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Abstract The host genome may influence the composition of the intestinal microbiota, and 43 

intestinal microbiota performs an important role in muscle growth and development. Here, we 44 

showed that Myostatin (MSTN), a key factor for muscle growth, deletion alters muscularis, 45 

plica, and intestinal barrier in pigs. Mice transplanted with MSTN−/−  pig intestinal flora showed 46 

increase in the cross-sectional area of myofibers and fast-twitch glycolytic muscle mass. The 47 

microbes responsible for the production of short chain fatty acids (SCFAs) were enriched in 48 

both MSTN−/−  pigs and recipient mice, and SCFAs levels were elevated in the colon contents. 49 

We demonstrated that valeric acid can stimulate type IIb myofiber growth by activation of the 50 

Akt/mTOR pathway via GPR43 and improve muscle atrophy induced by dexamethasone. This 51 

is the first study to identify the MSTN gene-gut microbiota-SCFA axis and its regulatory role in 52 

fast-twitch glycolytic muscle growth. 53 
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Introduction 65 

The decline in muscle mass is a considerable health problem that deteriorates the quality of 66 

life and increases disease occurrence and mortality (Newman et al., 2006; Srikanthan et al., 67 

2014). For instance, a decrease in muscle mass contributes to the onset of various diseases, 68 

such as sarcopenia, obesity, diabetes, and cancer. Myostatin (MSTN), a transforming growth 69 

factor β family member, is among the major regulators of skeletal muscle growth and 70 

development (Chen et al., 2021). Substantial muscle hypertrophy was observed in MSTN 71 

mutant animals and humans (McPherron et al., 1997; Ceccobelli et al., 2022; McPherron and 72 

Lee, 1997; Kambadur et al., 1997; Mosher et al., 2007; Kang et al., 2017; Schuelke et al., 73 

2004). Recently various MSTN inhibitors, including monoclonal antibodies, have been tested 74 

in clinical trials to treat muscle disorders, such as sarcopenia and cancer-associated cachexia 75 

(Kim et al., 2021; Cho et al., 2022). Notably, MSTN is not only expressed in skeletal muscles, 76 

but also in smooth muscles including the intestine, to participate in various metabolic 77 

processes (Sundaresan et al., 2008; Verzola et al., 2017; Esposito et al., 2020; Kovanecz et al., 78 

2017). Previous studies have shown that MSTN mutation can alter the composition of 79 

intestinal flora in pigs (Pei et al., 2021). However, the interaction between the gut microbiota 80 

reshaped by MSTN deletion and the host is unclear. 81 

Genetic variation can reshape the structure of the gut microbiota. Mutation in human 82 

SLC30A2 leads to reduced intestinal zinc transport and increased Clostridiales and 83 

Bacteroidales abundance, causing mucosal inflammation and intestinal dysfunction (Kelleher 84 

et al., 2022). Moreover, the gut GLUT1 gene deletion altered the abundances of Barnesiella 85 

intestinis and Faecalibaculum rodentium, promoted fat accumulation, and impaired sugar 86 
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tolerance (He et al., 2022). These results suggest that host genes can influence the gut 87 

microbiota, thereby regulating physiological processes. Intestinal structural changes, such as 88 

in intestinal length, epithelial thickness, and surface area by surgery, could affect intestinal 89 

function and microbial composition (Seganfredo et al., 2017; Nicoletti et al., 2017; Agus et al., 90 

2018). Barrier defects were accompanied by major changes in the fecal microbiota and a 91 

significantly decreased abundance of Akkermansia muciniphila, increaseing the vulnerability 92 

to gastrointestinal disorders (Sovran et al., 2019). 93 

The intestinal microbiota plays a crucial role in muscle growth and development. For 94 

example, urease gene-rich microbes, Alistipes and Veillonella respectively maintain muscle 95 

mass in hibernating animals by promoting urea nitrogen salvage (Regan et al., 2022) and 96 

metabolize lactic acid to provide energy for skeletal muscles for long periods of exercise and 97 

increase endurance in runners (Scheiman et al., 2019). Short chain fatty acids (SCFAs) are gut 98 

microbiota-derived metabolites that are involved in maintaining the integrity of the intestinal 99 

mucosa, improving glucose and lipid metabolism, controlling energy expenditure, and 100 

regulating the immune system and inflammatory responses (Agus et al., 2021; Besten et al., 101 

2013). SCFAs are absorbed in gut lumen and mediate host metabolic responses in various 102 

organs, including skeletal muscle (Frampton et al., 2020). SCFAs play a vital role in skeletal 103 

muscle mass maintenance (Lv et al., 2021; Chen et al., 2022), and are involved in the 104 

regulation of lipid and glucose metabolism primarily through G protein-coupled receptors 105 

(GPRs), such as GPR41, GPR43, and GPR109 (Stoddart et al., 2008; Hul et al., 2019).  106 

Skeletal myofibers exhibit remarkable diversity and plasticity in energy metabolism and 107 

contractile functions. Slow-twitch muscles are rich in mitochondria and have high oxidative 108 
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capacity, whereas fast-twitch muscles generate ATP primarily through glycolysis (Schiaffino 109 

et al., 2011; Bassel-Duby et al., 2006). Aging and muscle atrophy result in a gradual decline 110 

in muscle mass and strength accompanied by a higher proportion of type I myofibers, leading 111 

to muscle weakness due to the preferential loss and atrophy of fast-twitch glycolytic type IIb 112 

myofibers (Akasaki et al., 2014; Haber et al., 1992; Faulkner et al., 2007; Kirkendall et al., 113 

1998). Type IIb myofibers are larger in size and more glycolytic and generate high contractile 114 

force, but have poorer resistance to fatigue than type I myofibers (Schiaffino et al., 2011). The 115 

activation of Akt/mTOR was confirmed to promote the transition from oxidized to glycolytic 116 

myofiber types by elevating the levels of glycolytic proteins HK2, PFK1, and PKM2 (Meng 117 

et al., 2013; Izumiya et al., 2008; Verbrugge et al., 2020).  118 

MSTN can affect the growth and function of skeletal muscles. This study aimed to 119 

investigate whether the intestinal flora remodeled by MSTN deletion is involved in the 120 

regulation of skeletal muscle growth. Because pigs are highly similar to humans in many 121 

aspects such as physiology, disease progression and organ structure (Swindle et al., 2012), we 122 

used MSTN−/− pigs to investigate the effects of MSTN deletion on intestinal structure and the 123 

relationship between intestinal microbiota and skeletal muscle growth and function and to 124 

explore the underlying mechanisms involved in the regulation of muscle growth by the MSTN 125 

gene–gut microbiota–skeletal muscle axis. 126 

 127 

Results  128 

MSTN deletion stimulates muscle hypertrophy and alters intestinal structure and 129 

composition of gut microbiota in pigs 130 
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We used MSTN−/−  pigs with 2 and 4 bp deletions in the two alleles of the MSTN gene (Figure 131 

