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Abstract  

Aims: Epigenetic clocks are widely applied as surrogates for biological age in different tissues and/or diseases, 

including several neurodegenerative diseases. Despite white matter (WM) changes often being observed in 

neurodegenerative diseases, no study has investigated epigenetic ageing in white matter.  

Methods: We analysed the performances of two DNA methylation-based clocks, DNAmClockMulti and 

DNAmClockCortical, in post-mortem WM tissue from multiple subcortical regions and the cerebellum, and in 

oligodendrocyte-enriched nuclei. We also examined epigenetic ageing in control and multiple system atrophy 

(MSA) (WM and mixed WM and grey matter), as MSA is a neurodegenerative disease comprising pronounced 

WM changes and α-synuclein aggregates in oligodendrocytes.  

Results: Estimated DNA methylation (DNAm) ages showed strong correlations with chronological ages, even 

in WM (e.g., DNAmClockCortical, r = [0.80–0.97], p<0.05). However, performances and DNAm age estimates 

differed between clocks and brain regions. DNAmClockMulti significantly underestimated ages in all cohorts 

except in the MSA prefrontal cortex mixed tissue, whereas DNAmClockCortical tended towards age 

overestimations. Pronounced age overestimations in the oligodendrocyte-enriched cohorts (e.g., 

oligodendrocyte-enriched nuclei, p=6.1x10-5) suggested that this cell-type ages faster. Indeed, significant 

positive correlations were observed between estimated oligodendrocyte proportions and DNAm age acceleration 

estimated by DNAmClockCortical (r>0.31, p<0.05), and similar trends with DNAmClockMulti. Although increased 

age acceleration was observed in MSA compared to controls, no significant differences were observed upon 

adjustment for possible confounders (e.g., cell-type proportions).  

Conclusions: Our findings show that oligodendrocyte proportions positively influence epigenetic age 

acceleration across brain regions and highlight the need to further investigate this in ageing and 

neurodegeneration. 
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1. Introduction 

DNA methylation-based estimators of chronological age, termed as “epigenetic clocks”, make use of penalised 

regression models such as elastic net regression to select signature CpGs as biomarkers that correlate with 

chronological age [1, 2]. Multiple clocks have been developed for use as molecular indicators of DNA 

methylation (DNAm) ages in different human tissues such as peripheral blood [3], multi-tissues 

(DNAmClockMulti) [1], and the brain cortex (DNAmClockCortical) [2]. These epigenetic clocks are being 

increasingly used to determine the biological age of tissues and organs in various contexts; epigenetic age 

acceleration has been reported in multiple tissues including the peripheral blood and post-mortem brain tissues 

in neurodegenerative disorders such as Alzheimer’s disease (AD), Huntington’s disease (HD), and Parkinson’s 

disease (PD) [4-6].  

The DNAmClockMulti has been applied in tissues from several brain regions such as the dorsolateral prefrontal 

cortex (DLPFC) [6]; frontal, occipital, temporal, and parietal lobes, cerebellum, hippocampus, midbrain, caudate 

nucleus, and cingulate gyrus [4, 7]; similarly, the DNAmClockCortical has specifically been tested in dorsolateral 

prefrontal cortex and posterior cingulate cortex [8, 9]. However, sensitivity of the different clocks to tissue 

specific changes (e.g., different cell-type proportions) varies depending on the tissues used in the reference 

training data, with a higher sensitivity likely to be observed in tissue specific clocks compared to pan/multi-

tissue clocks [10]. Moreover, when clocks were trained using data from one tissue at a time, their performances 

in predicting age in another tissue worsened [11]. However, the performance of these clocks in tissues that are 

particularly enriched for specific brain cell types, such as oligodendrocytes in the case of white matter, remains 

unexplored.  

