

Immunity priming uncouples the growth-defense tradeoff in tomato	1
	2
Running title: Uncoupling growth-defense tradeoffs	3
	4
Anat Schneider ^{1,2} , Meirav Leibman-Markus ¹ , Rupali Gupta ¹ , Iftah Marash ^{1,3} , Dalia Rav-David ¹ , Yigal Elad ¹ , Maya Bar ^{1&}	5
	6
	7
¹ Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel	8
	9
² Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot, Israel	10
	11
³ School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv, 69978, Israel.	12
	13
&Corresponding author: Dr. Maya Bar: mayabar@volcani.agri.gov.il	14
	15
Keywords: Immunity, Priming, Tomato, growth-defense tradeoff, Cytokinin	16
	17

Summary statement	18
Growth-defense tradeoffs in plants result in loss of yield. Here, we demonstrate that immunity priming in different pathways uncouples this tradeoff and allows for disease resistant plants with robust growth.	19
	20
	21
	22
Abstract	23
Lacking an adaptive immune system, plants have developed an array of mechanisms to protect themselves against pathogen invasion. The deployment of defense mechanisms is imperative for plant survival, however, defense activation can come at the expense of plant growth, leading to the “growth-defense trade-off” phenomenon. Following pathogen exposure, plants can develop resistance to further attack. This is known as induced resistance, or priming. Here, we investigated the growth-defense trade-off, examining how defense priming affects tomato development and growth. We found that defense priming can promote, rather than inhibit, plant development. Using defense pathway mutants, we found that defense priming and growth tradeoffs can be uncoupled, with growth and defense being positively correlated. We found that cytokinin response is activated during induced resistance, and is required for the observed growth and disease resistance resulting from resistance activation. Taken together, our results suggest that growth promotion and induced resistance can be co-dependent, and that defense priming can, within a certain developmental window, not necessitate a trade-off on growth, but rather, encourage and drive developmental processes and promote plant yield.	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37

Introduction	38
	39
Plants, like most organisms on earth, often face various abiotic and biotic stresses such as pathogen infection and climate and ecological changes. These stresses induce physiological, biochemical, and molecular changes, which can be reflected in lowered growth and productivity. Plant stress tolerance is controlled by a network of signals and responses occurring at the cellular and molecular levels, leading to an effective activation of defense mechanisms. Plants lack mobile immune cells and an adaptive immune system. Therefore, they have developed a complex array of mechanisms in order to protect themselves against pathogen invasion. In the interaction between the plant and the attacker, elicitor molecules are released. These elicitors may originate from the plant or the attacker, or both, and include carbohydrate polymers, peptides or fragments of plant proteins, lipids, glycoproteins, and fatty acid–amino acid conjugates (Mishra et al., 2012). Perception of these elicitor molecules by the host plant results in activation of a signaling pathway, leading in turn to activation of various defense mechanisms (Walters and Heil, 2007).	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
Following pathogen infection, plants can develop an enhanced resistance to further attack. This is known as induced resistance. Induced resistance to microbial pathogens can be split broadly into systemic acquired resistance (SAR) and induced systemic resistance (ISR) (Walters and Heil, 2007). SAR, commonly triggered by local infection, can provide long-term resistance throughout the plant to subsequent infection by different pathogens including viruses, bacteria and fungi (Klessig et al., 2018). The SAR response correlates with the activation of pathogenesis-related (PR) genes, many of which encode PR proteins with antimicrobial activity. These proteins include chitinases and glucanases. Among the best-characterized PR genes is <i>PR-1</i> , which is often used as a marker for SAR (Pieterse et al., 2014). SAR generally relies on salicylic acid (SA), which has been shown to increase in both infected and uninfected tissues during pathogenesis, accumulating in the phloem sap (Shoresh et al., 2005). SAR signaling downstream of SA is controlled by the redox-regulated protein NPR1, which upon activation by SA acts as a transcriptional co-activator of a large set of PR genes (Pieterse et al., 2014).	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
Unlike SAR, which is usually activated during pathogen infection, the defense pathway known as induced systemic resistance- ISR, has usually been described as being initiated by beneficial	68
	69

soilborne microorganisms such as plant growth-promoting rhizobacteria and fungi. ISR is 70
generally associated with a physiological state in which plants can react more efficiently to 71
pathogen attack (Meller Harel et al., 2014; Shores et al., 2005), known as immunity "priming". 72
ISR is commonly regulated by jasmonic acid (JA) and ethylene (ET) dependent signaling 73
pathways, and is typically not associated with a direct activation of PR genes, although recent 74
studies demonstrated that the well-known PR gene *NPR1* is also important to enhance the ISR 75
resistance and that, in some cases, *PR-1* is accumulated during priming (Gupta and Bar, 2020; 76
Meller Harel et al., 2014). ISR activated plants are primed for accelerated JA and ET dependent 77
gene expression (Pieterse et al., 2009). Past research has suggested that biochemical changes 78
characteristic of ISR become obvious only in response to further infection, and only in plant 79
parts where an effective resistance is required. Priming effects can be elicited by chemical ISR 80
inducers, beneficial microbes, and fungi. As a result of priming, upon secondary infection, 81
defense responses such as synthesis of antimicrobial compounds, ROS (reactive oxygen 82
species), or cell wall lignification occur more rapidly and more strongly than during the primary 83
infection, thus enabling a more effective response to the new infection (Heil and Bostock, 2002; 84
Mehari et al., 2015). 85

86
While the deployment of defense mechanisms is imperative for plant survival, defense 87
activation has been reported to come at the expense of plant growth. The activation of defense 88
mechanisms at the expense of growth is known as the "growth-defense trade-off" 89
phenomenon, and is the result of a balance between growth and defense or adaptation 90
responses (Figueroa-Macías et al., 2021). Growth-defense tradeoffs have an important role in 91
plant survival (Huot et al., 2014). In nature, there are many examples of this growth and 92
defense trade-off phenomenon. In general, mature organs and tissues are no longer growing 93
and, as a result, can be more prepared for defense as they possess more energy and resources 94
that can be mobilized. In plants, an early example of growth-defense tradeoff was observed in 95
lettuce, where stronger repression of reproductive development under low nutrient conditions 96
was found in pathogen resistant lettuce genotypes (Bergelson, 1994), suggesting that the 97
nutrient balance influences the growth-defense relationship. In another study, induction of 98
plant immunity in *Arabidopsis thaliana* resulted in significantly reduced growth rates, 99
depending on resource competition from neighboring plants, suggesting that competition for 100
resources, or plant-plant signaling, shape the apparent costs of defense induction (Karasov et 101

al., 2017). Growth-defense trade-offs in plants have been increasingly investigated of late 102 (Belkadir et al., 2014; Dwivedi et al., 2021; Ke et al., 2020; Margalha et al., 2019; Monson et 103 al., 2022; Saini and Nandi, 2022; Smakowska et al., 2016). Although some works have suggested 104 that growth and defense are antagonistic, the extent of the "development/ defense tradeoff" 105 and the mechanisms by which it affects plant growth and agricultural yield are largely 106 unknown. 107

108
For centuries, the main goal of agricultural practices has been to maximize the growth and 109 yields of crops. Due to climate change and other difficulties that adversely affect the production 110 of agricultural crops worldwide, growth-defense tradeoffs have acquired an increasing 111 ecological, agricultural, and economic importance. SA and JA, which were classically defined as 112 "defense/ stress" hormones, can regulate many different plant processes, including 113 developmental processes (Ghorbel et al., 2021; Rivas-San Vicente and Plasencia, 2011; van 114 Butselaar and Van den Ackerveken, 2020; Wasternack et al., 2013). This comes in addition to 115 "defensive" roles being uncovered for developmental hormones (Bari and Jones, 2009), and 116 suggests that growth and defense may not be completely antagonistic, but rather, have a more 117 complex balance (Koo et al., 2020). Rather than looking at growth and defense as a binary 118 switch, a more holistic view suggests that plant fitness is optimized when growth and defense 119 are appropriately prioritized in response to both environmental and developmental cues. 120 Researching the molecular mechanisms used by plants to balance growth and defense can lead 121 to the possibility of manipulating these mechanisms, with the goal of increasing plant 122 productivity. 123

124
In this work, we aimed to investigate the growth-defense trade-off in tomato, by attempting to 125 understand how priming for defense affects tomato development and agricultural qualities. We 126 used two different immunity elicitors, ASM (Acibenzolar-S-Methyl), also known as BTH (benzo 127 (1,2,3) thiadiazole-7-carboxylic acid) and marketed under the trade name "bion" (Oostendorp 128 et al., 2001), a SAR elicitor, and *Trichoderma harzianum*, a microbial ISR elicitor, to investigate 129 differences and commonalities between SAR and ISR pathways, and examine their effect on 130 tomato development. We found that both SAR and ISR affect plant development, with ISR 131 generating a more pronounced positive effect on agricultural qualities. Work with genetic 132 mutants suggests that defense priming and growth tradeoffs can be uncoupled, with growth 133

and defense being positively correlated- as mutants that lost the ability to activate defenses, 134
also lost the growth effects. In addition, we found that cytokinin response is activated in 135
response to ISR, and is required for the observed growth and disease resistance resulting from 136
ISR activation. Taken together, our results suggest that growth promotion and induced 137
resistance can be co-dependent, and that defense priming can, within a certain developmental 138
window, not necessitate a trade-off on growth, but rather, encourage and drive developmental 139
processes. 140

Results 143

Activation of SAR and ISR both promote resistance to *B. cinerea* and increase plant immunity 144

The elicitors *Trichoderma harzianum* T39, a *Trichoderma* sp. fungus that induces immunity via 145
the JA/ET pathway (Meller Harel et al., 2014), and ASM (Acibenzolar-S-Methyl), a SA analog that 146
primes the SA pathway (Huot et al., 2014), were used to compare SAR and ISR type induced 147
resistance to pathogen infection. Details on immunity priming methodology are provided in the 148
methods section. We conducted *Botrytis cinerea* infection assays on the primed *S. lycopersicum* 149
M82 plants. We found that pre-treatment with both elicitors reduced disease levels (**Fig. 1**). 150
ASM caused a smaller disease reduction (**Fig. 1B**). 151

To examine induction of plant immunity using a SAR and ISR elicitor, we conducted plant 152
defense response assays, measuring ethylene and ROS (reactive oxygen species) production. 153
These assays are indices of activation of plant immune system (Gupta and Bar, 2020; Leibman- 154
Markus et al., 2017). We found that pre-treatment with both elicitor types amplified wounding 155
ethylene production and EIX-induced ethylene production in *S. lycopersicum* M82 compared to 156
the mock plants (**Fig. 2A-B**). 157

Pre-treatment with both elicitors also amplified ROS production elicited with the fungal MAMP 158
(microbe associated molecular pattern) EIX (ethylene inducing xylanase) (**Fig. 2C**) and the 159
bacterial PAMP (pathogen associated molecular pattern) flg22 (**Fig. 2D**). 160

161

162

Activation of SAR or ISR differentially promote plant development and productivity

163

To examine possible growth-defense tradeoffs, we treated plants separately with both elicitors, 164
inducing immunity via both pathways. Plants were treated once a week for 4 weeks, and grown 165
to harvest, and agricultural parameters were sampled. Both T39 and ASM promoted plant 166
growth (**Fig. 3A**), however, only T39 was able to significantly promote yield and Harvest index 167
(**Fig. 3B, C**). ASM significantly reduced harvest index. Brix was unaffected (**Fig. 3D**). 168

After observing significant effects of SAR and ISR elicitation on plant growth and agricultural 169
productivity, we next examined whether immunity elicitation could affect seedling 170
development (**Fig. 4**). 10 day old seedlings were treated with elicitors once and harvested after 171
a week for growth and development parameter quantification, or given two treatments one 172
week apart, and harvested on day 24, one week after the second treatment. Both T39 and ASM 173
affected seedling height (**Fig. 4A, B**), though ASM was only able to do so after two treatments 174
(**Fig. 4B**), while T39 treatment increased plant height even after 1 treatment (**Fig. 4A**). T39 also 175
increased seedling fresh weight (**Fig. 4C, D**) and the number of leaves produced by the seedling 176
(**Fig. 4E, F**), indicating that T39 also affected the plant developmental program. ASM did not 177
affect leaf numbers. Since T39 appeared to have a more extensive effect on plant development, 178
we analyzed additional developmental parameters following T39 treatment (**Fig. S1**). In 179
addition to the parameters described in Figure 4, we found that T39 treatment also increased 180
the number of unfurled leaves (**Fig. S1B, G**), the developmental plastochron (**Fig. S1C, H**) and 181
the meristematic differentiation to flowering of the SAM (shoot apical meristem) (**Fig. S1D, I**). 182
Focusing on leaf development in more depth (**Fig. S2**), we observed that T39 promotes leaf 183
development, as expressed by the number of leaves produced (**Fig. S2A**), and leaf complexity 184
(**Fig. S2B-D**), as early as 2-4 days after the first treatment (**Fig. S2A, B**). Not surprisingly, T39 185
does not alter the developmental program of leaves 1-2, which are known to be relatively 186
simple and have a short developmental window in tomato (Shleizer-Burko et al., 2011) (**Fig. 187
S2C**). ASM had no effect on leaf development (**Figs. 4, S1-S2**). 188

189

Cytokinin is involved in altered development in response to immunity elicitation

190

We next wished to examine possible routes through which ASM and T39 are promoting growth 191
and development. As we observed that the leaf developmental window was extended upon 192

T39 treatment, with additional organs being produced (**Figs. 4, S1-S2**), we hypothesized that 193
changes in cytokinin response might be involved. To examine this, we used tomato plants 194
expressing the cytokinin response marker TCS (two component sensor) driving VENUS 195
fluorescent protein expression (Steiner et al., 2020). 10 day old TCS-expressing seedlings 196
received one elicitor treatment, and were imaged 24 h after the treatment. Both ASM and T39 197
were found to increase the CK-response signal (**Fig. 5**). While ASM increased local signal 198
intensity (**Fig. 5B**) but did not affect total signal levels (**Fig. 5C**), T39 increased both the local 199
signal intensity, to a significantly higher level than ASM, and the total signal measured (**Fig. 5B-C**). 200
This indicates that upon T39 treatment, CK response is both stronger and expanded to 201
additional tissues. 202

To confirm this result and examine additional possible developmental mechanisms affected by 203
elicitor treatment, we examined gene expression following elicitor treatments as described 204
above (**Fig. 6**). 10 day old seedlings were treated with elicitors once and harvested after a week 205
for RNA preparation, or given two treatments one week apart, and harvested on day 24, one 206
week after the second treatment, for RNA preparation. We examined the effect of one (**Fig. S3**) 207
or two (**Fig. 6**) elicitor treatments on the expression of CK biosynthesis and degradation genes 208
(**Fig.s 6A, S3A**), CK response regulator signaling genes (**Fig.s 6B, S3B**), gibberellin biosynthesis 209
and degradation genes (**Fig.s 6C, S3C**), meristem maintenance genes (**Fig.s 6D, S3D**) and, as a 210
control, SA-sensitive and JA-sensitive defense genes were also examined (**Fig.s 6E, S3E**). In 211
general, the response was stronger after two treatments (**Fig. 6**) as compared with one 212
treatment (**Fig. S3**). Both elicitors activated CK degradation (**Fig.s 6A, S3A**). CK response TRRs 213
were primarily activated by T39 (**Fig.s 6B, S3B**). Likewise, both elicitors activated GA 214
degradation, while only T39 also promoted GA biosynthesis regulation (**Fig.s 6C**), which was 215
attenuated by both elicitors after one treatment (**Fig. S3C**). T39 alone promoted meristem 216
maintenance and inhibited differentiation, though both elicitors activated organ determination 217
(**Fig.s 6D, S3D**). Interestingly, both elicitors activated the expression of *PR1a* and *LoxD*, though 218
ASM activated *PR1a* to a much higher degree (**Fig.s 6E, S3E**). 219

