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Abstract: Microbes can initiate developmental gene regulatory cascades in animals. The 
molecular mechanisms underlying microbe-induced animal development and the evolutionary 
steps to integrate microbial signals into regulatory programs remain poorly understood. In the 
upside-down jellyfish Cassiopea xamachana, a dinoflagellate endosymbiont initiates the life 
stage transition from the sessile polyp to the sexual medusa. We found that metabolic products 
derived from symbiont carotenoids may be important to initiate C. xamachana development, in 
addition to expression of conserved genes involved in medusa development of non-symbiotic 
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jellyfish. We also revealed the transcription factor COUP is expressed during metamorphosis, 
potentially as a co-regulator of nuclear receptor RXR.  These data suggest relatively few steps 
may be necessary to integrate symbiont signals into gene regulatory networks and cements the 
role of the symbiont as a key trigger for life history transition in C. xamachana.  

 
 
Main Text: The importance of microbes as regulators of animal physiology and life history is 
increasingly evident, from drivers of evolutionary adaptations with implications beyond 
individual organisms to supporting ecosystems, e.g., coral reefs (1-4). In particular, induction of 
developmental processes such as metamorphosis and organogenesis by microbes is common 
across metazoans, and may have facilitated the evolution of multicellularity in animals (5, 6). 
Despite the importance of microbes in shaping animal development and evolution, the molecular 
and evolutionary steps leading to the coupling of microbial signaling with animal developmental 
pathways remain largely unknown.  
 
We used an emerging model system, the upside-down jellyfish Cassiopea xamachana (Cnidaria: 
Scyphozoa), to investigate how a photosynthetic dinoflagellate endosymbiont is integrated as a 
developmental cue to initiate metamorphosis (Fig. 1A). In non-symbiotic jellyfish, 
metamorphosis is triggered by environmental factors such as temperature (7) (Fig. 1B). For C. 
xamachana, the metamorphic transition in jellyfish known as strobilation begins approximately 
10 to 17 days after acquisition of its endosymbiont Symbiodinium microadriaticum by the sessile 
polyp (scyphistoma) stage (Dinoflagellata: Symbiodiniaceae) (8). If symbionts are not acquired 
from the environment, C. xamachana will remain in the asexual scyphistoma stage indefinitely.  
 
We performed a differential mRNA expression analysis across time at 0, 3, and 8 days post-
colonization (d.p.c) and mid-strobilation (~ 17 d.p.c) of C. xamachana with ImpulseDE (9). We 
aligned the RNAseq reads to our new chromosome level C. xamachana genome assembly (NCBI 
accession OLMO00000000) composed of 20 pseudo-chromosomes (N50=17.9 Mb) that captured 
99% of the original assembly (Fig. 1C), and contained 29,645 predicted protein coding genes 
(annotated genome available from https://phycocosm.jgi.doe.gov/Casxa1). We identified 5,414 
genes (p-adjusted < 0.05) exhibiting an impulse-like (time-associated) expression pattern that 
grouped into 11 clusters (Fig. 1C). In clusters where expression increased with strobilation, 
genes involved in developmental regulation were enriched. Wnt, Ras, and cAMP signaling 
pathways were enriched in cluster 7, and Notch signaling and cell cycle pathways were enriched 
in cluster 9 (Fig. 1D,E; fig. S1, Supplementary File 1). Multiple pathways associated with 
animal-microbe interactions were also found in cluster 1 (626 DEGs, Fig. 1E, fig. S1), 
characterized by genes that remained stable after a downregulation at 3 d.p.c, and likely 
reflecting a transcriptomic response coinciding with the immune suppression characteristic of 
symbiosis maintenance in cnidarians (10). 
 
