

1 *Drosophila* immune priming to *Enterococcus faecalis* relies on immune
2 tolerance rather than resistance

3
4 Kevin Cabrera^{1,2}, Duncan S. Hoard¹, Daniel I. Martinez¹, Zeba Wunderlich^{2,3*}
5 1. Department of Developmental and Cell Biology, University of California, Irvine, CA
6 92697
7 2. Biological Design Center, Boston University, Boston, MA 02215
8 3. Department of Biology, Boston University, Boston, MA 02215

9 *Correspondance: zeba@bu.edu

10 **Abstract:**

11 Most multicellular organisms, including fruit flies, possess an innate immune response, but lack
12 an adaptive immune response. Even without adaptive immunity, “immune priming” allows
13 organisms to survive a second infection more effectively after an initial, non-lethal infection. We
14 used *Drosophila melanogaster* to study the transcriptional program that underlies priming. Using
15 an insect-derived strain of Gram-positive *Enterococcus faecalis*, we found a low dose infection
16 enhances survival of a subsequent high dose infection. The enhanced survival in primed
17 animals does not correlate with a decreased bacterial load, implying that the organisms tolerate,
18 rather than resist the infection. We measured the transcriptome associated with immune priming
19 in the fly immune organs: the fat body and hemocytes. We found many genes that were only
20 upregulated in re-infected flies. In contrast, there are very few genes that either remained
21 transcriptionally active throughout the experiment or more efficiently re-activated upon
22 reinfection. Measurements of priming in immune deficient mutants revealed IMD signaling is
23 largely dispensable for responding to a single infection, but needed to fully prime; while Toll
24 signaling is required to respond to a single infection, but dispensable for priming. Overall, we
25 found a primed immune response to *E. faecalis* relies on immune tolerance rather than bacterial
26 resistance and drives a unique transcriptional response.

27 **Introduction:**

28 The fruit fly *Drosophila melanogaster* inhabits environments rich in bacteria, fungi, and viruses.
29 The fly has to mitigate these pathogens to survive. To this end, it has evolved a tightly controlled
30 innate immune response. It has long been appreciated that the fly immune pathways can
31 distinguish between Gram-positive bacteria and fungi versus Gram-negative bacteria (Buchon,
32 et al. 2014). Recent findings have elaborated on these models by showing specificity within
33 Gram-classifications, cross-talk between the two individual pathways, and a remarkable level of
34 additional molecular coordination (Kleino, et al. 2014; Lin, et al. 2020; Hanson, et al. 2019).

35
36 Among these refined characteristics is the potential for immune memory in the innate immune
37 system. While flies lack the canonical antibody-mediated immune memory of the adaptive
38 immune response, an initial non-lethal infection can sometimes promote survival of a
39 subsequent infection. This phenomenon, termed immune priming, has been observed in
40 evolutionarily distant organisms such as plants (Cooper & Ton 2022), multiple arthropod species
41 (Milutinović, et al. 2016), and mammals (Netea, et al. 2016; Divangahi, et al. 2020). The fact
42 that this mechanism is present in animals that have an adaptive response hints at its importance
43 in organismal fitness.

44

45 Despite immune priming's effect on survival, the underlying mechanism controlling it in flies is
46 not completely understood. Three mechanistic hypotheses have been proposed to explain the
47 physiological effects of priming (Cooper & Eleftherianos 2017; Coutasu, Kurtz, Moret 2016). The
48 first is that there is a qualitatively different response in how primed insects react to an infection
49 versus non-primed insects, leading to a more effective response. A second hypothesis is that
50 insects will initiate an immune response during priming, but will re-initiate the same immune
51 function in a potentiated manner upon reinfection. This is most similar to the phenomenon of
52 what has been observed in mammalian trained immunity (Divangahi, et al 2020). Lastly,
53 immune effectors created during the initial immune response may loiter in the body, eliminating
54 the lag time in initiating effector production. Since flies often harbor low-level chronic infections
55 instead of completely clearing them (Duneau, et al. 2017; Chambers, et al. 2019), these chronic
56 infections may contribute to immune priming by providing a consistent mild stimulus. However, it
57 could be that priming is driven by a combination of these three mechanisms. Delineating the
58 relative contributions of each of these mechanisms may not only reveal the drivers of infection
59 survival, but may also suggest epigenetic mechanisms of gene regulation and tradeoffs
60 between the immune response and other biological processes.

61
62 *Drosophila* is a good model for dissecting the mechanisms driving immune priming due to its
63 genetic tractability, extensively characterized innate immune pathways, and its homology to
64 mammalian innate immune pathways. There has been extensive characterization of the fly's
65 transcriptional response to a variety of bacteria (Troha, et al. 2018; Schlamp, et al. 2021; De
66 Gregorio, et al. 2002) and the progression of bacterial load during infection with different
67 bacteria or in different host genotypes (Duneau, et al. 2017). Studies of priming have revealed
68 the key role of phagocytosis. Blocking phagocytosis in adults decreases priming with the Gram-
69 positive bacterium *Streptococcus pneumoniae* (Pham, et al. 2007). Blocking developmental
70 phagocytosis of apoptotic debris also makes larvae more susceptible to bacterial infection
71 (Weavers, et al. 2016). In addition, the production of reactive oxygen species as a result of
72 wounding contributes to immune priming with the Gram-positive bacterium *Enterococcus*
73 *faecalis* (Chakrabarti & Visweswariah 2020). These findings lay the foundation for testing the
74 mechanistic hypotheses that underlie immune priming.

75
76 In this study, we present a multifaceted approach to understand immune priming in the fly using
77 an *E. faecalis* reinfection model. *E. faecalis*, a Gram-positive, naturally occurring pathogen of
78 the fly, has been previously used to induce an immune response with dose-dependent lethality.
79 We characterize not only the physiological response to priming by way of survival and bacterial
80 load to immune priming, but also the transcriptional response that underlies the physiology. By
81 assaying transcription separately in both the hemocytes and fat body, we explore the organ-
82 specific program that mounts a more effective primed immune response.

83 Results:

84 *E. faecalis* priming increases survival after re-infection

85
86 To determine whether we could elicit a priming response in flies, we needed to find appropriate
87 priming and lethal doses. For these experiments, 4-day old male Oregon-R flies were infected
88 with a strain of the Gram-positive bacteria *Enterococcus faecalis* originally isolated from wild-
89 caught *D. melanogaster* (Figure 1A) (Lazarro, et al. 2006). Initial infection with *E. faecalis*
90 showed dose-dependent survival (Figure 1B). Flies infected with a dose of ~30,000 CFU/fly
91 (*Efae* High Dose) gradually died off, with more than fifty percent of flies dying by day 2, making
92 it a practical choice for representing a lethal dose. Flies injected with a lower dose of ~3,000

93 CFU/fly (*Efae* Low Dose) had survival comparable to those injected with PBS, indicating that
94 death was largely due to the injection process itself, rather than from bacterial challenge.
95

96 To model re-infection, flies were initially injected either with a low bacterial dose (i.e. *Efae*-
97 primed flies) or a negative control of PBS (i.e. Mock-primed flies) (Figure 1A). After resting for
98 seven days, flies were re-injected with a high dose of *E. faecalis* and assayed. Seven days was
99 chosen as the priming interval because we found that flies had gained enhanced re-infection
100 survival from priming (Supplementary Figure 1A), reached a stable chronic bacterial load
101 (Figure 2A), and survived in high enough numbers to practically collect for re-infection. The
102 median survival time after re-injection was significantly increased from Mock-primed flies (1 day)
103 to *Efae*-primed flies (4 days) (Figure 1C). Though there was a decrease in survival from double
104 wounding compared to a single wound (Supplementary Figure 1B), *Efae*-primed flies still had
105 greater survival compared to this double-injected baseline as well as when compared to single,
106 High Dose-infected flies (Supplementary Figure 1C). Priming with heat-killed *E. faecalis*, which
107 retains its signaling-responsive components but lacks any additional virulence factors (Itoh, et
108 al. 2012; Adams, et al. 2010), resulted in a more moderate increase in survival rate compared to
109 live bacteria priming (Figure 1D). This implies some level of priming is conferred simply through
110 bacterial sensing, but that the effect is not as robust as when the fly is exposed to the live
111 microbe.
112