About half of the human brain is made up of white matter, which primarily comprises myelinated axons and 

glial cell types such as the astrocytes, microglia, and oligodendrocytes, with oligodendrocytes being by far the 

most abundant cell type [12]. White matter has been shown to play prominent roles in the normal functioning of 

the brain including cognitive [13], and motor functions [14]. Many neurodegenerative diseases show white 

matter changes, including AD, PD, and multiple system atrophy (MSA) [15-17]. MSA is a rare adult-onset fatal 

neurodegenerative disorder with prominent white matter involvement [15]. MSA belongs to the group of α-

synucleinopathies along with PD and Dementia with Lewy bodies (DLB) [18]. However, pathological hallmarks 

of MSA include the abnormal accumulation of misfolded α-synuclein primarily in the oligodendrocytes rather 

than in neurons, and these aggregates are termed as glial cytoplasmic inclusions [19]. MSA is a predominantly 

sporadic disease, with a complex aetiology involving the interplay of genetic, epigenetic, and environmental 

factors [20]. Recent epigenome-wide association studies have revealed aberrant DNA methylation changes in 

the MSA post-mortem brain tissue [21-23].  

We therefore investigated the performances of DNAmClockMulti and DNAmClockCortical in white matter from 

multiple brain regions and compared them with tissues comprising a mixture of grey and white matter in 

neurologically healthy controls as well as in a disease context. As MSA is a neurodegenerative disease model 

involving white matter pathological hallmarks, we investigated if patients with MSA exhibited accelerated 

ageing in the white matter of different brain regions such as the cerebellum, frontal, and occipital lobes, as well 

as prefrontal cortex grey and white matter mixed tissue. 
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2. Materials and methods 

2.1 Cohort Description 

The first cohort (Cohort 1) consisted of white matter tissue carefully dissected from the cerebellum, and frontal 

and occipital lobes of post-mortem brain tissues obtained from brains donated to the Queen Square Brain Bank. 

Cohort 1 comprised a total of 127 samples from MSA cases (N=77) and neurologically healthy controls (N=50), 

which included 93 samples from a previously published study [21] and 34 newly profiled samples obtained from 

the same brain bank. Cohort 2 consisted of samples from a publicly available dataset (GSE143157) comprising 

grey and white matter tissue mix from the prefrontal cortex of MSA cases (N=40) and controls (N=37) [22]. We 

further included a white matter cohort - Cohort 3, which consisted of control samples (N=9) from the corpus 

callosum, the biggest white matter structure of the brain, obtained from a publicly available dataset 

(GSE109381) [24]. As MSA is characterized by oligodendroglial pathology, we included an additional Cohort 

4, which consists of sorted SOX10+ (oligodendrocyte-enriched) immunolabeled populations from bulk DLPFC 

healthy control tissue (N=15) [25]. The demographic details of all cohorts including sample numbers and 

chronological age are described in Supplementary Table 1.  

2.2 DNA methylation profiling and data pre-processing  

For the newly profiled samples from Cohort 1 (N=34 samples), genomic DNA was extracted from frozen brain 

tissues using a previously established phenol-chloroform-isoamyl alcohol extraction method. Bisulphite 

conversion was then carried out with 750 ng of DNA using the EZ DNA Methylation Kit (Zymo Research, 

Irvine, USA), followed by genome-wide methylation profiling using the Infinium HumanMethylationEPIC 

Bead Chip (Illumina). Bisulphite conversion and methylation profiling were carried out at UCL genomics, and 

the raw intensity files (.idat) generated. Methylation profiles of 97 samples (a subset of Cohort 1) generated by 

Bettencourt et al [21], 77 methylation profiles from the publicly available Cohort 2 [22],  and 15 SOX10+ 

methylation profiles of Cohort 4 [25] had been previously generated using the Infinium 

HumanMethylationEPIC BeadChip (Illumina), whereas 9 methylation profiles of Cohort 3 [24], had been 

previously generated using the Infinium HumanMethylation450K BeadChip (Illumina).  All cohorts were 

subjected to harmonized quality control checks and pre-processing. 

