. DOI:
748 <https://doi:10.1111/obr.12541>, PMID: 28524627

749 Sekirov I, Russell SL, Antunes LC, Finlay BB. 2010. Gut microbiota in health and disease.
750 *Physiol. Rev* **90**, 859-904. DOI: <https://doi:10.1152/physrev.00045.2009>, PMID: 20664075

751 Sovran B, Hugenholtz F, Elderman M, Van Beek AA, Graversen K, Huijskes M, Boekschoten
752 MV, Savelkoul HFJ, De Vos P, Dekker J, Wells JM. 2019. Age-associated Impairment of the
753 Mucus Barrier Function is Associated with Profound Changes in Microbiota and Immunity.
754 *Sci. Rep* **9**, 1437-1450. DOI: <https://doi:10.1038/s41598-018-35228-3>, PMID: 30723224

755 Srikanthan P, Karlamangla AS. 2014. Muscle mass index as a predictor of longevity in older
756 adults. *Am J Med* **127**, 547-553. DOI: [https://doi: 10.1016/j.amjmed.2014.02.007](https://doi:10.1016/j.amjmed.2014.02.007), PMID:
757 24561114

758 Stoddart LA, Smith NJ, Milligan G. 2008. International Union of Pharmacology. LXXI. Free
759 fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions.
760 *Pharmacol. Rev* **60**, 405-417. DOI: <https://doi:10.1124/pr.108.00802>, PMID: 19047536

761 Sundaresan NR, Saxena VK, Singh R, Jain P, Singh KP, Anish D, Singh N, Saxena M, Ahmed
762 KA. 2008. Expression profile of myostatin mRNA during the embryonic organogenesis of
763 domestic chicken (*Gallus gallus domesticus*). *Res. Vet. Sci* **85**, 86-91. DOI:
764 <https://doi:10.1016/j.rvsc.2007.09.014>, PMID: 18037460

765 Swindle MM, Makin A, Herron AJ, Clubb Jr. FJ, Frazier KS. 2012. Swine as models in
766 biomedical research and toxicology testing. *Vet. Pathol* **49**, 344-356. DOI:
767 <https://doi:10.1177/0300985811402846>, PMID: 21441112

768 Tang G, Du Y, Guan H, Jia J, Zhu N, Shi Y, Rong S, Yuan W. 2022. Butyrate ameliorates

769 skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and
770 FFA2-mediated PI3K/Akt/mTOR signals. *Br. J. Pharmacol.* **179**, 159-178. DOI:
771 <https://doi:10.1111/bph.15693>, PMID: 34638162

772 Verbrugge SAJ, Gehlert S, Stadhouders LEM, Jacko D, Aussieker T, Wit GMJd, Vogel ISP,
773 Offringa C, Schönfelder M, Jaspers RT, Wackerhage H. 2020. PKM2 Determines Myofiber
774 Hypertrophy In Vitro and Increases in Response to Resistance Exercise in Human Skeletal
775 Muscle. *Int. J. Mol. Sci.* **21**, 7062-7077. DOI: <https://doi:10.3390/ijms21197062>, PMID:
776 32992783

777 Verzola D, Milanesi S, Bertolotto M, Garibaldi S, Villaggio B, Brunelli C, Balbi M, Ameri P,
778 Montecucco F, Palombo D, Ghigliotti G, Garibotto G, Lindeman JH, Barisione C. 2017.
779 Myostatin mediates abdominal aortic atherosclerosis progression by inducing vascular
780 smooth muscle cell dysfunction and monocyte recruitment. *Sci. Rep.* **7**, 46362. DOI:
781 <https://doi:10.1038/srep46362>, PMID: 28406165

782 Wang Y, Yan X, Zhang W, Liu Y, Han D, Teng K, Ma Y. 2019. Lactobacillus casei Zhang
783 Prevents Jejunal Epithelial Damage to Early-Weaned Piglets Induced by Escherichia coli
784 K88 via Regulation of Intestinal Mucosal Integrity, Tight Junction Proteins and Immune
785 Factor Expression. *J. Microbiol. Biotechnol.* **29**, 863-876. DOI:
786 <https://doi:10.4014/jmb.1903.03054>, PMID: 31091863

787 Watanabe K, Katagiri S, Takahashi H, Sasaki N, Maekawa S, Komazaki R, Hatasa M,
788 Kitajima Y, Maruyama Y, Shiba T, Komatsu K, Ohsugi Y, Tanaka K, Matsuzawa A, Hirota T,
789 Tohara H, Eguchi Y, Anzai K, Hattori A, Iwata T. 2021. Porphyromonas gingivalis impairs
790 glucose uptake in skeletal muscle associated with altering gut microbiota. *FASEB J.* **35**,

791 e21171. DOI: <https://doi:10.1093/fj.202001158R>, PMID: 33197074

792 Yan H, Diao H, Xiao Y, Li W, Yu B, He J, Yu J, Zheng P, Mao X, Luo Y, Zeng B, Wei H,

793 Chen D. 2016. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles

794 of skeletal muscle from pigs to germ-free mice. *Sci Rep* **6**, 31786-31797. DOI:

795 <https://doi:10.1038/srep31786>, PMID: 27545196

796 Yang H, Xiang Y, Robinson K, Wang J, Zhang G, Zhao J, Xiao Y. 2018. Gut Microbiota Is a

797 Major Contributor to Adiposity in Pigs. *Front. Microbiol* **9**, 3045-3057. DOI:

798 <https://doi:10.3389/fmicb.2018.03045>, PMID: 30619136

799 Yanni AE, Mitropoulou G, Prapa I, Agrogiannis G, Kostomitsopoulos N, Bezirtzoglou E,

800 Kourkoutas Y, Karathanos VT. 2020. Functional modulation of gut microbiota in diabetic

801 rats following dietary intervention with pistachio nuts (*Pistacia vera L.*). *Metabol. Open* **7**,

802 100040-100052. DOI: <https://doi:10.1016/j.metop.2020.100040>, PMID: 32812934

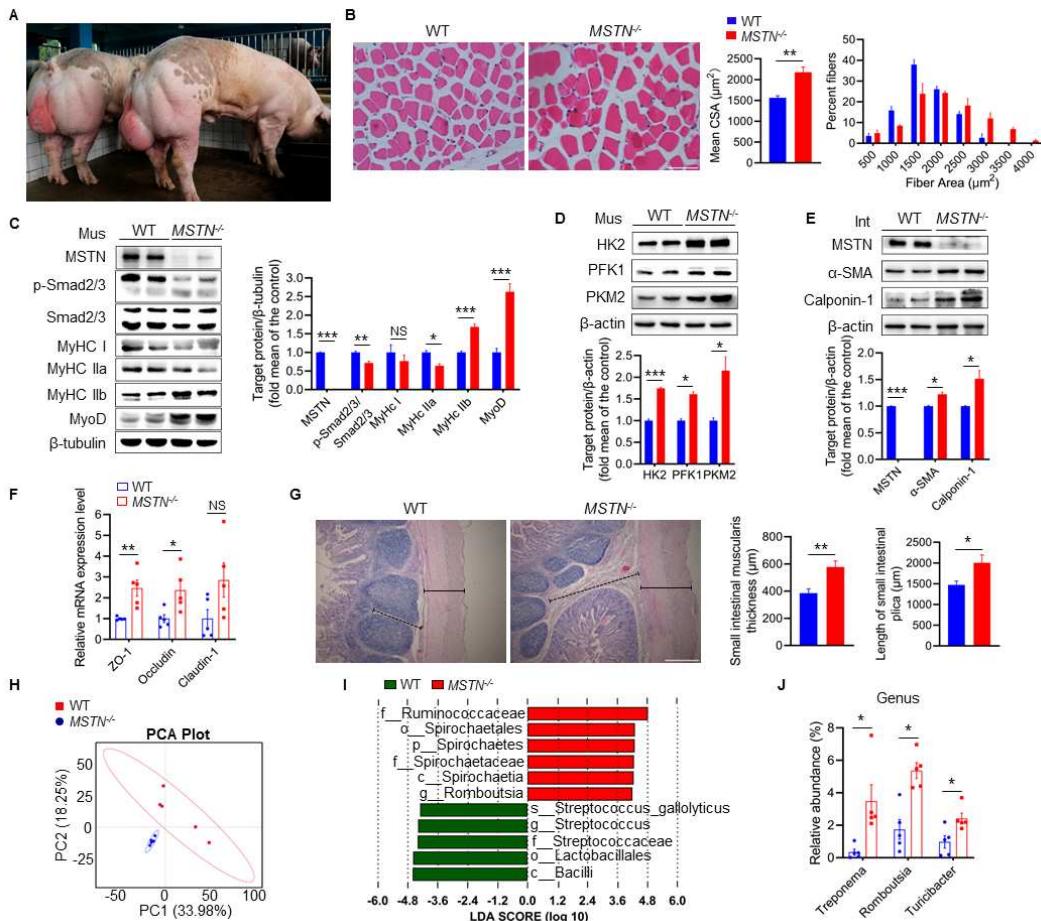
803 Zhao Z, Song F, Xu Q. 2017. Effects of glutamine and its precursors on the growth

804 performance and relevant protein synthesis pathway of mirror carp *Cyprinus carpio*.