113 To compare *E. faecalis* priming to the priming described for *Streptococcus pneumoniae*, which
114 was dependent on phagocytosis (Pham, et al. 2007), we performed the double injections in an
115 *Eater* mutant background (Bretscher, et al. 2015). The hemocytes in these flies are unable to
116 carry out bacterial phagocytosis and have cell adhesion defects in the larva, but can still mount
117 a full Toll and IMD immune response (Kocks, et al. 2005). By comparing the *Efae*-primed to
118 Mock-primed flies, we can observe a modest amount of immune priming, with a median survival
119 time of 3 days and 1 day, respectively (Figure 1E). However, the *Efae*-primed flies have a
120 shorter median survival time than the PBS/PBS controls, indicating that phagocytosis is needed
121 to allow *Efae*-primed flies to survive as well as the double injection control.
122

123 **Priming does not increase resistance to *E. faecalis***

124

125 To measure the infection dynamics underlying both the un-primed and primed response to *E.*
126 *faecalis*, we tracked bacterial load throughout the course of the infection. Infected flies were
127 collected at 24 hour intervals after injection, homogenized, and plated in a serial dilution. As a
128 baseline, we followed bacterial load in flies solely injected with either a high (~30,000 CFU/fly)
129 or low dose (~3,000 CFU/fly) of *E. faecalis* (Figure 2A). By day 2 after injection, the bacterial
130 loads in flies infected with a high dose were generally above 100,000 CFU/fly. This indicates
131 that without priming, the bacterial load in flies infected with a lethal dose increases to a high
132 plateau. In contrast, by day 1 the distribution of bacterial loads in flies initially infected with a low
133 dose was bimodal, consistent with what has been previously reported (Duneau, et al. 2017).
134 This suggests a subset of flies were more effectively resisting the infection and attempting to
135 clear it, while another subset tolerated a relatively high bacterial load. The data from the low
136 dose flies indicate two things. First, even a low dose of *E. faecalis* is not completely eliminated
137 from the animals. Second, upon reinfection, there are likely two distinct populations of flies,
138 harboring either a relatively high or low bacterial burden, which could alter their capability to
139 survive a subsequent infection.
140

141 We then tested the relationship between bacterial burden and the enhanced survival seen in
142 primed flies. Flies that are primed could increase their survival by either more efficiently clearing

143 the infection or more effectively tolerating a chronic bacterial burden. When looking at bacterial
144 load in double-injected flies, there was no significant difference between Mock-primed and *Efae*-
145 primed cohorts (Kruskal-Wallis Test: $p = 0.2636$) (Figure 2B). Despite their significant
146 differences in survival (Figure 1C), this does not correlate with a difference in the bacterial load
147 between the two conditions, indicating that the improved survival of *Efae*-primed flies relative to
148 the Mock-primed flies is due to tolerance, not resistance.
149

150 **Fat bodies show priming-specific transcription**

151
152 To correlate increased survival in primed flies with transcriptional response, we measured gene
153 expression in the fat body using RNA-seq. The fly fat body is a liver-like tissue responsible for
154 driving an extensive transcriptional program in response to bacterial infections (DiAngelo, et al.
155 2009; Dionne 2014). As in previous priming setups, flies were injected twice, with samples being
156 collected at multiple time points to assay the priming phase as well as re-infection (Figure 3A;
157 Supplementary Table 1). To identify genes differentially expressed in response to each
158 injection, we performed differential gene expression analysis against a non-injected, age-
159 matched control. The response to each injection was measured after 24 hours. Genes that were
160 differentially up-regulated only in *Efae*-primed flies were identified as “priming-specific”. As a
161 comparison to prior work, we analyzed the expression profiles of a previously-published list of
162 “core” immune genes in our samples and found a subset was induced upon infection in our
163 samples (Supplementary Figure 2A) (Troha, et al. 2018).
164

165 The comparison of fat body transcription across conditions showed a high amount of *Efae*
166 primed-specific and Mock-primed specific upregulation (149 genes & 408 genes, respectively,
167 using an FDR cutoff of 0.05) (Figure 3B & C, full list for all conditions and overlap in
168 Supplementary Table 2). A fraction of these genes have been previously annotated with
169 immune functions (19 *Efae*-primed genes, ~13%; 15 Mock-primed genes, ~4%) (Ramirez-
170 Corona, et al. 2021; Troha, et al. 2018). Gene ontology (GO) analysis of priming-specific up-
171 regulation was enriched for genes related to immune response, control of response to stress,
172 and cell surface receptor signaling (Figure 3D), consistent with the idea of bacterial sensing
173 being essential to building a primed response (Figure 1D). Mock-primed specific GO term
174 enrichment indicated response to stimuli, but also included genes involved specifically in
175 response to mechanical stimuli and post-transcriptional gene regulation (Supplementary Figure
176 2A & Supplementary Table 2).
177

178 To delineate pathways whose component genes were upregulated in *Efae*-primed fat body
179 versus Mock-primed fat body transcriptomes, we applied gene set enrichment analysis (GSEA)
180 on the full transcriptome for both conditions. *Efae*-primed samples were enriched for pathways
181 involved in protein and lipid metabolism and metabolite transport, while Mock-primed fat bodies
182 were enriched for pathways involved in the cell cycle (Supplementary Figure 3; full analysis in
183 Supplementary Table 3). This suggests there is metabolic reprogramming associated with
184 priming and altered regulation of cell division in Mock-primed fat bodies. Despite the high
185 degree of unique transcriptional activity in Mock-primed fat bodies, Mock-primed flies die more
186 quickly than either *Efae*-primed or high dose-infected flies. This suggests that this transcriptional
187 reaction is not necessarily advantageous for infection survival. Taken together, fat bodies
188 showed a strong transcriptional response to infection, with a high degree of Mock-primed and
189 *Efae*-primed-specific transcription.
190

191 We also noted that all conditions shared a set of 40 commonly up-regulated genes, which we
192 call “core genes.” Seventeen of these core genes are known or suspected AMPs, including

193 several *Bomanins* (*Boms*), *Daisho 1 & 2*, and the AMPs *Metchnikowin*, *Drosomycin*, *Diptericin*
194 *B*, and *Baramicin A* (Supplementary Figure 2B) (Cohen, et al. 2020; Hanson, et al. 2019;
195 Hanson, et al. 2021; Lindsay, et al. 2018). Previous experimental work has shown that survival
196 of *E. faecalis* infection is strongly dependent on the *Bom* gene family (Clemmons, et al. 2015).
197 Flies lacking 10 out of the 12 *Boms* succumb to a single *E. faecalis* infection as quickly as flies
198 that lack Toll signaling. Bacterial load data indicates that flies lacking either these 10 *Boms*
199 resist an individual *E. faecalis* infection more weakly than wild type flies. Conversely, flies with
200 deletions of several AMPs (4 Attacins, 2 Diptericins, Drosocin, Drosomycin, Metchnikowin, and
201 Defensin) or *Baramicin A* show only modest decreases in survival of *E. faecalis* infections
202 (Hanson, et al. 2019; Hanson, et al. 2021).

203
204 Given their differing effects on *E. faecalis* infection survival, we decided to analyze the
205 expression patterns of the core *Boms* separately from the other core known or suspected
206 AMPs. We summarized the expression patterns of each gene group using a geometric mean of
207 transcripts per million (TPMs). When comparing the geometric means of the core *Boms*, we
208 found no significant difference in expression between the Mock-primed and *Efae*-primed flies
209 (Welch t-test: $p = 0.112$) (Figure 3E, left). Likewise, a comparison of the geometric means of
210 expression levels for the core AMP or AMP-like genes yielded no significant difference between
211 the Mock-primed and *Efae*-primed flies (Welch t-test: $p = 0.184$) (Figure 3E, right). This
212 indicates that primed fat bodies are not necessarily increasing the amount of transcripts
213 associated with bacterial resistance, consistent with the lack of increased bacterial clearance for
214 *Efae*-primed relative to Mock-primed flies in Figure 2B.

