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Abstract

Aims: Epigenetic clocks are widely applied as surrogates for biological age in different tissues and/or diseases,
including several neurodegenerative diseases. Despite white matter (WM) changes often being observed in

neurodegenerative diseases, no study hasinvestigated epigenetic ageing in white matter.

Methods. We analysed the performances of two DNA methylation-based clocks, DNAmMClockyy and
DNAMClocKcorica, iN post-mortem WM tissue from multiple subcortical regions and the cerebellum, and in
oligodendrocyte-enriched nuclei. We also examined epigenetic ageing in control and multiple system atrophy
(MSA) (WM and mixed WM and grey matter), as MSA is a heurodegenerative disease comprising pronounced
WM changes and a-synuclein aggregates in oligodendrocytes.

Results: Estimated DNA methylation (DNAm) ages showed strong correlations with chronological ages, even
in WM (e.g., DNAMClocKcorica, I = [0.80-0.97], p<0.05). However, performances and DNAm age estimates
differed between clocks and brain regions. DNAmMClockyys significantly underestimated ages in all cohorts
except in the MSA prefrontal cortex mixed tissue, whereas DNAMClockcorica tended towards age
overedimations. Pronounced age overestimations in the oligodendrocyte-enriched cohorts (e.g.,
oligodendrocyte-enriched nuclei, p=6.1x10°) suggested that this cell-type ages faster. Indeed, significant
positive correlations were observed between estimated oligodendrocyte proportions and DNAmM age acceleration
estimated by DNAMCIlocKcgrica (r>0.31, p<0.05), and similar trends with DNAmMClocky,i. Although increased
age acceleration was observed in MSA compared to controls, no significant differences were observed upon

adjustment for possible confounders (e.g., cell-type proportions).

Conclusions: Our findings show that oligodendrocyte proportions positively influence epigenetic age
acceleration across brain regions and highlight the need to further investigate this in ageing and
neurodegeneration.

Keywords: epigenetic clock, multiple system atrophy, DNA methylation ageing, post-mortem brain tissue,
white matter, oligodendrocytes
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1. Introduction

DNA methylation-based estimators of chronological age, termed as “epigenetic clocks’, make use of penalised
regression models such as elastic net regression to select signature CpGs as biomarkers that correlate with
chronological age [1, 2]. Multiple clocks have been developed for use as molecular indicators of DNA
methylation (DNAm) ages in different human tissues such as peripheral blood [3], multi-tissues
(DNAmMClockyyt) [1], and the brain cortex (DNAmMClocKeorica) [2]. These epigenetic clocks are being
increasingly used to determine the biological age of tissues and organs in various contexts, epigenetic age
acceleration has been reported in multiple tissues including the peripheral blood and post-mortem brain tissues
in neurodegenerative disorders such as Alzheimer’s disease (AD), Huntington's disease (HD), and Parkinson’s
disease (PD) [4-6].

The DNAmMClocky,: has been applied in tissues from several brain regions such as the dorsolateral prefrontal
cortex (DLPFC) [6]; frontal, occipital, temporal, and parietal lobes, cerebellum, hippocampus, midbrain, caudate
nucleus, and cingulate gyrus [4, 7]; similarly, the DNAMClockcorica has specifically been tested in dorsolateral
prefrontal cortex and posterior cingulate cortex [8, 9]. However, sensitivity of the different clocks to tissue
specific changes (e.g., different cell-type proportions) varies depending on the tissues used in the reference
training data, with a higher sensitivity likely to be observed in tissue specific clocks compared to pan/multi-
tissue clocks [10]. Moreover, when clocks were trained using data from one tissue at a time, their performances
in predicting age in another tissue worsened [11]. However, the performance of these clocks in tissues that are
particularly enriched for specific brain cell types, such as oligodendrocytes in the case of white matter, remains
unexplored.