Since these results indicated that cytokinin is required to transduce the developmental signal 220
generated by immunity induction with elicitors, we examined the response to T39 and ASM in 221
the altered CK transgenes *pBLS>>IPT*, which has high CK levels, and *pFIL>>CKX*, which has low 222
CK levels. These lines were previously characterized (Shani et al., 2010), and we used promoter 223

driver lines that were previously reported to have normal development and minimal pleotropic effects (Shani et al., 2010). We found that ASM was still able to promote disease resistance and plant growth irrespective of cytokinin content (**Fig. 7A, E, I, D, H, L**). However, T39 was no longer able to promote disease resistance, plant growth, or leaf development in the absence of CK (**Fig. 7I, J, K, L**). The increased cytokinin *pBLS>>IPT* behaved similarly to the M82 background line (**Fig. 7E, F, G, H**). 224
225
226
227
228
229

230

Blocking SAR or ISR in tomato mutants leads to loss of disease resistance 231

To further examine the correlative effects we observed between development and defense in 232
WT tomato plants (**Figs. 1-4**), we used defense mutants. Tomato mutant compromised in 233
jasmonate and ethylene pathways have been previously shown not to respond to *Trichoderma* 234
with disease reduction in certain cases (Jogaiah et al., 2017; Korolev et al., 2008), while lines 235
compromised in the salicylic acid pathway are expected not to respond to ASM (Oostendorp et 236
al., 2001). Thus, we used the SA-lacking transgene NahG and its background line Moneymaker 237
(MM) (Brading et al., 2000), the reduced JA mutant *spr-2* and its background line Casterlmart 238
(Cm) (Li et al., 2003), and the reduced ethylene sensitivity mutant *neverripe* (*nr*) and its 239
background line Pearson (Pn) (Lanahan et al., 1994), and examined their disease response to 240
elicitation with T39 and ASM. As can be seen in **Fig. 8**, all 3 background lines responded to both 241
elicitors with reduction in *B. cinerea* incited disease, as was observed for M82 (**Fig. 1**). However, 242
NahG did not respond to ASM (**Fig. 8A**), while *spr-2* and *nr* did not respond to T39 (**Fig. 8B-C**). 243

244

Blocking SAR or ISR in tomato results in loss of developmental promotion and yield increases 245

Given that mutating defense pathways prevented disease reduction by T39 and ASM treatment, we 246
examined whether the developmental effects of these elicitors would also be abolished in the same 247
mutants. Plants of the different mutant genotypes and their background lines were treated once 248
a week for 4 weeks, and grown to harvest (**Fig. 9**). In line with our observations concerning 249
disease resistance, all 3 background lines responded to both elicitors with increases in height, 250
and also responded to T39 with increased yield, as was observed for M82 (**Fig. 3**). However, 251
NahG did not respond to ASM (**Fig. 9A, D**), while *spr-2* and *nr* did not respond to T39 (**Fig. 9B-C**, 252
E-F). 253

Since we observed that CK response was increased by both elicitors (Fig.s 5-6), we examined 254
additional developmental parameters that are known to be CK dependent, side shoot 255
production and leaf complexity (Miller and Leyser, 2011; Shani et al., 2010; Werner et al., 2001). 256
ASM did not affect either of these parameters in WT lines, but was included as a control in case 257
it might have effects on the mutant lines. T39 was found to increase side shoot production and 258
leaf complexity in all background lines (Fig. 10). While NahG responded similarly to its 259
background line Moneymaker in response to T39 (Fig. 10A, D), spr-2 and nr did not respond to 260
T39 (Fig. 10B-C, E-F). ASM had not effect on these parameters in either WT lines or defense 261
mutants (Fig. 10). 262

We also examined early seedling development in defense mutant genotypes (Fig. 11). 10 day 263
old seedlings of the SA-lacking transgene NahG and its background line Moneymaker (MM), the 264
reduced JA mutant spr-2 and its background line Casterlmart (Cm), and the reduced ethylene 265
sensitivity mutant *neverripe* (nr) and its background line Pearson (Pn), were treated with 266
elicitors twice, one week apart, and harvested on day 24, one week after the second treatment. 267
Both T39 and ASM affected seedling height in the background lines (Fig. 11A, D, G). As 268
observed with M82 (Fig.s 4,7), T39 increased the number of leaves produced by the seedling 269
(Fig. 11B, E, H), as well as leaf complexity (Fig. 11C, F, I). As observed with the mature plants 270
(Fig. 9), NahG did not respond to ASM (Fig 11A-C), while spr-2 and nr responded to ASM, but 271
did not respond to T39 (Fig. 11D-I). 272

Thus, the competence to respond to each elicitor in increased immunity, is the same as the 273
competence to respond in altered development and increased growth and yield. 274

275

276

Discussion 277

Activating plant defense does not always generate a growth tradeoff 278

The concept of growth-defense tradeoffs is based on the notion that limited resources are 279
available to an organism, and must therefore be prioritized according to internal and ambient 280
conditions being experienced by the organism in a particular moment. In plants, which are 281
sedentary and lack circulatory immunity, the role of ambient conditions such as abiotic and 282

biotic stresses becomes more prominent, because plants have limited ability to regulate their 283 environment. Early research of growth defense tradeoffs was in part prompted by observations 284 that plants with highly active defense pathways or imbalances in defense hormones can be 285 highly resistant to pathogens, but have severely impaired growth (Huot et al., 2014; Vos et al., 286 2013). However, many of these reports investigated severely pleiotropic mutants, and dramatic 287 changes to hormonal pathways and hormone levels can have severe impacts on development, 288 particularly considering that most defense hormones also have significant developmental roles 289 (De Vleesschauwer et al., 2014). Cross-talk between different hormones is one of the key tenets 290 at the basis of growth-defense tradeoffs, with classical defense hormones being reported to 291 have negative crosstalk with growth hormones in several cases (Huot et al., 2014; Vos et al., 292 2015). 293

Constitutively active plant defense can result in growth inhibition (Gómez-Gómez et al., 1999; 294 Zipfel et al., 2006), although genetically increasing plant immunity in several cases did not have 295 a negative effect on plant growth or development (Cao et al., 1998; Heidel et al., 2004; 296 Leibman-Markus et al., 2021; Pizarro et al., 2020). This suggests that the mode of constitutive 297 defense activation, whether by external or genetic means, can affect the level of the "tradeoff" 298 with growth and development, opening the possibility for activating defense without 299 significantly impairing plant development, a highly sought after agricultural advantage. 300

Priming agents can have positive growth effects

 301

Previous reports have shown that immunity priming agents can affect plant growth. The 302 underlying hypothesis of the present work was that certain priming agents can in fact improve 303 plant growth, breaking the growth defense tradeoff and potentially generating added 304 agricultural value. To examine this, we selected two known defense priming agents in tomato, 305 the SA analog ASM, also known as BTH, a molecular priming agent known to activate SAR (Ishii 306 et al., 2019), and the fungus *T. harzianum* T39, a biological priming agent known to activate ISR 307 (Gupta and Bar, 2020). 308

ASM/ BTH promotes disease resistance and has been reported to have various growth effects. 310 However, ASM can be phytotoxic (Ishii et al., 2019), similar to effects observed in plant with 311 abnormally high SA levels or constitutively active SA signaling (Genot et al., 2017; Pokotylo et 312 al., 2022). BTH was reported to induce host resistance against a wide range of pathogens, in 313

correlation with increased gene expression of resistance-related genes, including the 314 pathogenesis-related protein 1 gene (PR1), a well-known marker of SA-induced SAR (Kobayashi 315 et al., 2020). BTH application led to induction of systemic resistance to Gray Mold incited by *B. 316 cinerea* in tomato, and increased the expression of defense related genes upon gray mold 317 infection (Meller Harel et al., 2014). Inducing resistance against a wide array of pathogens in 318 many hosts, BTH also suppressed *Pepper golden mosaic virus* symptoms observed in pepper 319 (Trejo-Saavedra et al., 2013). In connection with growth, BTH promoted both morphogenesis 320 and differentiation in cell cultures of ornamental plants from the *Ornithogalum* species, with 321 increases observed in formation of meristematic centers, shoot formation, and differentiation 322 of cell organelles (Tun et al., 2013). In wheat, application of BTH was observed to negatively 323 impact fitness in the absence of pathogens, but increased fitness under powdery mildew stress 324 (Stadnik and Buchenauer, 1999). In addition, over expression of NPR1 was shown to enhance 325 resistance to biotrophic and hemi-biotrophic pathogens without adversely affecting growth or 326 fitness (Cao et al., 1998; Heidel et al., 2004). 327

328
Likewise, *Trichoderma* spp. are known to promote disease resistance and affect plant growth. *T. 329 harzianum* has been reported to enhance disease resistance against several pathogens, by 330 inducing ISR in a JA/ET dependent manner. Like BTH, *T. harzianum* T39 suppressed the severity 331 of Gray Mold in tomato (Meller Harel et al., 2014), and *Trichoderma* spp. promoted resistance 332 against a wide array of pathogens in different plant hosts (Gupta and Bar, 2020). *Trichoderma* 333 spp. positive growth effects are numerous. In tomato, seedling height, crown diameter, shoot 334 fresh and dry weight, as well as leaf number and total area of leaves, were increased 335 significantly by applying *T. harzianum* (Azarmi et al., 2011). *Trichoderma* strains stimulated early 336 stages of growth in bean (Hoyos-Carvajal et al., 2009). In cotton, increases in shoot and root 337 length, fresh and dry weight, and plant vigor, were observed upon *Trichoderma* treatment 338 (Shanmugaiah et al., 2009). Many additional positive growth effects on plant have been 339 observed with *Trichoderma* spp. treatments (Gupta et al., 2016; Nesler et al., 2015; Salas- 340 Marina et al., 2011). 341

342
Defense priming can evade negative tradeoffs and result in growth promotion 343

Here, we demonstrate that defense priming can result in both induced pathogen resistance, 344
and plant growth (Figs. 1-4). Both ASM and T39 induced resistance against *B. cinerea*. We 345
selected *B. cinerea* as a model pathogen, though this was also reported for both inducers with 346
additional pathogens (Gupta and Bar, 2020; Marolleau et al., 2017; Oostendorp et al., 2001; 347
Soylu et al., 2003). ASM also promoted vertical growth, while T39 had a more dramatic growth 348
promoting effect, and improved several agricultural traits (Fig. 3). Both inducers were effective 349
in promoting plant growth and development in mature plants in an agricultural-like nethouse 350
setting (Fig. 3), as well as in seedlings (Fig.s 4, S1-S2). Though ASM did not significantly 351
positively impact most agricultural growth parameters, it also did not have a negative effect on 352
them in the applied concentration, which could be significant agriculturally under a high disease 353
burden. ASM and T39 were found to affect the expression of several assayed developmental 354
genes (Figs. 6, S3), suggesting that priming with these inducers also leads to transcriptional 355
reprogramming that can effect changes in plant developmental programs, and result in 356
increased growth. Of note is that treatments with *T. harzianum* T39 were previously found to 357
activate resistance to downy mildew in grapevine, without negative effects on plant growth 358
(Palmieri et al., 2012). 359

Roles for CK in growth-defense tradeoffs

In recent years, CK has been established as a priming agent, and its role as a defense hormone 362
is increasingly recognized (Argueso et al., 2012; Choi et al., 2010; Cortleven et al., 2019; Gupta 363
et al., 2020a). In the context of disease resistance, most reports support the idea that CK 364
promotes immunity and disease resistance by activating SA-dependent processes (Argueso et 365
al., 2012; Choi et al., 2010; Gupta et al., 2020), though roles in JA-mediated defense cannot be 366
ruled out. CK has also previously been suggested to be involved in growth-defense tradeoffs 367
(Cortleven et al., 2019). As a central growth hormone, it is perhaps expected that CK should be 368
involved in regulating growth-defense trade-offs. CK is known to have crosstalk with different 369
defense hormone pathways. Stress hormones are known to negatively regulate CK signaling 370
(Albrecht and Argueso, 2017; Naseem et al., 2015), and in the context of abiotic stress, 371
reduction in CK signaling can increase abiotic stress resistance (Nishiyama et al., 2011). In the 372
context of biotic stress, CK can act synergistically with SA (Argueso et al., 2012; Choi et al., 373
2010; Cortleven et al., 2019; Gupta et al., 2020a; Gupta et al., 2020b). CK signaling through 374

response regulators was shown several times to be regulated following pathogen infections 375
(Argueso et al., 2012; Gupta et al., 2020a; Gupta et al., 2020b; Igari et al., 2008). 376
In some instances, CK was suggested to either promote (Choi et al., 2010) – or inhibit (Argueso 377
et al., 2012; Choi et al., 2010) - growth and defense simultaneously, rather than effecting a 378
tradeoff, although experimental evidence of this has thus far been limited. Here, we observed 379
that priming immunity and growth with T39 or ASM also induced CK signaling (Figs. 5-6). CK 380
signaling was induced to a greater extent with T39, with the two-component sensor being 381
strongly activated (Fig. 5), and the expression of response regulators and CKX enzymes being 382
significantly induced (Fig. 6A-B). GA signaling, which is often the result of a balance between CK 383
and GA (Shwartz et al., 2016), was also affected by both elicitors (Fig. 6C). Meristem 384
maintenance was promoted, and differentiation was reduced, with T39 alone, though both 385
elicitors promoted organ determination (Fig. 6D). Interestingly, ASM was able to continue to 386
promote plant height and induce disease resistance under CK attenuation or increase, while 387
T39 was not able to promote increases in plant height under CK attenuation (Fig. 7). Growth 388
parameters that are only promoted by T39, such as increased numbers of initiated leaves and 389
increased leaf complexity, could no longer be promoted in *pFL>>CKX* overexpressing plants 390
(Fig. 7H-I), indicating that CK is required for these growth promotion activities. Thus, in the case 391
of T39, uncoupling of the growth-defense tradeoff can be achieved in a CK-dependent manner. 392
Interestingly, though CK requires SA to induce immunity and promote disease resistance 393
(Argueso et al., 2012; Choi et al., 2010; Cortleven et al., 2019; Gupta et al., 2020a; Gupta et al., 394
2020b), the relationship between SA and CK appears not to be reciprocal, as SA did not appear 395
to require CK in order to induce immunity and promote vertical growth. 396
397

*Defense priming competence and plant growth promotion competence have overlapping 398
pathways* 399

In this work, we chose to activate SAR and ISR, and examine both the plants' growth response 400
and induced immunity against *B. cinerea*. SAR is purported to depend on SA signaling, while ISR 401
relies on the JA/ET circuit. While SA was shown to be antagonistic to the JA signaling pathway 402
(Pieterse et al., 2009), other works have demonstrated that there are cases where SA and JA 403
are necessary for each other's activities. In most cases, ISR is reportedly regulated by JA/ET 404
signaling, but dependence on SA signaling has been reported as well (Martínez-Medina et al., 405
2013). Distinctions between ISR and SAR are not clear cut in tomato, and overlap between the 406

two was reported (Betsuyaku et al., 2018; Liu et al., 2016). Interestingly, though *Trichoderma* spp. are known to potentiate increases in defense via the JA/ET pathway, T39 activated the SA-dependent PR1a (Fig. 6, (Meller Harel et al., 2014). Furthermore, *B. cinerea* itself, a necrotrophic fungal pathogen against which the plant host required intact JA signaling to defend itself (AbuQamar et al., 2008), can also activate the SA pathway (Meller Harel et al., 2014). To examine whether the same pathways required for defense in response to priming agents are required for plant growth promotion, we used the SA deficient transgenic line NahG (Brading et al., 2000), the reduced JA mutant *spr-2* (Li et al., 2003), and the reduced ET sensitivity mutant *neverripe* (*nr*, (Lanahan et al., 1994)). *spr-2* is known to have increased susceptibility to *B. cinerea* infection (AbuQamar et al., 2008), while *nr* has similar susceptibility to the background line (Mehari et al., 2015), and NahG has reduced susceptibility or similar susceptibility to the background line (Angulo et al., 2015; Audenaert et al., 2002; Martínez-Hidalgo et al., 2015; Mehari et al., 2015), likely depending on the level of transgene expression. As expected, ASM was not able to induce resistance in NahG, but remained able to do so in *nr* and *spr-2*, while T39 induced resistance in NahG, but not in *spr-2* or *nr* (Fig. 8). Investigating the growth promoting effects in parallel, we observed similar results: T39 promoted growth and increased agricultural and developmental parameters in NahG, but was not able to do so in *spr-2* or *nr*, while ASM increased plant height in *spr-2* and *nr*, but not in NahG (Fig.s 9-11). The background lines behaved as expected. These results support the notion that development-defense tradeoffs can be uncoupled, with priming for defense resistance also serving to promote plant growth, suggesting that components of these two pathways may overlap.