1-figure supplement 1A). They were generated using the TALEN genome editing technique 132 

(Kang et al., 2017). We found that those pigs had higher skeletal muscle mass and myofiber 133 

CSA but lost MSTN expression and reduced phosphorylation of smad2/3 in skeletal muscles 134 

(Figure 1A-C). The protein expression of myosin heavy chain (MyHC) type IIb, MyoD and 135 

glycolytic enzymes HK2, PFK1 and PKM2 were significantly increased in skeletal muscle 136 

(Figure 1C, D). The expression of MSTN was not detected in intestine, whereas that of smooth 137 

muscle proteins α-SMA and calponin-1 was increased (Figure 1E). We also observed an 138 

increase in muscularis thickness and plica length of intestinal and upregulated expression of 139 

tight junction-related genes ZO-1 and Occludin (Figure 1F, G). These findings indicate that 140 

MSTN knockout leads to changes in intestinal structure.  141 

Because host genotypes and phenotypes in various mammals interact with the gut 142 

microbiota (Kreznar et al., 2017), we speculated that MSTN deletion could affect the 143 

composition of the gut microbiota by altering intestinal structure. Thus, fecal samples from 144 

MSTN−/− and wild-type (WT) pigs were examined to determine the diversity and abundance 145 

of gut microbiota using 16s rRNA-based microbiota analysis. The alpha-diversity values 146 

showed that the ACE in MSTN−/−  pigs are significantly lower than that in WT pigs; however, 147 

Chao 1, Shannon, and Simpson indexes were no significant difference (Figure 1-figure 148 

supplement 1B-E). These results suggest that MSTN deficiency can lead to a decrease in the 149 

abundance of intestinal flora. The composition structure of the gut microbiota, as analyzed by 150 

PCA, showed that the two groups can be clearly differentiated (Figure 1H). LEfSe analysis 151 

confirmed a significant difference at the genus level in Romboutsia (Figure 1I). In addition, 152 
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Treponema, Romboutsia, and Turicibacter were significantly increased at the genus level 153 

(Figure 1J). Notably, these altered genera are involved in SCFAs production (Kreznar et al., 154 

2017; Li et al., 2019b; Li et al., 2021; Li et al., 2019c; Bian et al., 2020). These results verify 155 

that MSTN deficiency can alter the intestinal structure while promoting the growth of 156 

microbes related to SCFAs production. 157 

Gut microbiota reshaped by MSTN gene deletion promotes fast-twitch glycolytic muscle 158 

growth  159 

To determine the effect of the MSTN-deleted altered intestinal flora on skeletal muscle, we 160 

transplanted fecal microbes from MSTN−/− pigs and WT pigs into mice. Mice translated with 161 

WT pig feces were named WT-M, and those with MSTN−/−  pig feces were named KO-M. After 162 

eight weeks of normal chow feeding, KO-M had a higher muscle mass than to WT-M, 163 

especially an enlarged gastrocnemius (GA) muscle (Figure 2A). The GA mass, but not that of 164 

the soleus (SOL) or extensor digitorum longus (EDL), was significantly enhanced in KO-M 165 

than in WT-M (Figure 2B). However, there was no significant difference in food intake, 166 

physical activity, energy intake, or absorbed energy between the two mice groups (Figure 167 

2-figure supplement 2A-E). 168 

Quantitative analysis of fiber size of GA muscle revealed that the CSA of fiber is 169 

significantly hypertrophic in KO-M, and that the distribution of fiber sizes in KO-M clearly 170 

shifted toward larger fibers (Figure 2C, D). As shown in Figure 2E, the CSA of type IIb 171 

myofibers in KO-M was markedly higher than that in WT-M. Correspondingly, the levels of 172 

proteins MyHC IIb and MyoD and those of glycolytic enzymes HK2, PFK1 and PKM2 were 173 

significantly increased in the GA muscle of KO-M, whereas the levels of MyHC I and IIa were 174 
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not significantly different (Figure 2F, G). Interestingly, we observed an increase in Akt and 175 

mTOR phosphorylation in the skeletal muscle of KO-M (Figure 2H). The Akt/mTOR signaling 176 

pathway affects type IIb myofiber hypertrophy (Izumiya et al., 2008; Dutchak et al., 2018), 177 

suggesting an explanation for the increased GA mass in KO-M. 178 

We also performed a series of physiological experiments to evaluate the strength and running 179 

performance of fecal microbiota transplantation (FMT) mice. Similar to the expression profile 180 

of type IIb myofibers, the grip force of KO-M increased compared with that of WT-M (Figure 181 

2I). However, KO-M had a reduced capacity for running (Figure 2J). Owing to an enlargement 182 

in type IIb myofibers, a type of fast-twitch glycolytic muscle, which resulted in a higher 183 

explosive force and a lower endurance, KO-M had higher grip strength but shorter running 184 

time. Collectively, these observations strongly indicate that KO-M have increased CSA of type 185 

IIb myofibers and significantly enhanced fast-twitch glycolytic skeletal muscle mass. 186 

MSTN−/− pigs FMT alter gut microbiota composition in mice 187 

To investigate the correlation between myofiber hypertrophy and intestinal microbiota in mice, 188 

we analyzed their intestinal microorganisms. There were no significant differences in the ACE, 189 

Chao 1, Shannon, and Simpson indexes for alpha-diversity (Figure 3-figure supplement 3A-D). 190 

