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Abstract 20 

The hyperdiverse orchid genus Bulbophyllum is the second largest genus of flowering plants 21 

and exhibits a pantropical distribution with a center of diversity in tropical Asia. The only 22 

Bulbophyllum section with a centre of diversity in Australasia is sect. Adelopetalum. 23 

However, phylogenetic placement, interspecific relationships, and spatio-temporal evolution 24 

of the section have remained largely unclear. To infer broad-level relationships within 25 

Bulbophyllum and interspecific relationships within sect. Adelopetalum, a genome skimming 26 

dataset was generated for 89 samples, yielding 70 plastid coding regions and the nuclear 27 

ribosomal DNA cistron. For 18 additional samples, Sanger data from two plastid loci (matK, 28 

ycf1) and nuclear ITS were added using a supermatrix approach. The study provided new 29 

insights into broad-level relationships in Bulbophyllum, including phylogenetic evidence for 30 
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the non-monophyly of sections Beccariana, Brachyantha, Brachypus, Cirrhopetaloides, 31 

Cirrhopetalum, Desmosanthes, Minutissima, Oxysepala, Polymeres and Sestochilos. Section 32 

Adelopetalum and sect. Minutissima s.s. formed a highly supported clade that was resolved in 33 

sister group position to the remainder of the genus. Divergence time estimations based on a 34 

relaxed molecular clock model placed the origin of Bulbophyllum in the early Oligocene (ca. 35 

33.2 Ma) and of sect. Adelopetalum in the late Oligocene (ca. 23.6 Ma). Ancestral range 36 

estimations based on a BAYAREALIKE model identified the Australian continent as 37 

ancestral area of sect. Adelopetalum. The section underwent crown diversification during the 38 

mid-Miocene to the late Pleistocene, predominantly in continental Australia. At least two 39 

independent long-distance dispersal events were inferred eastwards from the Australian 40 

continent to New Zealand, and New Caledonia from the early Pliocene onwards, likely 41 

mediated by the predominantly westerly winds of the southern hemisphere. Retraction and 42 

fragmentation of eastern Australian rainforests from the early Miocene onwards are discussed 43 

as likely drivers of lineage divergence within sect. Adelopetalum, facilitating allopatric 44 

speciation.  45 

1. Introduction 46 

The hyperdiverse orchid genus Bulbophyllum Thouars (Epidendroideae) is the second largest 47 

genus of flowering plants with more than 2,100 species that exhibit exceptional 48 

morphological and ecological diversity (Frodin, 2004; Pridgeon et al., 2014, WCSP 2022). 49 

Species of this predominantly epiphytic genus occur in a wide range of tropical and 50 

subtropical habitats, from montane rainforests to dry deciduous forests, savannah woodlands, 51 

and rocky fields with shrubby vegetation (Pridgeon et al., 2014). Bulbophyllum is distributed 52 

pantropically, occupying all botanical continents defined by Brummit (2001) except for 53 

Antarctic and Eurasia. The genus is most diverse on the botanical continent of tropical Asia 54 

(1562 species), also occurring on the botanical continents of Africa (305), temperate Asia 55 

(152), Southern America (88), the Pacific (49), Australasia (Australia and New Zealand; 35), 56 

and Northern America (7) (WCSP, 2022). Centres of diversity are found in tropical Asia in 57 

the floristic regions of Malesia (667) and Papuasia (656) and in the Afrotropics in the western 58 

Indian Ocean region, on the islands of Madagascar, and the Mascarenes (218) (WCSP, 2022). 59 

The high number of species and complex patterns of morphological variation has presented 60 

significant challenges for resolving relationships in Bulbophyllum and this is reflected in 61 

substantial taxonomic revisions that have been proposed. Traditionally, the subtribe 62 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.24.500920doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.24.500920
http://creativecommons.org/licenses/by/4.0/


 3 

Bulbophyllinae Schltr. (tribe Dendrobieae Endl.) included the large genus Bulbophyllum 63 

along with smaller genera, such as Cirrhopetalum Lindl., Drymoda Lindl., Pedilochilus 64 

Schltr., Sunipia Buch. -Ham. ex Sm., and Trias Lindl. (Dressler, 1993; Garay et al., 1994; 65 

Szlachetko and Margonska, 2001). Recent revisions treat all genera within the subtribe 66 

Bulbophyllinae in a more broadly defined Bulbophyllum and recognise 97 sections within the 67 

genus (Pridgeon et al., 2014; Vermeulen et al., 2014). Molecular phylogenetic studies have 68 

largely focused on species from specific geographic regions such as Madagascar and the 69 

Mascarenes (Fischer et al., 2007; Gamisch et al., 2015), the Neotropics (Smidt et al., 2013, 70 

2011), and Peninsular Malaysia (Hosseini et al., 2012) or on taxonomic groups such as the 71 

Cirrhopetalum alliance (Hu et al., 2020). Few have taken a global perspective (e.g., Gamisch 72 

and Comes, 2019). These studies revealed a strong biogeographic pattern and four main 73 

clades were identified that include species largely confined or endemic within one broader 74 

geographical area: 1) continental Africa, 2) Madagascar and the Mascarene Islands, 3) 75 

Southern America, or 4) Asia (Fischer et al., 2007; Gamisch et al., 2015; Gamisch and 76 

Comes, 2019; Smidt et al., 2011). The Southern American clade, the Madagascan clade, and 77 

the continental African clade together form a highly supported lineage (Fischer et al., 2007; 78 