215
216 **Loss of IMD negatively impacts the fly's ability to prime against *E. faecalis***

217
218 We also observed priming-specific down-regulation of *imd* (Figure 3F), which led us to consider
219 the role of IMD signaling in the priming response. While IMD signaling is canonically associated
220 with response to Gram-negative bacterial infections, it is also connected to regulation of the
221 MAPK-mediated reactive oxygen species production and wound response, as well as a
222 generalized stress response (Ragab, et al. 2011; Myllmäki, et al. 2014). We first hypothesized
223 that the downregulation of *imd* in *Efae*-primed flies might lead to lower expression levels of IMD-
224 responsive AMPs, perhaps as a way to avoid transcribing genes that do not contribute to the
225 animal's survival of the Gram-positive *E. faecalis* infections. However, the IMD-responsive
226 AMPs were not down-regulated in a priming-specific manner (Supplementary Figure 2C & D).

227
228 To further explore the role IMD signaling plays in a primed immune response, we tested survival
229 of an *imd* mutant (Pham, et al. 2007) to single and double injections (Figure 3 G & H,
230 Supplementary Figure 2E & F). As has been previously shown, the *imd* mutant showed a dose-
231 dependent response to *E. faecalis* infection with similar survival to a single PBS injection and a
232 low dose of *E. faecalis* (Figure 3G), indicating that loss of the pathway did not impact the ability
233 of the fly to respond to an *E. faecalis* infection. However, when subjecting the flies to dual
234 injections, we observed a significant, though not total, loss of priming ability in these *imd*-mutant
235 flies (Figure 3H). *Efae*-primed flies still survive a second injection more effectively than Mock-
236 primed flies, but less successfully than control flies twice injected with sterile PBS. Together,
237 this demonstrates that while the loss of the IMD pathway does not impact the survival of the flies
238 with a single bacterial infection, it does negatively impact survival in animals that have been
239 infected more than once. This suggests that there are distinct differences in use of signaling
240 pathways between animals with one versus two infections.

241

242 **Hemocytes act as potential signal relayers in a primed immune response**

243
244 Using the same approach as in fat bodies, we determined priming-specific transcription in adult
245 hemocytes (Supplementary Figure 4A, full list of up-regulated and down-regulated genes in
246 Supplementary Table 4). Hemocytes have several roles in the immune response, including
247 bacterial phagocytosis, pathogen sensing, and signaling. Compared to fat bodies (Figure 3B),
248 hemocytes showed a low amount of priming-specific up-regulation, with only 17 genes
249 specifically up-regulated in the *Efae*-primed condition (Figure 4A, Supplementary Figure 4B).
250 Most of these genes are poorly characterized or functionally unrelated (Supplementary Table 4).
251 There were also 458 genes specifically up-regulated in *Efae* High hemocytes, indicating that
252 the hemocyte transcriptional response to *E. faecalis* infection depends on the dose, previous
253 injection state, and age of the animal. A GO term analysis reveals that many of these high dose
254 specific genes are involved in immune response, as expected, and also regulation of metabolic
255 processes (Supplementary Figure 4C). This analysis indicates that, in contrast to the fat body,
256 hemocytes only upregulate a small number of genes in the primed condition.

257
258 Of the 17 core genes up-regulated in all conditions in hemocytes, 11 of them (~64%)
259 overlapped with the 40 core genes found in fat bodies (Supplementary Figure 4D &
260 Supplementary Table 4). These hemocyte core genes were identified to be the overlapping up-
261 regulated genes between all four conditions that assayed immune response 24 hours after
262 either single or double injection. Among these were several Bomanins, *Drosomycin*, *SPH93*,
263 *IBIN*, and *Metchnikowin-like*, implying a role for these genes in response to *E. faecalis* infection
264 in both hemocytes and fat body. As with our fat body data, we again separately analyzed the
265 levels of expression of the AMPs versus bomanin effectors for hemocytes. When comparing the
266 geometric means of the expression levels of the core *Boms*, we found no significant difference
267 in expression between the Mock-primed and *Efae*-primed flies (Welch t-test: $p = 0.3773$) (Figure
268 3B, right). Likewise, a comparison of the geometric means of expression levels for the core
269 AMP genes yielded no significant difference between the Mock-primed and *Efae*-primed flies
270 (Welch's t-test: $p = 0.4391$) (Figure 3B, left). This indicates that, similar to the comparison
271 between *Efae*-primed and Mock-primed fat bodies, transcripts associated with bacterial
272 resistance are not specifically up-regulated in primed hemocytes.

273
274 Given the diverse functions of hemocytes in immune response, we decided to use GSEA to
275 systematically delineate priming-enriched pathways (Figure 3C, full GSEA analysis in
276 Supplementary Table 5). This analysis of hemocyte transcription in *Efae*-primed samples versus
277 Mock-primed samples indicated a wider picture of metabolic reprogramming (Clusters 2, 6, 8,
278 10, 11, and 13) and altered protein production (Clusters 4, 5, 6, and 7) in the primed samples.
279 Though not clustered with other terms, there was also enrichment for genes involved in antigen-
280 presenting functions in mammalian orthologs.

281
282 To more fully understand the role hemocytes could be playing in modulating a primed response,
283 we synthesize several of our observations. The decreased priming ability in *Eater* mutants
284 indicates that bacterial phagocytosis is necessary for immune priming (Figure 1F), but we do not
285 find an increase in bacterial clearance in primed re-infection (Figure 2B). Consistent with this
286 observation, we also do not see elevated transcription of either the *Boms* or other known or
287 suspected AMPs typically associated with bacterial clearance (Figure 4B). Transcriptional
288 profiling of the hemocytes point to changes in regulation of metabolism and protein production
289 (Figure 4C) that may also contribute to the enhanced survival of primed animals. Together these
290 observations suggest that, in the primed condition, the primary role of bacterial phagocytosis is

291 to initiate bacterial sensing and subsequent signal transduction (Nehme, et al. 2011; Gold &
292 Brückner 2014).

293

294 **Several Toll effectors loiter into re-infection, but Toll signaling is not needed for immune**
295 **priming**

296

297 We further leveraged our transcriptomic data to identify genes that loiter from the first infection
298 into reinfection (Figure 5A). We defined loitering genes as those that were up-regulated both 1
299 day and 6 days after a low dose infection (*Efae* Low-d1 & *Efae* Low-d7) and 1 day after the
300 subsequent high dose infection (*Efae*-primed-d8). Fat bodies had 14 genes that were identified
301 as loitering (Figure 5B), while hemocytes only had two (Figure 5C). For fat bodies, 13 of the 14
302 (~93%) loitering genes overlapped with the identified core *E. faecalis* response genes (Figures
303 3B & C; annotated in Supplementary Table 2). Most of these genes are either known or
304 suspected AMPs, and the list also includes a recently-characterized lncRNA (lncRNA:CR33942)
305 that can enhance the Toll immune response (Zhou, et al. 2022). The fat body loitering genes
306 are largely Toll-regulated.

307

308 To further investigate the role Toll signaling is playing in creating a primed response to *E.*
309 *faecalis*, we assayed infection response in flies with a *Myd88* mutation that eliminates Toll
310 signaling (Figure 5D) (Charatsi, et al. 2003). In the single injection conditions, we continued to
311 see a dose-dependent effect on survival, with expected increased lethality when compared to
312 our immune-competent control (Supplementary Figure 5A) (Clemmons, et al. 2015; Hanson, et
313 al. 2019). When assaying for survival against double-injected conditions, we found that *Myd88*
314 mutants were still able to effectively prime against *E. faecalis* re-infection (Figure 5E). Despite
315 lacking canonical Toll-mediated immune signaling, these mutants were able to respond to
316 double-injections and mount a primed immune response, with equivalent survival between the
317 *Efae*-primed flies and the control flies injected twice with PBS (Supplementary Figure 5B). This
318 indicates that immune priming against the Gram-positive *E. faecalis* does not strictly require Toll
319 signaling.