Principal coordinates analysis (PCoA) showed that the microbiota composition structure of the 191 

two groups is clearly differentiated (Figure 3A). In addition, Romboutsia was significantly 192 

enriched at the order-, family-, genus levels in KO-M intestinal flora (Figure 3B). The heat map 193 

showed that abundance of 22 of the 35 increased genera and 13 decreased genera. Romboutsia, 194 

which was upregulated in MSTN−/−  pigs, was also upregulated in KO-M (Figure 3C). KO-M 195 

was similar to MSTN−/−  pigs, LEfSe analysis showed that Romboutsia abundance increased at 196 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.24.501334doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.24.501334
http://creativecommons.org/licenses/by/4.0/


10 

 

the genus level (Figure 3D). Functional prediction analysis showed that intestinal microbial 197 

functions are concentrated in pathways related to metabolite synthesis (including K05349 and 198 

K01952) in KO-M (Figure 3E). These results showed that the mice translated with MSTN−/−  pig 199 

feces had increased Romboutsia abundance in the intestine. 200 

Gut microbes derivative-valeric acid promote myogenic differentiation of myoblasts 201 

As metabolites of the intestinal flora, SCFAs, can affect the growth and function of skeletal 202 

muscle (Frampton et al., 2020). The results of our FMT experiments showed that MSTN 203 

deletion-mediated intestinal microbiota significantly increases skeletal muscle mass and 204 

simultaneous enrich Romboutsia which can produce SCFAs. Further analysis of fatty acids in 205 

the colon contents of mice showed that SCFAs are enriched in KO-M than WT-M; particularly, 206 

valeric acid and isobutyric acid were significantly enhanced in KO-M (Figure 4A). However, 207 

medium-chain fatty acids (MCFAs) showed no significant differences between the two groups 208 

(Figure 4B). Long-chain fatty acids (LCFAs) also showed no difference in WT-M and KO-M 209 

overall, although FFA18:2 and FFA16:0 were significantly decreased in KO-M (Figure 4C). 210 

The heatmap also confirmed that the differences in SCFAs between WT-M and KO-M (Figure 211 

4D).  212 

To assess the influence of upregulated SCFAs on myoblast differentiation, the C2C12 213 

myoblast cell line was treated for 24 h with 5 mM each of valeric acid and isobutyric acid 214 

during differentiation. Immunofluorescence staining of MyHC showed that after 215 

supplementation of valeric acid, C2C12 myoblasts produced thicker myotubes and notably 216 

higher fusion index than the control cells, implying that valeric acid promotes myotube 217 

formation (Figure 5A). Valeric acid treatment also improved the expression of MyoD and 218 
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MyoG and promoted the differentiation of C2C12 myoblasts (Figure 5B). Notably, the 219 

phosphorylation levels of Akt and mTOR significantly increased after valeric acid treatment 220 

(Figure 5C). However, isobutyric acid treatment did not show such effects and only increased 221 

the myotube fusion index. Taken together, these results strongly demonstrate that valeric acid 222 

can promote myogenic differentiation of myoblasts. 223 

Valeric acid stimulates type IIb myofibers growth 224 

We further elucidated the effect of valeric acid treatment on the phenotype of skeletal muscles 225 

in vivo. Mice were administered with valeric acid (100 mg/kg) by daily oral gavage. Valeric 226 

acid treatment significantly increased the mass of GA muscle, a fast-twitch glycolytic skeletal 227 

muscle, compared with the control (Figure 6A, B). Consistently, following valeric acid 228 

treatment, the CSA of the GA muscle was significantly larger, and there was a higher 229 

proportion of large myofibers compared with the control (Figure 6C). In valeric acid-treated 230 

mice, the protein expression of the MyHC IIb was significantly enhanced, that of MyHC I was 231 

decreased, and that MyHC IIa showed no change (Figure 6D). In addition, valeric acid 232 

treatment significantly upregulated the levels of glycolysis enzymes of HK2, PFK1, and PKM2 233 

(Figure 6E) and the phosphorylation of Akt and mTOR in the GA muscle (Figure 6F).  234 

To explore whether the regulatory pathway, mediated by valeric acid on muscle mass growth 235 

would be dependent on fatty acid receptors, we examined the expression of SCFAs receptors in 236 

skeletal muscle. Valeric acid increased the mRNA level of GPR43 in GA muscle, whereas 237 

those of GPR41 and GPR109a did not significantly change (Figure 6G). SCFAs could activate 238 

the Akt/mTOR pathway through GPR43 (Tang et al., 2022; Brown et al., 2003). These 239 

findings suggest that valeric acid, a metabolite of gut microbes, can induce type IIb/glycolytic 240 
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myofiber growth and enhance GA mass by activating Akt/mTOR signalling through GPR43. 241 

Furthermore, valeric acid-treated mice had a greater grip force (Figure 6H). Interestingly, 242 

valeric acid treatment increased the length of the small intestine (Figure 6I), but had no effect 243 

on food intake, physical activity, energy intake, or absorbed energy in mice (Figure 6-figure 244 

supplement 4A-E). 245 

Valeric acid ameliorates dexamethasone (Dex)-induced skeletal muscle atrophy 246 

Glucocorticoids, such as dexamethasone, are often used to induce muscle atrophy models, and 247 

are implicated in protein metabolism in skeletal muscle and are considered as a risk factor for 248 

the development of muscle atrophy (Hong et al., 2019; Li et al., 2017). To further explore the 249 

role of valeric acid in skeletal muscles, we constructed Dex-induced in vivo and in vitro 250 

muscular atrophy models. Valeric acid administration partially ameliorated skeletal muscle 251 

atrophy induced by Dex in mice and reduced the dissolution area with a clear morphology of 252 

muscle fiber (Figure 7A). Meanwhile, valeric acid treatment significantly decreased the mRNA 253 

and protein levels of muscular dystrophy factors Atrogin-1 and MuRF-1, which were induced 254 

by Dex (Figure 7B, C). In C2C12 myoblasts, valeric acid treatment significantly increased 255 

myotube diameter and fusion index, and inhibited the expression of atrophy factors, which can 256 

improve Dex-induced myotube atrophy (Figure 7D, E). Overall, these finding indicate that 257 

valeric acid has a positive effect on Dex-induced muscle atrophy. 258 

 259 

Discussion  260 

Host genetic variations can influence the microbiota composition, and the gut microbiota can 261 

affect skeletal muscle growth and function. Here, we revealed that the gut microbiota 262 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.24.501334doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.24.501334
http://creativecommons.org/licenses/by/4.0/