We took advantage of the characterized molecular components of strobilation in non-symbiotic 
jellyfishes Aurelia aurita and Rhopilema esculentum to investigate their contribution to 
metamorphosis in C. xamachana. In non-symbiotic jellyfish, strobilation is regulated by an 
ortholog of RXR (11, 12), a nuclear receptor with a conserved function in metamorphosis across 
diverse metazoan lineages including vertebrates (11-15). In A. aurita and R. esculentum, 
expression of RXR is steadily up-regulated up to and through strobilation. Additionally, retinol 
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dehydrogenase (RDH), a gene involved in the biosynthesis of the RXR ligand 9-cis retinoic acid 
(RA), also regulates metamorphosis in these non-symbiotic jellyfish (Fig. S2) (11, 16). In C. 
xamachana, we found CxRXR expression to be relatively stable across all time-points (Fig. 2A) 
and orthologs of RDH1 and RDH2 were either down-regulated 2-fold (CxRADHa, Fig. 3A) or 
did not show an impulse-like behavior (CxRADHb) compared to aposymbiotic scyphistomae. An 
additional gene, CxCL112, was recovered from a homology search of three hormone-like genes 
linked to strobilation in A. aurita (CL112, CL390, CL631; fig. S4) (11). In contrast to the gradual 
upregulation of CL112 in A. aurita, CxCL112 was down-regulated in the strobilating 
scyphistoma (strobila) stage relative to the aposymbiotic scyphistoma in C. xamachana (Fig. 2A, 
p-adjusted < 0.05). The only gene in which C. xamachana expression was similar to A. aurita 
during strobilation was of DNA methyltransferase 1 (DNMT1; ~ 1 log2FC, p-adj = 0.009; Fig. 
S3), consistent with a conserved role of this gene in development of animals (17). Thus, an initial 
interrogation of gene expression in C. xamachana during strobilation appears to show 
transcriptomic divergence between symbiotic and non-symbiotic species.  

When CxRXR and CxCL112 mRNA were visualized by in situ hybridization, both genes were 
expressed orally in the aposymbiotic scyphistoma and mid-strobila stages, marking the region of 
the scyphistoma body that would undergo metamorphosis (Fig. 2B, fig. S5A,B). A decrease in 
expression of both genes coincided with progression of strobilation (late strobila), whereby 
mRNA became restricted to the retracted tentacles and the central oral appendage. Surprisingly, 
the diminished expression of CxRXR and CxCL112 coinciding with completion of strobilation 
resembles the spatial pattern observed in A. aurita (fig. S5C). The expression data suggest much 
of the regulatory machinery identified in non-symbiotic jellyfish remains intact and may be 
important for C. xamachana development, albeit with several modifications. 

We therefore tested whether treatment of aposymbiotic C. xamachana scyphistomae with 
exogenous chemicals that induce strobilation of non-symbiotic jellyfish (9-cis RA, 5-methoxy-2-
methyl indole) would be as efficient in triggering metamorphosis compared to acquisition of 
symbionts (16). The potent strobilation inducer 5-methoxy-2-methylindole, a molecule 
containing a predicted pharmacophore of the A. aurita gene CL390, induced strobilation in C. 
xamachana at similar rates to A. aurita (91.7 %, one-way ANOVA with post-hoc Tukey test, p-
value < 0.0005). While the target of the chemical inducer is not proposed hormone gene CL390, 
both A. aurita and C. xamachana share an inducible strobilation regulator. Interestingly, 9-cis 
RA at saturation (1 uM) failed to significantly induce strobilation relative to the vehicle control 
(6.25 %, p-value > 0.05, Fig. 2C). We thus hypothesized that strobilation in C. xamachana may 
require additional regulators and activation of RXR by 9-cis RA is insufficient to induce 
complete strobilation. 