Gamisch et al., 2015; Gamisch and Comes, 2019; Smidt et al., 2013; 2011), in sister group 79 

position to the Asian clade (Fischer et al., 2007; Gamisch et al., 2015; Gamisch and Comes, 80 

2019). Previous molecular phylogenetic studies have mainly elucidated relationships within 81 

Madagascan, continental African and Neotropical sections and within the Cirrhopetalum 82 

alliance (Fischer et al., 2007; Gamisch et al., 2015; Smidt et al., 2011; Hu et al., 2020). 83 

However, evolutionary relationships within the Asian clade, which also includes taxa from 84 

the Australasian, and Pacific regions, are still poorly understood, and the monophyly of 85 

sections within this clade has remained largely untested. 86 

 87 

The study of hyperdiverse groups such as Bulbophyllum relies on a robust phylogenetic 88 

framework to ascertain monophyly of its infrageneric taxa. High throughput sequencing 89 

approaches facilitate the establishment of a robust phylogenetic framework that can be used 90 

to investigate broader evolutionary relationships and assess the monophyly of infrageneric 91 

taxa and their trait evolution (Hassemer et al., 2019; van Kleinwee et al., 2022, Nargar et al. 92 

2022). However, phylogenomic studies which provide insights into broad-level evolutionary 93 

relationships within the Asian clade of Bulbophyllum are still lacking. This hampers progress 94 

in understanding diversification of its evolutionary lineages in time and space and trait 95 

evolution within this highly diverse genus.  96 
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 97 

Within Bulbophyllum, section Adelopetalum has a unique distribution, being the only section 98 

with a centre of diversity in Australia (Brummit, 2001; Pridgeon et al., 2014, Vermeulen, 99 

1993), and thus presents an interesting study case for range evolution within Bulbophyllum. 100 

The section comprises twelve tropical to temperate epi-lithophytic species. Nine species 101 

occur along Australia’s east coast in the montane forest communities of the Great Dividing 102 

Range, with one species (B. argyropus) also found on Australian islands (Lord Howe Island, 103 

and Norfolk Island). Two species are endemic to the montane forests of New Caledonia (B. 104 

corythium, B. lingulatum) and one to the lowland coastal forests of New Zealand (B. 105 

tuberculatum). The section was circumscribed based on morphological affinities recognised 106 

among ten species from Australia and New Caledonia previously assigned to Bulbophyllum 107 

sections Desmosanthes, Racemosae and Sestochilus (Dockrill, 1969; 1992; Vermeulen, 108 

1993). Subsequent treatments recognised two additional species within the section, B. 109 

weinthalii and B. exiguum (Jones and Clements, 2002; Clements and Jones, 2006). Section 110 

Adelopetalum is characterised by plants having thin creeping rhizomes adpressed to the host, 111 

anchored by filamentous roots with small pseudobulbs that are crowded to widely spaced, 112 

and a small single flat leaf arising from the apex of the pseudobulb. The inflorescence is 113 

single to few-flowered, with small white, cream or yellow flowers, sometimes with red or 114 

purple patterns. The petals are smaller than the sepals but similar in shape, with the bases of 115 

the lateral sepals fused to the column foot. The fleshly three-lobed labellum is firmly hinged 116 

to the apex of the column foot. Previous cladistic analysis of sect. Adelopetalum based on 117 

morphological characters resolved two main clades within the section, differentiated by the 118 

size and shape of the lower margin of the stelidia: the filiform column appendages typical for 119 

most Bulbophyllum (Vermeulen, 1993). Previous molecular phylogenetic studies based on 120 

the nuclear ribosomal ITS region (ITS1 + 5.8S + ITS2) included two to three representatives 121 

of the section (Gamisch et al., 2015; Gamisch and Comes, 2019), placing these in an early 122 

diverging position within the Asian clade. However, phylogenetic placement of the section 123 

within Bulbophyllum was not strongly supported (PP<90, BS 97) and thus requires further 124 

study. Further, phylogenetic relationships within sect. Adelopetalum and its ancestral range 125 

evolution are poorly understood and have not yet been investigated using a molecular 126 

phylogenetic approach.  127 

The aims of this study were to 1) build a phylogenomic framework for Bulbophyllum with 128 

focus on the Asian clade 2) assess the monophyly and phylogenetic placement of sect. 129 
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Adelopetalum within Bulbophyllum; 3) to infer interspecific relationships within sect. 130 

Adelopetalum 4) and to reconstruct the range evolution of sect. Adelopetalum. 131 

2. Methods 132 

2.1 Sampling 133 

In total, 136 orchid samples representing 114 species were included in the study. 134 

Representatives of the Asian and Afrotropical/Neotropical clades of Bulbophylllum were 135 

included based on previous phylogenetic studies (Fischer et al., 2007; Smidt et al., 2011; 136 

Gamisch and Comes, 2019). Species names were standardised to accepted taxonomy based 137 

on WCSP (2022) and sectional taxonomy followed IOSPE (2022). Exceptions were made for 138 

B. exiguum which was placed in section Adelopetalum and B. wolfei which was placed in 139 

section Polymeres based on Jones and Clements (2002) and Clements and Jones (2006). 140 

From the Asian, Australasian and Pacific regions a broad sampling was included representing 141 