13 

 

remodeled by MSTN gene deletion plays a key role in regulating skeletal muscle development. 263 

MSTN gene knockout not only increased skeletal muscle mass, but also altered the intestinal 264 

structure and composition of intestinal flora in pigs, as shown the loss of intestinal MSTN 265 

expression, altered muscularis thickness, plica length, the increase expression of tight junction 266 

genes ZO-1 and Occludin, and enriched microbioal population that produce SCFAs. We 267 

transplanted the fecal microbiota of MSTN−/− pigs into mice, and the recipient mice had 268 

increased fast-twitch glycolytic muscle GA weight and increased levels of glycolysis proteins 269 

HK2, PFK1, and PKM2 and type IIb myofibers hypertrophy, characterized by enhanced grip 270 

strength and poor resistance to fatigue, accompanied by increased phosphorylation of the 271 

Akt/mTOR signal. Similar to the donor pigs, recipient mice were enriched in microbes that 272 

produce SCFAs. Furthermore, metabolomic analysis showed a significant increase in valeric 273 

acid levels in the colon contents. We showed that the intestinal flora remodeled by MSTN gene 274 

deletion is involved in fast-twitch glycolytic muscle growth via valeric acid, which activaties 275 

the Akt/mTOR pathway through the SCFAs receptor GPR43. Lastly, we demonstrated that 276 

valeric acid have a beneficial effect on skeletal muscle atrophy induced by Dex (Figure 8). 277 

MSTN regulates myogenic differentiation and skeletal muscle mass mainly by activating 278 

classical Smad2/3 transcription factors (Chen et al., 2021). In this study, MSTN−/−  pigs 279 

generated using TALEN genome editing had significantly inhibited activation of Smad, 280 

increased CSA of type IIb myofibers, and overgrowth of skeletal muscle, which was 281 

characterized by the ‘double-muscle’ phenotype. These findings are consistent with those of the 282 

previous studies performed in MSTN mutant mice and cattle (McPherron et al., 1997; 283 

Ceccobelli et al., 2022; McPherron and Lee, 1997; Kambadur et al., 1997). 284 
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MSTN expression has been detected not only in the skeletal muscles but also in smooth 285 

muscles of blood vessels, penis, and other tissues and is co-localized with α-smooth muscle 286 

actin, which can affect organ functions (Verzola et al., 2017; Esposito et al., 2020; Kovanecz 287 

et al., 2017). Intestine tissues are from smooth muscle, and MSTN expression in intestine 288 

tissues has been confirmed; however, its role in intestine is not clear (Sundaresan et al., 2008). 289 

In this study, MSTN expression was detected in the intestine of WT pigs but not in that of 290 

MSTN−/−  pigs. Importantly, this is the first study to show that MSTN knockout leads to a loss of 291 

its expression in the intestine and increases the intestinal muscularis thickness and plica length 292 

in pig intestine, indicating MSTN knockout-induced changes in intestinal morphology. The 293 

muscularis is related to intestinal motility, and its thickness can represent the ability of 294 

intestinal peristalsis; the height of the mucosal fold determines the intestinal absorption surface 295 

area (Wang et al., 2019; Zhao et al., 2017; Geda et al., 2012). In this study, increases in small 296 

intestinal muscularis thickness and plica length imply enhanced intestinal absorptive capacity 297 

in MSTN−/−  pigs. Actually, MSTN gene mutation has also been found to affect the composition 298 

of metabolites and microbial strains in the jejunum, which might provide more useable 299 

nutrients for the host (Pei et al., 2021). The tight junction between adjacent intestinal epithelial 300 

cells is a critical component of the intestinal barrier, which provide a form of cell–cell adhesion 301 

in enterocytes and limit the paracellular transport of bacteria and/or bacterial products into the 302 

systemic circulation (Ghosh et al., 2020). Previous studies have shown that a disruption in the 303 

intestinal barrier leads to increased bacterial products of lipopolysaccharide into systemic 304 

circulation, triggering an inflammatory response in specific tissues, such as skeletal muscle or 305 

adipose tissue (Ghosh et al., 2020). On the other hand, enhancement of the intestinal barrier 306 
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function effectively reduced intestinal inflammation, resulting in the alleviation of skeletal 307 

muscle loss in cancer cachexia (Sakakida et al., 2022). In this study, MSTN−/−  pigs had a 308 

significantly increased expression of tight junction genes ZO-1 and Occludin in intestine. It is 309 

indicated that MSTN gene deletion can improve the intestinal physical barrier of pigs. 310 

Importantly, changes in the intestinal environment and barrier function can alter microbial 311 

composition of the gut (Seganfredo et al., 2017; Nicoletti et al., 2017; Sekirov et al., 2010). 312 

The intestinal microflora composition of MSTN−/−  pigs was analyzed, and we found that 313 

Romboutsia, Treponema, and Turicibacter were significantly enriched. Several studies have 314 

suggested that these microbes are involved in SCFAs production (Li et al., 2019b; Li et al., 315 

2021; Li et al., 2019c; Bian et al., 2020). SCFAs are absorbed from the intestinal tract and play 316 

a metabolic regulatory role in different organs, which are recognized as a potential regulator of 317 

skeletal muscle metabolism and function (Frampton et al., 2020). Additionally, Romboutsia 318 

(Li et al., 2021; Yanni et al., 2020) and Turicibacter (Watanabe et al., 2021) are closely 319 

associated with metabolic disorders, such as hypertension, diabetes, dysregulation of skeletal 320 

muscle energy metabolism, and obesity. Therefore, we believe that the deletion of the MSTN 321 

gene in the intestine alters the intestinal structure, thus affecting the composition of intestinal 322 

flora. 323 

FMT can transfer both host gut characteristics and metabolic phenotypes from pigs to mice 324 

(Yang et al., 2018; Diao et al., 2016; Yan et al., 2016). To verify the effect of the intestinal 325 

flora remodeled by MSTN gene deletion on skeletal muscle, the intestinal flora of MSTN−/−  and 326 

WT pigs were transplanted into mice. Interestingly, we found that mice transplanted with 327 