About half of the human brain is made up of white matter, which primarily comprises myelinated axons and
glia cell types such as the astrocytes, microglia, and oligodendrocytes, with oligodendrocytes being by far the
most abundant cell type [12]. White matter has been shown to play prominent roles in the normal functioning of
the brain including cognitive [13], and motor functions [14]. Many neurodegenerative diseases show white
matter changes, including AD, PD, and multiple system atrophy (MSA) [15-17]. MSA is arare adult-onset fatal
neurodegenerative disorder with prominent white matter involvement [15]. MSA belongs to the group of a-
synucleinopathies along with PD and Dementia with Lewy bodies (DLB) [18]. However, pathological hallmarks
of MSA include the abnormal accumulation of misfolded a-synuclein primarily in the oligodendrocytes rather
than in neurons, and these aggregates are termed as glial cytoplasmic inclusions [19]. MSA is a predominantly
sporadic disease, with a complex aetiology involving the interplay of genetic, epigenetic, and environmental
factors [20]. Recent epigenome-wide association studies have revealed aberrant DNA methylation changes in
the MSA post-mortem brain tissue [21-23].

We therefore investigated the performances of DNAMCIlocky,i and DNAMCIocKcoricy iN White matter from
multiple brain regions and compared them with tissues comprising a mixture of grey and white matter in
neurologically healthy controls as well as in a disease context. As MSA is a neurodegenerative disease model
involving white matter pathological hallmarks, we investigated if patients with MSA exhibited accelerated
ageing in the white matter of different brain regions such as the cerebellum, frontal, and occipital lobes, as well

as prefrontal cortex grey and white matter mixed tissue.
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2. Materialsand methods
2.1 Cohort Description

The firgt cohort (Cohort 1) consisted of white matter tissue carefully dissected from the cerebellum, and frontal
and occipital lobes of post-mortem brain tissues obtained from brains donated to the Queen Square Brain Bank.
Cohort 1 comprised atotal of 127 samples from MSA cases (N=77) and neurologically healthy controls (N=50),
which included 93 samples from a previously published study [21] and 34 newly profiled samples obtained from
the same brain bank. Cohort 2 consisted of samples from a publicly available dataset (GSE143157) comprising
grey and white matter tissue mix from the prefrontal cortex of MSA cases (N=40) and controls (N=37) [22]. We
further included a white matter cohort - Cohort 3, which consisted of control samples (N=9) from the corpus
callosum, the biggest white matter structure of the brain, obtained from a publicly available dataset
(GSE109381) [24]. As MSA is characterized by oligodendroglial pathology, we included an additional Cohort
4, which consists of sorted SOX10+ (oligodendrocyte-enriched) immunolabeled populations from bulk DLPFC
healthy control tissue (N=15) [25]. The demographic details of al cohorts including sample numbers and
chronological age are described in Supplementary Table 1.

2.2 DNA methylation profiling and data pre-processing

For the newly profiled samples from Cohort 1 (N=34 samples), genomic DNA was extracted from frozen brain
tissues using a previoudy established phenol-chloroform-isopamyl alcohol extraction method. Bisulphite
conversion was then carried out with 750 ng of DNA using the EZ DNA Methylation Kit (Zymo Research,
Irvine, USA), followed by genome-wide methylation profiling using the Infinium HumanMethylationEPIC
Bead Chip (Illumina). Bisulphite conversion and methylation profiling were carried out at UCL genomics, and
the raw intensity files (.idat) generated. Methylation profiles of 97 samples (a subset of Cohort 1) generated by
Bettencourt et al [21], 77 methylation profiles from the publicly available Cohort 2 [22], and 15 SOX10+
methylation profiles of Cohort 4 [25] had been previously generated using the Infinium
HumanMethylationEPIC BeadChip (lllumina), whereas 9 methylation profiles of Cohort 3 [24], had been
previously generated using the Infinium HumanMethylation450K BeadChip (Illumina). All cohorts were
subjected to harmonized quality control checks and pre-processing.