To identify genes correlated with strobilation and symbiosis establishment, we next performed 
weighted gene correlation network analysis (WGCNA) (18). We identified three modules (2,846 
genes, Modules 1, 2, and 14) that were significantly correlated with symbiosis establishment (3 
and 8 d.p.c), and four modules (3,714 genes, Modules 9,10,11, and 12) associated with 
strobilation (p-value < 0.05) (fig. S6A, Supplementary File 2). Genes in the strobilation modules 
were enriched in pathways responsible for energy modulation and metabolism (mTOR signaling, 
insulin signaling, glucagon signaling, oxidative phosphorylation) coinciding with developmental 
processes, as well as cell proliferation and morphogenesis (cell cycle, DNA replication, TGF-β 
signaling) (fig. S6B).  
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We investigated whether genes in the strobilation module were associated with the conserved 
RXR response element (AGGTCA). If RXR regulates strobilation in C. xamachana, we expect 
the response element to be enriched with genes linked to strobilation. We scanned the 5,000 bp 
region flanking each gene for RXR half-sites separated by 1 to 5 nucleotides and found 1,676 
genes of the strobilation module were proximal to a putative RXR response element 
(Supplementary File 3). Of these, we found 83 genes with orthologs in related jellyfish species 
with conserved proximity to an RXR response element (Supplementary File 4). Moreover, the 
strobilation module M10 was enriched with genes associated with an RXR response element (Fig. 
3A, p-value < 5.70e-6 Chi-squared test). We next compared module membership (kME), high 
values akin to high inter-connectedness within the network, to fold-change. It revealed several 
“hub” genes including two hox genes and a chicken ovalbumin upstream promoter transcription 
factor (COUP-TF, nuclear receptor subfamily II) among those with high kME and expression 
(Fig. 3B, fig. S6A). Developmental genes including Doublesex and Mab3-related (DMRT), 
which is associated with strobilation in non-symbiotic jellyfish, were also among those with high 
kME values (11). Genomic scans for additional motifs that were significantly enriched (p-value 
< 1e-10) within the strobilation modules included binding targets of homeobox genes (Fig. 3C). 
Although with marginally lower significance (p-value < 1e-5), COUP motifs were also identified 
to be enriched (Supplementary File 5), making them likely candidates to regulate strobilation in 
C. xamachana. 

In further exploring COUP-TF we identified CxCOUP-TFa, which exhibited a stepwise pattern 
of expression that increased during days 3 and 8 d.p.c., and CxCOUP-TFb, which showed 
gradual up-regulation over time (fig. S7). A third closely related nuclear receptor (CxCOUP-like) 
showed a rapid increase in expression during strobilation, similar to patterns observed for other 
important players in strobilation (Fig. 3D). Members of the COUP-TFs exhibit dual roles as both 
initiators and repressors of transcription, with potential regulatory roles in embryogenesis 
through heterodimerization with the RXR gene (19, 20). Although it remains unknown whether 
CxRXR forms a heterodimer with other nuclear receptors in C. xamachana, the low induction of 
strobilation under 9-cis RA treatment suggests CxRXR activation of strobilation requires a co-
regulator (21). To test the participation of a COUP-TF in C. xamachana strobilation, we treated 
scyphistomae harboring S. microadriaticum with a chemical inhibitor of COUP transcription 
factors, 4-methoxy-1-napthol (MNol). We found strobilation to be significantly delayed (Fig 
2D), thus implicating COUP-TF as a key regulator of strobilation. 

As carotenoids are common ligands of nuclear receptors like RXR we further investigated our 
datasets for genes involved in carotenoid metabolism. We found a β-carotene oxygenase 
(CxBCOa) up-regulated approximately four-fold during strobilation (p-value = 6.27e-5, Fig. 4A, 
fig. S6). BCO genes perform symmetric or asymmetric cleavage of β-carotene. β-carotene 
monooxygenase (BCMO) produces retinal, while β-carotene dioxygenase (BCDO2) generates β-
ionone and β-apo-carotenal. These molecules can be further processed by a dehydrogenase to 
produce potential nuclear receptor ligands, i.e. retinoic acid (22, 23) (Fig. 4B). Two BCO-like 
genes (CxBCOLb, CxBCOLf) were also found in the WGCNA symbiosis establishment modules 
(M1, M14) (Fig. 4A, fig. S8). While the exact type of reaction performed by CxBCOa requires 
further characterization, key residues responsible for catalytic activity were found in all genes 
(fig. S9), suggesting cleavage activity is likely analogous with BCO orthologs in mammals. In 
mammals, BCDO2 is thought to be predominantly active in the mitochondria where it functions 
against oxidative damage caused by carotenoid accumulation, whereas BCMO is restricted to the 
cytosol (24, 25). None of the CxBCO genes possessed a mitochondrial transport signal within the 
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N-terminus. However, signaling peptide sequences were present in CxBCOL genes, suggestive of 
their post-secretion enzymatic activity within the extracellular matrix (fig. S10) (26). Treatment 
of symbiotic scyphistomae with the RDH inhibitor 4-diethylaminobenzaldehyde (DEAB) led to 
significant delays to strobilation (Mantel-Cox test, p-value < 0.005) (Fig 2D). Treatment with a 
single concentration of butylated hydroxytoluene (BHT), a BCO inhibitor, did not alter rates of 
strobilation, but further experiments with additional concentrations may be useful (fig. S11). 
These results suggest carotenoids are important for strobilation in C. xamachana, and potentially 
sourced from the symbionts. 