41 sections, i.e. 60% of sections recognised from these regions in the most recent treatment 142 

of the group (Pridgeon et al., 2014). From the Australasian region, all Bulbophyllum species 143 

were sampled (Australia: 30, New Zealand: 2). For Bulbophyllum sect. Adelopetalum, 28 144 

samples were included, representing all 12 species recognised for the section. The 145 

morphologically closely related sect. Minutissima was included with nine samples 146 

representing five species comprising all four Australasian and Pacific species and two (of ca. 147 

19) tropical Asian species. The outgroup comprised representatives of subtribe Dendrobineae 148 

which is sister to Bulbophyllinae, and tribes Malaxideae, Arethuseae, Nervilleae, and 149 

Neottieae based on previous molecular phylogenetic studies (Givnish et al., 2015; Górniak et 150 

al., 2010, Serna-Sánchez et al. 2021). Details of the plant material studied, voucher 151 

information and number of sequences generated for each sample are provided in 152 

Supplementary Material S1 and a complete list of loci analysed is provided in Supplementary 153 

Material S2.  154 

2.2 DNA extraction, amplification, and sequencing 155 

Total genomic DNA was extracted from ca. 10 to 20 mg silica-dried leaf material. 156 

Extractions were carried out with commercial extraction kits (Qiagen DNeasy plant kit, 157 

Venlo, Netherlands; ChargeSwitch gDNA plant kit, Invitrogen, Carlsbad, USA) following 158 

the manufacturer's protocols or using the CTAB method (Doyle and Doyle, 1990), with 159 

modifications as described in Weising et al. (2005). Sequence data was generated using both 160 

Sanger sequencing (46 samples) for the nuclear ribosomal ITS region (ITS1, 5.8s, ITS2) and 161 

two plastid genes (matK, ycf1) and shotgun high-throughput sequencing (89 samples) to 162 
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recover 70 plastid coding sequences (CDS) and the nuclear ribosomal DNA cistron 163 

(Supplementary Material S1). Libraries for high-throughput sequencing were constructed 164 

from 50 to 100 ng total DNA using the TruSeq Nano DNA LT library preparation kit 165 

(Illumina, San Diego, USA) for an insert size of 350 base pairs (bp) and paired-end reads 166 

following the manufacturer’s protocol. Libraries were multiplexed 96 times and DNA 167 

sequencing with 125 bp paired-end reads was carried out on an Illumina HiSeq 2500 platform 168 

at the Australian Genomic Research Facility, Melbourne (Australia).  169 

For Sanger sequencing, amplifications for ITS were carried out with primers 17F and 26SER 170 

(Sun et al., 1994), for matK with the primers 19F and, 1326R (Cuénoud et al., 2002), and for 171 

ycf1 with primers 3720F, intR, intF, 5500R (Neubig et al., 2008). PCR reaction protocols are 172 

provided in Supplementary Material S3. Sequencing reactions were carried out using the 173 

amplification primers and sequencing was conducted on an AB3730xl 96-capillary sequencer 174 

(Australian Genome Research Facility, Brisbane, Australia). 175 

2.3 Assembly and alignment 176 

Sequences were assembled and edited in Geneious R10 (Kearse et al., 2012). Illumina 177 

sequences were assembled to a reference set of plastid CDS extracted from Dendrobium 178 

catenatum (GenBank accession numbers KJ862886) and for ycf68 from Anoectochilus 179 

roxburghii (KP776980). To build a reference for the nuclear ribosomal ITS-ETS region, 180 

Illumina reads of B. boonjee (CNS_G07175) were first mapped to the ITS-ETS region of 181 

Corallorhiza trifida (JVF2676a). To extend the region assembled, the B. boonjee Illumina 182 

reads were then mapped to the B. boonjee consensus sequence generated in the initial step, 183 

yielding a B. boonjee reference of the nuclear ribosomal DNA cistron (5’ETS, 18s, ITS1, 184 

5.8s, ITS2, 28s, 3’ETS). Illumina sequences for all other samples were assembled against the 185 

B. boonjee nuclear ribosomal DNA cistron reference. Assemblies were carried out with the 186 

highest quality threshold and a minimum coverage of ten reads. The quality of the assemblies 187 

was checked and edited manually where required. Sequences were deposited in GenBank and 188 

ENA. For Sanger sequences, bidirectional reads were assembled in Geneious and edited 189 

manually. Additional sequences were sourced from DRYAD 190 

(https://doi.org/10.5061/dryad.n9r58) for Coelogyne flaccida (Givnish et al., 2015). DNA 191 

sequences were combined into supermatrices for the nuclear ribosomal DNA cistron and each 192 

plastid region, aligned using MAFFT v.7.222 (Katoh et al., 2005, 2002) with the default 193 

settings and manually inspected. Plastid regions were concatenated, excluding regions with 194 

low species coverage or problematic alignments such as the NDH genes. The nuclear 195 
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supermatrix included 136 accessions, partitioned into coding and non-coding regions 196 

(alignment length: 6,341bp, number of parsimony informative sites: 995 (16%)); and the 197 

plastid supermatrix included 130 accessions, and 70 plastid coding regions, partitioned by 198 

gene and codon position (alignment length: 61,553bp, number of parsimony informative 199 

sites: 5,789 (9%)).  200 

For divergence time estimations, the plastid supermatrix was reduced to one representative 201 

per species (indicated by an asterisk in Supplementary Material S1), comprising 111 202 

accessions (alignment length: 60,984 bp, number of parsimony informative sites: 5,755 203 

(9%)). 204 

2.4 Phylogenetic analysis 205 

Phylogenetic relationships were inferred using maximum likelihood (ML) in IQ-TREE v. 206 