320

321 **Potentiated recall gene expression plays a minor role in *E. faecalis* immune priming**

322

323 In addition to priming-specific and loitering genes, we were also identified “recall response
324 genes” (Melillo et al. 2018). These genes were defined as genes that are up-regulated in
325 response to an initial low dose infection, turned off 6 days later, and up-regulated more strongly
326 in response to a subsequent infection (Figure 6A). In fat bodies, we identified 7 recall genes
327 (Figure 6B), and we did not identify any recall genes in hemocytes. Of these few fat body recall
328 genes, we found two Polycomb interacting elements (*jing* & *cg*) and a component of the
329 Mediator complex (*MED23*), suggesting a potential role for transcriptional regulation. However,
330 we did not find a strong role for recall transcription in our experiments.

331 **Discussion:**

332 In this study we have shown the transcriptional underpinnings of a primed immune response
333 against *Enterococcus faecalis* infection in *Drosophila melanogaster*. We demonstrated that a
334 low dose of *E. faecalis* can prime the flies to better survive a high dose infection at least 7 days
335 later, and the increase in survival is not linked to more effective clearance of the bacteria. When
336 comparing *Efae*-primed and Mock-primed animals, we found that the transcriptional profiles of
337 antimicrobial peptides and Bomanins do not differ between the two conditions in either the fat
338 body nor the hemocytes. However, there are ample transcriptional differences between the

339 conditions, and GSEA analysis points to differences in cell cycle regulation and metabolic
340 response. When testing priming ability in *imd* and *Myd88* mutants, we found that these mutants
341 have unexpected effects in the double injection conditions – *imd* mutants prime less effectively
342 than wild type flies, while *Myd88* mutants show no apparent loss of priming ability.
343

344 There are previous studies of immune priming in flies, which taken together with this work paint
345 a more complete picture of the phenomenon. One of the early descriptions of immune priming in
346 *D. melanogaster* found a phagocytosis-dependent, AMP-independent priming response against
347 *Streptococcus pneumoniae* (Pham, et al. 2007). Our study uses a different Gram-positive
348 microbe, but a similar re-infection timescale. Similar to that study, we find that phagocytosis is
349 needed to mount a primed immune response, as was demonstrated by the impaired priming in
350 the Eater mutant flies. We also corroborated that survival is not correlated with AMP production.
351 However, Pham et al. found that primed flies resist *S. pneumoniae* more effectively than naive
352 flies, while our *Efae*-primed flies appeared to rely on immune tolerance to enhance survival. It is
353 possible that this difference is due to the increased virulence of the pathogen, *S. pneumoniae*,
354 which can kill a wild type fly with a relatively low dose of 3,000 CFU, relative to *E. faecalis*. The
355 difference could also be due to the specificity of the host's primed response to different
356 pathogens. In sum, these findings suggest that there may be multiple, bacteria-specific priming
357 mechanisms.
358

359 Another study found that sterile wounding 2 days, but not 7 days, prior to infection with *E.*
360 *faecalis* conferred some level of ROS-mediated protection (Chakrabarti, et al. 2020). This
361 study's assay most closely matches our Mock-primed re-infections, and we also did not see
362 enhanced survival when the wounding occurred 7 days prior to the infection. This indicates that
363 the protection conferred from sterile wounding is effective in the short-term (i.e. 2 days), but not
364 in the long-term (i.e. 7 days). However, both this study and our observations support the idea
365 that hemocytes activate new functions in response to prior stimuli exposure (as was found in
366 Weaver, et al. 2016, as well). Finally, a study looking at the effects of chronic bacterial infection
367 did not find immune priming with *E. faecalis* when using the same re-injection time points
368 (Chambers, et al. 2019). However, in that study flies were injected with two low-doses (~3,000
369 CFU/fly) and injected first in the abdomen and second in the thorax. This suggests a dose-
370 dependent and/or injection site-dependent effect on priming ability.
371

372 One of the most surprising findings of this study is the priming responses found in the *imd* and
373 *Myd88* mutant flies. As others have previously reported, our work demonstrates that the
374 elimination of the IMD pathway does not affect the fly's survival against a single low dose
375 infection of *E. faecalis*, while the elimination of Toll signaling greatly reduces the fly's survival of
376 the same infection. This is consistent with the well-described sensing of Gram-positive bacteria
377 via Toll signaling and Gram-negative bacteria via IMD signaling (Buchon, et al. 2014). However,
378 we find that *imd* mutants lose some, though not all, of their priming capacity, while *Myd88*
379 mutants have similar survival between flies injected twice with PBS or *Efae*-primed flies. The
380 requirement of *imd* for survival was surprising for two reasons: first because IMD signaling has
381 not been implicated in the survival of Gram-positive bacteria (or priming, in the case of *S.*
382 *pneumoniae* in Pham, et al. 2007), and second, because we saw down regulation of the *imd*
383 gene in the fat body primed transcriptome. This suggests while downregulation of *imd* may be
384 useful in priming, complete eradication of the pathway in the animal removes some priming
385 ability. This could be due to the role the IMD pathway plays in modulating other key immune
386 response pathways such as JAK/STAT, JNK, and MAPK signaling (Kleino & Silverman 2014).
387

388 We were also surprised to see the dispensability of Toll signaling for priming. Toll signaling
389 plays a key role in surviving Gram-positive infections, and virtually all of the loitering genes we
390 found here are known Toll targets. One possible explanation of this observation is that *Myd88*
391 mutants show markedly lower survival of the initial low dose *E. faecalis* infection. This implies
392 that, when we select survivors to re-infect 7 days later, this may be representative of a specific
393 subset of flies with an advantage that allows them to survive the initial infection despite the lack
394 of a Toll response.

395
396 While our data did not indicate a difference in bacterial clearance between *Efae*-primed and
397 Mock-primed flies (Figure 2B), we acknowledge the possibility that the number of bacteria
398 remaining in the animal from the initial infection may affect priming responses. As has been
399 previously noted (Duneau, et al. 2017), we found variability in the bacterial burden during the
400 initial low dose infection, consistent with some flies more effectively resisting infection than
401 others (Figure 2A). Chronic infections tend to lead to low-level activation of the immune
402 response throughout the animal's lifetime, causing expression of immune effectors that can
403 loiter into re-infection and and may contribute to enhanced survival (Chambers, et al. 2019). It is
404 not yet clear what effect the intensity of a chronic infection would have on an priming ability, but
405 it should be considered in the future. It is possible that a more severe chronic infection could
406 either put the animal in a heightened state of "readiness" for a new infection or exhaust its
407 resources.

408
409 Our data implies a major role for metabolic reprogramming in mediating a primed immune
410 response against *E. faecalis*. Given the high energetic cost of mounting an immune response, it
411 is logical to imagine immune priming as a more efficient re-allocation of metabolic resources to
412 fine tune an immune defense strategy in a short-lived animal (as discussed in Lazarro & Tate
413 2022; Schlamp, et al. 2021). Interestingly, evidence of metabolic shifts was not just relegated to
414 the fat body (Supplementary Figure 3), which acts as the site of integration for metabolic and
415 hormonal control, but was found to be the case with hemocytes, as well (Figure 4C). Similarly,
416 in mammalian trained immunity where metabolic reprogramming drives epigenetic changes in
417 innate immune cell chromatin(Fanucchi, et al. 2021). Further characterization of *Drosophila*
418 immune priming could explore the extent of differential metabolite usage when mounting a
419 primed immune response and whether the transcriptional differences observed are encoded
420 through epigenetic reprogramming of histone mark deposition, akin to what is observed in
421 mammalian systems. Our study lays the groundwork for understanding the interplay between a
422 physiological primed immune response and the transcriptional regulatory logic defining it.