805 Fisheries Science 83, 1019-1026. DOI: <https://doi:10.1007/s12562-017-1124-y>

806

807

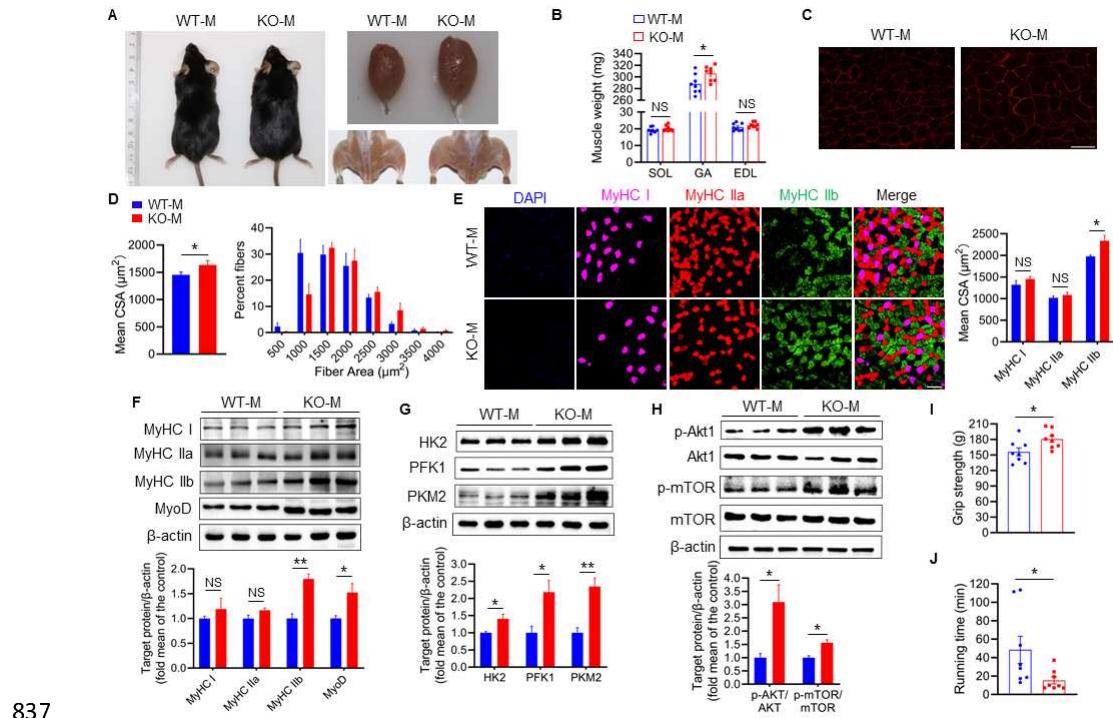

808

809

810

811

812

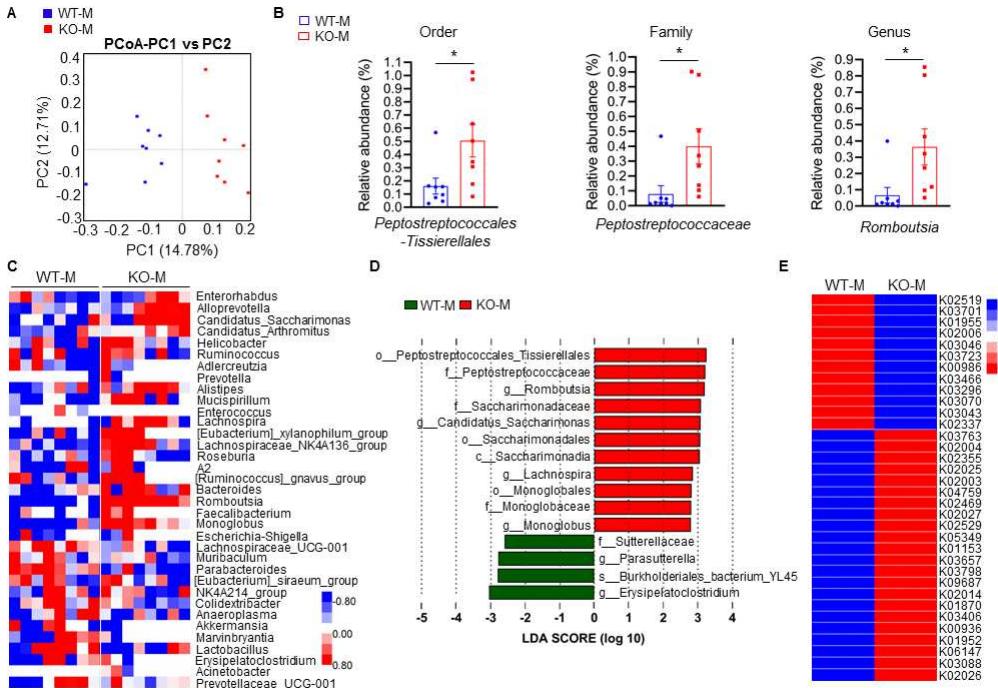


813

814 **Figure 1.** *MSTN* deletion stimulates muscle hypertrophy and alters intestinal structure
 815 and composition of gut microbiota in pigs (n=5). **(A and B)** Representative images of
 816 *MSTN*^{-/-} pigs and hematoxylin eosin staining longissimus dorsi. Magnification is
 817 200×. Scale bar, 100 μm. *MSTN*^{-/-} pigs showed skeletal muscle hypertrophy and
 818 significantly increased the muscle fiber area. **(C)** Relative to WT pigs, *MSTN*^{-/-} pigs
 819 showed no expression of *MSTN*, downregulate phosphorylation of Smad2/3 and
 820 MyHC IIa, and upregulate MyHC IIb and MyoD in longissimus dorsi (Mus). **(D)**
 821 *MSTN*^{-/-} pigs showed increased glycolysis enzymes HK2, PFK1 and PKM2 in
 822 longissimus dorsi (Mus). **(E)** The protein expression of *MSTN* was not detected in
 823 intestine (Int) while the α-SMA and Calponin-1 were increased in *MSTN*^{-/-} pigs

824 compared with the WT pigs. **(F)** Relative expression of tight junction genes *ZO-1* and
825 *Occludin* were enhanced in small intestine of *MSTN*^{-/-} pigs. **(G)** Hematoxylin eosin
826 staining of intestinal morphology. The dotted line indicates the length of the plica and
827 the solid line indicates the thickness of muscularis. Magnification is 40×. Scale bar,
828 500 μm. *MSTN*^{-/-} pigs showed an increase of muscularis thickness and plica length in
829 small intestine. **(H)** Plots shown were generated using the weighted version of the
830 Unifrac-based PCA. **(I)** Discriminative taxa determined by LEfSe between two
831 groups (log10 LDA>4.8). **(J)** Comparison proportion of genus levels in feces detected
832 by pyrosequencing analysis showed *Treponema*, *Romboutsia*, and *Turicibacter* were
833 increased in *MSTN*^{-/-} pigs. Statistical analysis is performed using Student's *t-test*
834 between WT and *MSTN*^{-/-} pigs. Data are means ± SEM. **p* < 0.05; ***p* < 0.01; ****p*
835 < 0.001; NS, not statistically significant.

836



837

838 **Figure 2.** Mice fecal microbiota transplantation from *MSTN* deletion pigs induces type
 839 IIb myofiber growth. Mice were treated with porcine fecal microbiota for eight weeks
 840 by daily oral gavage after combined antibiotics treatment for a week. WT-M, WT pigs
 841 fecal microbiota-received mice (n=8); KO-M, *MSTN*^{-/-} pigs fecal
 842 microbiota-received mice (n=8). **(A)** Representative images of gross appearance and
 843 GA of WT-M and KO-M. **(B)** GA mass was increased in KO-M while SOL and EDL
 844 were not different between WT-M and KO-M. **(C)** Representative images of GA
 845 sections stained with laminin. Magnification is 400 \times . Scale bar, 50 μm . **(D)**
 846 Quantification analysis of myofiber CSA showed that KO-M was larger than WT-M.
 847 **(E)** Representative images of GA sections stained with MyHC I (pink), IIa (red), IIb
 848 (green) antibodies and nucleuses were stained with DAPI (blue). Magnification is
 849 200 \times . Scale bar, 100 μm . Quantification of myofiber displayed MyHC IIb CSA were
 850 increased in KO-M. **(F)** KO-M showed upregulate the level of MyHC IIb and MyoD

851 in GA. **(G)** The expression of glycolysis enzymes HK2, PFK1 and PKM2 were
852 increased in KO-M GA. **(H)** The Akt/mTOR pathway was activated in KO-M GA. **(I**
853 and **J**) Grip strength was enhanced while running time was reduced in KO-M
854 compared with WT-M. Statistical analysis is performed using Student's *t-test* between
855 WT-M and KO-M groups. Data are means \pm SEM. * p < 0.05; ** p < 0.01; NS, not
856 statistically significant.