Raw intensity files for all cohorts were imported into R using the WateRmelon package [26]. The following pre-
processing and quality control checks were performed: (i) raw intensities were visualised to identify and filter
out atypical and failed samples, (ii) outlier detection to identify and remove outliers, (iii) bisulphite conversion
assessment, where intensities from the probes were converted into percentages and samples with <80%
bisulphite conversion were removed, (iv) probe filtering to identify poorly performing probes by assessing the
bead counts and detection-values. Samples with >1% probes above the 0.05 detection p-value threshold, probes
with a beadcount of <3 in 5% of the samples, and stes for which over 1% of samples showed a detection p-
value > 0.05 were discarded. Samples were aso discarded if sex predictions did not match with phenotypic sex.
Following the pre-processing, dasen normalisation was carried out. Cell-type proportions of neuron-enriched
(NeuN+), oligodendrocyte-enriched (SOX10+), and other brain cell type (NeuN-/SOX10-) populations in the
bulk tissues were estimated using the CETY GO package (https:.//github.com/ds420/CETY GO) and a sorted cell-
type reference dataset as described by Shireby et al. [25]. CETY GO estimates cell proportions and quantifies the
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CEll TY pe deconvolution GOodness (CETY GO) score of a set of cellular heterogeneity variables derived from
a genome-wide DNA methylation profile for an individual sample by capturing the deviation between a

sample’s DNAm profile and its expected profile.
2.3 DNA methylation age estimation

Normalised beta values were used for the estimation of DNA methylation (DNAm) ages using 2 established
epigenetic clocks trained to predict chronologic age, the DNAMClockyys [1], which employs 353 CpGs curated
from andysis of DNA methylation from 51 different tissues and cell-types, and the DNAMClockcyica [2]
designed using 347 CpGs to specifically predict age in the human cortex. DNAm ages for DNAMCl ocky; were
calculated wusing the advanced anaysis with normalisation, on the online calculator
(http://dnamage.genetics.ucla.edu/). The DNAmM ages for DNAmMClockeoiica Were calculated as described by
Shireby et al. [2].

2.4 Statistics

All statistical analyses were performed in R (ver. 4.1.1). For both clocks, DNAmM age acceleration was
calculated as: 1) difference between the predicted DNAmM age and chronological age, and 2) residuals obtained
by linear regression of DNAm age on chronological age and adjusting for possible confounders such as cell
proportions (either neuronal or oligodendroglial), and duplicated individuals with multiple datapoints. Standard
linear regression models were applied for Cohorts 2, 3 and 4; however, as Cohort 1 consisted of a subset of
tissues for multiple brain regions obtained from the same individuals, mixed effects linear regression models
were implemented using the Ime4 package (https://github.com/Imed/Imed/)[27], where DNAmM age was
regressed against chronological age and estimated cell proportions as fixed effects and individual was included
as a random effect. Correlations between chronological and epigenetic ages for the different groups were
calculated using Pearson’ s coefficient. Comparisons across groups/brain regions were performed using Kruskal-
Wallis test, and pairwise comparisons between the groups (MSA vs controls) within each brain region were
performed using pairwise Wilcoxon test with the Benjamini-Hochberg multiple testing correction. Correlations
between epigenetic age acceleration (i.e., residuals obtained by linear regression of DNAmM age on chronological
age) and cell-type proportions (e.g., estimates of oligodendrocyte proportions) were calculated using Pearson’'s
coefficient.

3. Reaults

3.1 Comparison of the perfor mances of DNAMClocky i and DNAMCIocKcortica iN White matter from
different brain regions and correlations with chronological age

Using data derived from both neurologically healthy controls and MSA, we investigated the performances of
both DNAMClockyyi and DNAMClocKkcqica iN White matter dissected from the frontal and occipital lobes,
cerebellum, as well as from the corpus callosum and sorted oligodendrocyte-enriched nuclei (SOX10+) and
compared them with prefrontal cortex tissue constituting a mix of grey and white matter. The composition of
prefrontal cortex tissue resembles that of the datasets used to train and test both clocks. As expected, DNA
methylation ages estimated with both clocks showed strong correlations with chronological ages in all brain
regions, for both white matter and mixed tissues (Table 1). Overall, compared to the DNAmMClocky, the
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DNAmMClockcorica age estimates showed higher correlations with chronological age and lower errors for all
cortical and subcortical regions, regardless of whether samples were from white matter or mixed tissues
(Cohorts 1-4). The DNAmMClockyy: age estimates, however, showed a stronger correlation with chronological
age than the DNAMCIockcrica for cerebellar white matter (Cohort 1).