423 Methods:

424 Fly Strains

425 Experiments, unless otherwise indicated, were performed using 4 day old Oregon-R male flies.
426 Eater mutants are described in Bretscher et al. (2015) and were obtained from the Bloomington
427 Stock Center (RRID:BDSC_68388). These flies knocked out the *eater* gene through
428 homologous recombination that replaced 745bp of the TSS, exons 1 and 2, and part of exon 3
429 with a 7.9 kb cassette carrying a *w¹* gene. *Imd*¹⁰⁹¹ flies were provided by Neal Silverman. They
430 were generated by creating a 26bp deletion at amino acid 179 that creates a frameshift mutation
431 at the beginning of the death domain in *imd* (Pham 2007). *Myd88*^[kra-1] flies were provided by
432 Steve Wasserman and Lianne Cohen. This line was created by excising 2257bp of the *Myd88*
433 gene spanning the majority of the first exon and inserting a P-element (Charatsi 2003). Stable
434 lines were balanced against a CyO balancer with homozygous mutant males being selected for

435 injections. Flies were housed at 25°C with standard humidity and 12 hr-light/12 hr-dark light
436 cycling.

437

438 Injections

439 All bacterial infections were done using a strain of *Enterococcus faecalis* originally isolated from
440 wild-caught *Drosophila melanogaster* (Lazarro 2006). Single colony innoculums of *E. faecalis*
441 were grown overnight in 2mL BHI shaking at 37°C. 100uL of overnight *E. faecalis* innoculum
442 was then added to 2mL fresh BHI and grown shaking at 37°C for 2.5 hours before injections in
443 order to ensure it would be in the log-phase of growth. Bacteria was then pelleted at 5,000 rcf
444 for 5 minutes, washed with PBS, re-suspended in 200uL PBS, and measured for its OD600 on a
445 Nanodrop. Flies were injected with either PBS, *E. faecalis* at OD 0.05 for low dose experiments
446 (~3,000 CFU/fly), or *E. faecalis* at OD 0.5 for high dose experiments (~30,000 CFU/fly). Due to
447 the high heat resistance of *E. faecalis*, heat-killed inoculums were produced by autoclaving
448 10mL cultures that were in log-phase growth. Successful heat-killing was determined by
449 streaking 50uL on a BHI plate and checking it had no growth. Adult flies were injected
450 abdominally using one of two high-speed pneumatic microinjectors (Tritech Research Cat. #
451 MINJ-FLY or Narishige IM 300) with a droplet volume of ~50nL for both PBS and bacterial
452 injections. Injections into a drop of oil on a Lovins field finder were used to calibrate the droplet
453 volume. Injections were performed in the early afternoons to control for circadian effects on
454 immune response. Flies were not left on the CO₂ pad for more than 10 minutes at a time.
455 Injected flies were housed in vials containing a maximum of 23 flies at 25°C with standard
456 humidity and 12 hr-light/12 hr-dark light cycling.

457

458 Survival Assays

459 To track survival, flies were observed every 24 hours at the time they were injected. Media was
460 changed every three days with flies being exposed to CO₂ for no more than two minutes
461 between vial transfers. Survival was modeled and analyzed using a log rank-sum test and
462 visualized using the R packages survival and surminer.

463

464 Dilution Plating

465 Single flies were suspended in 250uL PBS and homogenized using an electric pestle. The
466 homogenate was then serially diluted five-fold and plated on BHI plates and left to grow in
467 aerobic conditions for two days at 25°C. Using this method there was little to no background
468 growth of the natural fly microbiome. Images were then taken of each plate using an iPhone XR
469 and analyzed using ImageJ with custom Python scripts to calculate colony forming units (CFU)
470 per fly. Plotting was done using the R package ggplot2 (Wickham 2016).

471

472 Hemocyte Isolation

473 For each biological replicate, 20 flies were placed in a Zymo-Spin P1 column with the filter and
474 silica removed along with a tube's-worth of Zymo ZR BashingBeads. Samples were centrifuged
475 at 10,000 rcf at 4°C for one minute directly into a 1.5mL microcentrifuge tube containing 350uL
476 TriZol (Life Technologies) (schematic in Supplementary Figure 4A). Samples were then snap
477 frozen and stored at -80°C for future RNA extraction.

478

479 Fat Body Isolation

480 Each biological replicate consisted of 3 extracted fat bodies. Flies were anesthetized with CO₂
481 and pinned with a dissection needle at the thorax, ventral side up, to a dissection pad. The
482 head, wings, and legs were then removed using forceps. Using a dissection needle, the
483 abdomen was carefully opened longitudinally and the viscera removed using forceps. The
484 remaining abdominal filet with attached fat body cells was then removed from the thorax and

485 transferred to a 1.5mL microcentrifuge tube on ice containing 350uL TriZol. Samples were then
486 snap frozen and stored at -80°C for future RNA extraction. Dissection of fat bodies includes
487 some level of testes and sperm contamination, which was monitored by tracking expression of
488 sperm-related genes in RNA-seq libraries and throwing out any libraries that have relatively high
489 expression of said genes (Supplementary Figure 6).

490

491 RNA-seq Library Preparation

492 RNA from either fat bodies or hemocytes was extracted using a Zymo Direct-zol RNA Extraction
493 kit and eluted in 20uL water. Libraries were prepared using a modified version of the Illumina
494 Smart-seq 2 protocol as previously described (Ramirez-Corona 2021). Libraries were
495 sequenced on an Illumina Next-seq platform using a NextSeq 500/550 504 High Output v2.5 kit
496 to obtain 43bp paired-end libraries.

497

498 Differential Gene Expression Analysis

499 Sequenced libraries were quality checked using FastQC and aligned to *Drosophila* reference
500 genome dm6 using Bowtie 2 (Langmead & Salzberg 2012). Counts were generated using the
501 subread function featureCounts. Counts were then loaded into EdgeR (Robinson
502 2010), libraries were TMM normalized, and genes with CPM < 1 were filtered out. Full code
503 used in downstream analysis can be found at

504 <https://github.com/WunderlichLab/ImmunePriming-RNAseq>.

505

506

507 Priming-Specific Transcription Analysis

508 To identify priming-specific up-regulation, we first identified genes that were significantly up-
509 regulated ($\log_2\text{FC} > 1$ & $\text{FDR} < 0.05$) in each condition that assayed for immune response 24 hours
510 after infection (i.e. *Efae* Hi Dose-d1, *Efae* Low Dose-d1, *Efae* Mock-primed-d8, and *Efae*-
511 primed-d8) (the effect of modulating significance and $\log_2\text{FC}$ cut-offs can be seen in
512 Supplementary Figure 7). These gene lists were then compared to each other for overlap.
513 Genes that were only up-regulated in *Efae*-primed-d8 samples, but in no other condition were
514 labeled as “priming-specific”. Average expression of AMPs and *Bomanins* was calculated by
515 taking the geometric mean of TPMs of the respective gene lists. In this way we could account
516 for the effects highly-expressed genes would have on skewing the overall average. Significant
517 differences between conditions were calculated using a Welch’s t-test.

518

519 Immune Loitering Analysis

520 To determine genes that were continuously being expressed throughout initial immune priming
521 into re-infection, we focused on the transcription in samples assayed at *Efae* Low-d1, *Efae* Low-
522 d7, and *Efae*-primed-d8. We first selected genes that were expressed at the above time points
523 relative to a non-stimulated, age-matched control ($\log_2\text{FC} > 0$). We then filtered that shortlist on
524 the following conditions: genes had to significantly up-regulated at *Efae* Low-d1 compared to its
525 age-matched control ($\log_2\text{FC} > 0$ & $\text{FDR} < 0.05$), genes had to significantly up-regulate at *Efae*-
526 Primed-d8 compared to its age-matched control ($\log_2\text{FC} > 0$ & $\text{FDR} < 0.05$), and genes had to
527 either stay at similarly expressed levels or increase in expression between *Efae* Low-d7 and
528 *Efae*-primed-d8 compared to their age-matched controls ($\log_2\text{FC} \geq 0$).