Symbiodinium synthesizes multiple carotenoid products that can be potential substrates for 
further processing (27). Genes required for carotenoid synthesis were confirmed to be expressed 
by S. microadriaticum in hospite, including those responsible for production of β-carotene, 
lycopene, peridinin, zeaxanthin, and dinoflagellate specific carotenoids (dinoxanthin, 
diadinoxanthin) (Fig. 4B, fig. S12A) (28). In silico predictions of binding affinities for putative 
carotenoid ligands suggests cleavage products other than 9-cis retinoic acid have similar binding 
kinetics with CxRXR, including zeaxanthenoic acid, a metabolic equivalent of RA derived from 
zeaxanthin (Fig. 4C, fig. S12B).  

Taken together, our data suggest that the regulation of development in a symbiotic jellyfish 
remains largely similar to non-symbiotic species with some notable exceptions. We hypothesize 
that after colonization of C. xamachana scyphistomae by S. microadriaticum, accumulated 
carotenoids are processed by CxBCO, leading to the production of nuclear receptor ligands. 
Subsequently, nuclear receptors act as a sensor by binding these carotenoid cleavage products to 
trigger a downstream signaling cascade leading to the initiation of strobilation (Fig. 4E). With 
the exception of diadinoxanthin and peridinin, which generally comprise over 80% of the 
produced carotenoids in Symbiodinium, minor pigments make up less than 5% of the total (29). 
Consequently, the observed lag period to the start of strobilation following initial acquisition of 
symbionts may reflect the time necessary to accumulate the minimum concentration of a minor 
carotenoid (e.g., β-carotene, zeaxanthin) required to activate RXR and irreversibly initiate 
development. The difference in expression of key genes responsible for RA metabolism between 
C. xamachana and non-symbiotic jellyfish, including the constitutive expression of RXR, may 
also accelerate the time to strobilation by priming the animal for the transition. We suggest the 
integration of Symbiodinium as driver of development in C. xamachana likely resulted from a 
compatibility of precursor molecules of symbiont origin with the RXR developmental signaling 
pathway, accompanied by the modulation in expression of key genes. Although specific 
pathways may vary, symbiont-driven development may evolve through relatively few changes to 
existing programs. 
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Fig. 1. Symbiont induced metamorphosis coincides with activation of canonical 
developmental genes. (A) Lifecycle of C. xamachana displaying in clockwise order a free-
swimming ephyra, aposymbiotic scyphistomae, symbiotic scyphistomae mid-strobilation 
(strobila), symbiotic scyphistomae during late strobilation. (B) Phylogenetic relationship of 
scyphozoan (colored box) jellyfish species relative to other cnidarian lineages. Species that 
metamorphosis under environmental factors are indicated in blue, while metamorphosis in C. 
xamachana (orange) is regulated by its symbiont.  (C) HiC plot of the C. xamachana genome 
v2.0. Color bar indicates frequency of contact at each coordinate within the scaffolds. (D) 
Differentially expressed genes identified with ImpulseDE2 were clustered (k-means, k=11) 
according to co-expression patterns across the four experimental time points. Cluster centroids 
are plotted with standardized expression (E) KEGG pathways enriched in cluster 9 of k-means 
clustered genes exhibiting impulse-like expression. (F) KEGG pathways enriched in cluster 1 of 
k-means clustered genes exhibiting impulse-like expression. 
 