For the healthy controls (Table 1), strongest correlation was observed for the corpus callosum (Cohort 3) with
DNAmMClocKcorica (r=0.97), with a considerably lower error (median absolute difference, error=3.6) when
compared to that with DNAmMClockyys (r=0.93, error=8.3). This was followed by the prefrontal cortex grey and
white matter mix (Cohort 2), where DNAMCIlockcotica Showed stronger correlation with similar error values
(r=0.92; error=2.7) compared to DNAmMClockyy; (r=0.81; error =2.2), followed by white matter from the
occipital and frontal lobes (Cohort 1) (Table 1).

In case of MSA, correlations between the chronological age and the DNAMCIlockcoica age estimates were in
general, similar or weaker than those observed for controls, except in case of cerebellar white matter (Table 1).
Moreover, error values were higher in all brain regionsin MSA samples compared to that of controls, however,
these differences did not reach statistical significance. Conversely, the performance of DNAMCIockpyysi
significantly improved in the white matter tissues of M SA cases compared to controls (Supplementary Table 2).
However, the latter could be attributable to the lower chronological ages of the MSA cases (range 50-82 years)
compared to controls (range 51-99 years), as previous reports suggest that DNAmMClockyyy Systematically
underestimates DNAm age in individuals over ~60 years old, and systematically overestimates it in individuals
below ~60 yearsold [2].

3.2. Epigenetic age estimates vary consider ably depending on the epigenetic clock used and the cellular
composition of the studied tissues

We then compared the difference in the chronological age and the DNAm age estimates for the control and
MSA groups predicted by the two clocks for the different cohorts comprising different brain regions and cellular
compositions. Overall, DNAmMClockcatica tended to overestimate age, especialy for the MSA cases, with
significant overestimations in the frontal lobe white matter and oligodendrocyte-enriched nuclei, whereas
DNAmMClockyys showed significant age underestimations in the white matter cohorts (Cohorts 1, 3, and 4) (Fig.
1, Supplementary Tables 3 and 4). The mean ages predicted by both DNAMClockyyy and DNAMCIocKcortica
were closer to the actual chronological age for both control and MSA groups in the prefrontal cortex mixed
tissue (Cohort 2) compared to the white matter cohorts. This result is expected, given this mixed tissue cohort is
more similar to the tissue types used to train both clocks. As white matter is highly enriched for
oligodendrocytes (up to 70%)[28], we included an additional cohort containing oligodendroglial-enriched nuclei
from control individuals to infer the effect of this cell type on epigenetic age estimates. For the oligodendroglial-
enriched nuclei, DNAMClockcorica Significantly overestimated the age whereas DNAmMCIlockyg Significantly
underestimated the age, similar to that in white matter, but with higher error values (Fig. 1, Table 1). The
findings from white matter and oligodendroglial-enriched nuclei suggest that the performances of epigenetic
clocks in brain tissue are dependent on the cellular compositions of the tissues used, and that oligodendrocyte
proportions might play an important role in the performances of epigenetic clocksin brain tissue.