857

858

859 **Figure 3.** *MSTN*^{-/-} pigs fecal microbiota transplantation alters microbiota composition

860 in mice. Transplanting fecal microbiota of *MSTN*^{-/-} pigs and WT pigs separately to

861 mice (n=8). **(A)** Plots shown were generated using the weighted version of the

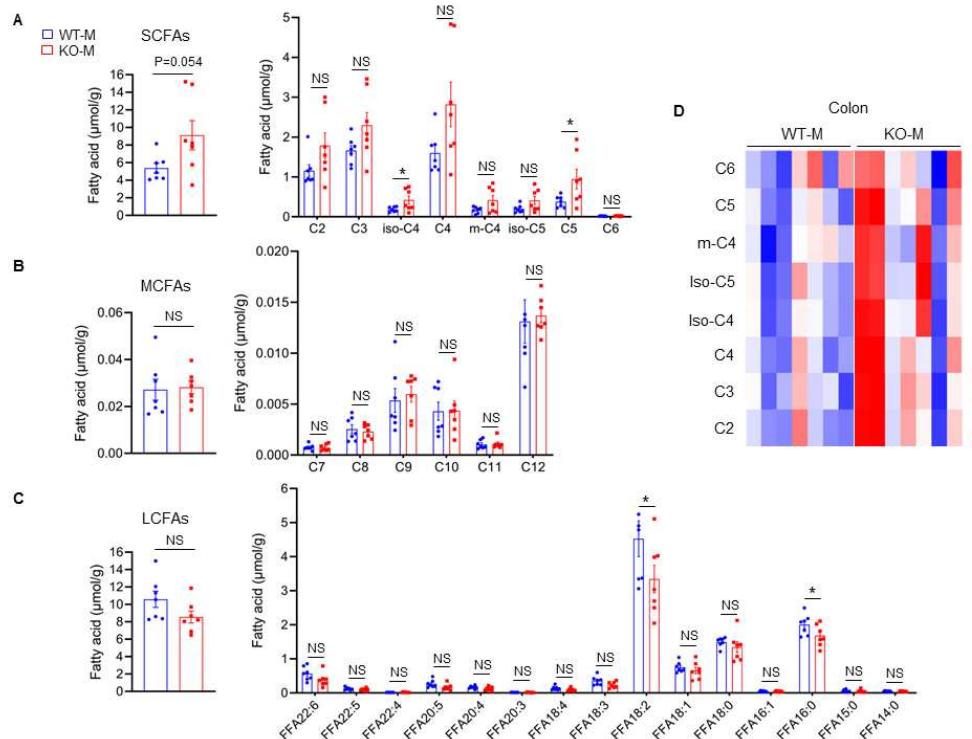
862 Unifrac-based PCoA. **(B)** Comparison proportion of order, family and genus levels of

863 *Romboutsia* in feces detected by pyrosequencing analysis. **(C)** Heatmap shows the

864 abundance of top 35 microbial genera levels was significantly altered by WT and

865 *MSTN*^{-/-} donor pigs between WT-M and KO-M groups. **(D)** Discriminative taxa

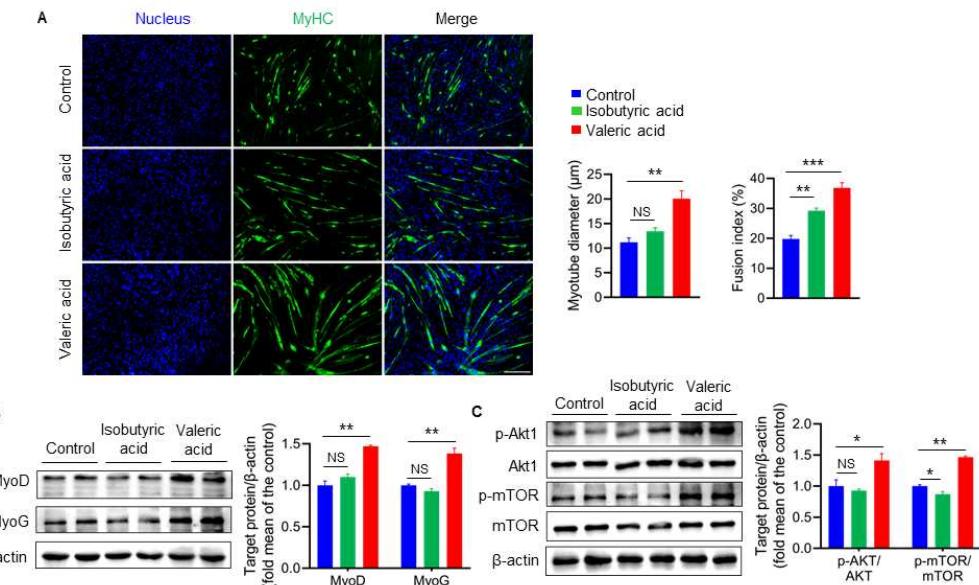
866 determined by LEfSe between two groups (\log_{10} LDA>3.5). **(E)** Functional


867 prediction shows that intestinal microbial functions are concentrated in functional

868 pathways related to metabolite synthesis after fecal microbiota transplantation.

869 Statistical analysis is performed using Student's *t*-test between WT-M and KO-M

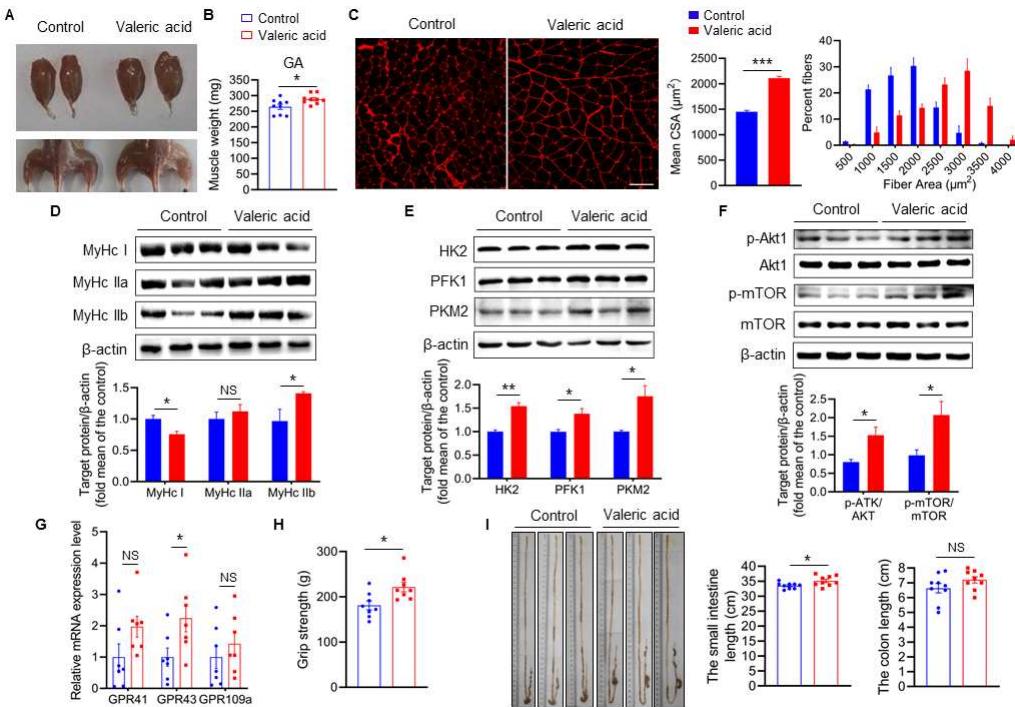
870 groups. Data are means \pm SEM. * p < 0.05.


871

872

873 **Figure 4.** *MSTN*^{-/-} pigs fecal microbiota transplantation alters the level of fatty acids
874 in mice (n=7). **(A)** Fecal microbiota transplantation increased colon total SCFAs
875 (particularly valeric acid and isobutyric acid) in KO-M. **(B)** Fecal microbiota
876 transplantation has no effect on MCFAs between WT-M and KO-M. **(C)** Fecal
877 microbiota transplantation decreased colon FFA18:2 and FFA16:0 of LCFAs in KO-M.
878 **(D)** Heatmap showed the difference of SCFAs between WT-M and KO-M. Statistical
879 analysis is performed using Student's *t*-test. Data are means \pm SEM. **p* < 0.05; NS,
880 not statistically significant.

881

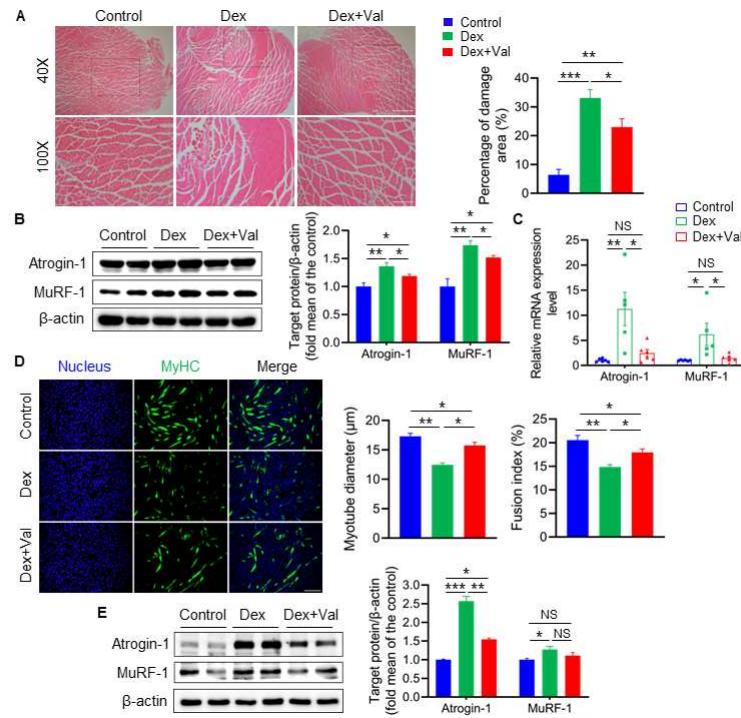


882

883 **Figure 5.** Valeric acid treatment promotes myogenic differentiation of myoblast (n=6).