Raw intensity files for all cohorts were imported into R using the WateRmelon package [26]. The following pre-

processing and quality control checks were performed: (i) raw intensities were visualised to identify and filter 

out atypical and failed samples, (ii) outlier detection to identify and remove outliers, (iii) bisulphite conversion 

assessment, where intensities from the probes were converted into percentages and samples with <80% 

bisulphite conversion were removed, (iv) probe filtering to identify poorly performing probes by assessing the 

bead counts and detection-values. Samples with >1% probes above the 0.05 detection p-value threshold, probes 

with a beadcount of <3 in 5% of the samples, and sites for which over 1% of samples showed a detection p-

value > 0.05 were discarded. Samples were also discarded if sex predictions did not match with phenotypic sex. 

Following the pre-processing, dasen normalisation was carried out. Cell-type proportions of neuron-enriched 

(NeuN+), oligodendrocyte-enriched (SOX10+), and other brain cell type (NeuN-/SOX10-) populations in the 

bulk tissues were estimated using the CETYGO package (https://github.com/ds420/CETYGO) and a sorted cell-

type reference dataset as described by Shireby et al. [25]. CETYGO estimates cell proportions and quantifies the 
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CEll TYpe deconvolution GOodness (CETYGO) score of a set of cellular heterogeneity variables derived from 

a genome-wide DNA methylation profile for an individual sample by capturing the deviation between a 

sample’s DNAm profile and its expected profile. 

2.3 DNA methylation age estimation 

Normalised beta values were used for the estimation of DNA methylation (DNAm) ages using 2 established 

epigenetic clocks trained to predict chronologic age, the DNAmClockMulti [1], which employs 353 CpGs curated 

from analysis of DNA methylation from 51 different tissues and cell-types, and the DNAmClockCortical [2] 

designed using 347 CpGs to specifically predict age in the human cortex. DNAm ages for DNAmClockMulti were 

calculated using the advanced analysis with normalisation, on the online calculator 

(http://dnamage.genetics.ucla.edu/). The DNAm ages for DNAmClockCortical were calculated as described by 

Shireby et al. [2]. 

2.4 Statistics 

All statistical analyses were performed in R (ver. 4.1.1). For both clocks, DNAm age acceleration was 

calculated as: 1) difference between the predicted DNAm age and chronological age, and 2) residuals obtained 

by linear regression of DNAm age on chronological age and adjusting for possible confounders such as cell 

proportions (either neuronal or oligodendroglial), and duplicated individuals with multiple datapoints. Standard 

linear regression models were applied for Cohorts 2, 3 and 4; however, as Cohort 1 consisted of a subset of 

tissues for multiple brain regions obtained from the same individuals, mixed effects linear regression models 

were implemented using the lme4 package (https://github.com/lme4/lme4/)[27], where DNAm age was 

regressed against chronological age and estimated cell proportions as fixed effects and individual was included 

as a random effect. Correlations between chronological and epigenetic ages for the different groups were 

calculated using Pearson’s coefficient. Comparisons across groups/brain regions were performed using Kruskal-

Wallis test, and pairwise comparisons between the groups (MSA vs controls) within each brain region were 

performed using pairwise Wilcoxon test with the Benjamini-Hochberg multiple testing correction. Correlations 

between epigenetic age acceleration (i.e., residuals obtained by linear regression of DNAm age on chronological 

age) and cell-type proportions (e.g., estimates of oligodendrocyte proportions) were calculated using Pearson’s 

coefficient. 

3. Results 

3.1 Comparison of the performances of DNAmClockMulti and DNAmClockCortical in white matter from 

different brain regions and correlations with chronological age 

Using data derived from both neurologically healthy controls and MSA, we investigated the performances of 

both DNAmClockMulti and DNAmClockCortical in white matter dissected from the frontal and occipital lobes, 

cerebellum, as well as from the corpus callosum and sorted oligodendrocyte-enriched nuclei (SOX10+) and 

compared them with prefrontal cortex tissue constituting a mix of grey and white matter. The composition of 

prefrontal cortex tissue resembles that of the datasets used to train and test both clocks. As expected, DNA 

methylation ages estimated with both clocks showed strong correlations with chronological ages in all brain 

regions, for both white matter and mixed tissues (Table 1). Overall, compared to the DNAmClockMulti, the 
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DNAmClockCortical age estimates showed higher correlations with chronological age and lower errors for all 

cortical and subcortical regions, regardless of whether samples were from white matter or mixed tissues 

(Cohorts 1–4). The DNAmClockMulti age estimates, however, showed a stronger correlation with chronological 

age than the DNAmClockCortical for cerebellar white matter (Cohort 1).  