3.3 Oligodendr ocyte proportions ar e associated with epigenetic age acceleration
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As DNA methylation patterns often are cell-type specific, it is reasonable to hypothesise that differences in
specific cell-type proportions in a tissue sample will influence the estimates of epigenetic age based on DNA
methylation levels and consequently epigenetic age acceleration. Previous work has demonstrated that
significant negative correlation exists between epigenetic age acceleration and the proportion of neurons in the
prefrontal cortex [29]. We found the same direction of effect in our prefrontal cortex grey and white matter mix
tissues with the DNAmMClockcorica, With a significant negative correlation observed between epigenetic age
acceleration and neuronal proportions (r=-0.47, p=2.4x10™%) (Supplementary Fig. 1). As expected, in our white
matter cohorts the estimated neuronal proportions were minimal in frontal (mean 1.8+0.6) and occipital lobes
(mean 1.98+1.6) as well as in the corpus callosum (mean 5.7+0.8). Furthermore, there was no relationship
between the residual neuronal proportions and epigenetic age acceleration in the white matter for these regions.
The opposite was seen in the cerebellar white matter samples, where higher neuronal proportions were found,
particularly in the MSA cases (mean 12.8+12.7 vs mean 7.8+11.6 in the controls), and significant negative
correlations were observed between the neuronal proportions and the epigenetic age acceleration measures
derived from both clocks [DNAMClockeorica (r=-0.7, p=2.4x10™"°) and DNAMClockyusi (r=-0.54, p=5.9x10®)]
(Supplementary Fig. 1). However, these findings in the cerebellar white matter are not totally unexpected as
they may result from: a) the fact that it is challenging to dissect cerebellar white matter without capturing any
deep nucle, particularly in the MSA cases where the cerebellar white matter is very atrophic, increasing the
likelihood of deep cerebellar nuclei contamination; and b) the fact that the algorithm used to deconvolute cell-
type proportions utilizes reference datasets derived from cortical regions and this may influence cell proportion
estimates in a region-specific manner.

Lower neuronal proportions (i.e., higher glial proportions) have been associated with higher estimates of
epigenetic ages [2] and, in this study, epigenetic ages are largely overestimated in oligodendrocytes (i.e.,
SOX10+ nuclei) by the DNAmMClockconica. This prompted us to interrogate whether oligodendrocyte
proportions would be associated with epigenetic age acceleration. Up to now, proportions of brain cell-types
estimates obtained from DNA methylation data were restricted to neuronal vs glial cell-types [with the CETS
[30], minfi/wateRmelon packages [26, 31]]. However, the glial group encompasses very heterogeneous cell
types, from oligodendrocytes to microglia, astrocytes, and other cells. By using a recently refined cell-type
deconvolution algorithm [CETY GO [25]], we dissected the proportions of oligodendrocytes from other glial
cells in our cohorts. For estimates derived from both clocks, significant positive correlations were obtained
between age acceleration measures and oligodendrocyte proportions for cerebellar, frontal, and occipital white
matter as well as for prefrontal mixed tissues (Fig. 2). More details on separate correlations for controls and
MSA cases can be found in Supplementary Fig. 3. The strongest correlations with DNAMClocKcorica Were
found for control cerebellar white matter (r=0.7, p=0.00041), followed by control prefrontal cortex mixed tissue
(r=0.65, p:1.3x10’°'5). For the corpus callosum (Cohort 3), the DNAMClocKcorica €Stimates, in accordance with
the other cohorts, showed a moderate positive correlation with the oligodendrocyte proportions, whereas the
DNAmMClockyy showed the opposite, although none of these correlations reached statistical significancein this
small cohort. Overall, epigenetic age acceleration estimates derived from DNAMClockcatica Showed stronger
correlations with oligodendrocyte proportions compared to that with DNAmMClocky. This may suggest that the
estimates from the DNAmMClockcorica @re more influenced by the variation in the oligodendrocyte composition

of the tissue than those from the DNAmMClocky:i. Weaker negative correlations were observed between age
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acceleration measures and other cell-type proportions (NeuN-/SOX10-) for frontal and occipital white matter as
well as for prefrontal mixed tissues and no significant correlations were observed for cerebellar white matter
(Supplementary Fig. 3). Altogether, our data supports a role for oligodendrocytes pushing towards older

epigenetic age estimates, while it would be the other way around for neurons and the other brain cell types.
3.4 Epigenetic age acceleration in the different brain regionsin M SA