529

530 Potentiated Recall Response Analysis

531 We termed genes as being “recalled” if they were initially transcribed during priming (*Efae* Lo-d1
532 $\log_2\text{FC}$ over age-matched control > 0.5), ceased being expressed by the end of priming (*Efae*
533 Lo-d7 $\log_2\text{FC}$ over age-matched control ≤ 0), and were then re-expressed upon re-infection
534 (*Efae*-primed-d8 $\log_2\text{FC}$ over age-matched control > 0.5 & $\text{FDR} < 0.1$). Our significance

535 threshold had to be somewhat relaxed for expression after re-infection in order to detect any
536 recalled gene expression at all. To delineate genes that were truly re-activating transcription in a
537 potentiated manner (i.e. at a higher level upon re-infection as compared to when they were
538 initially expressed during priming), we also filtered on the conditional that $\log_2\text{FC}$ over age-
539 matched controls had to be higher in *Efae*-primed-d8 versus *Efae* Low-d1. Finally, to identify
540 genes that were recalled only in our primed samples, we further filtered on the condition that
541 genes had to have a $\log_2\text{FC} \leq 0$ over age-matched controls for Mock-primed-d8 samples.
542

543 GO Term Enrichment

544 All GO Term Enrichment was done using Metascape's online tool (Zhou 2019) and plotted using
545 custom ggplot2 scripts.
546

547 Gene Set Enrichment Analysis

548 Gene set enrichment analysis was run using the GSEA software v. 4.2.3 (Subramanian 2005).
549 *Drosophila*-specific gene matrices for both KEGG and Reactome-based GSEA analyses were
550 taken from Cheng 2021. TMM-normalized TPMs were extracted from EdgeR analysis and used
551 as input for two-condition comparisons using GSEA software. Due to the low number of
552 replicates (< 7 replicates per condition), analysis was run using a gene set permutation. Full
553 tabular results are found in Supplementary Tables 3 & 5. Analysis results were then visualized
554 using Cytoscape (Node Cutoff = 0.1 FDR; Edge Cutoff = 0.5) and clusters describing the
555 mapping manually curated.
556

556 Acknowledgements:

557 We would like to thank S. Wasserman, N. Silverman, and Bloomington Stock Center for fly
558 strains; B. Lazarro for bacterial strains; A. Mortazavi, C.J. McGill, and H.Y. Liang for access to
559 their sequencing core and technical assistance with library preparation. We would like to thank
560 L. Cohen and B. Ramirez-Corona for constructive discussion on this work. This work was
561 funded by NSF grant MCB-1953312/2223888 (to Z.W.) K.C. is an NIH-IMSD Fellow and an
562 NSF-GRFP Fellow.
563

563 Author Contributions:

564 Z.W. and K.C. conceptualized and designed the experiments. K.C. did the survival experiments,
565 injections, RNA-seq experiments, and analyzed the data. D.S.H. did the bacterial load
566 experiments and helped analyze that data. D.M. did the heat-killed *E. faecalis* experiments. K.C.
567 and Z.W. wrote the manuscript.
568

568 Competing Interests:

569 The authors do not declare any competing interests.
570

570 Supplementary Table Legends:

571 **Supplementary Table 1:** Sequencing information for fat body and hemocyte RNA-seq
572

573 **Supplementary Table 2:** Lists of up-regulated genes specific to each fat body condition
574 assayed in [Figure 3](#), common between all fat body conditions, and specifically down-regulated
575 in *Efae*-primed-d8 fat bodies.
576

576

577 **Supplementary Table 3:** Gene set enrichment analysis for *Efae*-primed vs Mock-primed fat
578 bodies. Clustering and terms are shown in [Supplementary Figure 3](#). This represents the tabular
579 output directly from the GSEA software v. 4.2.3 (Subramanian 2005).

580

581 **Supplementary Table 4:** Lists of up-regulated genes specific to each hemocyte condition
582 assayed in [Figure 4](#), common between all hemocyte conditions, specifically down-regulated in
583 *Efae*-primed-d8 fat bodies, and overlap between common *Efae*-response genes in fat bodies
584 and hemocytes.

585

586 **Supplementary Table 5:** Gene set enrichment analysis for *Efae*-primed vs Mock-primed
587 hemocytes. Clustering and terms are shown in [Figure 4C](#). This represents the tabular output
588 directly from the GSEA software v. 4.2.3 (Subramanian 2005).

589

590 References:

591 Adams, C.A. (2010) The probiotic paradox: live and dead cells are biological response
592 modifiers. *Nutrition Research Reviews*, 23: 37-46. DOI: 10.1017/S0954422410000090.

593

594 Bretscher, A.J., Honti, V., Binggeli, O., Burri, O., Poidevin, M., Kurucz, E., Zsámboki, J., Andó,
595 I., Lemaitre, B. (2015) The Nimrod transmembrane receptor Eater is required for hemocyte
596 attachment to the sessile compartment in *Drosophila melanogaster*. *Biology Open*, 4(3): 355-63.
597 DOI: 10.1242/bio.201410595.

598

599 Buchon, N., Silverman, N., Cherry, S. (2014) Immunity in *Drosophila melanogaster* — from
600 microbial recognition to whole-organism physiology. *Nature Reviews Immunology*, 14: 796-810.
601 DOI: 10.1038/nri3763.

602

603 Chakrabarti, S., Visweswariah, S.S. (2020) Intramacrophage ROS Primes the Innate Immune
604 System via JAK/STAT and Toll Activation. *Cell Reports*, 33: e108368. DOI:
605 10.1016/j.celrep.2020.108368.

606

607 Chambers, M.C., Jacobson, E., Khalil, S., Lazzaro, B.P. (2019) Consequences of chronic
608 bacterial infection in *Drosophila melanogaster*. *PLoS ONE*, 14(10): e0224440. DOI:
609 10.1371/journal.pone.0224440.

610

611 Charatsi, I., Lusching, S., Nüsslein-Volhard, C., Moussian, B. (2003) Krapfen/dMyd88 is
612 required for the establishment of dorsoventral pattern in the *Drosophila* embryo. *Mechanisms of
613 Development*, 120(2): 219-26. DOI: 10.1016/S0925-4773(02)00410-0.

614

615 Cheng, J., Hsu, L., Juan, Y., Liu, H., Lin, W. (2021) Pathway-targeting gene matrix for
616 *Drosophila* gene set enrichment analysis. *PLoS ONE*, 16(10): e0259201. DOI:
617 10.1371/journal.pone.0259201.

618

619 Clemmons, A.W., Lindsay, S.A., Wasserman, S.A. (2015) An effector Peptide family required for
620 *Drosophila* toll-mediated immunity. *PLoS Pathogens*, 11(4): e1004876. DOI:
621 10.1371/journal.ppat.1004876.

622

623 Cohen, L.B., Lindsay, S.A., Xu, Y., Lin, S.J.H., Wasserman, S.A. (2020) The Daisho Peptides
624 Mediate Drosophila Defense Against a Subset of Filamentous Fungi. *Frontiers in Immunology*,
625 11:9. DOI: 10.3389/fimmu.2020.00009.

626

627 Cooper, D., Eleftherianos, I. (2017) Memory and Specificity in the Insect Immune System:
628 Current Perspectives and Future Challenges. *Frontiers in Immunology*, 8:539. DOI:
629 10.3389/fimmu.2017.00539.

630

631 Cooper, A., Ton, J. (2022) Immune priming in plants: from the onset to transgenerational
632 maintenance. *Essays in Biochemistry*, EBC20210082. DOI: 10.1042/EBC20210082.

633

634 Coustau, C., Kurtz, J., Moret, Y. (2016) A Novel Mechanism of Immune Memory Unveiled at the
635 Invertebrate-Parasite Interface. *Trends in Parasitology*, 32(5): 353-55. DOI:
636 10.1016/j.pt.2016.02.005.