For the healthy controls (Table 1), strongest correlation was observed for the corpus callosum (Cohort 3) with 

DNAmClockCortical (r=0.97), with a considerably lower error (median absolute difference, error=3.6) when 

compared to that with DNAmClockMulti (r=0.93, error=8.3). This was followed by the prefrontal cortex grey and 

white matter mix (Cohort 2), where DNAmClockCortical showed stronger correlation with similar error values 

(r=0.92; error=2.7) compared to DNAmClockMulti (r=0.81; error =2.2), followed by white matter from the 

occipital and frontal lobes (Cohort 1) (Table 1).  

In case of MSA, correlations between the chronological age and the DNAmClockCortical age estimates were in 

general, similar or weaker than those observed for controls, except in case of cerebellar white matter (Table 1). 

Moreover, error values were higher in all brain regions in MSA samples compared to that of controls, however, 

these differences did not reach statistical significance. Conversely, the performance of DNAmClockMulti 

significantly improved in the white matter tissues of MSA cases compared to controls (Supplementary Table 2). 

However, the latter could be attributable to the lower chronological ages of the MSA cases (range 50–82 years) 

compared to controls (range 51–99 years), as previous reports suggest that DNAmClockMulti systematically 

underestimates DNAm age in individuals over ~60 years old, and systematically overestimates it in individuals 

below ~60 years old [2].  

3.2. Epigenetic age estimates vary considerably depending on the epigenetic clock used and the cellular 

composition of the studied tissues 

We then compared the difference in the chronological age and the DNAm age estimates for the control and 

MSA groups predicted by the two clocks for the different cohorts comprising different brain regions and cellular 

compositions. Overall, DNAmClockCortical tended to overestimate age, especially for the MSA cases, with 

significant overestimations in the frontal lobe white matter and oligodendrocyte-enriched nuclei, whereas 

DNAmClockMulti showed significant age underestimations in the white matter cohorts (Cohorts 1, 3, and 4) (Fig. 

1, Supplementary Tables 3 and 4). The mean ages predicted by both DNAmClockMulti and DNAmClockCortical 

were closer to the actual chronological age for both control and MSA groups in the prefrontal cortex mixed 

tissue (Cohort 2) compared to the white matter cohorts. This result is expected, given this mixed tissue cohort is 

more similar to the tissue types used to train both clocks. As white matter is highly enriched for 

oligodendrocytes (up to 70%)[28], we included an additional cohort containing oligodendroglial-enriched nuclei 

from control individuals to infer the effect of this cell type on epigenetic age estimates. For the oligodendroglial-

enriched nuclei, DNAmClockCortical significantly overestimated the age whereas DNAmClockMulti significantly 

underestimated the age, similar to that in white matter, but with higher error values (Fig. 1, Table 1). The 

findings from white matter and oligodendroglial-enriched nuclei suggest that the performances of epigenetic 

clocks in brain tissue are dependent on the cellular compositions of the tissues used, and that oligodendrocyte 

proportions might play an important role in the performances of epigenetic clocks in brain tissue. 