884 (A) Representative images of immunofluorescence stained with a specific antibody to
885 identify MyHC (green) of myotubes and the nucleuses were stained with DAPI (blue).
886 Magnification is 100×. Scale bar, 200 μm. Quantification analysis displayed valeric
887 acid treatment increased the diameter and fusion index of myotube, while isobutyric
888 acid only increased the myotube fusion index. (B) Valeric acid treatment increased the
889 expression of MyoD and MyoG in C2C12 myoblasts. (C) Valeric acid treatment
890 activated the Akt/mTOR pathway. Statistical analysis is performed using one-way
891 ANOVA. Data are means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; NS, not
892 statistically significant.

893



894

895 **Figure 6.** Valeric acid induced type IIb myofiber growth and increased GA mass in
896 mice. Mice were treated with valeric acid (100 mg/kg) for five weeks by daily oral
897 gavage (n=8-9). **(A)** Representative images of gross appearance and GA of control
898 and valeric acid treated mice. **(B)** Valeric acid treatment increased GA mass. **(C)**
899 Representative images of GA sections stained with laminin, showed valeric acid
900 treatment increased CSA of myofiber. Magnification is 200 \times . Scale bar, 100 μm .
901 Western blot analysis showed that valeric acid treatment increased the levels of **(D)**
902 MyHC IIb, **(E)** glycolysis enzymes HK2, PFK1 and PKM2, and **(F)** activated the
903 Akt/mTOR pathway in GA compared with control mice. **(G)** Real-time PCR analysis
904 indicated that valeric acid treatment enhanced relative mRNA expression of SCFAs
905 receptor *GPR43* in GA. **(H)** Valeric acid treatment improved grip strength. **(I)**
906 Representative images of cecum, small intestine, and colon of mice, showed valeric
907 acid treatment increased small intestine length. Statistical analysis is performed using

908 Student's *t-test*. Data are means \pm SEM. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$; NS, not
909 statistically significant.

910

911

912 **Figure 7.** Valeric acid ameliorates Dex-induced skeletal muscle and myotube atrophy.

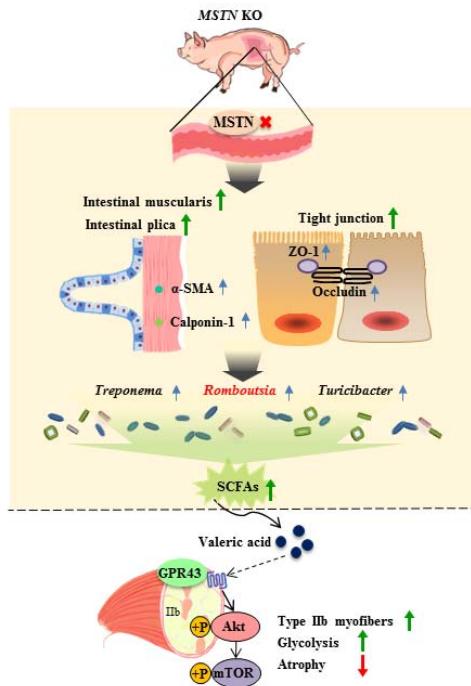
913 Mice were treated with intraperitoneal injection of 20 mg/kg Dex every 2 day for two
914 weeks and 100 mg/kg of valeric acid was fed orally every day before two weeks of
915 Dex injection (n=5). Myotube atrophy was induced with 100 μ M/L of Dex, and 5
916 mM/L of valeric acid was supplied at the same time (n=6). **(A)** Hematoxylin eosin
917 staining of GA morphology. Magnification is 40 \times . Scale bar, 500 μ m. Quantification
918 analysis showed that Dex induced the myofiber damage, and valeric acid treatment
919 decreased the percentage of damage area. **(B)** Western blot analysis showed that Dex
920 induced the expression of Atrogin-1 and MuRF-1 in GA, while valeric acid treatment
921 reduced the level of these. **(C)** Real-time PCR analysis of relative expression of
922 atrophy genes (*Atrogin-1* and *MuRF-1*) in GA, showed valeric acid treatment could
923 inhibit the expression of these genes induced by Dex. **(D)** Immunofluorescence
924 stained with a specific antibody was used to identify MyHC (green) of myotube and

925 the nucleus were stained with DAPI (blue). Magnification is 100×. Scale bar, 200 μ m.