Defense and developmental pathways partially overlap genetically

In previous work (Israeli et al., 2021) we generated a dataset of genes that promote morphogenesis. Our approach, which was validated in that work, relied on published data (Ichihashi et al., 2014) that includes transcriptomics of three *Solanum* species at four developmental stages. The set of "morphogenetic" genes was generated by selecting genes that showed successive downregulation over successive developmental stages, in the M82 background. Many classical morphogenesis genes were identified in the dataset based on this rule, validating the approach (Israeli et al., 2021). KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis was conducted to identify significantly differential pathways within the

morphogenetic dataset. The "plant-pathogen interaction" pathway was found to be 438 significantly enriched in the morphogenetic dataset (Fisher's exact test, p<0.05). Genes of the 439 plant-pathogen interaction pathway found to be significantly enriched in the morphogenetic 440 group are provided in **Supplemental Table 1**. **Fig. 12** provides a cartoon model depicting plant 441 immune responses in the cell, with all the gene groups found to be morphogenetically enriched 442 coded in a purple color. From this model, it emerges that almost all of the immune pathway is 443 represented in the morphogenesis group, providing a framework for the overlap between 444 defense and development we observed here. This suggests that the "development-defense" 445 tradeoff concept may need to be updated to include the notion that within a defined window, 446 defense priming may actually serve to support developmental processes, rather than inhibit 447 them. Pending future research, this could potentially be exploited agriculturally in certain cases. 448

While plants in nature tend to be uniquely adapted to their particular habitat, and can develop 449 and complete their life cycle in the face of environmental and pathogenic stressors, changing 450 climate and intense cropping practices have in some cases rendered such adaptations 451 ineffective. Our work provides basis for required further research towards the prevention of 452 negative effects that increased immunity can have on plant development and growth. 453

Materials and methods

 455

Plant materials and growth conditions

 456

Tomato cultivars and mutant and transgenic lines were used throughout the study as detailed 457 in Table 1. Plants were grown from seeds in soil (Green Mix; Even-Ari, Ashdod, Israel) in a 458 growth chamber, under long day conditions (16 hr:8 hr, light: dark) at 24°C. 459

Table 1: Plant genotypes used in this study 461

Genotype name	Source	References
<i>S. lycopersicum</i> cultivar M82		
<i>S. lycopersicum</i> cultivar Moneymaker (MM)		
<i>S. lycopersicum</i> cultivar Castelmart (Cm)		
<i>S. lycopersicum</i> cultivar Pearson (Pn)		

pTCSv2::3xVENUS Overexpression of VENUS driven by the synthetic two-component signaling sensor pTCSv2. M82 background line.	Bar lab	(Bar et al., 2016; Steiner et al., 2020)
Suppressor of the prosystemin-mediated response 2 "spr-2" - reduced JA production. Castlemart background line.	Prof. Bettina Hause	(Goetz et al., 2012; Montero-Vargas et al., 2018).
Decreased SA transgene "NahG", Moneymaker background line.	Prof. Yigal Elad	(Mehari et al., 2015).
Decreased ethylene sensitivity mutant <i>neverripe</i> (<i>nr</i>). Pearson background line.	Prof. Yigal Elad	(Mehari et al., 2015).
" <i>pBLS>>IPT7</i> " - elevated endogenous levels of CK. M82 background line.	Prof. Naomi Ori	(Bar et al., 2016; Shani et al., 2010).
" <i>pFIL>>CKX3</i> "- decreased endogenous CK content. M82 background line.	Prof. Naomi Ori	(Bar et al., 2016; Shani et al., 2010).

462

Elicitor treatments

463

For activation of SAR we used ASM (Marolleau et al., 2017), and for activation of ISR we used *T. harzianum* isolate T39 (Elad, 2000). For mature plant assays (agricultural parameters, disease and immunity assays), elicitors were applied to plants by soil drench, using 5 mL / pot of the indicated concentrations. For developmental analyses, elicitors were sprayed to drip on seedlings of the indicated ages.

464

465

466

467

468

469

ASM (Acibenzolar-S-Methyl), also known as BTH (Benzothiadiazole), a synthetic analog of SA, is used commercially to enhance disease resistance (and marketed under the trade name "Bion" (Marolleau et al., 2017; Oostendorp et al., 2001). Previously, application of BTH reduced plant biomass and was correlated with induction of SA-mediated defense responses (Huot et al., 2014). SA analogues have been found to effectively reduce gray mold (*Botrytis cinerea*) disease in tomato (Meller Harel et al., 2014). ASM was shown to be processed in vivo by an SA

470

471

472

473

474

475

processing enzyme (Tripathi et al., 2010). ASM was applied to plants at a concentration of 476
0.001% v/v. 477
478

Trichoderma spp. are established plant growth promoting fungi that enhance disease resistance 479
by inducing ISR in a JA/ET dependent manner (Meller Harel et al., 2014). *Trichoderma* spp. have 480
been shown to promote plant growth and activate ISR against a broad spectrum of pathogens. 481
They are ubiquitous filamentous fungi that colonize the rhizosphere and phyllosphere, promote 482
plant growth, and antagonize numerous foliar and root pathogens (Gupta and Bar, 2020). *T. 483
*harzianum** isolate T39 was cultured on PDA plates (Difco lab) at 25°C in natural light. Conidia 484
were harvested in water and applied to plants at a concentration of 10⁷ conidia/ ml. 485
486

Measuring growth and agricultural parameters 487

Plants were treated with T39 or ASM once a week by soil drench for 4 weeks, starting from 488
when the plants reached three unfurled leaves, typically 10-14 days after germination. The first 489
3 treatments were given at a volume of 5 ml, and at last treatment was given at a volume of 10 490
ml. Growth parameters were measured once a week: shoot length was measured using a hand 491
ruler from root crown to shoot apical meristem. The number of side shoots was counted taking 492
into account only shoots of at least 5 cm in length. For leaf complexity, we counted the primary, 493
secondary and intercalary leaflets on the indicated leaf. Primary leaflets are separated by a 494
rachis, and some of them develop secondary and tertiary leaflets. Intercalary leaflets are lateral 495
leaflets that develop from the rachis later than the primary leaflets and between them, and 496
typically have a very short petiolule. 497

The following parameters were measured for yield: weight of fruits, weight of shoot, calculated 498
harvest index (yield weight/total plant weight (shoot + fruit weight), and fruit soluble sugar 499
content brix%, which was measured using a ref-85 Refractometer (mrc). 500
501

Developmental analysis of seedlings 502

Seedlings were sprayed to drench with elicitors ten days after germination, and 17 days after 503
germination. Growth and development parameters were analyzed one week after each 504
treatment. Parameters analyzed include height, number of unfurled leaves, leaf developmental 505
stage (No. of the leaf that is Plastochron 1), formation of floral meristem, and leaf complexity. 506

Shoots were dissected with a surgical blade and No.5 forceps. Analyses following dissection 507
were conducted using a Nikon SMZ-25 binocular stereomicroscope or a Dino-Lite hand held 508
microscope. 509

510

B. cinerea infection and disease monitoring 511

Pathogenesis assays were conducted on detached leaves. We have previously demonstrated 512
that in most cases in tomato, relative disease levels are similar on detached leaves and whole 513
plants, though the disease develops faster in detached leaves (Gupta et al., 2020a). *B. cinerea* 514
isolate *Bcl16* cultures were maintained on potato dextrose agar (PDA) (Difco Lab) plates and 515
incubated at 22 °C for 5-7 days. 0.4 cm diameter discs were pierced from 5 day old mycelia 516
plates and used for inoculation. The leaves were incubated in a humid chamber. The area of the 517
necrotic lesions was measured five days post inoculation using ImageJ software. 518

519

Ethylene measurement 520

Leaf discs 0.9 cm in diameter were harvested from plants treated as indicated, and average 521
weight was measured for each plant. Discs were washed in water for 1-2 h. Every six discs were 522
sealed with rubber septa in 10-mL Erlenmeyer flasks, containing 1 ml assay buffer (10 mM MES 523
pH 6.0, 250 mM sorbitol) with or without the fungal elicitor ethylene inducing xylanase (EIX), 1 524
µg/mL, overnight at room temperature. Disposable syringes (5 mL) with 21 gage needles were 525
used to pump out the gaseous sample, and rubber stoppers were used to hold the sample until 526
it was injected into the Gas chromatograph. Ethylene content was measured by gas 527
chromatography (Varian 3350, Varian, California, USA). 528

529

Measurement of ROS generation 530

ROS was measured as previously described (Leibman-Markus et al., 2017). Leaf discs 0.5 cm in 531
diameter were harvested from indicated genotypes. Discs were floated in a white 96-well plate 532
(SPL Life Sciences, Korea) containing 250µl distilled water for 24 h at room temperature. After 533
incubation, water was removed, and 50 µL ddH₂O water were immediately added to each well 534
to prevent the tissue from drying up. ROS measurement reaction containing: Luminol 150 µM, 535
HRP 15 µg/mL and either 1 µM flg22 or 1µg/ mL EIX. Light emission was measured immediately 536
and over the indicated time using a microplate reader luminometer (Spark, Tecan, Switzerland). 537

	538
<u>Imaging of the CK-response synthetic promoter pTCSv2::3×VENUS</u>	539
Stable transgenic M82 tomato pTCSv2::3 × VENUS plants that express VENUS driven by the synthetic two-component signaling sensor pTCSv2 (Bar et al., 2016; Steiner et al., 2020) were sprayed with elicitors ten days after germination. VENUS expression was analyzed 24 h after treatment using a Nikon SMZ-25 stereomicroscope equipped with a Nikon-D2 camera and NIS Elements v. 5.11 software. ImageJ software was used for analysis and quantification of captured images.	540 541 542 543 544 545
	546
<u>RNA extraction and qRT-PCR:</u>	547
Plants were sprayed with elicitors ten days after germination, and, optionally, a second treatment was given 1 week later. Plants tissue was collected 48 hours after each treatment. In both cases, ~70 mg of young shots (typically consisting of the meristem and 4 youngest leaf primordia, m+4) were collected (5-7 shoots). Total RNA was extracted from tomato shoots using Tri-reagent (Sigma-Aldrich) according to the manufacturer's instructions. RNA (3µg) was converted to first strand cDNA using reverse transcriptase (Promega, United States) and oligodT. qRT-PCR was performed according to the Power SYBR Green Master Mix protocol (Life Technologies, Thermo Fisher, United States), using a Rotor-Gene Q machine (Qiagen). Relative expression was quantified by dividing the expression of the relevant gene by the geometric mean of the expression of three normalizers: ribosomal protein <i>RPL8</i> (Solyc10g006580), Cyclophilin <i>CYP</i> (Solyc01g111170) and EXPRESSED <i>EXP</i> (Solyc07g025390). All primers pairs had efficiencies in the range of 0.97-1.03. Primers used for qRT-PCR are detailed in Supplemental Table 2 .	548 549 550 551 552 553 554 555 556 557 558 559 560
	561
<u>Supplemental Materials</u>	562
Figure S1: Treatment with T39 affects seedling growth and development.	
Figure S2: Treatment with T39 accelerates leaf development.	

Figure S3: Treatment with T39 and ASM affects developmental gene expression after one treatment.

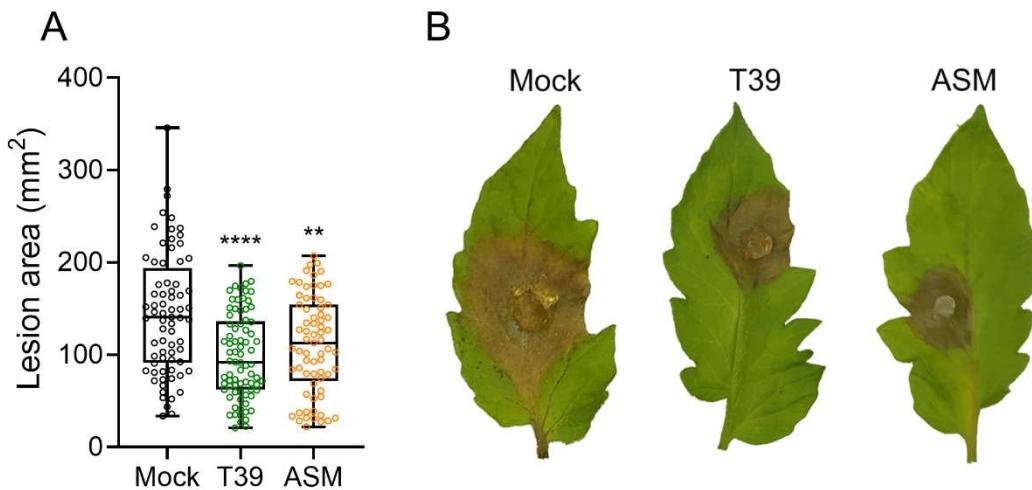
Supplemental Table 1: Genes recognized as "plant-pathogen interaction" by KEGG that are defined as morphogenetic.

Supplemental Table 2: qPCR primers used in this work.

	563
	564
Acknowledgements	565
We thank Naomi Ori for helpful discussion, and members of the Elad and Bar groups for continuous support.	566
	567
Funding	568
This work was partially supported by the Israel Science Foundation administered by the Israel Academy of Science and Humanities (1759/20) to M.B..	569
	570
Competing interests	571
The authors declare no competing interests.	572
Author contributions	573
M.B. conceived and designed the study. A.S., M.L-M., R.G., I.M., D.R-D., Y.E. and M.B. formulated the methodology and carried out the experiments. A.S., M.L-M., D.R-D., R.G., Y.E. and M.B. analyzed the data. All authors contributed to the writing of the manuscript.	574
	575
	576
Data Availability Statement	577
The authors declare that the data supporting the findings of this study are available within the paper and its Supporting Information files. Raw data is available from the corresponding author upon reasonable request.	578
	579
	580
	581
	582
	583
	584