3.3 Oligodendrocyte proportions are associated with epigenetic age acceleration 
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As DNA methylation patterns often are cell-type specific, it is reasonable to hypothesise that differences in 

specific cell-type proportions in a tissue sample will influence the estimates of epigenetic age based on DNA 

methylation levels and consequently epigenetic age acceleration. Previous work has demonstrated that 

significant negative correlation exists between epigenetic age acceleration and the proportion of neurons in the 

prefrontal cortex [29]. We found the same direction of effect in our prefrontal cortex grey and white matter mix 

tissues with the DNAmClockCortical, with a significant negative correlation observed between epigenetic age 

acceleration and neuronal proportions (r=-0.47, p=2.4x10-10) (Supplementary Fig. 1). As expected, in our white 

matter cohorts the estimated neuronal proportions were minimal in frontal (mean 1.8±0.6) and occipital lobes 

(mean 1.98±1.6) as well as in the corpus callosum (mean 5.7±0.8). Furthermore, there was no relationship 

between the residual neuronal proportions and epigenetic age acceleration in the white matter for these regions. 

The opposite was seen in the cerebellar white matter samples, where higher neuronal proportions were found, 

particularly in the MSA cases (mean 12.8±12.7 vs mean 7.8±11.6 in the controls), and significant negative 

correlations were observed between the neuronal proportions and the epigenetic age acceleration measures 

derived from both clocks [DNAmClockCortical (r=-0.7, p=2.4x10-10) and DNAmClockMulti (r=-0.54, p=5.9x10-6)] 

(Supplementary Fig. 1). However, these findings in the cerebellar white matter are not totally unexpected as 

they may result from: a) the fact that it is challenging to dissect cerebellar white matter without capturing any 

deep nuclei, particularly in the MSA cases where the cerebellar white matter is very atrophic, increasing the 

likelihood of deep cerebellar nuclei contamination; and b) the fact that the algorithm used to deconvolute cell-

type proportions utilizes reference datasets derived from cortical regions and this may influence cell proportion 

estimates in a region-specific manner.  

Lower neuronal proportions (i.e., higher glial proportions) have been associated with higher estimates of 

epigenetic ages [2] and, in this study, epigenetic ages are largely overestimated in oligodendrocytes (i.e., 

SOX10+ nuclei) by the DNAmClockCortical. This prompted us to interrogate whether oligodendrocyte 

proportions would be associated with epigenetic age acceleration. Up to now, proportions of brain cell-types 

estimates obtained from DNA methylation data were restricted to neuronal vs glial cell-types [with the CETS 

[30], minfi/wateRmelon packages [26, 31]]. However, the glial group encompasses very heterogeneous cell 

types, from oligodendrocytes to microglia, astrocytes, and other cells. By using a recently refined cell-type 

deconvolution algorithm [CETYGO [25]], we dissected the proportions of oligodendrocytes from other glial 

cells in our cohorts. For estimates derived from both clocks, significant positive correlations were obtained 

between age acceleration measures and oligodendrocyte proportions for cerebellar, frontal, and occipital white 

matter as well as for prefrontal mixed tissues (Fig. 2). More details on separate correlations for controls and 

MSA cases can be found in Supplementary Fig. 3. The strongest correlations with DNAmClockCortical were 

found for control cerebellar white matter (r=0.7, p=0.00041), followed by control prefrontal cortex mixed tissue 

(r=0.65, p=1.3x10-0.5). For the corpus callosum (Cohort 3), the DNAmClockCortical estimates, in accordance with 

the other cohorts, showed a moderate positive correlation with the oligodendrocyte proportions, whereas the 

DNAmClockMulti showed the opposite, although none of these correlations reached statistical significance in this 

small cohort. Overall, epigenetic age acceleration estimates derived from DNAmClockCortical showed stronger 

correlations with oligodendrocyte proportions compared to that with DNAmClockMulti. This may suggest that the 

estimates from the DNAmClockCortical are more influenced by the variation in the oligodendrocyte composition 

of the tissue than those from the DNAmClockMulti. Weaker negative correlations were observed between age 
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acceleration measures and other cell-type proportions (NeuN-/SOX10-) for frontal and occipital white matter as 

well as for prefrontal mixed tissues and no significant correlations were observed for cerebellar white matter 

(Supplementary Fig. 3). Altogether, our data supports a role for oligodendrocytes pushing towards older 

epigenetic age estimates, while it would be the other way around for neurons and the other brain cell types. 