1.6.12 (Nguyen et al., 2015). The best-fit partition scheme and nucleotide substitution model 207 

for each partition was determined with IQ-TREE’s ModelFinder (Kalyaanamoorthy et al. 208 

2017) based on the Akaike information criterion (AIC) (Akaike, 1974). Nodal support was 209 

assessed based on 1000 replicates of ultrafast bootstrap approximation with clades receiving 210 

>95 ultrafast bootstrap support (UFBS) considered as well supported (Minh et al., 2013; 211 

Hoang et al., 2018). 212 

2.4 Divergence time estimation 213 

Divergence times were estimated based on the plastid dataset in BEAST2 v. 2.4.8 (Bouckaert 214 

et al., 2014) applying the best fit partition scheme and substitution model as determined by 215 

IQ-TREE’s ModelFinder. We tested two molecular clock models: 1) strict clock 216 

(Zuckerkandl and Pauling, 1965) and 2) relaxed lognormal clock (Drummond et al., 2006) 217 

and two models of speciation and extinction: 1) Yule and 2) birth-death (Yule, 1925; 218 

Gernhard et al., 2008). Three secondary calibration points were used applying priors with a 219 

normal distribution and mean ages and 95% higher posterior density (HDP) intervals based 220 

on the results of a family-wide molecular clock analysis by Chomicki et al. (2015). The root 221 

age was set to 55.02 Ma (HDP: 42.0–68.0). The next secondary calibration point was applied 222 

to the last common ancestor of Dendrobineae, Malaxideae, and Arethuseae and was set to 223 

47.77 Ma (HDP: 36.4–59.1). Monophyly was constrained for this node consistent with 224 

relationships reconstructed in previous phylogenetic analyses (Chomicki et al. 2015; Givnish 225 

et al., 2015). The last secondary calibration was set at the stem node of Dendrobieae and 226 

Malaxideae with 38.68 Ma (HDP: 30.8–46.6). An additional calibration based on the fossil 227 
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Dendrobium winikaphyllum (Conran et al., 2009) was applied to the stem node of the 228 

Australasian Dendrobium clade (D. macropus, D. cunninghamii, and D. muricatum), using a 229 

uniform distribution with an infinite maximum age and the minimum age constrained to 20.4 230 

Ma, based on the minimum age of the strata containing the fossil (Mildenhall et al. 2014). 231 

Ten independent BEAST analyses were run for 30 million MCMC generations, with trees 232 

sampled every 3×104 generations. To assess convergence of independent runs and determine 233 

burn-in fractions, log files were assessed in Tracer v.1.7.1 (Rambaut and Drummond, 2007). 234 

Log and trees files from independent runs were combined in LogCombiner (from the BEAST 235 

package) with a cumulative burn-in fraction of 10%-31% and the sampling frequency set to 236 

generate at least 10,000 tree and log files (Drummond and Bouckaert, 2015). The combined 237 

log file was assessed in Tracer to ensure the effective sample size of all parameters was 238 

above 200. An additional five independent BEAST runs were conducted for the final analysis 239 

using a relaxed log normal clock with birth death speciation to achieve an effective sample 240 

size above 200 for the ucldmean parameter. A maximum clade credibility tree was generated 241 

in TreeAnnotator (BEAST package) with median node heights. To compare clock and 242 

speciation models, the Akaiki information criteria by MCMC app from the BEAST 2 243 

package v 2.6.2 was used to measure the AICM for the combined MCMC runs generated in 244 

the BEAST analysis for each model (Supplementary Material S4). 245 

2.5 Ancestral range analysis 246 

Species distributions were determined from the World Checklist of Selected Plant Families 247 

(WCSP, 2022). Biogeographic areas were largely delineated based on botanical continents 248 

defined by Brummit (2001). The subcontinental regions of Papuasia, Australia and New 249 

Zealand were also recognised to allow a more fine-scaled resolution of range evolution in 250 

these regions (Brummit 2001). The following seven biogeographic areas were coded: a, 251 

Africa; b, temperate Asia; c, tropical Asia; d, Papuasia; e, Australia; f, New Zealand, and g, 252 

Pacific. Ancestral ranges were estimated in RASP v. 4.0 (Yu et al., 2015) with the 253 

BIOGEOBEARS package (Matzke, 2013) based on the maximum clade credibility tree 254 

obtained from the BEAST analysis of the plastid supermatrix, pruned of the outgroups to 255 

Dendrobieae. Three models of range evolution were tested: the dispersal-extinction 256 

cladogenesis model (DEC) (Ree and Smith, 2008), a ML version of Ronquist’s parsimony 257 

dispersal-vicariance (DIVA; Ronquist, 1997), termed DIVALIKE (Matzke, 2013), and a 258 

simplified likelihood interpretation of the Bayesian <BayArea= program (Landis et al., 2013) 259 

known as BAYAREALIKE (Matzke, 2013). No constraints were applied to dispersal 260 

direction and the maximum number of ranges was set to five based on the maximum number 261 
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of observed areas in extant species. Likelihood values were compared and the model of best 262 

fit determined by AIC score (Akaike, 1974) was used to infer the relative probabilities of 263 

ancestral ranges at each node in the phylogeny (Supplementary Material S5).  264 

3. Results 265 

3.1.1 Phylogenetic relationships – Plastid data 266 

The ML phylogeny inferred from the 70 loci plastid supermatrix provided strong support for 267 

the monophyly of Bulbophyllum and its sister group relationship to Dendrobium (Fig. 1). 268 