As increased epigenetic age acceleration has been reported to occur in neurodegenerative diseases [4-6], we
investigated the presence of biological age acceleration in MSA when compared to controls based on results
from the two clocks. For Cohort 1, with both DNAmMClocky,; and DNAMClocKcorica, increased age
acceleration was observed in the MSA white matter of all brain regions when compared to the controls (Fig. 3).
Differences ranged between 2 years in the frontal lobe for DNAMClockcetica @nd 7 years in the occipital lobe
for both DNAmMClockyyi and DNAMClockeoica (Figure 3A, C). Pairwise comparisons revealed that these
differences were datistically significant only in the occipital lobe for DNAmMClockyyi (p = 0.042). In the
prefrontal cortex mixed tissue (Cohort 2), ~2 years of acceleration was observed in the MSA samples with
DNAmMClockyyi (p=0.038, Fig. 3B). A smaller difference was found in the same direction with the
DNAMClocKcorica (Fig. 3D).

We then proceeded to verify whether the age acceleration could be influenced by possible confounding factors.
Chronological age is known to have an impact on the DNAm age estimations [32]. As chronological ages of the
control group were generally higher than that of the MSA group for all brain regions, this had to be accounted
for. In addition, for Cohort 1, although white matter tissue was carefully hand-dissected and enriched for
oligodendrocytes, neuronal contaminants could still be present, and therefore the neuronal proportions needed to
be accounted for. Also, Cohort 1 included multiple brain regions per individual. Therefore, the second measure
of age acceleration corresponded to the residuals obtained by regressing DNAm age on chronological age and
neuronal proportions as fixed effects and, in addition, by including individuals as a random effect in the case of
Cohort 1. Upon adjusting for the abovementioned covariates, no significant age acceleration was observed in the
MSA group in any of the brain regions (Fig. 2E-H). Similar results were obtained after adjusting for
oligodendrocyte proportions instead of neuronal proportionsin these regression models (Supplementary Fig. 4).

4, Discussion

This is the firg study, to our knowledge, that comprehensively analyses and describes the characterigtics of
DNAmMClockyyis and DNAMClockcorica in White matter from multiple brain regions. The study compares the
performances of the clocks in white matter from subcortical regions, corpus callosum, and cerebellum, as well
as in a mix of white and grey matter tissue obtained from the prefrontal cortex and in an oligodendrocyte-
enriched population. The study also considered MSA as a disease model involving white matter pathological
changes and investigated the presence of increased DNAm age acceleration in different brain regions.

Both epigenetic clocks showed strong correlations with chronological age in both white matter as well as in
mixed grey and white matter tissues. Lower error values for the DNAMClocKcorica, @nd stronger correlations in
white matter enriched tissues of the corpus callosum, frontal and occipital lobes, and sorted SOX10+ nuclel, as
well as for grey and white matter mix tissues of the prefrontal cortex indicate that the cortical clock is highly
specific towards the hemispheric cortical and subcortical brain regions in both grey and white matter tissues.

8
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Conversely, stronger correlations with DNAmMClockyy: in the cerebellum (white matter) indicates that the
multi-tissue clock performs better for regions of the brain other than cortical and subcortical regions.
Furthermore, as reported by Shireby et al [2], DNAMClockcarica Shows reduced accuracy when applied to non-
cortical regions, which is exemplified by the weaker correlations observed between chronological and DNAmM
age especially in the cerebellar control samples. Among the cortical and subcortical regions, DNAMClocKcorica
outperforms DNAmMClockyys, particularly in white matter tissues, with correlation coefficients and error values
in ranges similar to those observed previously by Shireby et al. and Grodstein et al. for the dorsolateral
prefrontal and posterior cingulate cortices[2, 8].