3.4 Epigenetic age acceleration in the different brain regions in MSA 

As increased epigenetic age acceleration has been reported to occur in neurodegenerative diseases [4-6], we 

investigated the presence of biological age acceleration in MSA when compared to controls based on results 

from the two clocks. For Cohort 1, with both DNAmClockMulti and DNAmClockCortical, increased age 

acceleration was observed in the MSA white matter of all brain regions when compared to the controls (Fig. 3). 

Differences ranged between 2 years in the frontal lobe for DNAmClockCortical and 7 years in the occipital lobe 

for both DNAmClockMulti and DNAmClockCortical (Figure 3A, C). Pairwise comparisons revealed that these 

differences were statistically significant only in the occipital lobe for DNAmClockMulti (p = 0.042). In the 

prefrontal cortex mixed tissue (Cohort 2), ~2 years of acceleration was observed in the MSA samples with 

DNAmClockMulti (p=0.038, Fig. 3B). A smaller difference was found in the same direction with the 

DNAmClockCortical (Fig. 3D). 

We then proceeded to verify whether the age acceleration could be influenced by possible confounding factors. 

Chronological age is known to have an impact on the DNAm age estimations [32]. As chronological ages of the 

control group were generally higher than that of the MSA group for all brain regions, this had to be accounted 

for. In addition, for Cohort 1, although white matter tissue was carefully hand-dissected and enriched for 

oligodendrocytes, neuronal contaminants could still be present, and therefore the neuronal proportions needed to 

be accounted for. Also, Cohort 1 included multiple brain regions per individual. Therefore, the second measure 

of age acceleration corresponded to the residuals obtained by regressing DNAm age on chronological age and 

neuronal proportions as fixed effects and, in addition, by including individuals as a random effect in the case of 

Cohort 1. Upon adjusting for the abovementioned covariates, no significant age acceleration was observed in the 

MSA group in any of the brain regions (Fig. 2E–H). Similar results were obtained after adjusting for 

oligodendrocyte proportions instead of neuronal proportions in these regression models (Supplementary Fig. 4).   

4. Discussion 

This is the first study, to our knowledge, that comprehensively analyses and describes the characteristics of 

DNAmClockMulti and DNAmClockCortical in white matter from multiple brain regions. The study compares the 

performances of the clocks in white matter from subcortical regions, corpus callosum, and cerebellum, as well 

as in a mix of white and grey matter tissue obtained from the prefrontal cortex and in an oligodendrocyte-

enriched population. The study also considered MSA as a disease model involving white matter pathological 

changes and investigated the presence of increased DNAm age acceleration in different brain regions.  

Both epigenetic clocks showed strong correlations with chronological age in both white matter as well as in 

mixed grey and white matter tissues. Lower error values for the DNAmClockCortical, and stronger correlations in 

white matter enriched tissues of the corpus callosum, frontal and occipital lobes, and sorted SOX10+ nuclei, as 

well as for grey and white matter mix tissues of the prefrontal cortex indicate that the cortical clock is highly 

specific towards the hemispheric cortical and subcortical brain regions in both grey and white matter tissues. 
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Conversely, stronger correlations with DNAmClockMulti in the cerebellum (white matter) indicates that the 

multi-tissue clock performs better for regions of the brain other than cortical and subcortical regions. 

Furthermore, as reported by Shireby et al [2], DNAmClockCortical shows reduced accuracy when applied to non-

cortical regions, which is exemplified by the weaker correlations observed between chronological and DNAm 

age especially in the cerebellar control samples. Among the cortical and subcortical regions, DNAmClockCortical 

outperforms DNAmClockMulti, particularly in white matter tissues, with correlation coefficients and error values 

in ranges similar to those observed previously by Shireby et al. and Grodstein et al. for the dorsolateral 

prefrontal and posterior cingulate cortices [2, 8].  