Section Adelopetalum and Minutissima s.s. formed a highly supported clade, here termed the 269 

Adelopetalum/Minutissima clade, which was resolved in sister group position to the 270 

remainder of the genus (ultrafast bootstrap support/UFBS 98) (Fig. 1). Within the 271 

Adelopetalum/Minutissima clade, all Adelopetalum species plus B. pygmaeum (sect. 272 

Minutissima) formed a highly supported lineage (UFBS 100), here termed the Adelopetalum 273 

clade. Within the Adelopetalum clade several highly supported groups were resolved: 1) the 274 

argyropus clade consisting of B. argyropus, B. corythium and B. tuberculatum (UFBS 100), 275 

reconstructed in a highly supported sister group relationship to B. weinthalii (UFBS 100); 2) 276 

the bracteatum clade, including B. boonjee, B. bracteatum, and B. elisae (UFBS 99); and 3) 277 

the newportii clade comprised of B. exiguum, B. lageniforme, B. lilianae, B. lingulatum, and 278 

B. newportii (UFBS 100). Relationships among B. pygmaeum, the argyropus clade + B. 279 

weinthalii, bracteatum and newportii clades received weak support. Sister to the 280 

Adelopetalum clade was the highly supported Minutissimum clade comprised of three 281 

species of sect. Minutissima (B. globuliforme, B. keekee, B. minutissimum), including the type 282 

species of the section (UFBS 100) (Fig. 1). Section Minutissima was identified as 283 

polyphyletic, with sect. Minutissima species also placed within the Adelopetalum clade (B. 284 

pygmaeum) and the Asian clade (B. mucronatum, B. moniliforme). Within the Asian clade, 285 

sections Beccariana, Brachyantha, Brachypus, Cirrhopetaloides, Cirrhopetalum, 286 

Desmosanthes, Oxysepala, Polymeres and Sestochilos were also identified as polyphyletic or 287 

paraphyletic.  288 

 289 

Our analyses showed that sect. Adelopetalum does not share a close relationship with other 290 

Australasian Bulbophyllum species, such as those in sect. Brachypus (B. nematopodum), sect. 291 

Brachystachyae (B. evasum), sect. Cirrhopetalum (B. longiflorum), sect. Ephippium (B. 292 

gracillimum), sect. Monanthes (B. macphersonii), sect. Oxysepala (B. gadgarrense, B. 293 

grandimesense, B. lamingtonense, B. lewisense, B. schillerianum, B. shepherdii, B. 294 
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wadsworthii, B. windsorense), sect. Polymeres (B. bowkettiae, B. johnsonii, B. radicans, B. 295 

wolfei), and sect. Sestochilus (B. baileyi). Australian species from each of these sections were 296 

placed in nine different positions within the Asian clade. Australian species from section 297 

Polymeres formed a highly supported clade (UFBS 100), while Australian species from sect. 298 

Oxysepala formed a moderately supported clade (UFBS 91) and together with the type 299 

species of section Oxysepala from Papuasia (B. cladistinum) formed a close relationship with 300 

the Australian representative of section Monanthes (B. macphersonii) (UFBS 100). 301 

 302 

Fig. 1. Maximum likelihood phylogenetic reconstruction of Bulbophyllum based on the 303 

supermatrix of 70 plastid coding regions. Ultrafast bootstrap values are given adjacent to 304 

nodes. Australian species are shown with an asterisk.  305 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.24.500920doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.24.500920
http://creativecommons.org/licenses/by/4.0/


 11 

 306 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.24.500920doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.24.500920
http://creativecommons.org/licenses/by/4.0/


 12 

Fig. 2. Maximum likelihood phylogenetic reconstruction of Bulbophyllum based on the 307 

supermatrix of 70 plastid coding regions. Ultrafast bootstrap values are given adjacent to 308 

nodes. Australian species are shown with an asterisk. 309 

3.1.2 Phylogenetic relationships – Nuclear data 310 

The ML phylogeny based on the nuclear ribosomal DNA cistron was resolved with overall 311 

lower support when compared to analyses based on 70 plastid loci supermatrix (Fig. 2). 312 

Relationships among outgroup taxa were concordant with the plastid phylogeny and 313 

Bulbophyllum was resolved with maximum support. Within Bulbophyllum, the Afrotropical 314 

(UFBS 97), Asian (UFBS 100) and Adelopetalum/Minutissima (UFBS 100) clades were 315 

resolved with high to maximum support, however the relationships among them were poorly 316 

supported. Within the Adelopetalum/Minutissima clade the highly supported clades revealed 317 

in the plastid phylogeny were also reconstructed based on the nuclear dataset albeit with poor 318 

support overall: argyropus clade (UFBS 100), bracteatum clade (UFBS 93), minutissimum 319 

clade (UFBS 86), and newportii clade (UFBS 83). Similar to reconstructions based on the 320 

plastid phylogeny: relationships among the argyropus, bracteatum and newportii clades, B. 321 

pygmaeum and B. weinthalii were poorly supported; sections Beccariana, Brachyantha, 322 

Brachypus, Cirrhopetaloides, Cirrhopetalum, Desmosanthes, Minutissima, Oxysepala, 323 

Polymeres, and Sestochilos were identified as polyphyletic or paraphyletic; and Australian 324 

species from sect. Brachystachyae, sect. Cirrhopetalum, sect. Monanthes, sect. Oxysepala, 325 

sect. Brachypus, sect. Polymeres, sect. Ephippium, sect. Stenochilus were placed in nine 326 

clades across the Asian clade. 327 
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 328 