637

638 De Gregorio, E., Spellman, P.T., Tzou, P., Rubin, G.M., Lemaitre, B. (2002) The Toll and Imd
639 pathways are the major regulators of the immune response in Drosophila. *EMBO Journal*,
640 21(11): 2568-79. DOI: doi.org/10.1093/emboj/21.11.2568.

641

642 DiAngelo, J.R., Bland, M.L., Bambina, S., Cherry, S., Birnbaum, M.J. (2009) The immune
643 response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling.
644 *PNAS*, 106(49): 20853-8. DOI: 10.1073/pnas.0906749106.

645

646 Dionne, M. (2014) Immune-metabolic interaction in Drosophila. *Fly*, 8(2): 75-9. DOI:
647 10.4161/fly.28113.

648

649 Divangahi, M., Aaby, P., Khader, S.A., Barreiro, L.B., Bekkering, S., Chavakis, T., van Crevel,
650 R., Curtis, N., DiNardo, A.R., Dominguez-Andres, J., Duivenvoorden, R., Fanucchi, S., Fayad,
651 Z., Fuchs, E., Hamon, M., Jeffrey, K.L., Khan, N., Joosten, L.A.B., Kaufmann, E., Latz, E.,
652 Matarese, G., van der Meer, J.W.M., Mhlanga, M., Moorlag, S.J.C.F.M., Mulder, W.J.M., Naik,
653 S., Novakovic, B., O'Neill, L., Ochando, J., Ozato, K., Riksen, N.p., Sauerwein, R., Sherwood,
654 E.R., Schlitzer, A., Schultze, J.L., Sieweke, M.H., Benn, C.S., Stunnenberg, H., Sun, J., van de
655 Veerdonk, F.L., Weis, S., Williams, D.L., Xavier, R., Netea, M.G. (2020) Trained immunity,
656 tolerance, priming, and differentiation: distinct immunological processes. *Nature Immunology*,
657 22: 2-6. DOI: 10.1038/s41590-020-00845-6.

658

659 Duneau, D., Ferdy, J., Revah, J., Kondolf, H., Ortiz, G.A., Lazzaro, B.P., Buchon, N. (2017)
660 Stochastic variation in the initial phase of bacterial infection predicts the probability of survival in
661 *D. melanogaster*. *eLife*, 6:e28298. DOI: 10.7554/eLife.28298.

662

663 Fanucchi, S., Domínguez-Andrés, J., Joosten, L.A.B., Netea, M.G., Mhlanga, M.M. (2021) The
664 Intersection of Epigenetics and Metabolism in Trained Immunity. *Immunity*, 54(1):32-43. DOI:
665 10.1016/j.jimmuni.2020.10.011.

666

667 Gold, K.S., Brückner, K. (2017) Macrophages and cellular immunity in *Drosophila melanogaster*.
668 *Seminars in Immunology*, 27(6): 357-68. DOI: 10.1016/j.smim.2016.03.010.

669

670 Hanson, M.A., Dostállová, A., Ceroni, C., Poidevin, M., Kondo, S., Lemaitre, B. (2019) Synergy
671 and remarkable specificity of antimicrobial peptides in vivo using a systemic knockout approach.
672 *eLife*, 8:e44341. DOI: 10.7554/eLife.44341.

673
674 Hanson, M.A., Cohen, L.B., Marra, A., Iatsenko, I., Wasserman, S.A., Lemaitre, B. (2021) The
675 Drosophila Baramicin polypeptide gene protects against fungal infection. *PLoS Pathogens*,
676 17(8): e1009846. DOI: 10.1371/journal.ppat.1009846.

677
678 Itoh, T., Miyake, Y., Onda, A., Kubo, J., Ando, M., Tsukamasa, Y., Takahata, M. (2012)
679 Immunomodulatory effects of heat-killed *Enterococcus faecalis* TH10 on murine macrophage
680 cells. *MicrobiologyOpen*, 1(4): 373-80. DOI: 10.1002/mbo3.41.

681
682 Langmead, B., Salzberg, S.L. (2012) Fast gap-read alignment with Bowtie 2. *Nature Methods*,
683 9(4): 357-59. DOI: 10.1038/nmeth.1923.

684
685 Lazarro, B.P., Sackton, T.B., Clark, A.G. (2006) Genetic variation in *Drosophila melanogaster*
686 resistance to infection: a comparison across bacteria. *Genetics*, 174(3): 1539-54. DOI:
687 10.1534/genetics.105.054593.

688
689 Lazarro, B.P., Tate, A.T. (2022) Balancing sensitivity, risk, and immunopathology in immune
690 regulation, *Current Opinion in Insect Science*, 50: 100874. DOI: 10.1016/j.cois.2022.100874.

691
692 Lin, S.J.H., Cohen, L.B., Wasserman, S.A. (2020) Effector specificity and function in Drosophila
693 innate immunity: Getting AMPed and dropping Bombs. *PLoS Pathogens*, 16(5): e1008480. DOI:
694 10.1371/journal.ppat.1008480.

695
696 Lindsay, S.A., Lin, S.J.H., Wasserman, S.A. (2018) Short-Form Bomanins Mediate Humoral
697 Immunity in Drosophila. *Journal of Innate Immunity*, 10: 306-14. DOI: 10.1159/000489831.

698
699 Kleino, A., Silverman, N. (2014) The Drosophila IMD pathway in the activation of the humoral
700 immune response. *Developmental and Comparative Immunology*, 42(1): 25-35. DOI:
701 10.1016/j.dci.2013.05.014.

702
703 Kocks, C., Hyun Cho, J., Nehme, N., Ulvila, J., Pearson, A.M., Meister, M., Strom, C., Conto,
704 S.L., Hetru, C., Stuart, L.M., Stehle, T., Hoffman, J.A., Reichhart, J., Ferrandon, D., Rämet, M.,
705 Ezekowitz, R.A.B. (2005) Eater, a transmembrane protein mediating phagocytosis of bacterial
706 pathogens in Drosophila. *Cell*, 123(2): 335-46. DOI: 10.1016/j.cell.2005.08.034.

707
708 Melillo, D., Marino, R., Italiani, P., Boraschi, D. (2018) Innate Immune Memory in Invertebrate
709 Metazoans: A Critical Appraisal. *Frontiers in Immunology*, 9: 1915. DOI:
710 10.3389/fimmu.2018.01915.

711
712 Milutinović, B., Peuß, R., Ferro, K., Kurtz, J. (2016) Immune priming in arthropods: an update
713 focusing on the red flour beetle. *Zoology*, 119(4): 254-61. DOI: 10.1016/j.zool.2016.03.006.

714 Myllymäki, H., Valanne, S., Rämet, M. (2014) The Drosophila Imd Signaling Pathway. *The
715 Journal of Immunology*, 192(8): 3455-62. DOI: 10.4049/jimmunol.1303309.

716
717 Nehme, N.T., Quintin, J., Cho, J.H., Lee, J., Lafarge, M., Kocks, C., Ferrandon, D. (2011)
718 Relative roles of the cellular and humoral responses in the Drosophila host defense against
719 three gram-positive bacterial infections. *PLoS One*, 6(3): e14743. DOI:
720 10.1371/journal.pone.0014743.

721

722 Netea, M.G., Joosten, L.A.B., Latz, E., Mills, K.H.G., Natoli, G., Stunnenberg, H.G., O'Neill,
723 L.A.J., Xavier, R.J. (2016) Trained immunity: A program of innate immune memory in health and
724 disease. *Science*, 352(6284): aaf1098. DOI: 10.1126/science.aaf1098.

725

726 Pham, L.N., Dionne, M.S., Shirasu-Hiza, M., Schneider, D.S. (2007) A Specific Primed Immune
727 Response in *Drosophila* is Dependent on Phagocytes. *PLoS Pathogens*, 3(3): e26. DOI:
728 10.1371/journal.ppat.0030026.

729

730 Ragab, A., Buechling, T., Gesellchen, V., Spirohn, K., Boettcher, A.L., Boutros, M. (2011)
731 *Drosophila* Ras/MAPK signaling regulates innate immune responses in immune and intestinal
732 stem cells. *EMBO Journal*, 30(6): 1123-36. DOI: 10.1038/emboj.2011.4.