926 Quantification analysis showed valeric acid treatment could improve the reduction of

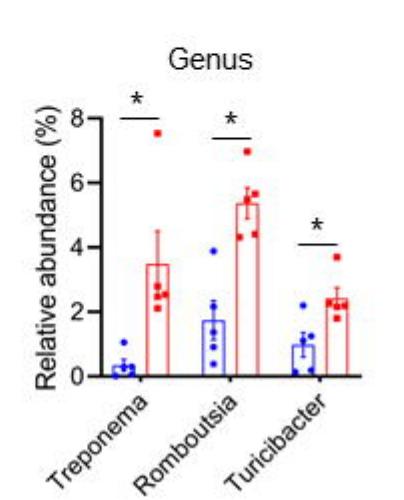
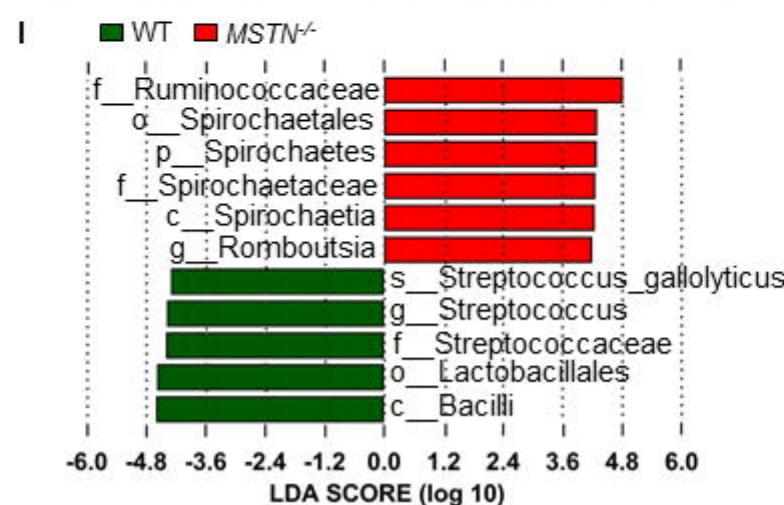
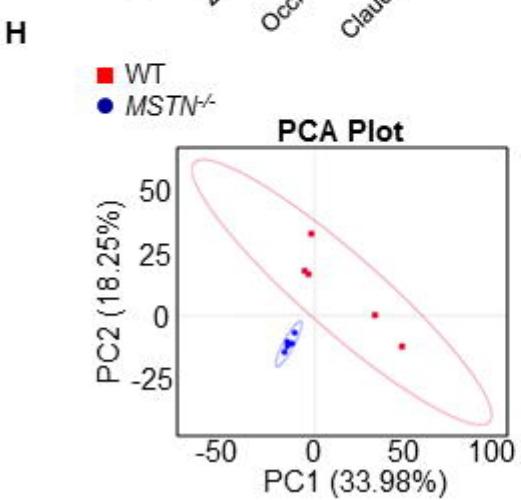
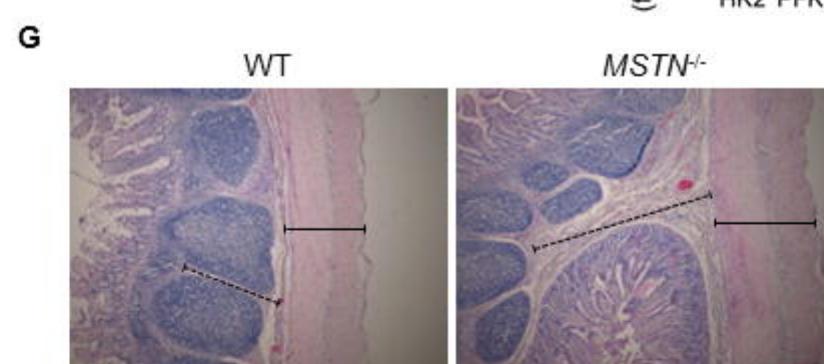
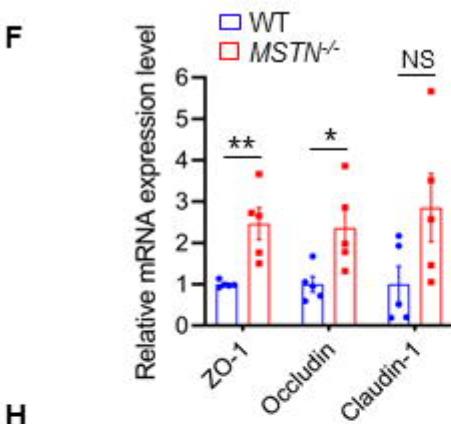
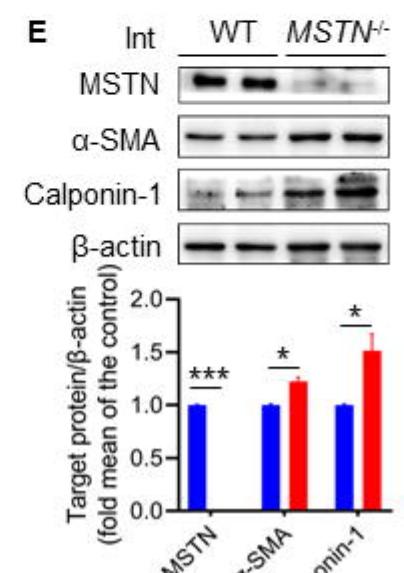
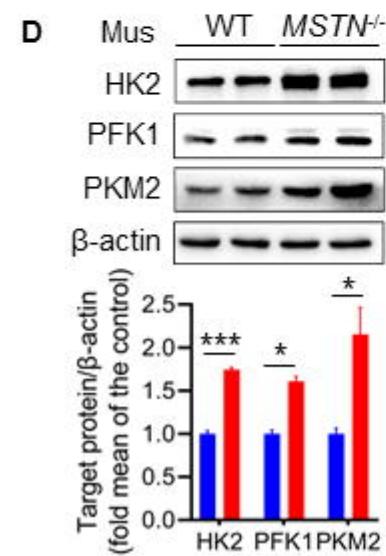
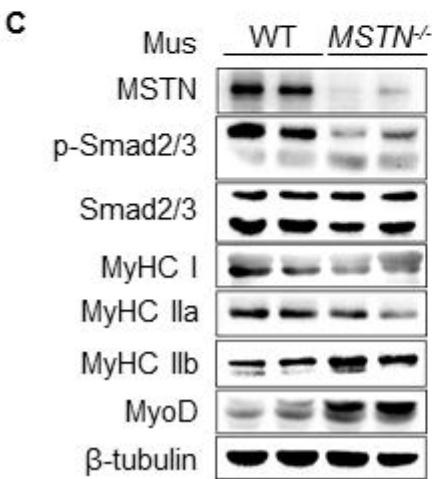
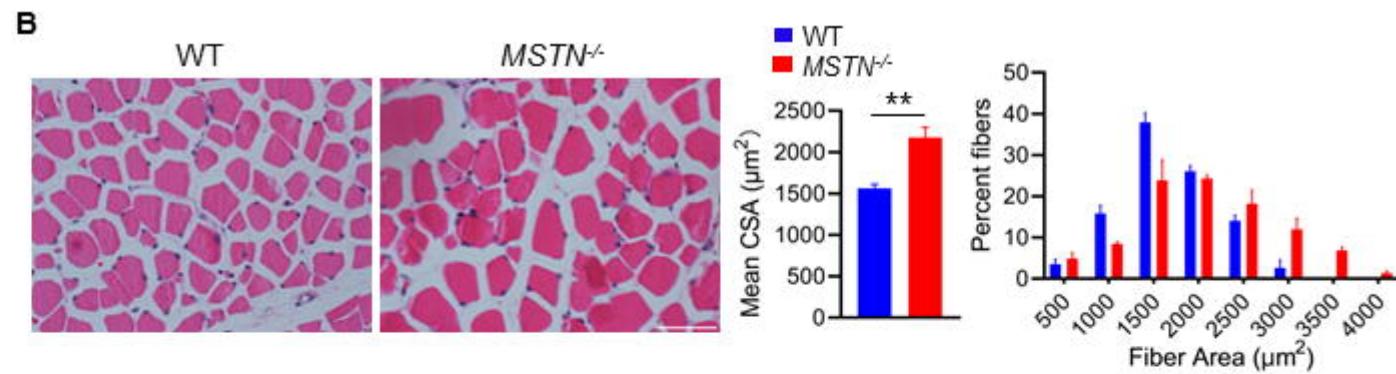
927 myotubes diameter and fusion index induced by Dex. (E) Western blot analysis

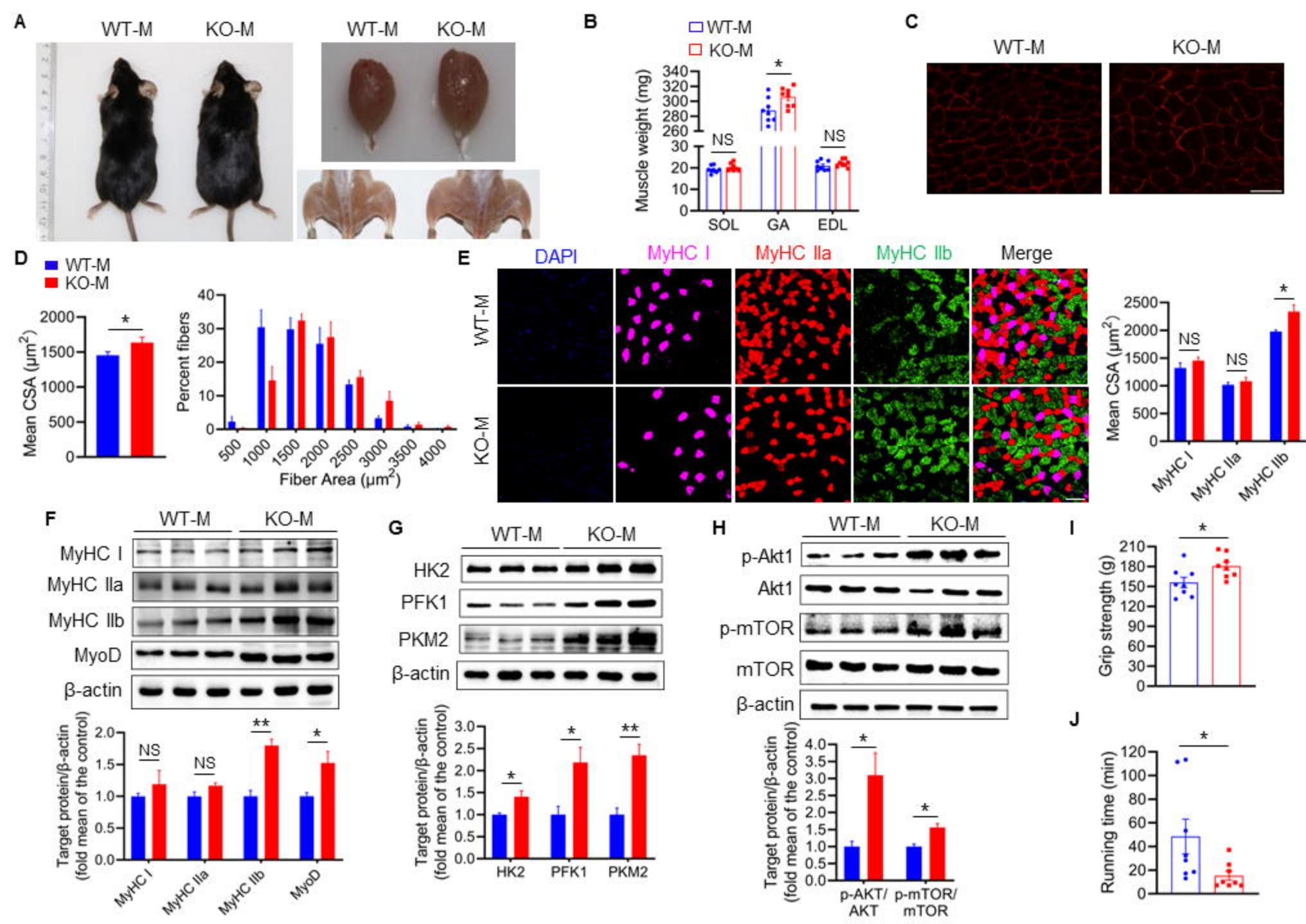
928 showed valeric acid treatment could inhibit the expression of Atrogin-1 induced by