MSTN−/−  pigs feces had increased GA muscle mass and muscle fiber area (Figure 2). We 328 
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further found that the area of type IIb myofibers increased significantly, indicating that the 329 

increased GA weight and muscle fiber area can be attributed to the growth of type IIb 330 

myofibers. Previous studies have found that Akt1 transgene activation specifically increases 331 

GA weight and type IIb myofiber growth through mTOR-dependent pathway (Izumiya et al., 332 

2008). This is consistent with our study, where the significant activation of the Akt1/mTOR 333 

pathway was observed with increased GA mass and IIb myofiber CSA in KO-M. In addition, 334 

augment of type IIb myofibers lead to an increase in grip strength but a reduction in endurance 335 

on a treadmill test (Izumiya et al., 2008). In this study, as expected, KO-M had significantly 336 

enhanced grip strength but poor resistance to fatigue. Preservation or restoration of type IIb 337 

myofibers may delay age-related changes, mainly by reducing fat mass and liver steatosis and 338 

correcting glucose metabolism injury (Akasaki et al., 2014). Importantly, we found that 339 

SCFAs producing microbes, Romboutsia, enriched in MSTN−/− pigs are also significantly 340 

enriched in recipient mice (Figure 3B-D). The concentration of SCFAs was significantly 341 

increased in the colon contents. Gut microbiota transplantation from pathogen-free mice into 342 

germ-free mice was reported to increase skeletal muscle mass and reduce muscle atrophy 343 

markers, thus improving oxidative metabolic capacity. Moreover, the microbial 344 

metabolites–SCFAs treatment can also attenuate skeletal muscle impairments, especially in the 345 

GA muscle (Lahiri et al., 2019). During hibernation, the urease-producing microbes, Alistipes, 346 

enriched in the gut of ground squirrels can prevent muscle loss (Regan et al., 2022). These 347 

results strongly suggest that the intestinal flora remodeled by MSTN gene deletion is involved 348 

in the growth of fast-twitch glycolytic muscle mass and function, which may be related to the 349 

enrichment of SCFAs–producing microbes.  350 
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SCFAs are the main metabolites of intestinal microbiota and are involved in multiple 351 

physiological processes of the host (Donohoe et al., 2011; Canfora et al., 2015). Compared 352 

with untreated mice, SCFAs-treated germ-free mice showed improved muscle strength (Lahiri 353 

et al., 2019). In addition, acetic acid, a kind of SCFA, can change fiber types and regulate 354 

mitochondrial metabolism of skeletal muscle (Pan et al., 2015). Similarly, we observed that 355 

valeric acid treatment increases myotube formation in myoblasts and the skeletal muscle mass 356 

of GA in mice, especially with respect to type IIb muscle fiber formation rate. SCFAs play a 357 

downstream regulatory role mainly by binding to their receptors (Stoddart et al., 2008; Hul et 358 

al., 2019). To explore the possible mechanism of action of valeric acid in skeletal muscles, we 359 

analyzed GPRs expression and found a considerable increase in GPR43 levels following 360 

valeric acid treatment. The GPR43 receptor can activate the Akt and mTOR signaling pathway 361 

(Bian et al., 2020; Dutchak et al., 2018), which may explain the activation of the Akt signaling 362 

pathway detected in this study (Figure 6). Aging and long-term and high-dose glucocorticoid 363 

therapy could induce skeletal muscle atrophy, mainly manifesting as skeletal muscle mass loss 364 

and priority loss of type IIb muscle fibers (Akasaki et al., 2014; Haber et al., 1992; Faulkner et 365 

al., 2007; Kirkendall et al., 1998). We found that valeric acid treatment ameliorates 366 

Dex-induced myotube atrophy and partially repairs skeletal muscle atrophy (Figure 7). 367 

In conclusion, this is the first study to demonstrate that MSTN gene deletion in pig intestine 368 

alters intestinal structure and function, leading to changes in the composition of intestinal 369 

microbiota. We further demonstrate that MSTN gene deletion-mediated remodeling of the 370 

intestinal flora increases the growth of fast-twitch glycolytic muscles. Finally, we illustrate that 371 

the microbiota metabolite valeric acid can promote myoblast differentiation and fast-twitch 372 
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glycolytic myofiber growth by activating the Akt/mTOR pathway through the SCFAs receptor 373 

GPR43 and have a beneficial effect for skeletal muscle atrophy induced by Dex. These findings 374 

increase our understanding of the host genetic variation in regulating gut microbiota, and 375 

provide new insights for the treatment of muscle-related diseases, such as muscular dystrophy 376 

and sarcopenia. 377 

 378 

Materials and methods 379 

Animals 380 

The animal study was approved by the Ethics Committee of Yanbian University (approval 381 

number SYXK2020-0009). We generated MSTN−/−  pigs with 2 and 4 bp deletions in the two 382 

alleles of MSTN gene by TALEN genome editing technique and somatic cell nuclear transfer 383 

and these pigs were used in this experiment (Kang et al., 2017). Pigs were fed a standard 384 

commercial diet and housed in the same environmentally controlled room in a swine breeding 385 

farm. Male C57BL/6J mice aged four weeks were purchased from Vital River Laboratory 386 

Animal Technology (Beijing, China). Chow diet (Beijing HuaFuKang Bioscience, Beijing, 387 

China) and water were provided ad libitum. Mice were administered with valeric acid (100 388 

mg/kg, Shanghai Aladdin, China) by oral gavage or water (vehicle) starting at four weeks of 389 

age, and tissues were collected after five weeks of treatment. 390 

To establish the Dex-induced muscle atrophy model, male C57BL/6J mice aged eight 391 

weeks were intraperitoneally injected with 20 mg/kg Dex every other day for two weeks, and 392 

saline injections were used for the control group. Dex-induced skeletal muscle atrophy was 393 

determined by weight loss in mice (Hong et al., 2019; Li et al., 2017). A total of 100 mg/kg of 394 
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valeric acid was provided orally to mice every day two weeks before Dex injection until the 395 

full experiment cycle. Mice were raised in a pathogen free environment at a controlled 396 

ambient 21±1 �, 40–60% relative humidity, and 12/12 h cycle of alternating day and night. In 397 

all experiments, the animals were fasted overnight before they were euthanized. 398 