References	585
AbuQamar, S., Chai, M. F., Luo, H., Song, F. and Mengiste, T. (2008). Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory. <i>Plant Cell</i> 20 , 1964–1983.	586 587 588
Albrecht, T. and Argueso, C. T. (2017). Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. <i>Ann. Bot.</i> 119 , 725–735.	589 590
Angulo, C., Leyva, M. de la O., Finiti, I., López-Cruz, J., Fernández-Crespo, E., García-Agustín, P. and González-Bosch, C. (2015). Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (<i>Solanum lycopersicum</i>) plants against <i>Botrytis cinerea</i> . <i>J. Plant Physiol.</i> 175 , 163–173.	591 592 593 594
Argueso, C. T., Ferreira, F. J., Epple, P., To, J. P. C., Hutchison, C. E., Schaller, G. E., Dangl, J. L. and Kieber, J. J. (2012). Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. <i>PLoS Genet.</i> 8 ,	595 596 597
Audenaert, K., Pattery, T., Cornelis, P. and Höfte, M. (2002). Induction of systemic resistance to <i>Botrytis cinerea</i> in tomato by <i>Pseudomonas aeruginosa</i> 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin. <i>Mol. Plant-Microbe Interact.</i> 15 , 1147–1156.	598 599 600
Azarmi, R., Hajieghrari, B. and Giglou, A. (2011). Effect of trichoderma isolates on tomato seedling growth response and nutrient uptake. <i>African J. Biotechnol.</i> 10 , 5850–5855.	601 602
Bar, M., Israeli, A., Levy, M., Ben Gera, H., Jiménez-Gómez, J. M., Kouril, S., Tarkowski, P. and Ori, N. (2016). CLAUSA Is a MYB Transcription Factor That Promotes Leaf Differentiation by Attenuating Cytokinin Signaling. <i>Plant Cell</i> 28 , 1602–15.	603 604 605
Bari, R. and Jones, J. D. G. G. (2009). Role of plant hormones in plant defence responses. <i>Plant Mol. Biol.</i> 69 , 473–88.	606 607
Belkhadir, Y., Yang, L., Hetzel, J., Dangl, J. L. and Chory, J. (2014). The growth-defense pivot: Crisis management in plants mediated by LRR-RK surface receptors. <i>Trends Biochem. Sci.</i> 39 , 447–456.	608 609
Bergelson, J. (1994). The Effects of Genotype and the Environment on Costs of Resistance in Lettuce. https://doi.org/10.1086/285607 143 , 349–359.	610 611
Betsuyaku, S., Katou, S., Takebayashi, Y., Sakakibara, H., Nomura, N. and Fukuda, H. (2018). Salicylic Acid and Jasmonic Acid Pathways are Activated in Spatially Different Domains Around the Infection Site During Effector-Triggered Immunity in <i>Arabidopsis thaliana</i> . <i>Plant Cell Physiol.</i> 59 , 8–16.	612 613 614
Brading, P. A., Hammond-Kosack, K. E., Parr, A. and Jones, J. D. G. (2000). Salicylic acid is not required for Cf-2- and Cf-9-dependent resistance of tomato to <i>Cladosporium fulvum</i> . <i>Plant J.</i> 23 , 305–318.	615 616
Cao, H., Li, X. and Dong, X. (1998). Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 95 , 6531–6536.	617 618 619
Choi, J., Huh, S. U., Kojima, M., Sakakibara, H., Paek, K.-H. H. and Hwang, I. (2010). The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in <i>arabidopsis</i> . <i>Dev. Cell</i> 19 , 284–295.	620 621 622
Cortleven, A., Leuendorf, J. E., Frank, M., Pezzetta, D., Bolt, S. and Schmülling, T. (2019). <i>Cytokinin action in response to abiotic and biotic stresses in plants</i> . Blackwell Publishing Ltd.	623 624
De Vleesschauwer, D., Xu, J. and Höfte, M. (2014). Making sense of hormone-mediated defense networking: from rice to <i>Arabidopsis</i> . <i>Front. Plant Sci.</i> 5 , 1–15.	625 626
Dwivedi, S. L., Reynolds, M. P. and Ortiz, R. (2021). Mitigating tradeoffs in plant breeding. <i>iScience</i> 24 , 102965.	627 628

Elad, Y. (2000). Biological control of foliar pathogens by means of <i>Trichoderma harzianum</i> and potential modes of action. <i>Crop Prot.</i> 19 , 709–714.	629 630
Figueroa-Macías, J. P., García, Y. C., Núñez, M., Díaz, K., Olea, A. F. and Espinoza, L. (2021). Plant growth-defense trade-offs: Molecular processes leading to physiological changes. <i>Int. J. Mol. Sci.</i> 22 , 1–18.	631 632 633
Genot, B., Lang, J., Berriri, S., Garmier, M., Gilard, F., Pateyron, S., Haustraete, K., Van Der Streaten, D., Hirt, H. and Colcombet, J. (2017). Constitutively Active <i>Arabidopsis</i> MAP Kinase 3 Triggers Defense Responses Involving Salicylic Acid and SUMM2 Resistance Protein. <i>Plant Physiol.</i> 174 , 1238.	634 635 636
Ghorbel, M., Brini, F., Sharma, A. and Landi, M. (2021). Role of jasmonic acid in plants: the molecular point of view. <i>Plant Cell Reports</i> 2021 <i>408</i> 40 , 1471–1494.	637 638
Goetz, S., Hellwege, A., Stenzel, I., Kutter, C., Hauptmann, V., Forner, S., McCaig, B., Hause, G., Miersch, O., Wasternack, C., et al. (2012). Role of cis-12-oxo-phytodienoic acid in tomato embryo development. <i>Plant Physiol.</i> 158 , 1715–1727.	639 640 641
Gómez-Gómez, L., Felix, G. and Boller, T. (1999). A single locus determines sensitivity to bacterial flagellin in <i>Arabidopsis thaliana</i> . <i>Plant J.</i> 18 , 277–284.	642 643
Gupta, R. and Bar, M. (2020). Plant Immunity, Priming, and Systemic Resistance as Mechanisms for <i>Trichoderma</i> spp. Biocontrol. pp. 81–110. Springer, Singapore.	644 645
Gupta, A., Sarkar, A. K. and Senthil-Kumar, M. (2016). Global Transcriptional Analysis Reveals Unique and Shared Responses in <i>Arabidopsis thaliana</i> Exposed to Combined Drought and Pathogen Stress. <i>Front. Plant Sci.</i> 7 ,	646 647 648
Gupta, R., Pizarro, L., Leibman-Markus, M., Marash, I. and Bar, M. (2020a). Cytokinin response induces immunity and fungal pathogen resistance, and modulates trafficking of the PRR LeEIX2 in tomato. <i>Mol. Plant Pathol.</i> 21 , 10.1111/mpp.12978.	649 650 651
Gupta, R., Leibman-Markus, M., Pizarro, L. and Bar, M. (2020b). Cytokinin induces bacterial pathogen resistance in tomato. <i>Plant Pathol.</i> In press .	652 653
Harel, Y. M., Mehari, Z. H., Rav-David, D. and Elad, Y. (2014). Systemic Resistance to Gray Mold Induced in Tomato by Benzothiadiazole and <i>Trichoderma harzianum</i> T39. <i>Phytopathology</i> 104 , 150–157.	654 655
Heidel, A. J., Clarke, J. D., Antonovics, J. and Dong, X. (2004). Fitness Costs of Mutations Affecting the Systemic Acquired Resistance Pathway in <i>Arabidopsis thaliana</i> . <i>Genetics</i> 168 , 2197–2206.	656 657
Heil, M. and Bostock, R. M. (2002). Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. <i>Ann. Bot.</i> 89 , 503–512.	658 659
Hoyos-Carvajal, L., Orduz, S. and Bissett, J. (2009). Growth stimulation in bean (<i>Phaseolus vulgaris</i> L.) by <i>Trichoderma</i> . <i>Biol. Control</i> 51 , 409–416.	660 661
Huot, B., Yao, J., Montgomery, B. L. and He, S. Y. (2014). Growth-defense tradeoffs in plants: A balancing act to optimize fitness. <i>Mol. Plant</i> 7 , 1267–1287.	662 663
Ichihashi, Y., Aguilar-Martínez, J. A., Farhi, M., Chitwood, D. H., Kumar, R., Millon, L. V., Peng, J., Maloof, J. N. and Sinha, N. R. (2014). Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 111 , E2616–E2621.	664 665 666 667
Igari, K., Endo, S., Hibara, K. I., Aida, M., Sakakibara, H., Kawasaki, T. and Tasaka, M. (2008). Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in <i>Arabidopsis</i> . <i>Plant J.</i> 55 , 14–27.	668 669 670
Ishii, H., Fujiwara, M. and Nishimura, K. (2019). Systemic resistance inducer acibenzolar-S-methyl (ASM) and its microencapsulated formulations: their long-lasting control efficacy against cucumber	671 672


diseases and mitigation of phytotoxicity. <i>Pest Manag. Sci.</i> 75 , 801–808.	673
Israeli, A., Burko, Y., Shleizer-Burko, S., Zelnik, I. D., Sela, N., Hajirezaei, M. R., Fernie, A. R., Tohge, T., Ori, N. and Bar, M. (2021). Coordinating the morphogenesis-differentiation balance by tweaking the cytokinin-gibberellin equilibrium. <i>PLoS Genet.</i> 17 , 1–25.	674 675 676
Jogaiah, S., Abdelrahman, M. and Tran, L. P. (2017). Different mechanisms of <i>Trichoderma virens</i> - mediated resistance in tomato against <i>Fusarium</i> wilt involve the jasmonic and salicylic acid pathways. <i>9</i> , 870–882.	677 678 679
Karasov, T. L., Chae, E., Herman, J. J. and Bergelson, J. (2017). Mechanisms to Mitigate the Trade-Off between Growth and Defense. <i>Plant Cell</i> 29 , 666–680.	680 681
Ke, Y., Yuan, M., Liu, H., Hui, S., Qin, X., Chen, J., Zhang, Q., Li, X., Xiao, J., Zhang, Q., et al. (2020). The versatile functions of OsALDH2B1 provide a genic basis for growth–defense trade-offs in rice. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 117 , 3867–3873.	682 683 684
Klessig, D. F., Choi, H. W. and Dempsey, D. A. (2018). Systemic acquired resistance and salicylic acid: Past, present, and future. <i>Mol. Plant-Microbe Interact.</i> 31 , 871–888.	685 686
Kobayashi, Y., Fukuzawa, N., Hyodo, A., Kim, H., Mashiyama, S., Ogihara, T., Yoshioka, H., Matsuura, H., Masuta, C., Matsumura, T., et al. (2020). Role of salicylic acid glucosyltransferase in balancing growth and defence for optimum plant fitness. <i>Mol. Plant Pathol.</i> 21 , 429–442.	687 688 689
Koo, Y. M., Heo, A. Y. and Choi, H. W. (2020). Salicylic acid as a safe plant protector and growth regulator. <i>Plant Pathol. J.</i> 36 , 1–10.	690 691
Korolev, N., Rav David, D. and Elad, Y. (2008). The role of phytohormones in basal resistance and <i>Trichoderma</i> -induced systemic resistance to <i>Botrytis cinerea</i> in <i>Arabidopsis thaliana</i> . <i>BioControl</i> 53 , 667–683.	692 693 694
Lanahan,"", M. B., Yen, H.-C., Giovannoni, J. J. and Klee, H. J. (1994). The never ripe mutation blocks ethylene perception in tomato. <i>Plant Cell</i> 6 , 521.	695 696
Leibman-Markus, M., Schuster, S. and Avni, A. (2017). LeEIX2 Interactors' Analysis and EIX-Mediated Responses Measurement. In <i>Plant Pattern Recognition Receptors: Methods and Protocols</i> (ed. Shan, L.) and He, P.), pp. 167–172. New York, NY: Springer New York.	697 698 699
Leibman-Markus, M., Gupta, R., Pizarro, L., Gershony, O., Rav-David, D., Elad, Y. and Bar, M. (2021). Gene Editing of the Decoy Receptor LeEIX1 Increases Host Receptivity to <i>Trichoderma</i> Bio-Control. <i>Front. Fungal Biol.</i> 2 , 1–10.	700 701 702
Li, C., Liu, G., Xu, C., Lee, G. I., Bauer, P., Ling, H. Q., Ganal, M. W. and Howe, G. A. (2003). The Tomato Suppressor of prosystemin-mediated responses2 Gene Encodes a Fatty Acid Desaturase Required for the Biosynthesis of Jasmonic Acid and the Production of a Systemic Wound Signal for Defense Gene Expression. <i>Plant Cell</i> 15 , 1646.	703 704 705 706
Liu, L., Sonbol, F.-M., Huot, B., Gu, Y., Withers, J., Mwimba, M., Yao, J., He, S. Y. and Dong, X. (2016). Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. <i>Nat. Commun.</i> 7 ,	707 708 709
Margalha, L., Confraria, A. and Baena-González, E. (2019). SnRK1 and TOR: Modulating growth–defense trade-offs in plant stress responses. <i>J. Exp. Bot.</i> 70 , 2261–2274.	710 711
Marolleau, B., Gaucher, M., Heintz, C., Degrave, A., Warneys, R., Orain, G., Lemarquand, A. and Brisset, M. N. (2017). When a plant resistance inducer leaves the lab for the field: Integrating ASM into routine apple protection practices. <i>Front. Plant Sci.</i> 8 , 1938.	712 713 714
Martínez-Hidalgo, P., García, J. M. and Pozo, M. J. (2015). Induced systemic resistance against <i>Botrytis cinerea</i> by <i>Micromonospora</i> strains isolated from root nodules. <i>Front. Microbiol.</i> 6 , 1–11.	715 716

Martínez-Medina, A., Fernández, I., Sánchez-Guzmán, M. J., Jung, S. C., Pascual, J. A. and Pozo, M. J. (2013). Deciphering the hormonal signalling network behind the systemic resistance induced by <i>Trichoderma harzianum</i> in tomato. <i>Front. Plant Sci.</i> 4 , 206.	717 718 719
Mehari, Z. H., Elad, Y., Rav-David, D., Graber, E. R. and Meller Harel, Y. (2015). Induced systemic resistance in tomato (<i>Solanum lycopersicum</i>) against <i>Botrytis cinerea</i> by biochar amendment involves jasmonic acid signaling. <i>Plant Soil</i> 395 , 31–44.	720 721 722
Mishra, A. K., Sharma, K. and Misra, R. S. (2012). Elicitor recognition, signal transduction and induced resistance in plants. http://mc.manuscriptcentral.com/tjpi 7 , 95–120.	723 724
Mller, D. and Leyser, O. (2011). Auxin, cytokinin and the control of shoot branching. <i>Ann. Bot.</i> 107 , 1203.	725 726
Monson, R. K., Trowbridge, A. M., Lindroth, R. L. and Lerdau, M. T. (2022). Coordinated resource allocation to plant growth–defense tradeoffs. <i>New Phytol.</i> 233 , 1051–1066.	727 728
Montero-Vargas, J. M., Casarrubias-Castillo, K., Martínez-Gallardo, N., Ordaz-Ortiz, J. J., Délano-Frier, J. P. and Winkler, R. (2018). Modulation of steroidal glycoalkaloid biosynthesis in tomato (<i>Solanum lycopersicum</i>) by jasmonic acid. <i>Plant Sci.</i> 277 , 155–165.	729 730 731
Naseem, M., Sarukhanyan, E. and Dandekar, T. (2015). LONELY-GUY Knocks Every Door: Crosskingdom Microbial Pathogenesis. <i>Trends Plant Sci.</i> 20 , 781–783.	732 733
Nesler, A., Perazzolli, M., Puopolo, G., Giovannini, O., Elad, Y. and Pertot, I. (2015). A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions. <i>Front. Plant Sci.</i> 6 .	734 735 736
Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D. T., Kojima, M., Werner, T., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., Kakimoto, T., et al. (2011). Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. <i>Plant Cell</i> 23 , 2169–2183.	737 738 739 740
Oostendorp, M., Kunz, W., Dietrich, B. and Staub, T. (2001). Induced Disease Resistance in Plants by Chemicals. <i>Eur. J. Plant Pathol.</i> 2001 107 , 19–28.	741 742
Palmieri, M. C., Perazzolli, M., Matafora, V., Moretto, M., Bachi, A. and Pertot, I. (2012). Proteomic analysis of grapevine resistance induced by <i>Trichoderma harzianum</i> T39 reveals specific defence pathways activated against downy mildew. <i>J. Exp. Bot.</i> 63 , 6237.	743 744 745
Pieterse, C. M. J. J., Leon-Reyes, A., Van der Ent, S. and Van Wees, S. C. M. M. (2009). <i>Networking by small-molecule hormones in plant immunity</i> . Nature Publishing Group.	746 747
Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M. and Bakker, P. A. H. M. (2014). Induced Systemic Resistance by Beneficial Microbes. <i>Annu. Rev. Phytopathol.</i> 52 , 347–375.	748 749 750
Pizarro, L., Leibman-Markus, M., Gupta, R., Kovetz, N., Shtein, I., Bar, E., Davidovich-Rikanati, R., Zarivach, R., Lewinsohn, E., Avni, A., et al. (2020). A gain of function mutation in SINR4a enhances basal immunity resulting in broad-spectrum disease resistance. <i>Commun. Biol.</i> 3 , 1–14.	751 752 753
Pokotylo, I., Hodges, M., Kravets, V. and Ruelland, E. (2022). A ménage à trois: salicylic acid, growth inhibition, and immunity. <i>Trends Plant Sci.</i> 27 , 460–471.	754 755
Rivas-San Vicente, M. and Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. <i>J. Exp. Bot.</i> 62 , 3321–3338.	756 757
Saini, R. and Nandi, A. K. (2022). TOPLESS in the regulation of plant immunity. <i>Plant Mol. Biol.</i> 109 , 1–12.	758 759
Salas-Marina, M. A., Silva-Flores, M. A., Cervantes-Badillo, M. G., Rosales-Saavedra, M. T., Islas-Osuna,	760