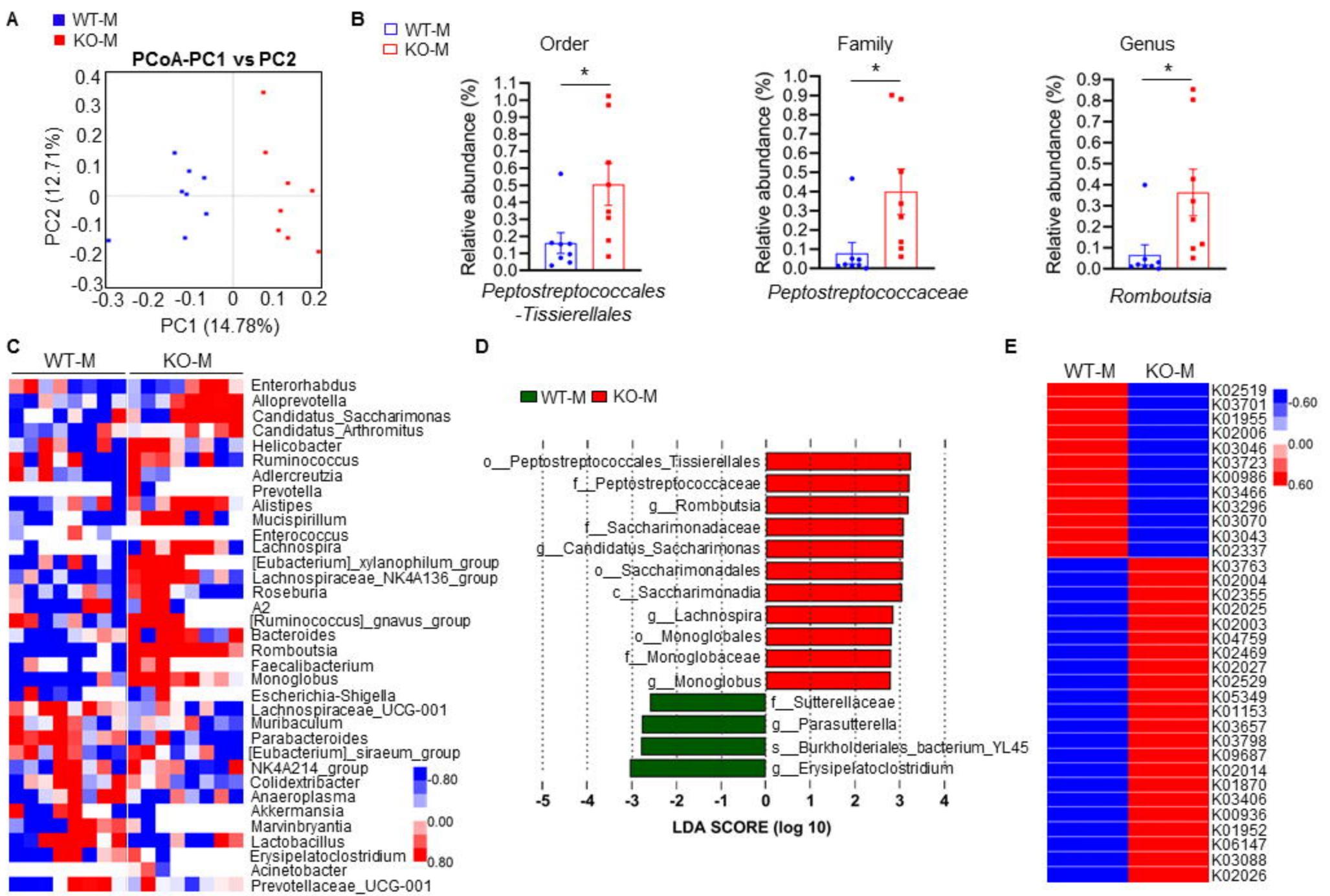

929 Dex in C2C12 myotubes and had no effect on MuRF-1 induced by Dex. Statistical

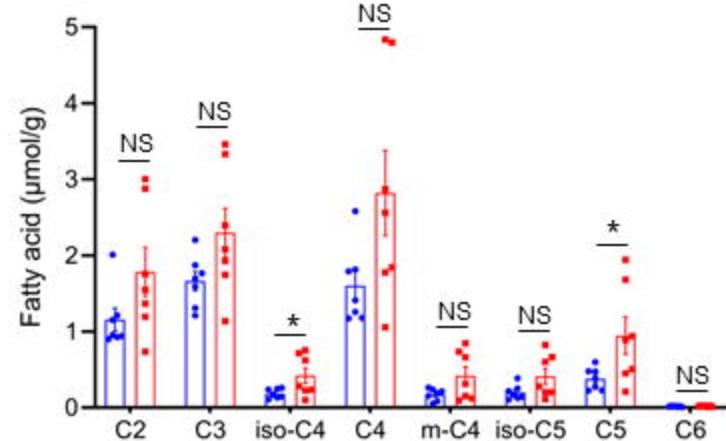
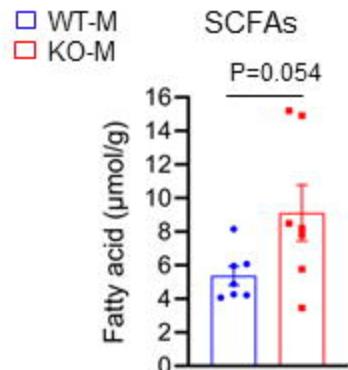
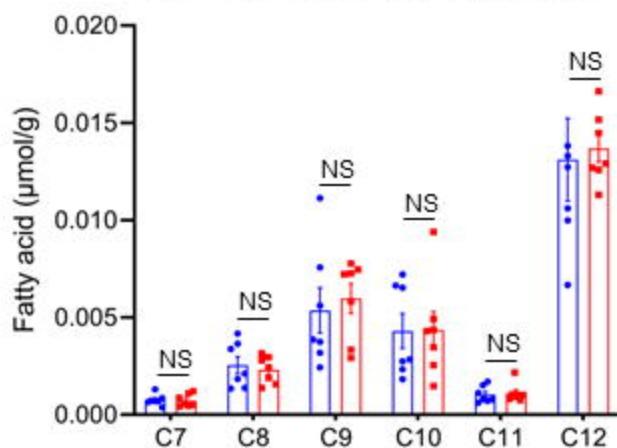
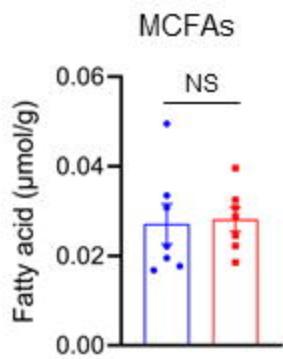
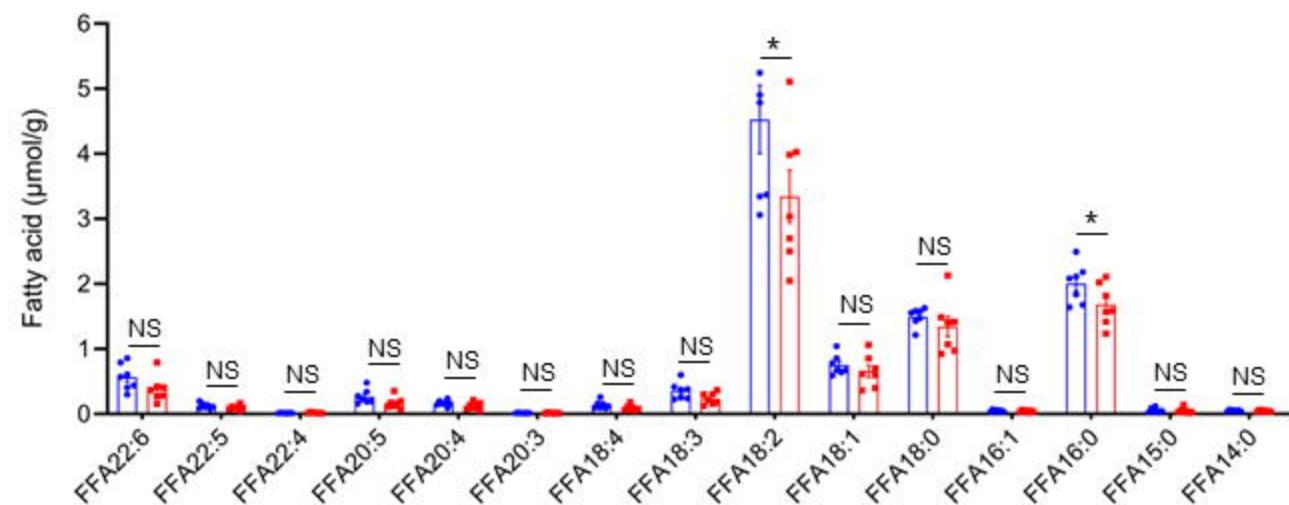
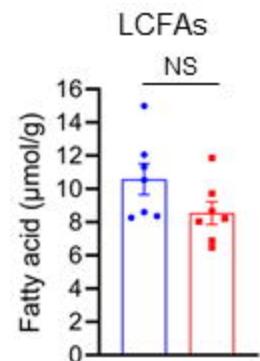
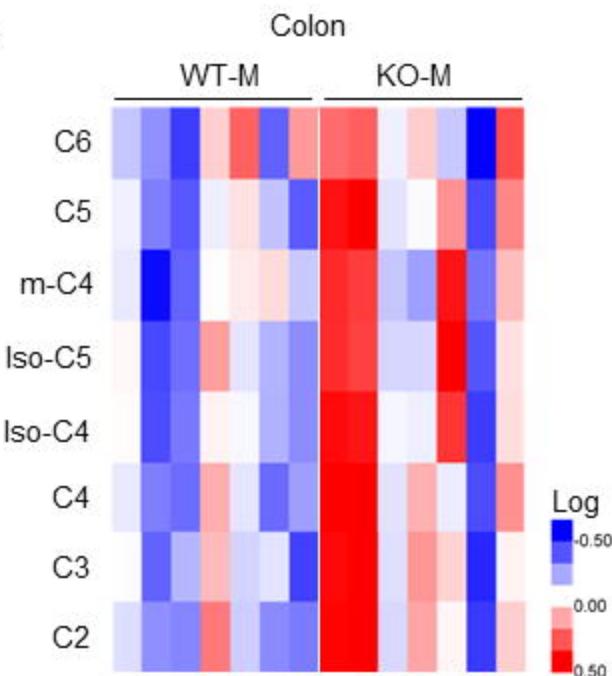
930 analysis is performed using one-way ANOVA with *Least Significant Difference test*.