Fecal microbiota transplantation 399 

Fecal samples were collected daily from six-month old MSTN−/−  and wild-type (WT) donor 400 

pigs in the morning. In a sterile environment, they were homogenized and suspended using 401 

sterile saline (250 mg/mL), and the mixture was centrifuged at 800 × g for 5 min. Antibiotics 402 

mixture (50 μg/mL streptomycin, 100 U/mL penicillin, 170 μg/mL gentamycin, 100 ug/mL 403 

metronidazole, 125 ug/mL ciprofloxacin; all from Sigma) was added to sterile drinking water 404 

and was given daily for one week before FMT. From five weeks of age, each group of 405 

recipient mouse was gavaged with 200 μL of the corresponding bacterial suspension every 406 

day for eight weeks until tissue collection. 407 

Analysis of gut microbiota 408 

The fecal samples used for microbiota analysis were collected separately from donor pigs at 409 

six-month old and recipient mice after eight weeks of FMT. Methods used to analyze the 410 

diversity and taxonomic profiles of gut microbiota in donor pigs and recipient mice have been 411 

described previously (Quan et al., 2020). Briefly, the CTAB method was used extract the total 412 

genomic DNA from fecal bacteria. DNA sample with a final concentration of 1 ng/μL was 413 

used for bacterial 16s rRNA gene amplification seuqnecing (V3-V4 regions). The Illumina 414 

NovaSeq platform (Novogene, Beijing, China) was used to determine the sequencing 415 

abundance and diversity of the intestinal flora in pigs and mice. The library quality was 416 
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assessed using a Qubit@ 2.0 Fluorometer (Thermo Scientific) and Agilent Bioanalyzer 2100 417 

system. 418 

Paired-end reads were allocated according to the unique barcodes of the sample and 419 

truncated by cutting off the barcode and primer sequences. FLASH (v1.2.7) was used to 420 

merge the overlapped reads between paired-end reads. According to the QIIME (V1.9.1) 421 

quality control process, high-quality clean tags were obtained from qualitative filtration of the 422 

original reads under specific filtration conditions. The effective tags were finally collected by 423 

comparing the sample tags with the reference database (Silva database) after the detection and 424 

removal of chimera sequences using the UCHIME algorithm. The QIIME software was used 425 

to calculate all indices in the samples, and R (v2.15.3) was used for bioinformatic analyses of 426 

the sequences. The same operational taxonomic units had at least 97% similarity in sequences. 427 

Alpha diversity, beta diversity, and principal component analysis (PCA) were described 428 

according to the unweighted unifrac distances. 429 

Cell culture 430 

C2C12 myoblasts (1 × 105 cells/well) were cultured in six-well culture plates in Dulbecco’s 431 

modified Eagle’s medium (DMEM; Invitrogen-Gibco), containing 10% fetal bovine serum 432 

(Sigma), 100 U/mL penicillin and 100 U/mL streptomycin (Invitrogen-Gibco) for 433 

proliferation. For differentiation, C2C12 myoblasts at 80% confluence were induced to 434 

differentiate in DMEM with 2% horse serum (Invitrogen); valeric acid and isobutyric acid 435 

were added to the differentiation medium for 24 h. Cells were supplemented with a fresh 436 

differentiation medium every two days. Myotubes were obtained on day 5 of the 437 

differentiation phase.  438 
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To establish the Dex-induced myotube atrophy model, myoblasts were treated with 100 439 

μm/L of Dex at the beginning of differentiation for 24 h, and 5 mM/L valeric acid was added 440 

to the treatment group. Myoblasts were cultured in a fresh differentiation medium for five 441 

days. Myotubes were stained with anti-MyHC antibody (MyHC, A4.1025, Sigma), and Alexa 442 

Fluor 488-labelled goat anti-mouse IgG was used as secondary antibody (Jackson 443 

ImmunoResearch Laboratories). The nuclei were counterstained with 10 μg/μL DAPI 444 

(D-9106, Beijing Bioss Biotechnology). The diameter and the number of nuclei of the 445 

differentiated myotubes were measured using Image J (1.51q, National Institutes of Health, 446 

USA). For each group, five pictures were randomly taken from each well of the six-well 447 

plates. The diameters of the three different parts of each myotube were measured, and the 448 

average value was calculated. To determine the C2C12 fusion index, the number of nuclei in 449 

the myotubes were calculated and divided by the total number of nuclei and multiplied by 450 

100. 451 

Histological analysis 452 

Skeletal muscle and intestine morphology were detected by hematoxylin eosin (HE) staining. 453 

The longissimus dorsi and intestine tissues from MSTN−/−  and WT pigs were from 5 µm thick 454 

paraffin-embedded sections. Images were obtained using a light microscope (BX53, Olympus, 455 

Japan). 456 

Liquid nitrogen-cooled isopentane was used to rapid freeze the skeletal muscle tissues, 457 

which were embedded in the OCT compound (Sakura Finetech USA Inc.). Cryostat sections 458 

(10 µm) were prepared from the mid-belly of the muscle tissue. Fiber-type of skeletal muscle 459 

was stained using MyHC type I (BA-D5, DSHB, Douglas Houston), MyHC type IIa (SC-71, 460 
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DSHB, Douglas Houston), MyHC type IIb (BF-F3, DSHB, Douglas Houston), and laminin 461 

(ab11575, Abcam) monoclonal antibodies. Alexa Fluor 647 conjugate goat anti-mouse IgG2b, 462 

Alexa Fluor 488 conjugate goat anti-mouse IgG1, Alexa Fluor 555 conjugate goat anti-mouse 463 

IgM, or Alexa Fluor 594 conjugate goat anti-rabbit IgG were used as secondary antibodies. 464 

The nuclei were counterstained with 10 μg/μL of DAPI. Fluorescence was detected using a 465 

confocal laser scanning microscope (FV3000, Olympus, Japan). Image J software was used to 466 

measure the thickness and the cross-sectional area (CSA) of the myofibers. The damage area 467 

of skeletal muscle fiber was evaluated by calculating the ratio of muscle fiber ablation area to 468 

the total muscle fiber CSA. 469 

Quantitative real-time PCR 470 

Total RNA was extracted from liquid nitrogen quick-frozen tissue using a Total RNA 471 

Extraction Kit (LS1040; Promega) as per the manufacturer’s protocol. After evaluating the 472 

concentration and purity of RNA, an equal amount of RNA was used for reverse transcription. 473 