Lower neuronal proportions (i.e., higher glial proportions) have been previously associated with higher cortical
DNAm ages [2]. Recently, studies that identify epigenetic age acceleration in specific cell populations such as
sorted neurons and glia have emerged and show that DNAm age of glial cellsis significantly higher than that of
neurons from the same individual [33]. Our white matter and sorted SOX10+ nuclei cohorts represent
oligodendrocyte-enriched populations. The overestimation of epigenetic age by the DNAMClocKcorica, coupled
with the positive correlations observed between oligodendrocyte proportions and epigenetic age acceleration in
both clocks suggests the influence of proportions of this cell-type within tissues on the precision of DNAmM age
estimators. Furthermore, given that the proportions of other glial cell-types (NeuN-/SOX10-) are negatively
correlated with epigenetic age acceleration, further supports the hypothesis that oligodendrocytes are the drivers
of the accelerated ageing in glial cells compared to neurons of the same individual previously observed [33].
Therefore, in addition to tissue-specificity, proportions of different cell-types should also be taken into
consideration to increase the accuracy of epigenetic clocks. Our results on the varied performances of the two
clocks in different tissue types and regions within the brain further support the need for the development of
specific clocks for different cell types and tissues as well as clocks specifically tailored in the context of brain
ageing and disease as previously suggested [2, 9].

Epigenetic age acceleration in specific brain regions has been reported in other neurodegenerative diseases such
as AD and HD [4, 34]; however, no studies exist on epigenetic age acceleration in the brain tissues for any of
the o-synucleinopathies. Our rigorous multi-step analysis of the epigenetic clocks in the context of MSA
demongtrates that although increased DNAmM age acceleration differences were observed in multiple brain
regions in the MSA group compared to controls with both epigenetic clocks, no statistical significance was
observed upon adjustment for chronological age, neuronal/oligodendrocyte proportions, and duplicated
individuals with multiple datapoints. Our results highlight the importance for accounting for confounders during
the estimation of age acceleration and emphasize the need for researchers to interpret the results in ageing and
disease models with caution.

Our study has several limitations, the sample sizes for each of the brain regions are relatively small, and future
experiments with larger sample sizes would be important to further validate our observations; in addition, the
chronological age for the controls was considerably higher than that for the MSA cases and athough these
differences were accounted for during the statistical analysis, different age ranges may have influenced the
performance of both clocks differently for MSA cases and controls; finally, both clocks used in this study have
not been specificaly designed for white matter tissues and follow-up studies with more specialized epigenetic
clocks are warranted. Notwithstanding, our data point towards important contributions of oligodendrocytes in
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brain tissue biological ageing and emphasises the need for additional studies on brain ageing and

neurodegeneration focusing on this cell type.

In conclusion, this study demonstrates that both DNAMClocKcatica @and DNAmMClockyyy showed high
correlation between DNAm age and chronological age, even in white matter, expanding the applicability of
these clocks. As expected, performances and DNAmM age estimates varied considerably between clocks and
tissue types. With these available tools, we could not detect changes in epigenetic age acceleration in MSA
compared to controls when accounting for known confounding factors. Additional important findings from this
study consist of the positive correlations observed between epigenetic age acceleration and oligodendrocyte
proportions across brain regions and tissue types, with the opposite being observed for al other brain cell types.
This, together with previous reports of older DNAm ages in dlial cells compared to neurons from the same
individual, support differential biological ageing in different brain cell types, and the possibility of accelerated
ageing in oligodendrocytes. Our findings highlight the need for cell type and tissue-specific clocks and clocks
that include shared markers of common aberrant epigenomic patterns underlying neurodegeneration to

accurately dissect disease related DNAmM age acceleration from normal ageing.
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7. Tablesand Figure Legends

Table 1. Comparison of correlations between esimated DNA methylation age with DNAmMCIlocky and DNAmMCIlockcarica clocks and chronological age for the

different brain regions and cohorts.