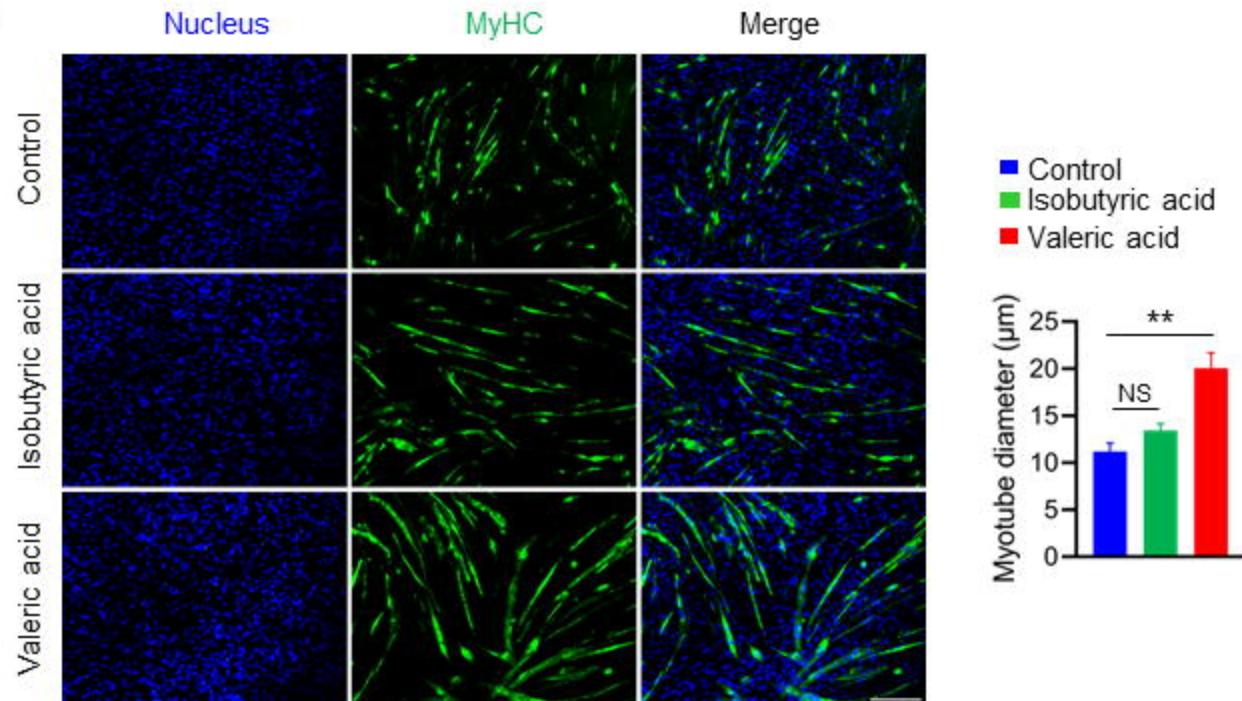
931 Data are expressed as means \pm SEM. * p < 0.05; ** p < 0.01; *** p < 0.001; NS, not

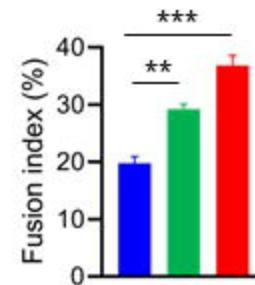
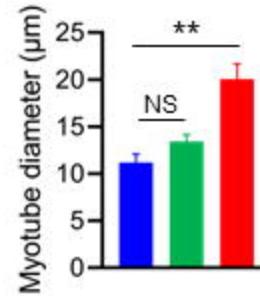
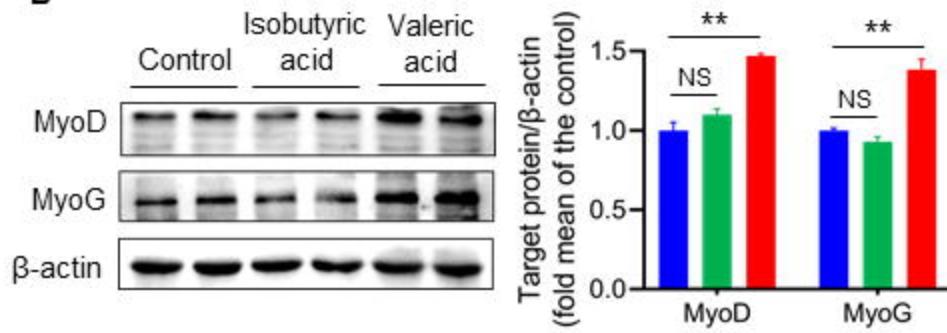
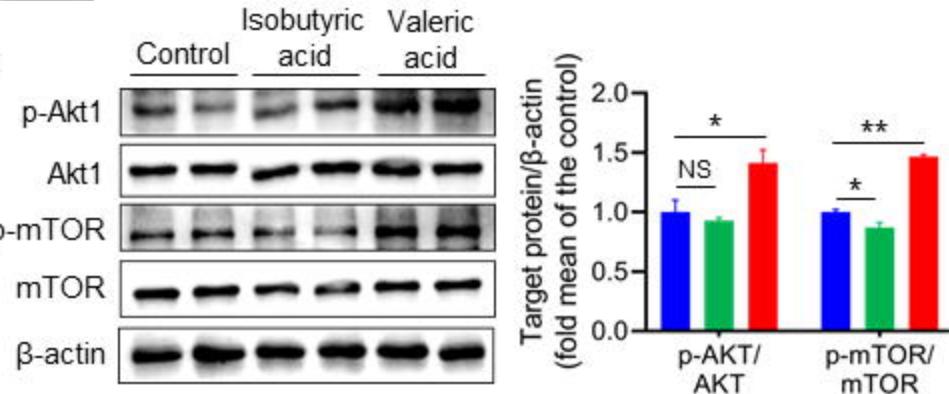









932 statistically significant.