Lower neuronal proportions (i.e., higher glial proportions) have been previously associated with higher cortical 

DNAm ages [2]. Recently, studies that identify epigenetic age acceleration in specific cell populations such as 

sorted neurons and glia have emerged and show that DNAm age of glial cells is significantly higher than that of 

neurons from the same individual [33]. Our white matter and sorted SOX10+ nuclei cohorts represent 

oligodendrocyte-enriched populations. The overestimation of epigenetic age by the DNAmClockCortical, coupled 

with the positive correlations observed between oligodendrocyte proportions and epigenetic age acceleration in 

both clocks suggests the influence of proportions of this cell-type within tissues on the precision of DNAm age 

estimators. Furthermore, given that the proportions of other glial cell-types (NeuN-/SOX10-) are negatively 

correlated with epigenetic age acceleration, further supports the hypothesis that oligodendrocytes are the drivers 

of the accelerated ageing in glial cells compared to neurons of the same individual previously observed [33].  

Therefore, in addition to tissue-specificity, proportions of different cell-types should also be taken into 

consideration to increase the accuracy of epigenetic clocks. Our results on the varied performances of the two 

clocks in different tissue types and regions within the brain further support the need for the development of 

specific clocks for different cell types and tissues as well as clocks specifically tailored in the context of brain 

ageing and disease as previously suggested [2, 9]. 

Epigenetic age acceleration in specific brain regions has been reported in other neurodegenerative diseases such 

as AD and HD [4, 34]; however, no studies exist on epigenetic age acceleration in the brain tissues for any of 

the α-synucleinopathies. Our rigorous multi-step analysis of the epigenetic clocks in the context of MSA 

demonstrates that although increased DNAm age acceleration differences were observed in multiple brain 

regions in the MSA group compared to controls with both epigenetic clocks, no statistical significance was 

observed upon adjustment for chronological age, neuronal/oligodendrocyte proportions, and duplicated 

individuals with multiple datapoints. Our results highlight the importance for accounting for confounders during 

the estimation of age acceleration and emphasize the need for researchers to interpret the results in ageing and 

disease models with caution.  

Our study has several limitations, the sample sizes for each of the brain regions are relatively small, and future 

experiments with larger sample sizes would be important to further validate our observations; in addition, the 

chronological age for the controls was considerably higher than that for the MSA cases and although these 

differences were accounted for during the statistical analysis, different age ranges may have influenced the 

performance of both clocks differently for MSA cases and controls; finally, both clocks used in this study have 

not been specifically designed for white matter tissues and follow-up studies with more specialized epigenetic 

clocks are warranted. Notwithstanding, our data point towards important contributions of oligodendrocytes in 
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brain tissue biological ageing and emphasises the need for additional studies on brain ageing and 

neurodegeneration focusing on this cell type. 

In conclusion, this study demonstrates that both DNAmClockCortical and DNAmClockMulti showed high 

correlation between DNAm age and chronological age, even in white matter, expanding the applicability of 

these clocks. As expected, performances and DNAm age estimates varied considerably between clocks and 

tissue types. With these available tools, we could not detect changes in epigenetic age acceleration in MSA 

compared to controls when accounting for known confounding factors. Additional important findings from this 

study consist of the positive correlations observed between epigenetic age acceleration and oligodendrocyte 

proportions across brain regions and tissue types, with the opposite being observed for all other brain cell types. 

This, together with previous reports of older DNAm ages in glial cells compared to neurons from the same 

individual, support differential biological ageing in different brain cell types, and the possibility of accelerated 

ageing in oligodendrocytes. Our findings highlight the need for cell type and tissue-specific clocks and clocks 

that include shared markers of common aberrant epigenomic patterns underlying neurodegeneration to 

accurately dissect disease related DNAm age acceleration from normal ageing.  
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7. Tables and Figure Legends 

Table 1: Comparison of correlations between estimated DNA methylation age with DNAmClockMulti and DNAmClockCortical clocks and chronological age for the 

different brain regions and cohorts. 