Controls MSA Total
Tissue/Region DNAMClockeoricas | DNAMClockyy DNAmMClockeorticas | DNAMClockyui DNAmMClockcorticas | DNAMClockyyni
N r | err r err | N r | err r err | N r err r err
Cohort 1
Cerebellum (WM) 21| 046 36 | 075 | 58 | 41| 074 5.9 0.8 38 | 62| 08 5.4 088 | 45
Frontal lobe (WM) 23| 082 5 | 074 | 12 | 26| o083 54 | o081 | 83 | 49| 086 5.2 081 | 97
Occipital lobe (WM) 6 0.9 26 | 083 | 16 | 10| 078 53 | o8 | 87 | 16 | 093 4.4 092 | 12
Cohort 2
Prefrontal cortex (GM+WM) |37 | 092 | 27 | 081 [ 22 [41] 08 [ 35 | o5 | 3 (78] 09 | 23 | 08 | 3
Cohort 3
Corpus callosum 9] 097 | 36 | 093 | 83 ] | | \ | ] | | |
Cohort4
SOX10+ nuclei 15| o8 | 86 | 073 | 24 | | | \ | ] |

WM - white matter; GM+WM - Mix of grey and white matter; r = correlation coefficient; err = median absolute deviation between the chronological and DNAm age
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Fig. 1 Chronological and DNAm ages for DNAMCIocky;i and DNAMCIocKcrtica fOr the different brain
regions of control and M SA samplesin all cohorts. WM — white matter; GM+WM — Mix of grey and white
matter; CC — control cerebellum (WM); MC — MSA cerebellum (WM); CF — control frontal lobe (WM); MF —
MSA frontal lobe (WM); CO — control occipital lobe (WM); MO — MSA occipital lobe (WM); CPFC — control
prefrontal cortex (GM+WM); MPFC — MSA prefrontal cortex (GM+WM); CpC — Corpus callosum; the p-

values were calculated using Wilcoxon signed rank exact test for paired samples.

Fig. 2 Association between epigenetic age acceleration and oligodendrocyte proportions for
DNAMClockcariica @nd DNAmMClockyy in the different brain regions. (a-d) Age acceleration residuals (y-
axis) versus oligodendrocyte (SOX10+) proportions (x-axis) for DNAmMClocKeetica in the different brain
regions, (e-h) Age acceleration residuals (y-axis) versus oligodendrocyte (SOX10+) proportions (x-axis) for
DNAmClockwys in the different brain regions. Age acceleration residuals were obtained by regressng DNA
methylation age against confounding factors, including chronological age; oligodendrocyte proportions were
obtained using a DNA methylation-based cell-type deconvolution algorithm. The correlation coefficient and p-
values shown were calculated using Pearson correlation. CC — control cerebellum (WM); MC — MSA
cerebellum (WM); CF — control frontal lobe (WM); MF — MSA frontal lobe (WM); CO — control occipital lobe
(WM); MO — MSA occipital lobe (WM); PFC - prefrontal cortex (GM+WM), CpC — Corpus callosum; WM —
white matter; GM — grey matter.

Fig. 3 Age acceleration esimates for DNAMCIlocKkcortica @nd DNAMClockyyei in the different brain
regions (a-d) Age acceleration difference for DNAmMClockyus (@ - Cohort 1; b - Cohort 2) and
DNAMClockcorica (C - Cohort 1; d - Cohort 2) in the different brain regions, (e-h) Age acceleration residual
after adjusting for chronological age and neuronal proportions for the DNAmMClockyy (e - Cohort 1; f - Cohort
2) and DNAmMClocKcoica (g - Cohort 1; h -Cohort 2) in the different brain regions. CC — control cerebellum
(WM); MC — MSA cerebellum (WM); CF — control frontal lobe (WM); MF — MSA frontal lobe (WM); CO —
control occipital lobe (WM); MO — MSA occipital lobe (WM); PFC — prefrontal cortex (GM+WM); WM —
white matter; GM — grey matter, the p-values for across group comparisons were calculated using the Kruskal-
Wallis test and p-values for pairwise analysis between MSA and controls for each brain region were calculated
using the Wilcoxon' stest with Benjamini-Hochberg correction for multiple testing.
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