M. A. and Casas-Flores, S. (2011). The plant growth-promoting fungus <i>Aspergillus ustus</i> promotes growth and induces resistance against different lifestyle pathogens in <i>Arabidopsis thaliana</i> . <i>J. Microbiol. Biotechnol.</i> 21 , 686–96.	761 762 763
Shani, E., Ben-Gera, H., Shleizer-Burko, S., Burko, Y., Weiss, D. and Ori, N. (2010). Cytokinin regulates compound leaf development in tomato c w. <i>Plant Cell</i> 22 , 3206–3217.	764 765
Shanmugaiah, V., Balasubramanian, N., Gomathinayagam, S., Manoharan, P. T. and Rajendran, A. (2009). Effect of single application of <i>Trichoderma viride</i> and <i>Pseudomonas fluorescens</i> on growth promotion in cotton plants. <i>African J. Agric. Res.</i> 4 , 1220–1225.	766 767 768
Shleizer-Burko, S., Burko, Y., Ben-Herzel, O. and Ori, N. (2011). Dynamic growth program regulated by LANCEOLATE enables flexible leaf patterning. <i>Development</i> 138 , 695–704.	769 770
Shoresh, M., Yedidia, I. and Chet, I. (2005). Involvement of Jasmonic Acid/Ethylene Signaling Pathway in the Systemic Resistance Induced in Cucumber by <i>Trichoderma asperellum</i> T203. <i>Phytopathology</i> 95 , 76–84.	771 772 773
Shwartz, I., Levy, M., Ori, N. and Bar, M. (2016). Hormones in tomato leaf development. <i>Dev. Biol.</i> 419 , 132–142.	774 775
Smakowska, E., Kong, J., Busch, W. and Belkhadir, Y. (2016). Organ-specific regulation of growth-defense tradeoffs by plants. <i>Curr. Opin. Plant Biol.</i> 29 , 129–137.	776 777
Soylu, S., Baysal, Ö. and Soylu, E. M. (2003). Induction of disease resistance by the plant activator, acibenzolar-S-methyl (ASM), against bacterial canker (<i>Clavibacter michiganensis</i> subsp. <i>michiganensis</i>) in tomato seedlings. <i>Plant Sci.</i> 165 , 1069–1075.	778 779 780
Stadnik, M. and Buchenauer, H. (1999). Effects of benzothiadiazole, kinetin and urea on the severity of powdery mildew and yield of winter wheat / Einfluß von Benzothiadiazol, Kinetin und Harnstoff auf den Mehltaubefall und den Ertrag von Winterweizen on JSTOR. <i>J. Plant Dis. Prot.</i> 106 , 476–489.	781 782 783
Steiner, E., Israeli, A., Gupta, R., Shwartz, I., Nir, I., Leibman-Markus, M., Tal, L., Farber, M., Amsalem, Z., Ori, N., et al. (2020). Characterization of the cytokinin sensor TCSv2 in <i>arabidopsis</i> and tomato. <i>Plant Methods</i> 16 , 152.	784 785 786
Trejo-Saavedra, D. L., García-Neria, M. A. and Rivera-Bustamante, R. F. (2013). Benzothiadiazole (BTH) induces resistance to Pepper golden mosaic virus (PepGMV) in pepper (<i>Capsicum annuum</i> L.). <i>Biol. Res.</i> 46 , 333–340.	787 788 789
Tripathi, D., Jiang, Y. L. and Kumar, D. (2010). SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants. <i>FEBS Lett.</i> 584 , 3458–3463.	790 791
Tun, O. M., Lipsky, A., Luzzatto Knaan, T., Kerem, Z. and Yedidia, I. (2013). The plant activator BTH promotes <i>Ornithogalum dubium</i> and <i>O. thrysoides</i> differentiation and regeneration in vitro. <i>Biol. Plant.</i> 57 , 41–48.	792 793 794
van Butselaar, T. and Van den Ackerveken, G. (2020). Salicylic Acid Steers the Growth-Immunity Tradeoff. <i>Trends Plant Sci.</i> 25 , 566–576.	795 796
Vos, I. A., Pieterse, C. M. J. and Van Wees, S. C. M. (2013). Costs and benefits of hormone-regulated plant defences. <i>Plant Pathol.</i> 62 , 43–55.	797 798
Vos, I. A., Moritz, L., Pieterse, C. M. J. and Van Wees, S. C. M. (2015). Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. <i>Front. Plant Sci.</i> 6 , 639.	799 800
Walters, D. and Heil, M. (2007). Costs and trade-offs associated with induced resistance. <i>Physiol. Mol. Plant Pathol.</i> 71 , 3–17.	801 802
Wasternack, C., Forner, S., Strnad, M. and Hause, B. (2013). Jasmonates in flower and seed development. <i>Biochimie</i> 95 , 79–85.	803 804

Werner, T., Motyka, V., Strnad, M., Schmülling, T. and Schmülling, T. (2001). Regulation of plant growth by cytokinin. <i>Proc Natl Acad Sci U S A</i> 98 , 10487–10492.	805
	806
Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D. G., Boller, T. and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. <i>Cell</i> 125 , 749–760.	807
	808
	809
	810

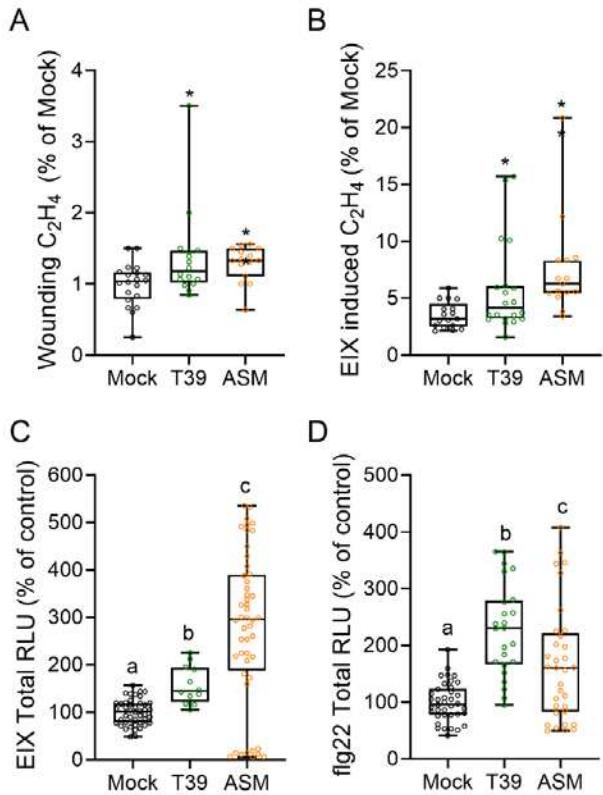

Figures and legends

Figure 1: Treatment with T39 and ASM reduces *B. cinerea* disease.

S. lycopersicum cv M82 Tomato plants were soil-drenched twice with elicitors: 3 days and 4 h before *Botrytis cinerea* inoculation. Plant were inoculated with 3 day-old *B. cinerea* mycelia. Plants treated with DDW were used as mock. Lesion area was measured 5 days after inoculation. Experiment was repeated 5 independent times. **A** Lesion area. **B** representative images, 5 days after inoculation.

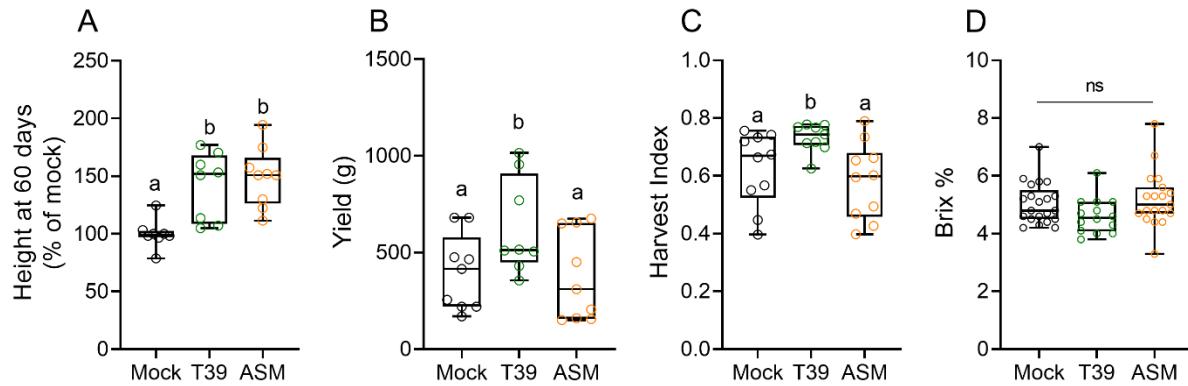

Box plots indicate inner quartile ranges (box), outer quartile ranges (whiskers), median (line), all points shown. Asterisks indicate significance from Mock treatment in an unpaired t test with Welch's correction, N = 70, *p<0.05; **p<0.01; ****p<0.0001.

Figure 2: Treatment with T39 and ASM induces immune responses.

S. lycopersicum cv M82 Tomato plants were soil-drenched twice with elicitors: 3 days and 4 h before assays. Plants treated with DDW were used as mock. **A-B** Ethylene production was measured alone (A) or with the addition of 1 μ g / mL Ethylene Inducing Xylanase (EIX, B), using gas-chromatography. **C-D** ROS production was measured every 5 minutes for 90 minutes (EIX) and every 3 minutes for 60 minutes (flg22) using the HRP luminol method, and expressed in terms of total RLU (Relative Luminescence Units).

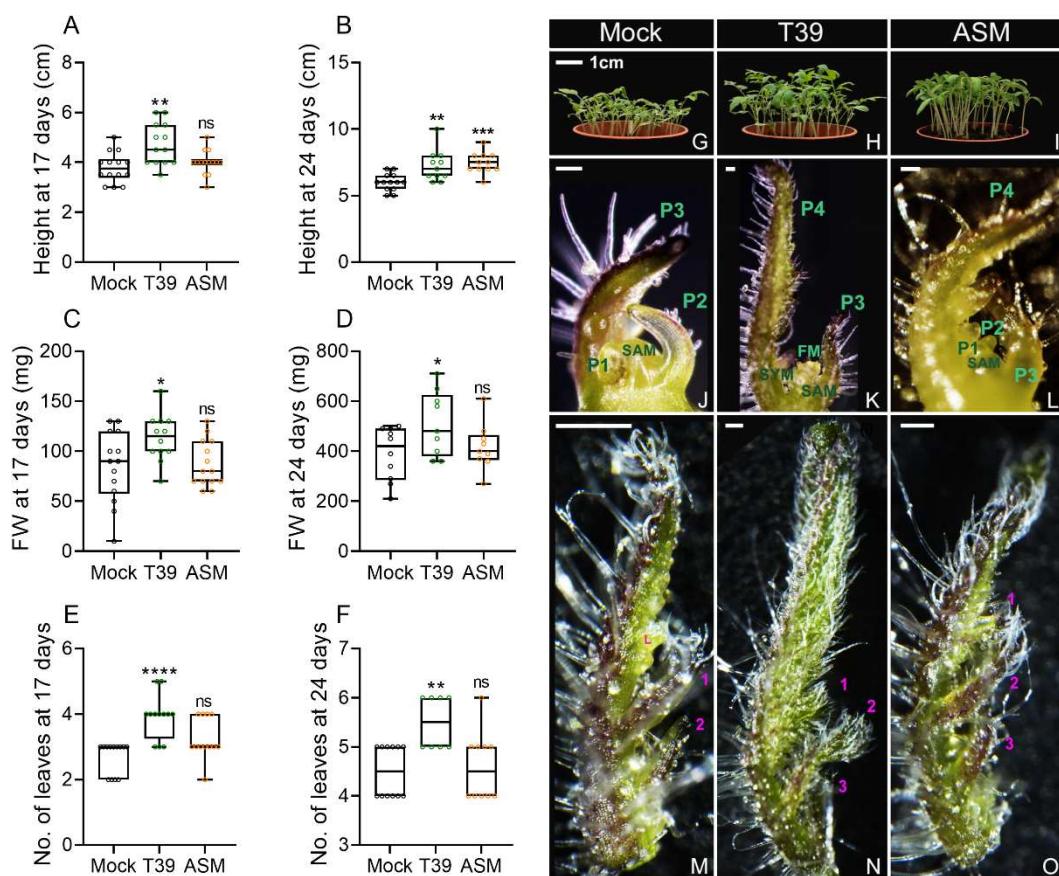
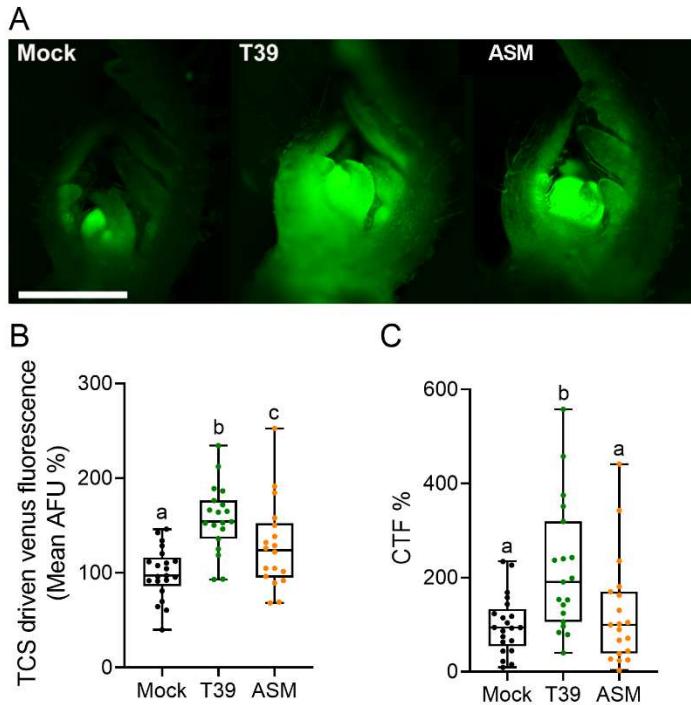

Box plots indicate inner quartile ranges (box), outer quartile ranges (whiskers), median (line), all points shown. Asterisks indicate statistical significance from Mock treatment, and different letters indicate statistically significant differences among samples in Welch's ANOVA with a Dunnett post-hoc test, A-B: N=15, *p<0.05, C: N>12, p<0.0007, D: N>24, p<0.045.

Figure 3: Treatment with T39 and ASM affects plant growth and agricultural parameters.

S. lycopersicum cv M82 Tomato plants were soil-drenched with elicitors once a week for four weeks. Plants treated with DDW were used as mock. **A** Height of 60 day old plants. **B** Average fruit weight per plant. **C** the amount of yield obtained per vegetative plant weight, expressed as Harvest Index. **D** Average tomato soluble sugar %, expressed as Brix.

Boxplots are shown with inter-quartile-ranges (box), medians (line in box) and outer quartile whiskers, minimum to maximum values, all points shown. Different letters indicate statistically significant differences among samples in an unpaired two-tailed t-test, A: N=8, p<0.005; B: N=9, p<0.047; C: N=10, p<0.032; D: N> 14, ns=not significant.


S. lycopersicum cv M82 Tomato seedlings were soil-drenched with elicitors once (at 10 days of age, A,C,E) or twice (at 10 and 17 days of age, B,D,F). Seedlings treated with DDW were used as mock. **A,B** Height. **C,D** Fresh weight. **E,F** Number of unfurled leaves.

Boxplots are shown with inter-quartile-ranges (box), medians (line in box) and outer quartile whiskers, minimum to maximum values, all points shown. Asterisks indicate statistical significance from Mock treatment in one-way ANOVA with Tukey's post hoc test, A: N=14, p<0.0012; B: N=12, p<0.0052; C: N=12, p<0.04; D: N=9, p<0.04; E: N=12, p<0.0001, F: N=8, p<0.003.