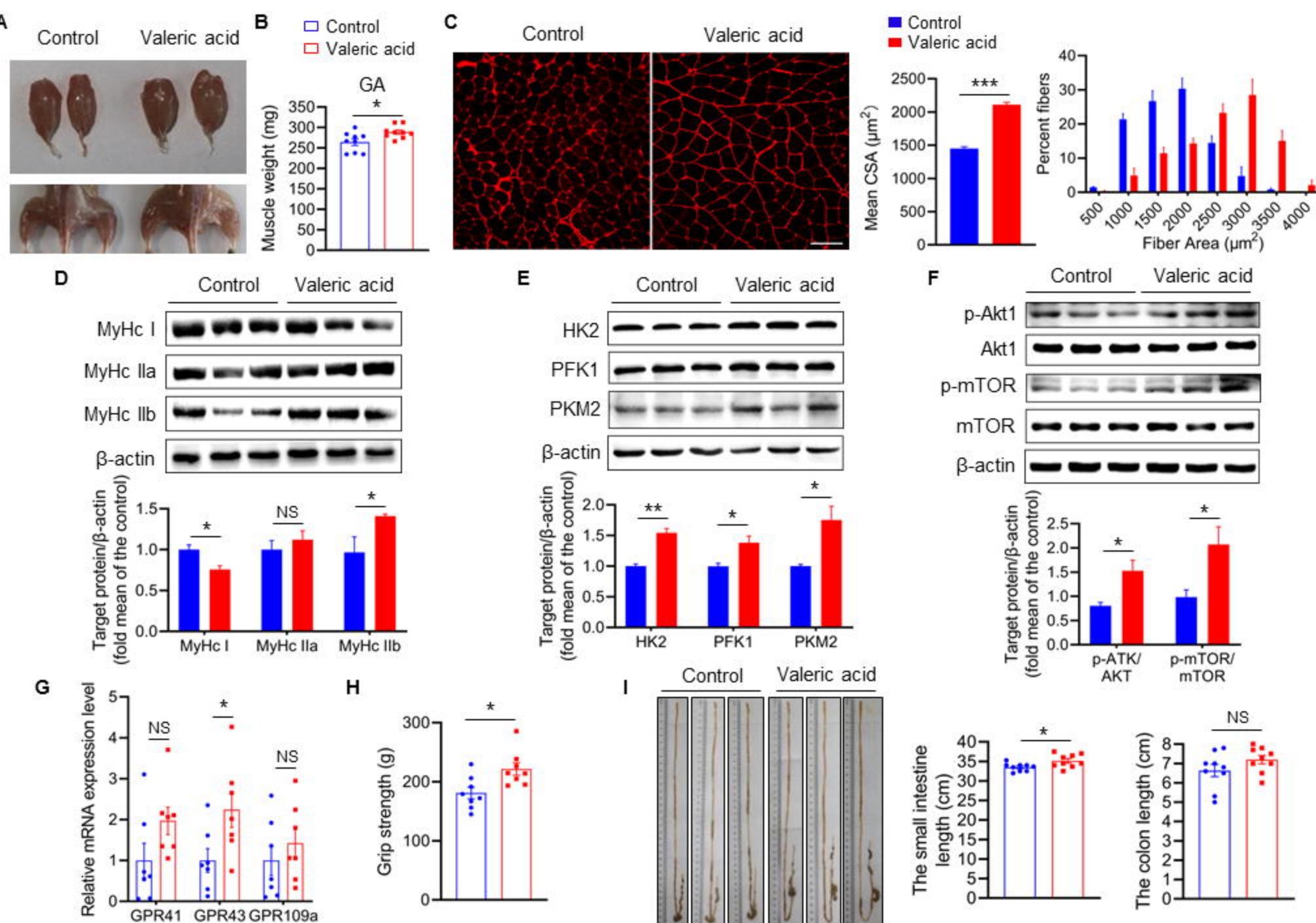

933

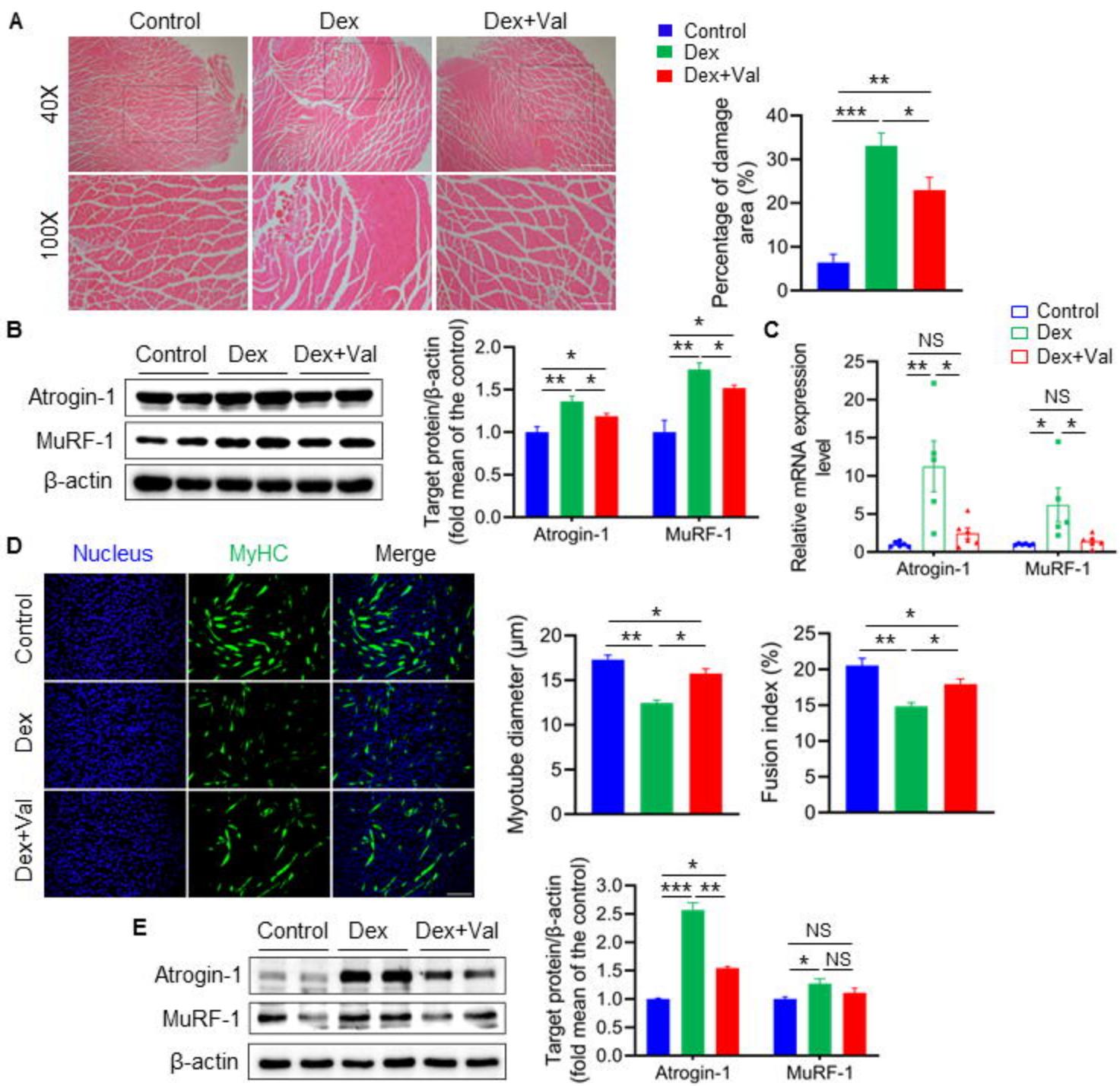


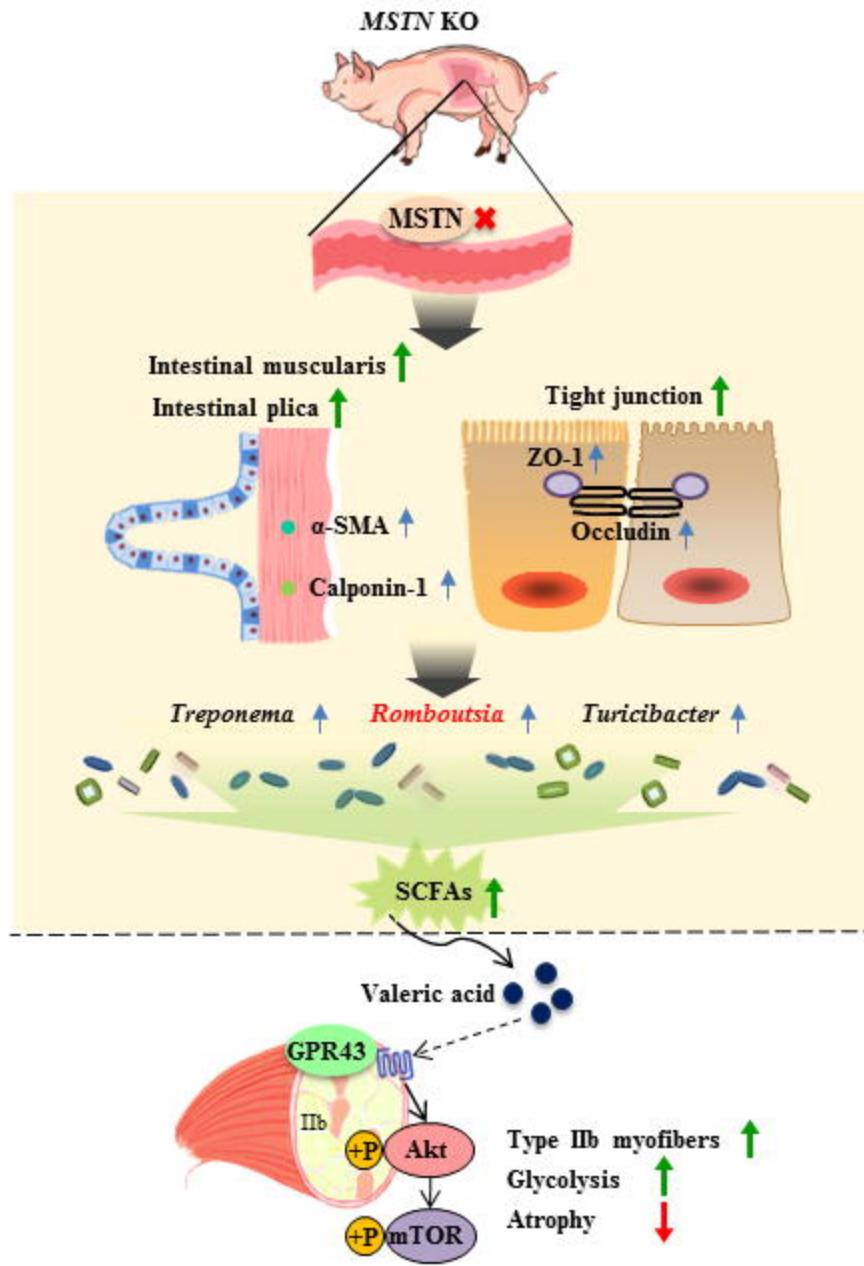







934


935 **Figure 8.** Schematic illustration. Intestine MSTN deficiency altered the intestinal
936 structure, reshaped gut microbiota, and gut microbiota metabolite-valeric acid can
937 activate Akt/mTOR pathway through GPR43 to stimulate fast-twitch glycolytic
938 skeletal muscle growth.




A**B****C****D**


A

■ Control
■ Isobutyric acid
■ Valeric acid

B**C**