Information on the primers used is available in supplementary materials. Real-time PCR was 474 

performed on Mx3005P system (Agilent, Santa Clara, CA, USA), and the relative gene 475 

expression levels were calculated using the 2-
△△

CT method and normalized to that of the 476 

control group. 477 

Western blotting 478 

The cells and tissues were homogenized in RIPA buffer (Beyotime). Equal amounts of protein 479 

were calculated and loaded according to the concentration of protein that was detected by a 480 

BCA kit (Beyotime, Shanghai, China). Subsequently, immunoblot analysis was performed 481 

following standard procedures. Protein samples were electrophoresed, transferred, blocked 482 
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and incubated with the following primary antibodies: phospho-Akt (Ser473), phospho-mTOR 483 

(Ser2448), phospho-Smad2 (Ser465/467)/Smad3 (Ser423/425), Akt, mTOR, Smad2/3, and 484 

HK2 from Cell Signaling Technology; PFK1 and PKM2 from Shanghai Absin, Inc.; MyHC 485 

type I, MyHC type Iia, and MyHC type IIb from DSHB; MSTN, MyoD, MyoG, α-SMA, 486 

calponin-1, MuRF-1, atrogin-1, actin, and tubulin from Beijing Bioss Biotechnology, Inc.. 487 

The ChemiDoc™ MP Imaging System and Image Lab software (Bio-Rad, Shanghai, China) 488 

were used to analyze the blot bands. 489 

SCFAs analysis 490 

Colon contents were collected at the time of mouse tissue sample collection after eight weeks 491 

of FMT. SCFAs were extracted from mouse feces using 1:1 acetonitrile:water solution and 492 

derivatized using 3-nitrophenylhdyrazones. SCFAs were analyzed using a Jasper HPLC 493 

coupled to a Sciex 4500 MD system (LipidALL Technologies Co., Ltd, Changzhou, China). 494 

In brief, a Phenomenex Kinetex C18 column (100 × 2.1 mm, 2.6 µm) was used to separate 495 

individual SCFA. The mobile phase A consisted of 0.1% formic acid aqueous solution, and 496 

the mobile phase B consisted of 0.1% formic acid acetonitrile. Octanoic acid-1-13C1 497 

(Sigma-Aldrich) and butyric-2,2-d2 (CDN Isotopes) were used as internal standards for 498 

quantitation (Li et al., 2019a). 
499 

Statistical analysis 500 

Statistical analysis was performed using SPSS (17.0, IBM, Armonk, NY, USA) and GraphPad 501 

Prism (San Diego, CA, USA). Data are presented as the mean ± SEM, and were compared 502 

using a repeated measure two-way analysis of variance (ANOVA), one-way ANOVA, or 503 

Student’s t-test. Statistical significance was set at *P<0.05, **P<0.01, ***P<0.001. 504 
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 813 

Figure 1. MSTN deletion stimulates muscle hypertrophy and alters intestinal structure 814 

and composition of gut microbiota in pigs (n=5). (A and B) Representative images of 815 

MSTN−/− pigs and hematoxylin eosin staining longissimus dorsi. Magnification is 816 

200×. Scale bar, 100 μm. MSTN−/− pigs showed skeletal muscle hypertrophy and 817 

significantly increased the muscle fiber area. (C) Relative to WT pigs, MSTN−/− pigs 818 

showed no expression of MSTN, downregulate phosphorylation of Smad2/3 and 819 

MyHC IIa, and upregulate MyHC IIb and MyoD in longissimus dorsi (Mus). (D) 820 

MSTN−/− pigs showed increased glycolysis enzymes HK2, PFK1 and PKM2 in 821 

longissimus dorsi (Mus). (E) The protein expression of MSTN was not detected in 822 

intestine (Int) while the α-SMA and Calponin-1 were increased in MSTN−/− pigs 823 
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compared with the WT pigs. (F) Relative expression of tight junction genes ZO-1 and 824 

Occludin were enhanced in small intestine of MSTN−/− pigs. (G) Hematoxylin eosin 825 

staining of intestinal morphology. The dotted line indicates the length of the plica and 826 

the solid line indicates the thickness of muscularis. Magnification is 40×. Scale bar, 827 

500 µm. MSTN−/− pigs showed an increase of muscularis thickness and plica length in 828 

small intestine. (H) Plots shown were generated using the weighted version of the 829 

Unifrac-based PCA. (I) Discriminative taxa determined by LEfSe between two 830 

groups (log10 LDA>4.8). (J) Comparison proportion of genus levels in feces detected 831 

by pyrosequencing analysis showed Treponema, Romboutsia, and Turicibacter were 832 

increased in MSTN−/− pigs. Statistical analysis is performed using Student’s t-test 833 

between WT and MSTN−/−  pigs. Data are means ± SEM. *p < 0.05; **p < 0.01; ***p 834 

< 0.001; NS, not statistically significant. 835 
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 837 

Figure 2. Mice fecal microbiota transplantation from MSTN deletion pigs induces type 838 

IIb myofiber growth. Mice were treated with porcine fecal microbiota for eight weeks 839 

by daily oral gavage after combined antibiotics treatment for a week. WT-M, WT pigs 840 

fecal microbiota-received mice (n=8); KO-M, MSTN−/−  pigs fecal 841 

microbiota-received mice (n=8). (A) Representative images of gross appearance and 842 

GA of WT-M and KO-M. (B) GA mass was increased in KO-M while SOL and EDL 843 

were not different between WT-M and KO-M. (C) Representative images of GA 844 

sections stained with laminin. Magnification is 400×. Scale bar, 50 μm. (D) 845 

Quantification analysis of myofiber CSA showed that KO-M was larger than WT-M. 846 

(E) Representative images of GA sections stained with MyHC I (pink), IIa (red), IIb 847 

(green) antibodies and nucleuses were stained with DAPI (blue). Magnification is 848 

200×. Scale bar, 100 μm. Quantification of myofiber displayed MyHC IIb CSA were 849 

increased in KO-M. (F) KO-M showed upregulate the level of MyHC IIb and MyoD 850 
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in GA. (G) The expression of glycolysis enzymes HK2, PFK1 and PKM2 were 851 

increased in KO-M GA. (H) The Akt/mTOR pathway was activated in KO-M GA. (I 852 

and J) Grip strength was enhanced while running time was reduced in KO-M 853 

compared with WT-M. Statistical analysis is performed using Student’s t-test between 854 