G-O representative images at 24 days of seedlings (G-I), a single shoot with the two oldest leaves removed (J-L), and Leaf No. 5 (M-O), which was at the P5 stage in Mock and ASM (M, O), and at the P6 stage in T39 (N). J-O were acquired using a Nikon SMZ25 stereomicroscope equipped with a Nikon DS-Ri2 camera and NIS elements software. Bars: G (For G-I): 1cm, J-L: 100 μ M, M-O 250 μ M.

SAM= shoot apical meristem; FM= floral meristem; SYM= Sympodial meristem (the vegetative meristem that continues to produce leaves after transition to flowering). P1/2/3/4 indicates developmental plastochron.

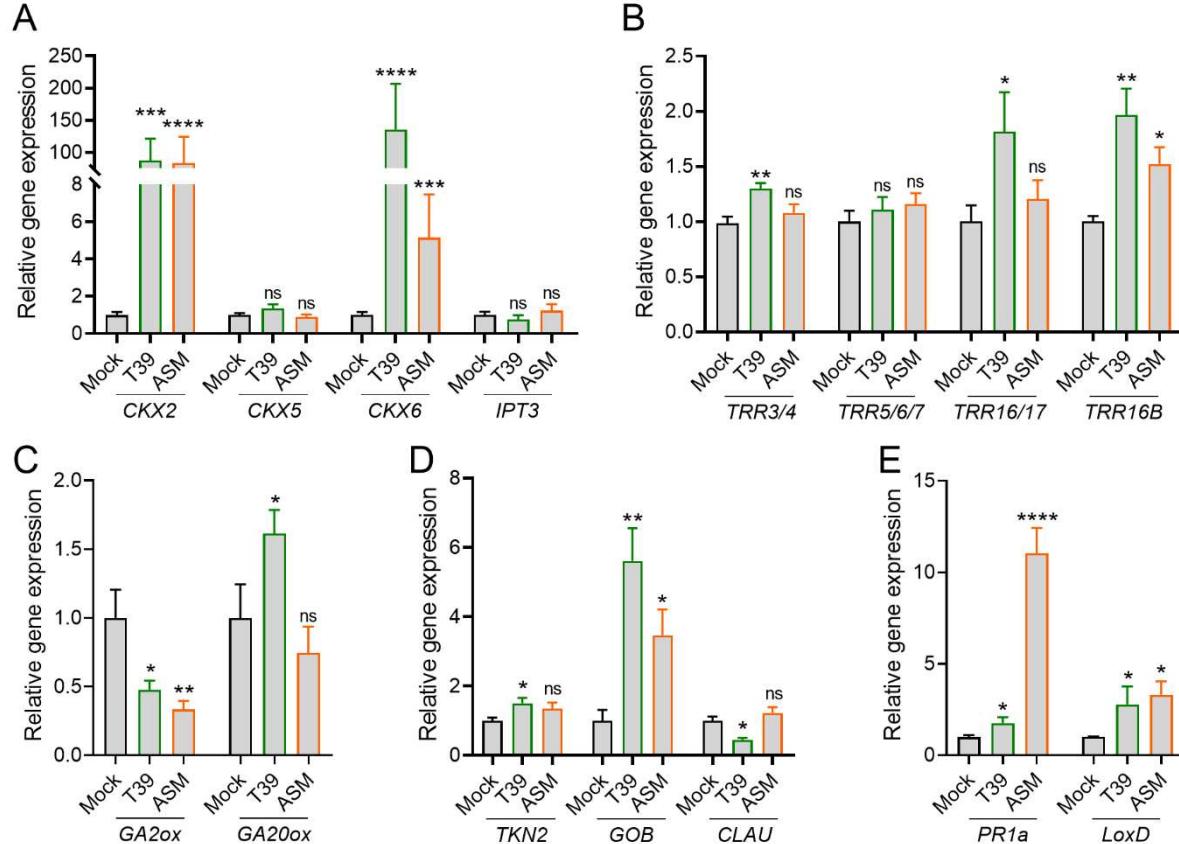

In M-O, numbers indicate the pairs of initiated leaflets on the developing leaf. "L" indicates lobes on the Mock leaf.

Figure 5: Treatment with T39 and ASM activates cytokinin response

S. lycopersicum cv M82 Tomato seedlings expressing the cytokinin response marker TCSv2::3XVENUS were soil-drenched with elicitors at 10 days of age, and imaged 24 h after treatment. Seedlings treated with DDW were used as mock. **A** Representative shoots. **B** Mean fluorescent signal, expressed as % of the Mock signal (AFU- arbitrary fluorescent units). **C** Corrected total fluorescence, CTF, measured in shoots (CTF= Integrated Density – (Area of selected cell X Mean fluorescence of background readings)). Measurements were taken using FIJI-ImageJ.

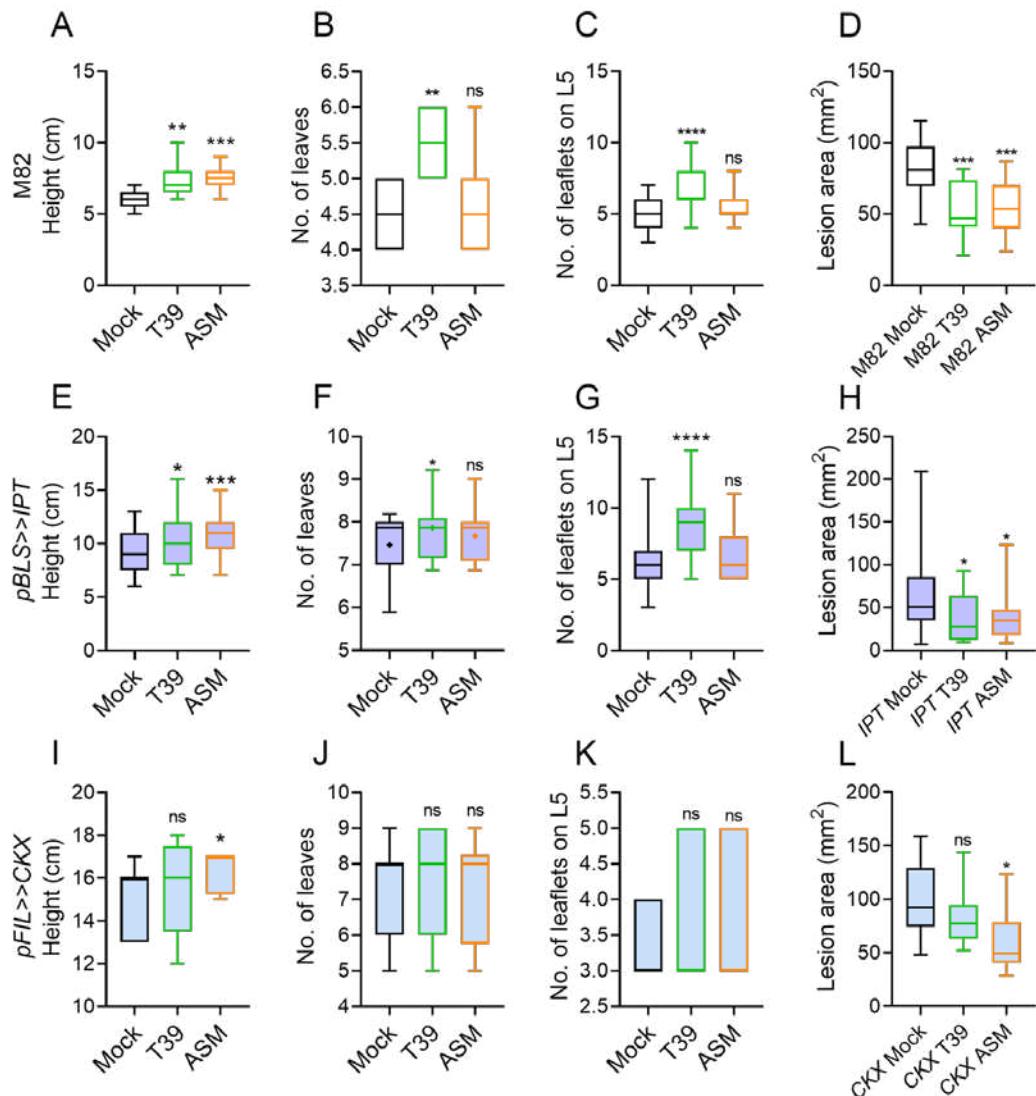

Boxplots are shown with inter-quartile-ranges (box), medians (line in box) and outer quartile whiskers, minimum to maximum values, all points shown. Different letters indicate statistically significant differences among samples in one-way ANOVA with Tukey's post hoc test, B: N=18, p<0.04; C: N=18, p<0.026.

Figure 6: Treatment with T39 and ASM affects developmental gene expression

S. lycopersicum cv M82 Tomato seedlings were soil-drenched with elicitors twice, at 10 and 17 days of age. RNA was prepared 48 h after the second treatment. Seedlings treated with DDW were used as mock. qRT-PCR was conducted to examine gene expression, with relative expression normalized to the geometric mean of the expression of 3 normalizer genes: *EXP* (Solyc07g025390), *CYP* (Solyc01g111170), and *RPL8* (Solyc10g006580). **A** Cytokinin biosynthesis (*IPT3*) and degradation (*CKX*s) genes. **B** Cytokinin signaling response regulators (*TRRs*). **C** Gibberellin biosynthesis regulation (*GA2ox*) and degradation (*CKX2ox*) genes. **D** Developmental transcription factors (*TKN2*- meristem maintenance; *GOB*- organ determination; *CLAU*- differentiation promotion). **E** Defense genes (*PR1a*- SAR; *LoxD*- ISR).

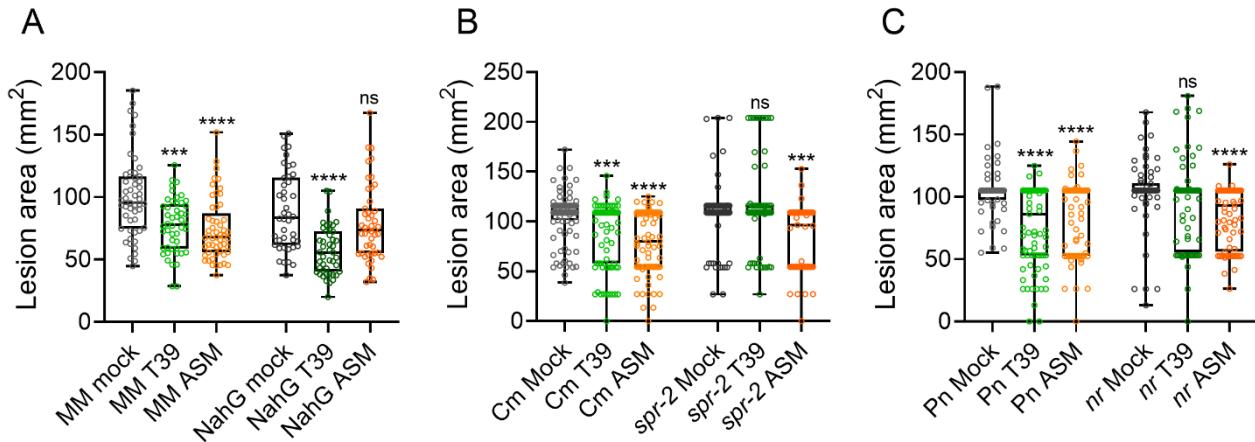

Bars represent mean \pm SE, N=8. Asterisks represent statistical significance from Mock treatment in Welch's t-test, for each gene. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns- not significant.

Figure 7: Treatment with T39, but not ASM, requires CK to promote growth and development.

Tomato seedlings of *S. lycopersicum* cv M82 (A-C), and the transgenic *pBLS>>IPT* (E-G) or *pFIL>>CKX* (I-K), both in the M82 background, were soil-drenched with elicitors twice, at 10 and 17 days of age. Seedlings treated with DDW were used as mock. Growth parameters were measured 1 week after the second treatment. A, E, I Height. B, F, J Number of leaves. C, G, K Leaf complexity, expressed as the number of leaflets on L5. D, H, L 4 week old tomato plants of the indicated genotypes were soil-drenched twice with elicitors: 3 days and 4 h before *Botrytis cinerea* inoculation. Plant were inoculated with 3 day-old *B. cinerea* mycelia. Plants treated with DDW were used as mock. Lesion area was measured 5 days after inoculation. Experiment was repeated 3 independent times.

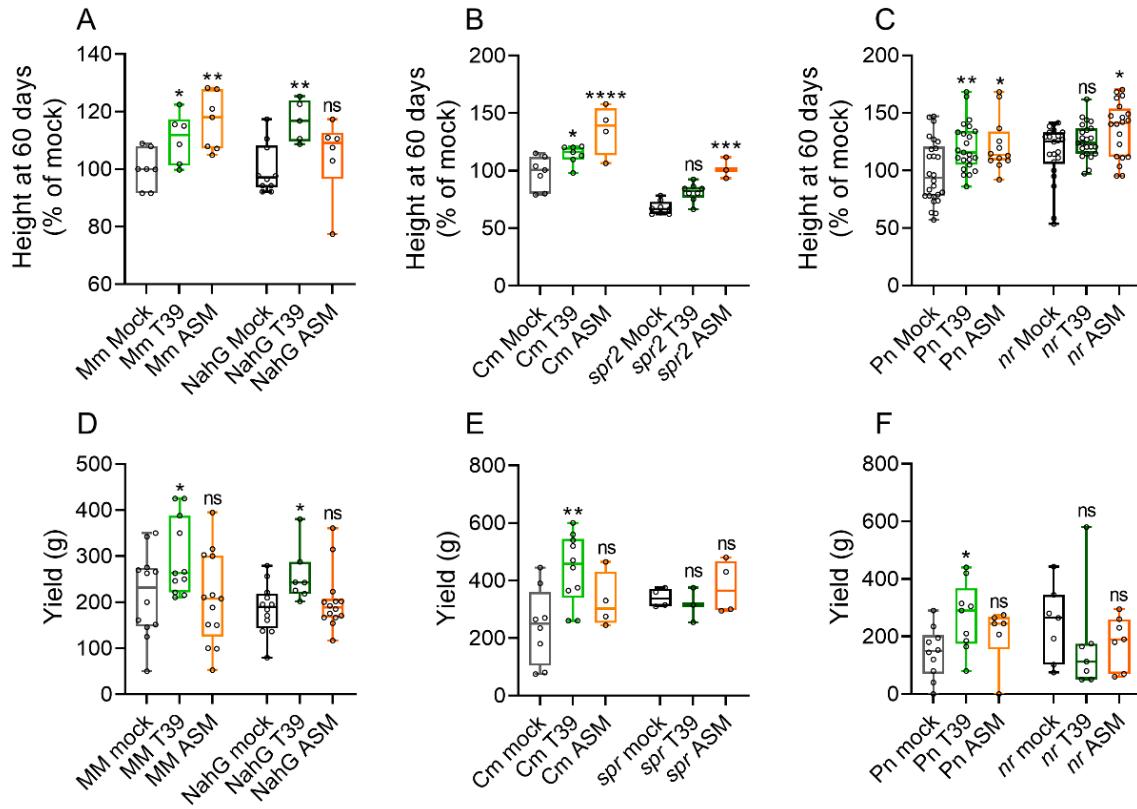

Boxplots are shown with inter-quartile-ranges (box), medians (line in box) and outer quartile whiskers, minimum to maximum values. F: plus sign indicates mean. Asterisks indicate statistical significance from Mock treatment in one-way ANOVA with Bonferroni's post hoc test, A: N=12. B: N=12. C: N=26. D: N=16. E: N=50. F: N=35. G: N=35. H: N=30. I: N=12. J: N=25. K: N=12. L: N=14. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns-not significant.

Figure 8: Treatment with T39 and ASM shows differential effects on *B. cinerea* disease reduction in defense pathway mutants.

S. lycopersicum plants of the cultivars Moneymaker (MM) and the reduced SA transgene NahG (A), Castelmart (Cm) and the reduced JA mutant *spr-2* (B), and Pearson (Pn) and the reduced ET sensitivity mutant *neveripe* (nr) (C) were soil-drenched twice with elicitors: 3 days and 4 h before *Botrytis cinerea* inoculation. Plant were inoculated with 3 day-old *B. cinerea* mycelia. Plants treated with DDW were used as mock. Lesion area was measured 5 days after inoculation. Experiment was repeated 4 independent times.