Fig. 3. Maximum likelihood phylogenetic reconstruction of Bulbophyllum based on the 329 

nuclear ribosomal DNA cistron (5’ETS, 18s, ITS1, 5.8s, ITS2, 28s, 3’ETS). Ultrafast 330 

bootstrap values are given adjacent to nodes. Australian species are shown with an asterisk.  331 
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 332 

Fig. 4. Maximum likelihood phylogenetic reconstruction of Bulbophyllum based on nuclear 333 

ribosomal DNA cistron (5’ETS, 18s, ITS1, 5.8s, ITS2, 28s, 3’ETS). Ultrafast bootstrap 334 

values are given adjacent to nodes. Australian species are shown with an asterisk.  335 
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3.2 Divergence time estimation  336 

The divergence time analysis based on a relaxed log normal clock and birth death prior with 337 

speciation and extinction, which was identified as the model of best fit based on the Akaike 338 

information criterion (Supplementary Material S4), is presented here with the Asian and 339 

Afrotropical clades collapsed and the complete chronogram provided in Supplementary 340 

Material S7. The divergence time analysis based on the plastid dataset was well resolved and 341 

highly supported (Fig. 3, Supplementary Material S6). The divergence between 342 

Bulbophyllum and Dendrobium was estimated to have occurred during the early Oligocene, 343 

ca. 33.2 Ma (95% highest posterior probability density, HPD: 27.7339.0). The crown of 344 

Bulbophyllum, constituting the divergence of the Adelopetalum/Minutissima clade from the 345 

remainder of the genus, was dated to the late Oligocene, ca. 24.9 Ma (HPD: 20.1330.7). 346 

Divergence between the Asian clade and the Afrotropical clade was estimated to have taken 347 

place during the late Oligocene, ca. 24.3 Ma (HPD: 19.4329.8) and diversification within the 348 

Asian clade was estimated from the mid Miocene 21.4 Ma (HPD: 17.2326.4 Ma) and the 349 

Afrotropical clade from 16.0 Ma (HPD: 10.4321.7). The crown of the 350 

Adelopetalum/Minutissima clade was dated to the late Oligocene, ca. 23.6 Ma (HPD: 18.63351 

29.1), with the split of the Minutissimum clade from the Adelopetalum clade. The crown of 352 

the Adelopetalum clade was dated to the mid Miocene, ca. 15.3 Ma (HPD: 10.6321.2). The 353 

stem branches of major lineages within the Adelopetalum clade were estimated to have 354 

diversified during the mid-Miocene: the bracteatum clade was dated to ca. 14.5 Ma (HPD: 355 

10.0320.4); the lineage giving rise to B. weinthalii to ca. 12.1Ma (6.9317.6); the argyropus 356 

clade to ca. 12.1 Ma (6.9317.6); and the newportii clade to ca. 14.9 Ma (HPD 10.3320.7). 357 

Diversification among species within these lineages took place from the mid-Miocene 358 

onwards with the most recent divergence identified during the late Pleistocene among B. 359 

argyropus, B. corythium, and B. tuberculatum. 360 
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 361 

Fig 5. Maximum clade credibility chronogram for Bulbophyllum section Adelopetalum based 362 

on 70 plastid coding sequences. Divergence dates and 95% highest posterior density values 363 

are indicated adjacent to nodes. Grey bars indicate 95% highest posterior density. The 364 

asterisk denotes the node constrained with a fossil calibration point; the diamond shape 365 

denotes nodes which were constrained by secondary calibration points. 366 

3.3 Ancestral range analysis  367 

Model testing of the three biogeographic models (DEC, DIVALIKE, BAYAREALIKE) 368 

using the Akaike information criterion identified the BAYAREALIKE model as the model of 369 

best fit for the ancestral range estimation (Supplementary Material S5). Ancestral ranges 370 

estimated with the BAYAREALIKE model are presented here with the Asian and 371 

Afrotropical clades collapsed. The complete chronogram is provided in Supplementary 372 

Material S7 and range probabilities for all nodes in Supplementary Material S8.  373 

Australia was reconstructed as the most likely ancestral range for the MRCA of the 374 

Adelopetalum clade (range probability (RP) 82) and all nodes within this lineage (RP 72-99) 375 

except for the argyropus clade. Range shifts from Australia were inferred from the early 376 

Pliocene to the Pacific region (New Caledonia) in the newportii clade, in the lineage giving 377 

rise to B. lingulatum. Range shifts were also inferred from Australia to the Pacific region 378 
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(New Caledonia) and New Zealand either in the lineage giving rise to the MRCA of the 379 

argyropus clade or subsequently within this lineage. Three alternative ancestral ranges were 380 

reconstructed for the MRCA of the argyropus clade: Australia (RP 36), or widespread 381 

distributions including Australia and New Zealand (RP 33) or Australia and New Caledonia 382 

(RP 26). Two alternative ranges were also reconstructed for the MRCA of B. corythium and 383 

B. tuberculatum: New Zealand (RP 41) and New Caledonia (RP 34). Taking into account 384 

these alternative scenarios, range shifts within the argyropus clade were estimated to have 385 

occurred sometime between the mid Miocene and late Pliocene (12.130.5 Ma). The ancestral 386 

range of MRCA of the Adelopetalum/Minutissima clade and Bulbophyllum remained 387 

unresolved in the ancestral range reconstruction. The most likely ancestral range for the 388 