WT-M and KO-M groups. Data are means ± SEM. *p < 0.05; **p < 0.01; NS, not 855 

statistically significant. 856 
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 858 

Figure 3. MSTN−/− pigs fecal microbiota transplantation alters microbiota composition 859 

in mice. Transplanting fecal microbiota of MSTN−/−  pigs and WT pigs separately to 860 

mice (n=8). (A) Plots shown were generated using the weighted version of the 861 

Unifrac-based PCoA. (B) Comparison proportion of order, family and genus levels of 862 

Romboutsia in feces detected by pyrosequencing analysis. (C) Heatmap shows the 863 

abundance of top 35 microbial genuses levels was significantly altered by WT and 864 

MSTN−/− donor pigs between WT-M and KO-M groups. (D) Discriminative taxa 865 

determined by LEfSe between two groups (log10 LDA>3.5). (E) Functional 866 

prediction shows that intestinal microbial functions are concentrated in functional 867 

pathways related to metabolite synthesis after fecal microbiota transplantation. 868 

Statistical analysis is performed using Student’s t-test between WT-M and KO-M 869 

groups. Data are means ± SEM. *p < 0.05. 870 
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 872 

Figure 4. MSTN−/−  pigs fecal microbiota transplantation alters the level of fatty acids 873 

in mice (n=7). (A) Fecal microbiota transplantation increased colon total SCFAs 874 

(particularly valeric acid and isobutyric acid) in KO-M. (B) Fecal microbiota 875 

transplantation has no effect on MCFAs between WT-M and KO-M. (C) Fecal 876 

microbiota transplantation decreased colon FFA18:2 and FFA16:0 of LCFAs in KO-M. 877 

(D) Heatmap showed the difference of SCFAs between WT-M and KO-M. Statistical 878 

analysis is performed using Student’s t-test. Data are means ± SEM. *p < 0.05; NS, 879 

not statistically significant. 880 
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 882 

Figure 5. Valeric acid treatment promotes myogenic differentiation of myoblast (n=6). 883 

(A) Representative images of immunofluorescence stained with a specific antibody to 884 

identify MyHC (green) of myotubes and the nucleuses were stained with DAPI (blue). 885 

Magnification is 100×. Scale bar, 200 µm. Quantification analysis displayed valeric 886 

acid treatment increased the diameter and fusion index of myotube, while isobutyric 887 

acid only increased the myotube fusion index. (B) Valeric acid treatment increased the 888 

expression of MyoD and MyoG in C2C12 myoblasts. (C) Valeric acid treatment 889 

activated the Akt/mTOR pathway. Statistical analysis is performed using one-way 890 

ANOVA. Data are means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; NS, not 891 

statistically significant. 892 
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 894 

Figure 6. Valeric acid induced type IIb myofiber growth and increased GA mass in 895 

mice. Mice were treated with valeric acid (100 mg/kg) for five weeks by daily oral 896 

gavage (n=8-9). (A) Representative images of gross appearance and GA of control 897 

and valeric acid treated mice. (B) Valeric acid treatment increased GA mass. (C) 898 

Representative images of GA sections stained with laminin, showed valeric acid 899 

treatment increased CSA of myofiber. Magnification is 200×. Scale bar, 100 µm. 900 

Western blot analysis showed that valeric acid treatment increased the levels of (D) 901 

MyHC IIb, (E) glycolysis enzymes HK2, PFK1 and PKM2, and (F) activated the 902 

Akt/mTOR pathway in GA compared with control mice. (G) Real-time PCR analysis 903 

indicated that valeric acid treatment enhanced relative mRNA expression of SCFAs 904 

receptor GPR43 in GA. (H) Valeric acid treatment improved grip strength. (I) 905 

Representative images of cecum, small intestine, and colon of mice, showed valeric 906 

acid treatment inceresed small intestine length. Statistical analysis is performed using 907 
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Student’s t-test. Data are means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; NS, not 908 

statistically significant. 909 
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 911 

Figure 7. Valeric acid ameliorates Dex-induced skeletal muscle and myotube atrophy. 912 

Mice were treated with intraperitoneal injection of 20 mg/kg Dex every 2 day for two 913 

weeks and 100 mg/kg of valeric acid was fed orally every day before two weeks of 914 

Dex injection (n=5). Myotube atrophy was induced with 100 µM/L of Dex, and 5 915 

mM/L of valeric acid was supplied at the same time (n=6). (A) Hematoxylin eosin 916 

staining of GA morphology. Magnification is 40×. Scale bar, 500 µm. Quantification 917 

analysis showed that Dex induced the myofiber damage, and valeric acid treatment 918 

decreased the percentage of damage area. (B) Western blot analysis showed that Dex 919 

induced the expression of Atrogin-1 and MuRF-1 in GA, while valeric acid treatment 920 

reduced the level of these. (C) Real-time PCR analysis of relative expression of 921 

atrophy genes (Atrogin-1 and MuRF-1) in GA, showed valeric acid treatment could 922 

inhibit the expression of these genes induced by Dex. (D) Immunofluorescence 923 

stained with a specific antibody was used to identify MyHC (green) of myotube and 924 
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the nucleus were stained with DAPI (blue). Magnification is 100×. Scale bar, 200 µm. 925 

Quantification analysis showed valeric acid treatment could improve the reduction of 926 

myotubes diameter and fusion index induced by Dex. (E) Western blot analysis 927 

showed valeric acid treatment could inhibit the expression of Atrogin-1 induced by 928 

Dex in C2C12 myotubes and had no effect on MuRF-1 induced by Dex. Statistical 929 

analysis is performed using one-way ANOVA with Least Significant Difference test. 930 

Data are expressed as means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; NS, not 931 

statistically significant. 932 
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 934 

Figure 8. Schematic illustration. Intestine MSTN deficiency altered the intestinal 935 

structure, reshaped gut microbiota, and gut microbiota metabolite-valeric acid can 936 

activate Akt/mTOR pathway through GPR43 to stimulate fast-twitch glycolytic 937 

skeletal muscle growth. 938 
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