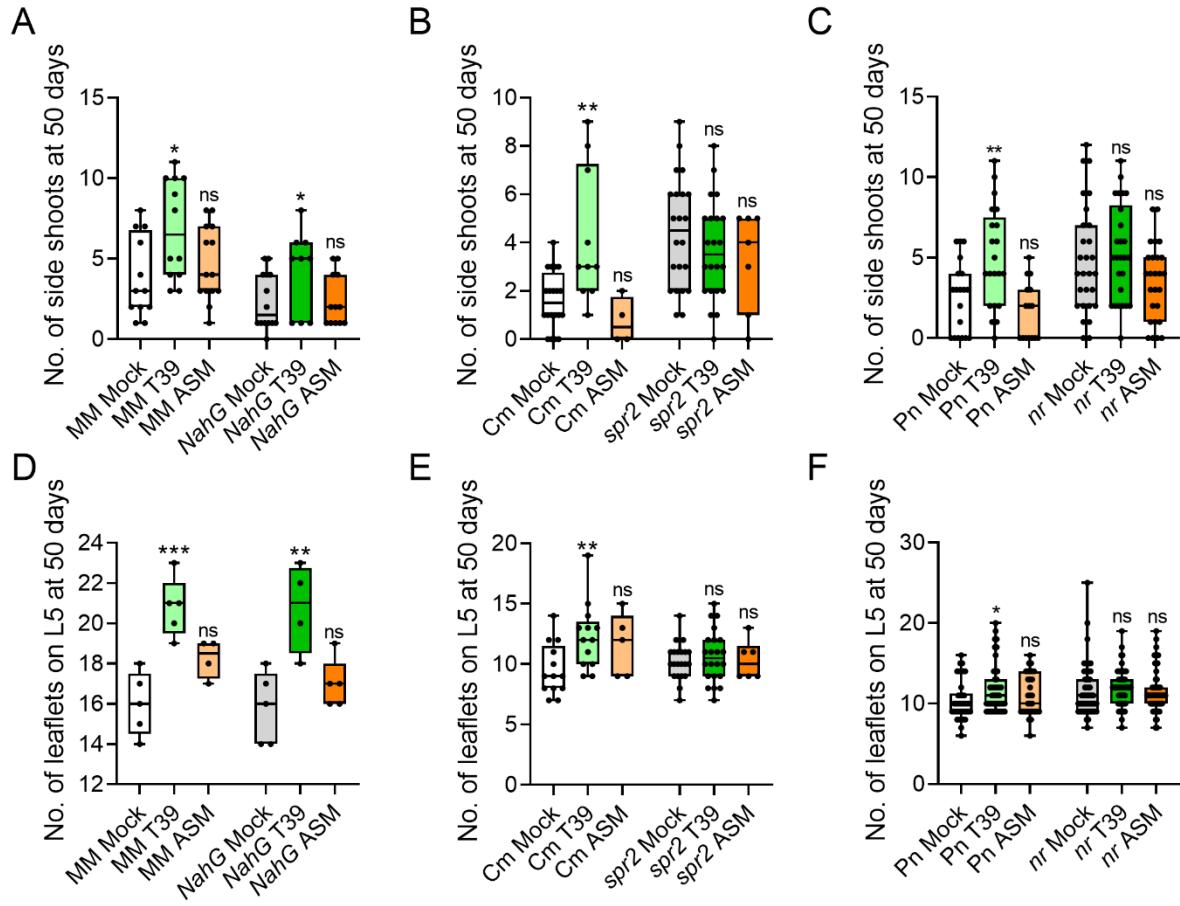

Box plots indicate inner quartile ranges (box), outer quartile ranges (whiskers), median (line), all points shown. Asterisks indicate significance from Mock treatment within each genotype, in Welch's ANOVA with Dunnett's post hoc test, A: N> 40, B: N>55, C: N>60. *** $p < 0.001$; **** $p < 0.0001$; ns- non significant.

Figure 9: Treatment with T39 and ASM shows differential effects on plant growth and agricultural parameters in defense pathway mutants.

S. lycopersicum plants of the cultivars Moneymaker (MM) and the reduced SA transgene NahG (A, D), Castelmart (Cm) and the reduced JA mutant spr-2 (B, E), and Pearson (Pn) and the reduced ET sensitivity mutant neverripe (nr) (C, F) were soil-drenched with elicitors once a week for four weeks. Plants treated with DDW were used as mock. **A-C** Height of 60 day old plants. **D-F** Average fruit weight per plant.

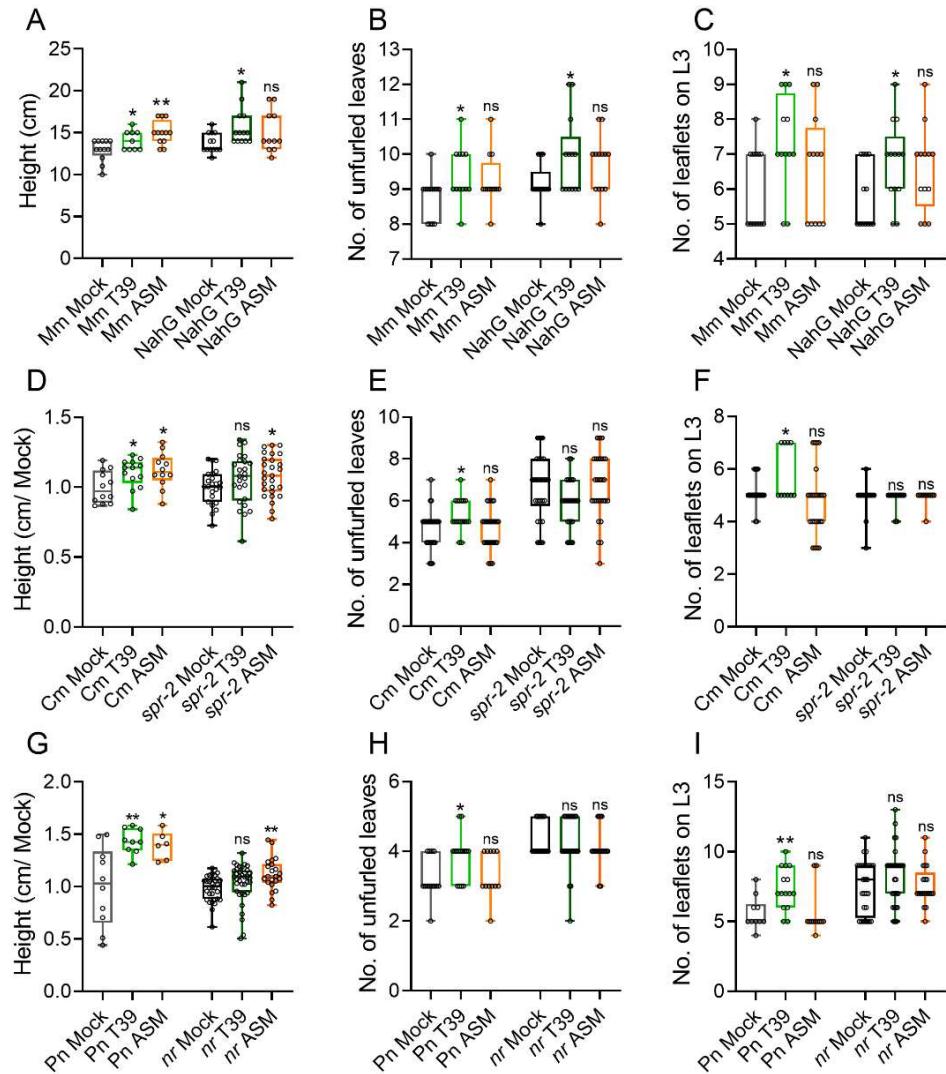

Boxplots are shown with inter-quartile-ranges (box), medians (line in box) and outer quartile whiskers, minimum to maximum values, all points shown. Asterisks indicate significance from Mock treatment within each genotype, in Welch's ANOVA with Dunnett's post hoc test, A: N> 5, B: N>3, C: N>12, D: N>7, E: N>3 F: N>6. *p<0.05, **p<0.01, ***p<0.001; ns- non significant.

Figure 10: Treatment with T39 or ASM shows differential effects on plant development parameters in defense pathway mutants.

S. lycopersicum plants of the cultivars Moneymaker (MM) and the reduced SA transgene NahG (A, D), Castelmart (Cm) and the reduced JA mutant *spr-2* (B, E), and Pearson (Pn) and the reduced ET sensitivity mutant *neverripe* (nr) (C, F) were soil-drenched with elicitors once a week for four weeks. Plants treated with DDW were used as mock. A-C Side shoot production in 50 day old plants. D-F Leaf complexity of leaf No. 5 on 50 day old plants.

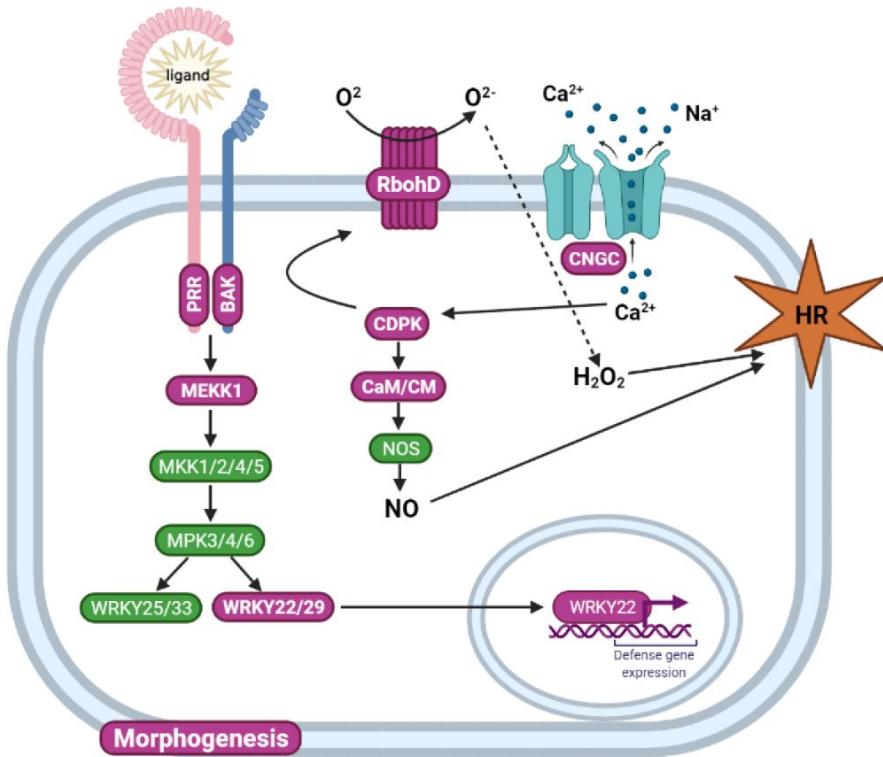

Boxplots are shown with inter-quartile-ranges (box), medians (line in box) and outer quartile whiskers, minimum to maximum values, all points shown. Asterisks indicate significance from Mock treatment within each genotype, in Welch's ANOVA with Dunnett's post hoc test, A: N>9, B: N>5, C: N>12, D: N>5, E: N>5 F: N>18. *p<0.05, **p<0.01, ***p<0.001; ns- non significant.

Figure 11: Treatment with T39 or ASM shows differential effects on plant development parameters in defense pathway mutant seedlings.

S. lycopersicum seedlings of the cultivars Moneymaker (MM) and the reduced SA transgene NahG (A-C), Castelmart (Cm) and the reduced JA mutant *spr-2* (D-F), and Pearson (Pn) and the reduced ET sensitivity mutant *neveripe* (nr) (G-I), were soil-drenched with elicitors twice, at 10 and 17 days of age. Seedlings treated with DDW were used as mock. Parameters were measured 1 week after the second treatment. A, D, G Height. B, E, H Number of leaves. G, H, I Leaf complexity, expressed as the number of leaflets on L3.

Boxplots are shown with inter-quartile-ranges (box), medians (line in box) and outer quartile whiskers, minimum to maximum values, all points shown, N>12. Asterisks indicate statistical significance from Mock treatment of the same genotype in one-way ANOVA with Bonferroni's post hoc test, *p<0.05, **p<0.01, ns- not significant.

Figure 12: Cartoon model of the overlap between developmental morphogenesis and defense responses.

The model details different genetic groups involved in defense responses within the cell:

PRR- Pattern Recognition Receptor: recognition of MAMPs, PAMPs

BAK- Bri-Associated Kinase: immune co-receptor for several PRRs

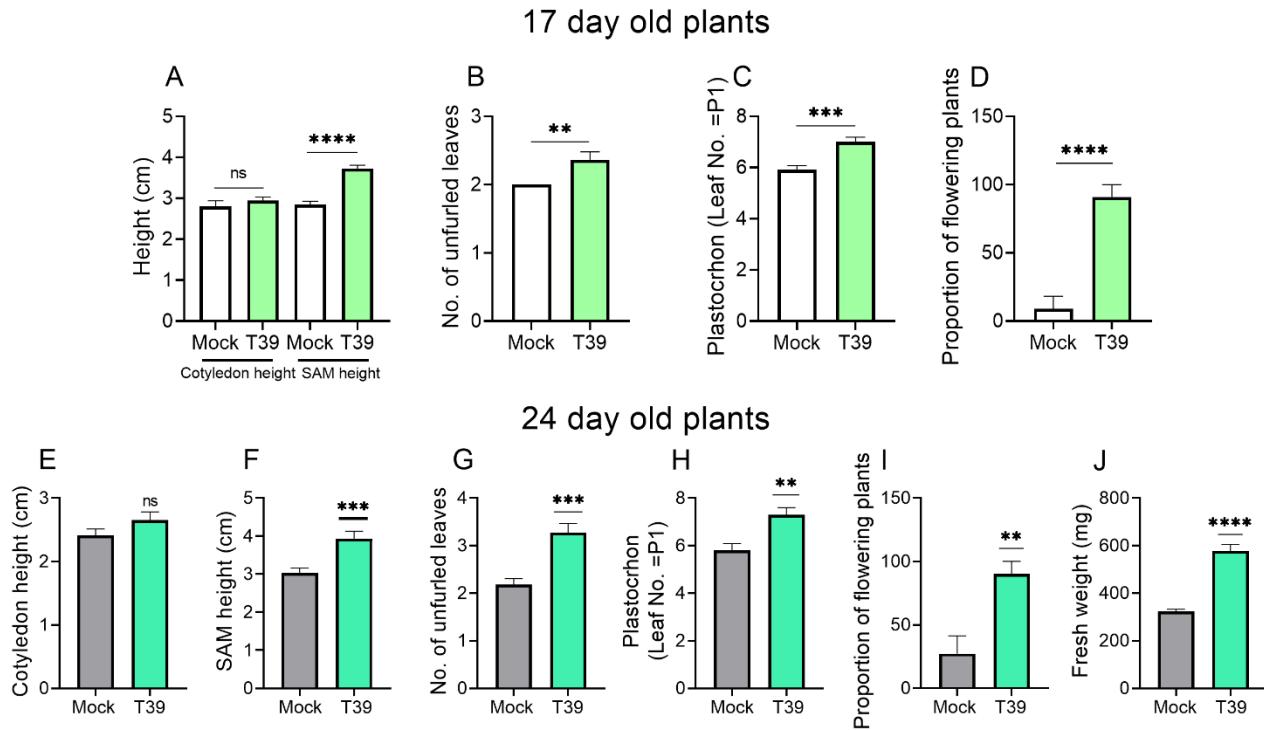
MEKK/ MKK/ MPK- Mitogen activated protein kinases: transduction of immune signals

WRKY- Transcriptional regulation of biotic stress responses

RbohD- Membrane localized NADPH oxidase: generation of ROS

CDPK- Calcium Dependent protein Kinase: stress response

CNGC- cyclic nucleotide-gated channel: PAMP-induced calcium signaling


CaM/ CM- Calmodulin: Calcium sensors, involved in calcium-dependent regulation of gene expression during plant immune responses.