Fig. 2. Regulation of retinoic acid pathway associated genes during strobilation in 
Cassiopea xamachana. A) Expression of genes implicated in non-symbiotic jellyfish strobilation 
across all stages (0=aposymbiotic scyphistomae, 3 and 8 days post-colonization, S=strobila). 
Values are log2 transformed DESeq2 normalized read counts. Colors indicate experiment 1 
(orange) and experiment 2 (grey). P-adjusted values from the ImpulseDE analysis are indicated 
in black. P-adjusted values generated using DESeq2 are in orange (Exp. 1) and grey (Exp. 2). (B) 
Whole mount in situ hybridization of CxRXR and CxCL112 in aposymbiotic (0 days) and 
strobila. Late-strobila were collected near completion of strobilation. (C) Strobilation rates of C. 
xamachana scyphistomae after 17 days post-treatment / colonization. ***p-value < 0.005 
ANOVA with post-hoc Tukey test. (E) Strobilation rates of scyphistomae treated with an 
aldehyde dehydrogenase inhibitor (DEAB) and a COUP inhibitor (MNol) in symbiotic 
scyphistomae (n=40 / treatment group). DEAB (p-value < 0.0005, Mantel-Cox test) treated and 
MNol (p-value < 0.005, Mantel-Cox test) treated animals strobilated significantly slower than 
controls.  

 

Fig. 3. Developmental transcription factors are correlated with strobilation in Cassiopea 
xamachana. (A) Percentage of genes with an RXR response element (RE) within 5,000 bp of the 
gene. RXR-RE associated genes with orthologs in A. aurita, N. nomurai, and R. esculentum are 
shown in black. Non-conserved genes are shown in orange and genes lacking a proximal RXR-
RE are shown in grey. Module 10 had a statistically significant number of genes compared to 
other modules (p-value = 5.70e-6 chi-squared test). (B) Module membership (kME) plotted 
against log2 fold-change. Dotted lines indicate (kME) cutoff of 0.9, and log2 fold-change cutoff 
(5, -3.5). (C) Position weight matrix logos for the top 10 most significantly enriched eukaryote 
motifs (p-value cutoff < 1 x 10-10) associated with genes in WGCNA modules correlating with 
strobilation (D) ImpulseDE2 normalized read counts of Hox1 and COUP-TFc across the four 
time points, which showed a statistically significant impulse pattern during a time point. 

Fig. 4. Potential RXR ligand interactions underlying regulation of symbiosis driven 
strobilation. (A) DESeq2 normalized read counts of C. xamachana β-carotene oxygenases 
found to be correlated with establishment / strobilation over the four time points. (B) Carotenoids 
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produced by the dinoflagellate symbiont Symbiodinium microadriaticum. Retinol, retinal, and 
rosafluene are cleavage products of β-carotene. (C) Binding probability of potential ligands 
against their dissociation constant modeled with BindScope and Kdeep. 3HI = 3 hydroxy-beta-
ionone. 11HRL = 11-cis-3-hydroxyretinal. ATR = all-trans retinoic acid. AZN = apo-9 
zeaxanthenone. BAC = beta-10-apocarotenal. BAN = 13-apo-beta-apocarotenone. HRA=9-cis 
4hydroxyretinoic acid. LYC=lycopene. ZXL=all-trans zeaxanthenal. (D) Proposed model of C. 
xamachana strobilation. Carotenoids produced by Symbiodinium are cleaved by CxBCO. Along 
with a secondary nuclear receptor (e.g., COUP-TF), CxRXR binds to response elements proximal 
to developmental genes (e.g., Hox, DMRT) to initiate the downstream developmental cascade 
leading to strobilation. 
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