MRCA of the Adeloptalum/Minutissima clade was a widespread distribution across Australia 389 

and tropical Asia (RP 26), while alternative ranges reconstructed included a widespread range 390 

including Australia, tropical Asia and Papuasia (RP 13) and Australia (RP 11). Two 391 

alternative ancestral ranges were reconstructed for the MRCA of Bulbophyllum, both 392 

widespread distributions including Australia and tropical Asia (RP 25.9) or Australia, tropical 393 

Asia and Papuasia (RP 21). 394 
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 395 

Fig 6. Range evolution of Bulbophyllum sect. Adelopetalum. A) ancestral area reconstruction 396 

based on a the BAYAREALIKE model with species extant distributions shown within the 397 

grid; b) geographic regions delineated in the biogeographic analysis; c) legend of colour-398 

coded geographic regions and shared ancestral area, black with an asterisk represents other 399 

ancestral ranges. 400 

4. Discussion 401 

4.1 Phylogenetic relationships 402 

This study provided a broad plastid phylogenetic framework for Asian and Australasian 403 

sections of Bulbophyllum and revealed a close relationship between sections Adelopetalum 404 

and Minutissima s.s., that together form a highly supported early diverging lineage within the 405 
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genus (Fig. 1, Fig. 2). Relationships based on 70 plastid genes support a sister group 406 

relationship between the Adelopetalum/Minutissima clade and the remainder of the genus 407 

(Asian + Afrotropical clades). Within the Adelopetalum/Minutissima clade, analyses based 408 

on our 70 plastid loci supermatrix showed a dichotomous split between the highly supported 409 

Minutissima s.s. and Adelopetalum clades. Species were reconstructed in each of these clades 410 

according to their sectional placement with the exception of New Zealand endemic B. 411 

pygmaeum (sect. Minutissima), which was nested within the Adelopetalum clade, rendering 412 

section Adelopetalum paraphyletic. Section Minutissima was identified as polyphyletic, with 413 

the Australian (B. minutissimum, B. globuliforme) and Pacific species (B. keekee) placed in 414 

the Minutissima clade and New Zealand species (B. pygmaeum) in the Adelopetalum clade 415 

while the Asian species, B. mucronatum and B. moniliforme were resolved within the Asian 416 

clade. Section Minutissima has undergone numerous taxonomic changes with treatments 417 

ranging from a narrower circumscription recognising species from Australia (Jones and 418 

Clements, 2001), to broader classifications including 23 species from Thailand, Indonesia, 419 

Australia, New Zealand, New Caledonia and New Guinea (Pridgeon et al. 2014). Our 420 

phylogenetic analysis based on plastid and nuclear markers did not reconstruct a close 421 

relationship between sect. Minutissima species from the Australasian/Pacific region and 422 

Asian species B. mucronatum and B. moniliforme. Rather, in our analyses the Australasian 423 

species fell within the Adelopetalum/Minutissima clade while the Asian species were nested 424 

within the Asian clade. The results support morphological studies differentiating sect. 425 

Minutissima species from Australasia and Asia (Jones and Clements, 2001) and show minute 426 

pseudobulbs are a trait that has evolved more than once independently.  427 

 428 

While plastid phylogenomics has clarified broad level relationships within Bulbophyllum, 429 

further studies are required. Non monophyletic relationships identified in the present study 430 

(e.g., in sections Beccariana, Brachyantha, Brachypus, Cirrhopetaloides, Cirrhopetalum, 431 

Desmosanthes, and Polymeres) and in previous molecular phylogenetic studies (Fischer et 432 

al., 2007; Smidt et al., 2011; Pridgeon et al. 2014; Hu 2020) highlight the need for further 433 

taxonomic revision within Bulbophyllum. Further studies are required with an expanded 434 

sampling of the diverse Asian and Pacific taxa to improve understanding of evolutionary 435 

relationships and test sectional classifications within a phylogenetic framework. Phylogenetic 436 

relationships reconstructed from the nuclear ribosomal DNA cistron were not strongly 437 

supported overall here and in previous studies (Gamisch et al., 2015; Gamisch and Comes, 438 

2019, Hu 2020). Further studies utilising approaches yielding higher coverage from the 439 
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nuclear genome, such as target sequence capture methods, provide an opportunity to improve 440 

the understanding of evolutionary relationships in future studies. While assembling datasets 441 

with comprehensive species coverage within mega diverse groups such as Bulbophyllum 442 

remains a challenge, the present study provides an example of the use of a broad 443 

phylogenetic framework with targeted sampling within a section, to test the monophyly and 444 

phylogenetic placement of groups of interest. 445 

 446 

4.2 Spatio-temporal evolution of Bulbophyllum sect. Adelopetalum 447 

Our divergence time analysis and ancestral range estimations showed that Bulbophyllum 448 

section Adelopetalum represents an Australasian lineage that originated on the Australian 449 

continent during the late Oligocene to early Miocene. The Australian ancestral range is 450 

largely conserved within the lineage, indicating diversification among species has 451 

predominantly taken place on the Australian continent. The conservation of ancestral range 452 

observed within sect. Adelopetalum is consistent with previous phylogenetic analyses of 453 

Bulbophyllum that have shown a strong biogeographic signal among clades, being largely 454 

confined to biogeographic regions such as Madagascar, continental Africa and South 455 