NOS- Nitric Oxide Synthase: required for HR, involved in both SA and ET/JA signaling

Generated defense responses: Defense gene expression, reactive oxygen (H_2O_2), Nitric Oxide (NO), Hypersensitive response (HR).

Gene groups highlighted in fuchsia are also found in the group of genes promoting morphogenesis (Israeli et al. 2021). Illustration created with BioRender.com.

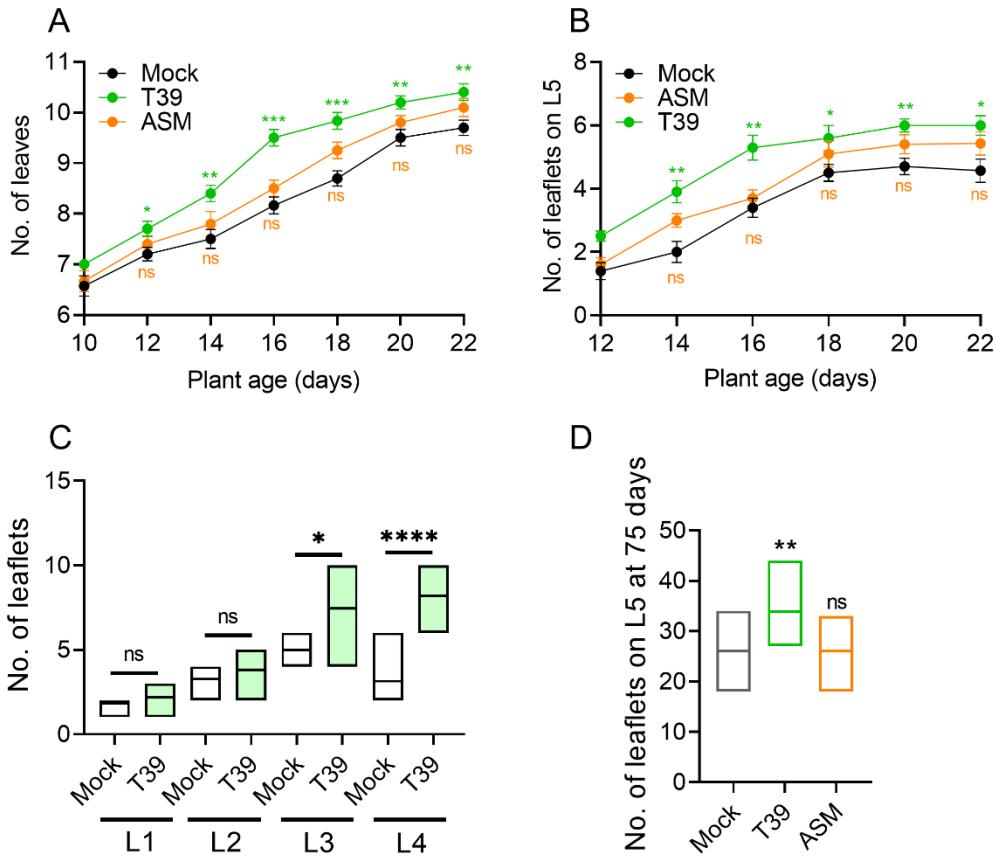

Supplemental Materials

Figure S1: Treatment with T39 affects seedling growth and development.

S. lycopersicum cv M82 Tomato seedlings were soil-drenched with T39 once (at 10 days of age, A-D) or twice (at 10 and 17 days of age, E-J). Seedlings treated with DDW were used as mock. **A, E, F** Height parameters. **B, G** Number of unfurled leaves. **C, H** Leaf developmental plastochron, i.e., the leaf number that has just initiated from the SAM and is at the P1 stage. **D, I** the proportion of plants in which the SAM has differentiated into a floral meristem. **J** Fresh weight.

Bars represent mean \pm SE, N=10. Asterisks indicate statistical significance from Mock treatment in an unpaired two-tailed t-test. **p<0.01, ***p<0.001, ****p<0.0001.

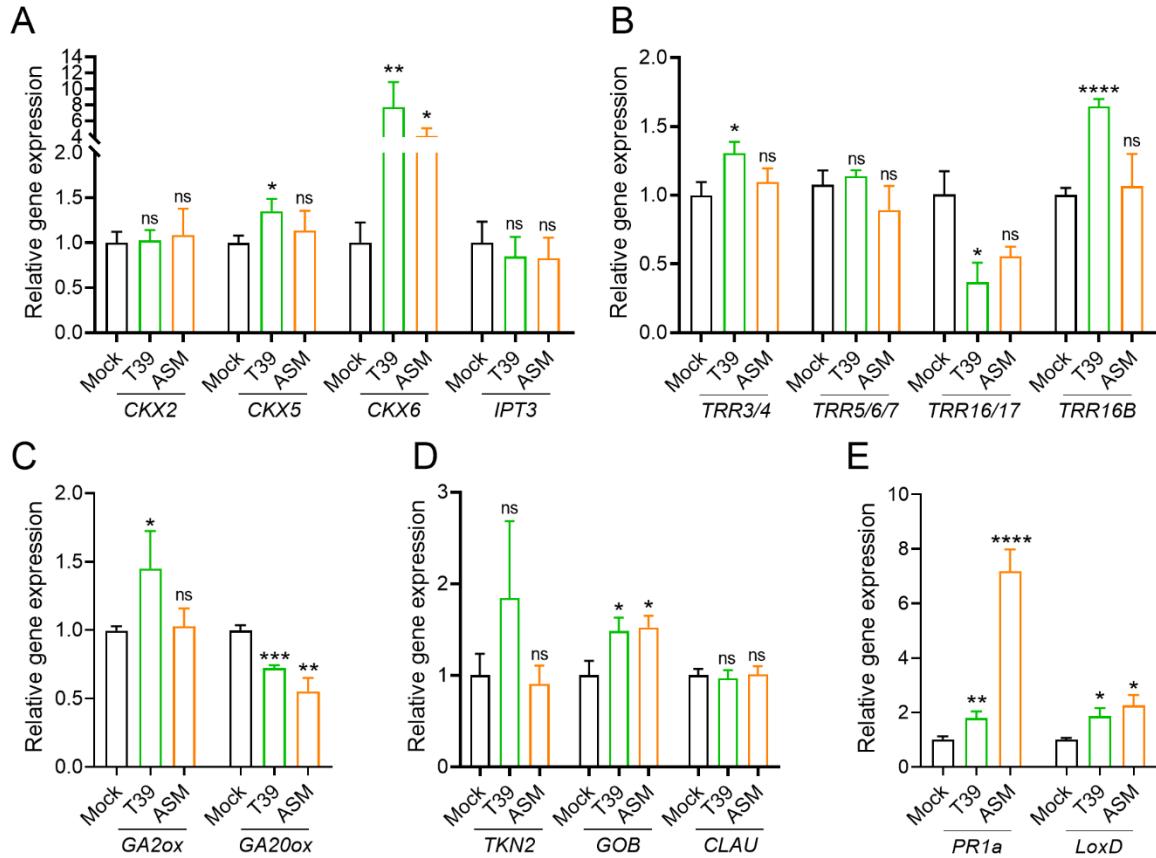


Figure S2: Treatment with T39 accelerates leaf development.

S. lycopersicum cv M82 Tomato seedlings were soil-drenched with elicitors twice (at 10 and 17 days of age, **A-C**), or 4 times, once a week, starting at the age of 10 days (**D**). Seedlings treated with DDW were used as mock. **A** Number of initiated leaves over time, starting from the day of the first elicitor treatment. **B** Number of leaflets on L5 over time, starting from the day of the first elicitor treatment. **C** Number of leaflets on leaves 1-4, one week after the second treatment. **D** Number of leaflets on L5 of mature 75 day old plants.

A-B Points on kinetic graph represent mean \pm SE, N=10. Asterisks indicate statistical significance from Mock treatment in multiple t-tests with Holm-Sidak correction. *p<0.05, **p<0.01, ***p<0.001, ns- non significant.

C-D Floating bars represent minimum to maximum values, line in box indicates mean, C: N=10, D: N=7. Asterisks indicate statistical significance from Mock treatment in unpaired two-tailed t-test. *p<0.05, **p<0.01, ***p<0.0001, ns- non significant.

Figure S3: Treatment with T39 and ASM affects developmental gene expression after one treatment.

S. lycopersicum cv M82 Tomato seedlings were soil-drenched with elicitors once, at 10 days of age. RNA was prepared 48 h after treatment. Seedlings treated with DDW were used as mock. qRT-PCR was conducted to examine gene expression, with relative expression normalized to the geometric mean of the expression of 3 normalizer genes: *EXP* (Solyc07g025390), *CYP* (Solyc01g111170), and *RPL8* (Solyc10g006580). **A** Cytokinin biosynthesis (*IPT3*) and degradation (*CKXs*) genes. **B** Cytokinin signaling response regulators (*TRRs*). **C** Gibberellin biosynthesis regulation (*GA2ox*) and degradation (*CKX2ox*) genes. **D** Developmental transcription factors (*TKN2*- meristem maintenance; *GOB*- organ determination; *CLAU*- differentiation promotion). **E** Defense genes (*PR1a*- SAR; *LoxD*- ISR).

Bars represent mean \pm SE, N=8. Asterisks represent statistical significance from Mock treatment in Welch's t-test, for each gene. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns- non significant.

Supplemental Table 1: Genes recognized as "plant-pathogen interaction" by KEGG that are defined as morphogenetic

Listed are genes belonging to the morphogenetic dataset (Israeli et al., 2021) that were recognized as belonging to the KEGG group "plant-pathogen interaction" (Fishers exact test, p<0.05). The table lists the relative expression levels of each gene in successive developmental stages.

Gene_ID	Description	m+P3	P4-d	P5-d	P6-d
Solyc10g074570	Calcium dependent protein kinase 6 (AHRD V1 **** B9MZ11_POPTR); contains Interpro domain(s) IPR002290 Serine/threonine protein kinase	79.0	50.7	40.0	29.3
Solyc04g015980	FLS2 homolog Receptor kinase-like protein (AHRD V1 **** Q7DMC2_ORYLO); contains Interpro domain(s) IPR002290 Serine/threonine protein kinase	11.3	7.0	5.3	4.3
Solyc12g010010	Cyclic nucleotide gated channel (AHRD V1 ***- A9CRE4_MALDO); contains Interpro domain(s) IPR000595 Cyclic nucleotide-binding	125.7	117.7	102.0	89.3
Solyc03g083520	Calmodulin (AHRD V1 ***- B6T4U8_MAIZE); contains Interpro domain(s) IPR011992 EF-Hand type	68.0	63.7	58.7	52.3
Solyc07g065840	Heat shock protein 90 -2	8570.3	7991.7	5098.0	4105.7
Solyc12g099990	SI CaM5 is a member of the calmodulin gene family which modulates the response to calcium signalling. Calmodulin 2 (AHRD V1 ***- Q710C9_BRAOL); contains Interpro domain(s) IPR011992 EF-Hand type	417.0	315.7	260.3	222.3
Solyc11g071740	Calmodulin-like protein	19.7	7.7	5.3	1.3
Solyc04g018110	Calmodulin-like protein 1	43.0	38.3	21.7	19.0
Solyc01g008950	CaM1 is a member of the Calmodulin gene family which modulates responses to calcium signalling. Calmodulin 5/6/7/8-like protein	328.7	277.7	219.7	213.3
Solyc01g104970	BAK/SERK3B Receptor-like kinase (AHRD V1 **** A7VM44_MARPO); contains Interpro domain(s) IPR002290 Serine/threonine	49.3	48.3	46.7	46.3

	protein kinase Receptor like kinase, RLK				
Solyc03g098050	SICaM6 is a member of the calmodulin gene family which modulates the response to calcium signalling. Calmodulin 3 protein (AHRD V1 **** Q712P2_CAPAN); contains Interpro domain(s) IPR011992 EF-Hand type	297.0	234.0	169.3	169.0
Solyc04g009800	Calcium-dependent protein kinase 2 (AHRD V1 **** Q93YF4_TOBAC); contains Interpro domain(s) IPR002290 Serine/threonine protein kinase	72.0	71.3	62.0	60.0
Solyc08g081690	RBOH1 NADPH oxidase	13.7	5.0	4.7	1.7
Solyc07g053170	SIMAPKKK56 is a part of the MAPKKK gene family known to be involved in the response to various biotic and abiotic stresses in plants. Protein serine/threonine kinase	109.3	105.0	85.7	82.7
Solyc12g098820	Pto homolog Receptor-like kinase (AHRD V1 ***- A7VM24_MARPO); contains Interpro domain(s) IPR002290 Serine/threonine protein kinase	127.7	126.0	121.7	115.0
Solyc01g104530	SIMAPKKK10 is a part of the MAPKKK gene family known to be involved in the response to various biotic and abiotic stresses in plants. Protein serine/threonine kinase	103.0	100.3	87.3	82.7
Solyc01g095100	SIWRKY22 is a member of WRKY transcription factor gene family which has been implicated in multiple biological processes in plants. It has the C2H2 Zinc-finger domain. Computational annotation: WRKY transcription factor 23 (AHRD V1 ***- C9DI12_9ROSI); contains Interpro domain(s) IPR003657 DNA-binding WRKY	14.0	10.0	8.0	7.0

Supplemental Table 2: qPCR primers used in this work

Locus	Name	Forward	Reverse
Solyc07g025390	<i>EXP</i>	TGGGTGTGCCTTCTGAATG	GCTAAGAACGCTGGACCTAATG
Solyc10g006580	<i>RPL8</i>	TGGAGGGCGTACTGAGAAC	TCATAGCAACACCACGAACC
Solyc01g111170	<i>CYP</i>	TGAGTGGCTAACGGAAAGC	CCAACAGCCTCTGCCTTCTTA
Solyc01g106620	<i>PR1a</i>	CTGGTGCTGTGAAGATGTGG	TGACCCCTAGCACAACCAAGA
Solyc03g122340	<i>LoxD</i>	CCATCCTACCACCCCTCATC	TACTCGGGATCGTTCTCGTC
Solyc01g088160	<i>CKX2</i>	CCCCGAAAATGGTGAAATG	CAAAGTGGCTGCTGAAACA
Solyc04g016430	<i>CKX5</i>	TGTCACTGGTAAAGGAGAGGTG	GAGCAATCCTAGCCCTTG
Solyc12g008900	<i>CKX6</i>	CAGGTGCTAACGCCATACTCTAGG	GGACATTCCATTAGGGGACA
Solyc01g080150	<i>IPT3</i>	TTCCATGCTTGATGTGCTTC	GCTTGCTGTCAACGTCAAA
Solyc05g006420	<i>TRR3/4</i>	CGTCCCCTAAAGCATTCTCA	CGTCTTGTGGTATGTTGG
Solyc03g113720	<i>TRR5/6/7</i>	GGGATTGATGGTTGAAGGT	ATCTTGCTAACACCGATGA
Solyc06g048930	<i>TRR16/17</i>	GGTCTAACGGCGTTGGAGTA	TCCTGGCATGCAATAATCTG
Solyc06g048600	<i>TRR 16b</i>	CATCAATGCATGGAAGAAGG	GCATTGCATTATTGGCATC
Solyc07g061720	<i>GA2</i>	CCAACAACACTCCGGTCTT	CATTCGTCATCACCTGTAATGAG
Solyc03g006880	<i>GA20</i>	AGATTGTGTTGGACTTCAA	TAGGCCATAATGTGTCG
Solyc02g081120	<i>TKN2</i>	CCATATCCATCGGAATCTCAG	TGGTTCCAATGCCTTTTC
Solyc07g062840	<i>GOB</i>	CAGGAGTTCGAAGGACGAGTGG	TTGGCTGTAGTGTATGCAAGGTG
Solyc04g008480	<i>CLAU</i>	CCTCTCACAAACAAGCAATGAACCTT	AGGACGATGCAATGAGAGAGAC