 Tissue/Region 
Controls MSA  Total 

N 

DNAmClockCortical DNAmClockMulti 

N 

DNAmClockCortical DNAmClockMulti 

N 

DNAmClockCortical DNAmClockMulti 

r err r err r err r err r err r err 

Cohort 1 

Cerebellum (WM) 21 0.46 3.6 0.75 5.8 41 0.74 5.9 0.8 3.8 62 0.8 5.4 0.88 4.5 

Frontal lobe (WM) 23 0.82 5.1 0.74 12 26 0.83 5.4 0.81 8.3 49 0.86 5.2 0.81 9.7 

Occipital lobe (WM) 6 0.9 2.6 0.83 16 10 0.78 5.3 0.85 8.7 16 0.93 4.4 0.92 12 

Cohort 2 

Prefrontal cortex (GM+WM) 37 0.92 2.7 0.81 2.2 41 0.89 3.5 0.59 3 78 0.9 2.3  0.83 3 

Cohort 3 

Corpus callosum 9 0.97 3.6 0.93 8.3                     

Cohort 4 

SOX10+ nuclei 15 0.85 8.6 0.73 24                     

WM - white matter; GM+WM - Mix of grey and white matter; r = correlation coefficient; err = median absolute deviation between the chronological and DNAm age 
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Fig. 1 Chronological and DNAm ages for DNAmClockMulti and DNAmClockCortical for the different brain 

regions of control and MSA samples in all cohorts. WM – white matter; GM+WM – Mix of grey and white 

matter; CC – control cerebellum (WM); MC – MSA cerebellum (WM); CF – control frontal lobe (WM); MF – 

MSA frontal lobe (WM); CO – control occipital lobe (WM); MO – MSA occipital lobe (WM); CPFC – control 

prefrontal cortex (GM+WM); MPFC – MSA prefrontal cortex (GM+WM); CpC – Corpus callosum; the p-

values were calculated using Wilcoxon signed rank exact test for paired samples. 

Fig. 2 Association between epigenetic age acceleration and oligodendrocyte proportions for 

DNAmClockCortical and DNAmClockMulti in the different brain regions. (a-d) Age acceleration residuals (y-

axis) versus oligodendrocyte (SOX10+) proportions (x-axis) for DNAmClockCortical in the different brain 

regions; (e-h) Age acceleration residuals (y-axis) versus oligodendrocyte (SOX10+) proportions (x-axis) for 

DNAmClockMulti in the different brain regions. Age acceleration residuals were obtained by regressing DNA 

methylation age against confounding factors, including chronological age; oligodendrocyte proportions were 

obtained using a DNA methylation-based cell-type deconvolution algorithm. The correlation coefficient and p-

values shown were calculated using Pearson correlation. CC – control cerebellum (WM); MC – MSA 

cerebellum (WM); CF – control frontal lobe (WM); MF – MSA frontal lobe (WM); CO – control occipital lobe 

(WM); MO – MSA occipital lobe (WM); PFC - prefrontal cortex (GM+WM), CpC – Corpus callosum; WM – 

white matter; GM – grey matter.  

Fig. 3 Age acceleration estimates for DNAmClockCortical and DNAmClockMulti in the different brain 

regions (a-d) Age acceleration difference for DNAmClockMulti (a - Cohort 1; b - Cohort 2) and 

DNAmClockCortical (c - Cohort 1; d - Cohort 2) in the different brain regions, (e–h) Age acceleration residual 

after adjusting for chronological age and neuronal proportions for the DNAmClockMulti (e - Cohort 1; f - Cohort 

2) and DNAmClockCortical (g - Cohort 1; h -Cohort 2) in the different brain regions. CC – control cerebellum 

(WM); MC – MSA cerebellum (WM); CF – control frontal lobe (WM); MF – MSA frontal lobe (WM); CO – 

control occipital lobe (WM); MO – MSA occipital lobe (WM); PFC – prefrontal cortex (GM+WM); WM – 

white matter; GM – grey matter, the p-values for across group comparisons were calculated using the Kruskal-

Wallis test and p-values for pairwise analysis between MSA and controls for each brain region were calculated 

using the Wilcoxon’s test with Benjamini-Hochberg correction for multiple testing. 
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