America (Fischer et al., 2007; Gamisch et al., 2015; Gamisch and Comes, 2019; Smidt et al., 456 

2011). The evolution of Bulbophyllum during the early Oligocene occurred subsequently to 457 

the breakup of Gondwana (Matthews, et al. 2016; Zahirovic et al. 2016), implicating long-458 

distance dispersal (LDD) in the evolution of biogeographical lineages within the genus (Van 459 

den Berg, 2003, Smidt et al., 2011; Gamisch et al., 2015; Gamisch and Comes, 2019). 460 

Nevertheless, the conservation of ancestral ranges observed within the Adelopetalum lineage 461 

in this study and strong biogeographic signal among clades identified in previous studies 462 

indicate LDD with successful establishment and persistence has been relatively infrequent 463 

within Bulbophyllum. Although the minute wind-dispersed seeds of orchids have a high 464 

dispersal potential, successful establishment in a new area are limited by several factors, such 465 

as the presence of mycorrhizal partners necessary for germination and development, a 466 

suitable host or substrate and microclimatic conditions, and the availability of pollinators 467 

(Arditti and Ghani, 2000; Jersáková and Malinová, 2007; McCormick et al., 2012). Our 468 

results are consistent with previous studies that have identified in situ diversification as the 469 

dominant biogeographic process, despite evidence for LDD, and provide further support for 470 

the hypothesis that the complex requirements for successful establishment, rather than 471 
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dispersal limitations, play an important role in constraining the geographic distribution of 472 

orchids (Perez-Escobar and Chomicki et al. 2017; Givnish et al., 2016). 473 

 474 

Our phylogenetic analysis further resolved interspecific relationships among sect. 475 

Adelopetalum species (Fig. 1). Divergence time estimation showed that divergence among 476 

species occurred mainly during the Miocene and Pliocene (Fig. 3), during a period of 477 

extensive changes to the distribution of forest vegetation on the Australian continent in 478 

response to drastic climatic changes. During the early Miocene, Australian vegetation 479 

diversified in response to aridification of the Australian continent and the abrupt shift to a 480 

cool dry climate during the mid-Miocene resulted in considerable fragmentation of rainforest 481 

habitats (Martin, 2006, Byrne et al. 2011). Bulbophyllum sect. Adelopetalum comprises 482 

epiphytic species that occur in mesic forest habitats and thus diversification and 483 

fragmentation of these habitats were likely drivers of allopatric lineage divergence within this 484 

group. Sister group relationships were identified between two species pairs with disjunct 485 

distributions in Australia’s northern wet tropical rainforests and south-eastern rainforests (B. 486 

boonjee/B. bracteatum and B. newportii/B. exiguum). These relationships support the 487 

hypothesis that the diversification and fragmentation of forest habitats in Australia has been 488 

an important driver of lineage divergence in Australia’s mesic biome (Byrne et al., 2011, 489 

Simpson et al., 2018).  490 

 491 

Whilst the ancestral range was predominantly conserved within the Adelopetalum lineage, 492 

range expansion events were inferred from continental Australia across the Coral and Tasman 493 

Seas, to New Caledonia in the lineage giving rise to B. lingulatum and to New Zealand and 494 

New Caledonia in the argyropus clade (Fig. 4). New Caledonia and New Zealand each have a 495 

long history of isolation from Australia that predates the evolution of Bulbophyllum, 496 

indicating colonisation of these islands by Bulbophyllum species has been via LDD 497 

(Matthews et al., 2016). It remains unclear if LDD to New Zealand and New Caledonia in the 498 

argyropus clade occurred from the early Miocene in the lineage giving rise to the MRCA of 499 

the group or subsequently within this clade during the late Pleistocene, thus the spatio 500 

temporal evolution of this lineage remains unresolved. The group shares morphological 501 

affinities and taxonomic treatments recognise one to three species within the group: B. 502 

argyropus (Australia’s east coast and off shore islands: Lord Howe Island, and Norfolk 503 

Island), B. corythium (New Caledonia), and B. tuberculatum (New Zealand) (Clements and 504 
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Jones, 2002; Halle, 1981; Vermeulen, 1993). Further studies are required to clarify species 505 

delimitation and dispersal patterns utilising population level sampling and molecular 506 

sequencing techniques suited to resolving relationships among closely related species, such 507 

as reduced library representation high-throughput sequencing approaches or target sequence 508 

capture methods recovering highly variable non-coding regions (Peterson et al., 2012; 509 

Weitemier et al., 2014; Folk et al., 2015; Bagley et al. 2020).  510 

The pattern of eastward dispersal observed in range shifts from Australia, across the Coral 511 

and Tasman Seas, is consistent with dispersal patterns inferred in other angiosperms, 512 

including Abrotanella, Dendrobium, Dracophyllum, Hebe, Korthalsella, Leucopogon, 513 

Northofagus, Oreobolus, Pterostylis, Rytidosperma (Chacón et al., 2006; Lavarack et al., 514 

2000; Linder, 1999; Molvray et al., 1999; Puente-Lelièvre et al., 2013; Swenson et al., 2001; 515 

Wagstaff et al., 2010, 2006, 2002, Nargar et al. 2022). The bias towards eastward dispersal 516 

observed within section Adelopetalum among other plant groups may be facilitated by the 517 

predominant westerly winds occurring in the southern hemisphere that initiated after the 518 

rifting of Australia and South America from Antarctica during the Eocene (Sanmartín et al., 519 

2007).  520 
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