733

734 Ramirez-Corona, B.A., Fruth, S., Ofoegbu, O., Wunderlich, Z. (2021) The mode of expression
735 divergence in *Drosophila* fat body is infection-specific. *Genome Research*, 31: 1024-31. DOI:
736 10.1101/gr.269597.120.

737

738 Robinson, M.D., McCarthy, D.J., Smyth, G.K. (2010) edgeR: a Bioconductor package for
739 differential expression analysis of digital gene expression data. *Bioinformatics*, 26(1): 139-40.
740 DOI: 10.1093/bioinformatics/btp616.

741

742 Schlamp, F., Delbare, S.Y.N., Early, A.M., Wells, M.T., Basu, S., Clark, A.G. (2021) Dense time-
743 course gene expression profiling of the *Drosophila melanogaster* innate immune response.
744 *BMC Genomics*, 22:304. DOI: 10.1186/s12864-021-07593-3.

745

746 Subramanian, A., Tamayo, P., Mootha, V.K. (2005) Gene set enrichment analysis: A
747 knowledge-based approach for interpreting genome-wide expression profiles. *PNAS*, 102(43):
748 15545-50. DOI: 10.1073/pnas.050658010.

749

750 Troha, K., Im, J.H., Rvah, J., Lazzaro, B.P., Buchon, N. (2018) Comparative transcriptomics
751 reveals CrebA as a novel regulator of infection tolerance in *D. melanogaster*. *PLoS Pathogens*,
752 14(2): e1006847. DOI: 10.1371/journal.ppat.1006847.

753

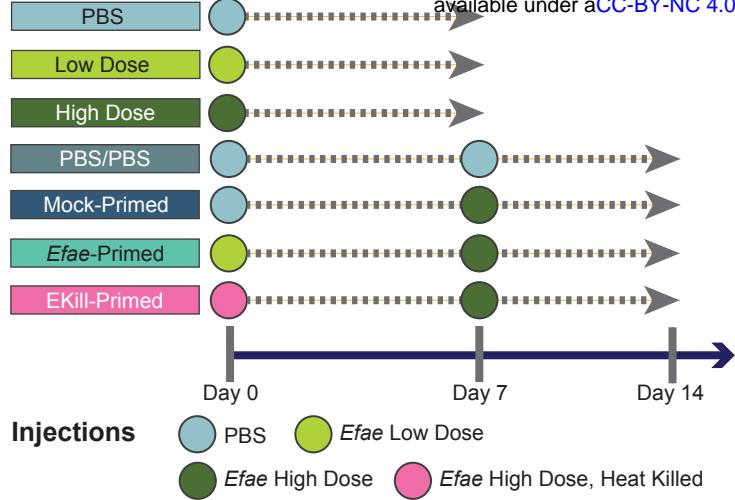
754 Weaver, H., Evans, I.R., Martin, P., Wood, W. (2016) Corpse Engulfment Generates a
755 Molecular Memory that Primes Macrophage Inflammatory Response. *Cell*, 165(7): 1658-71.
756 DOI: 10.1016/J.CELL.2016.04.049.

757

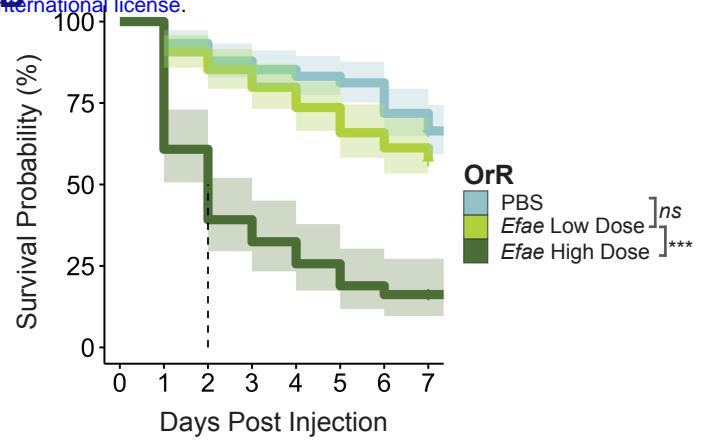
758 Wickham, H. (2016) *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.

759

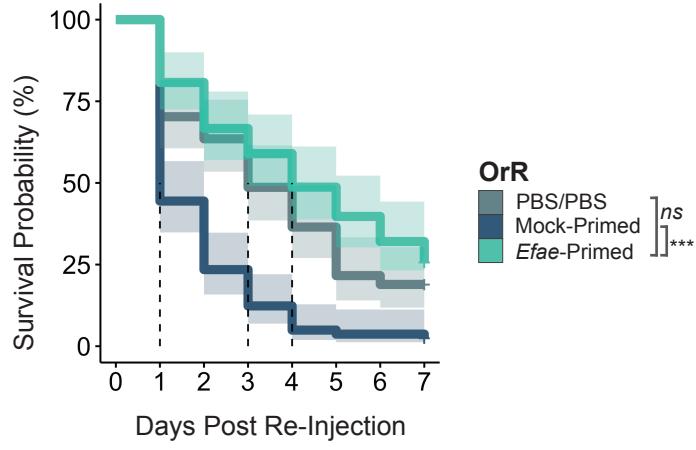
760 Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakshi, A.H., Tanaseichuk, O., Benner, C.,
761 Chanda, S.K. (2019) Metascape provides a biologist-oriented resource for the analysis of
762 systems-level datasets. *Nature Communications*, 10(1): 1523. DOI: 10.1038/s41467-019-
763 09234-6.

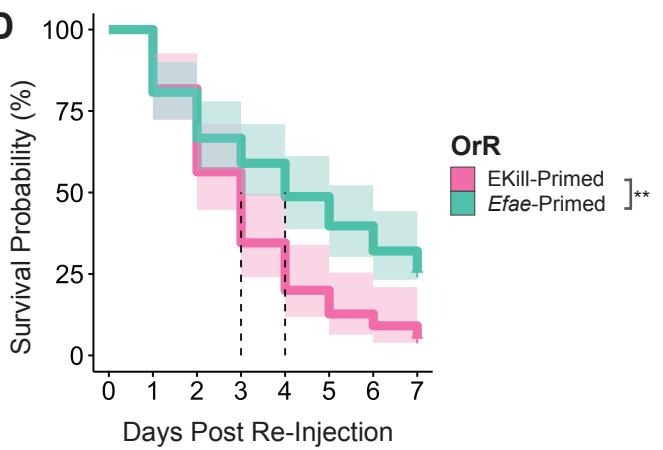

764

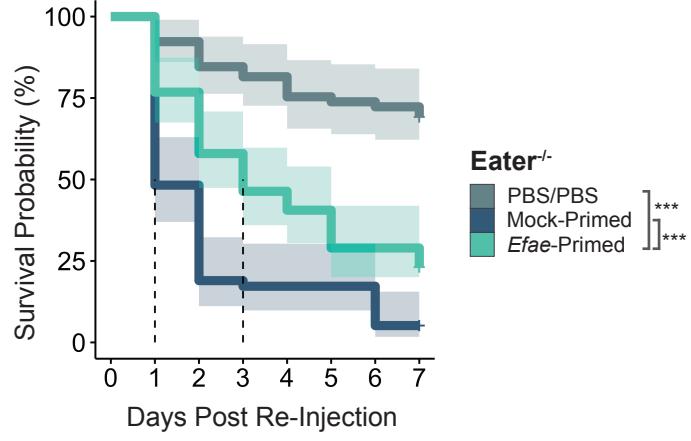
765 Zhou, H., Li, S., Pan, W., Wu, S., Ma, F., Jin, P. (2022) Interaction of lncRNA-CR33942 with
766 Dif/Dorsal Facilitates Antimicrobial Peptide Transcriptions and Enhances *Drosophila* Toll
767 Immune Responses. *Journal of Immunology*, 208(8):1978-88. DOI: 10.4049/jimmunol.2100658.


768

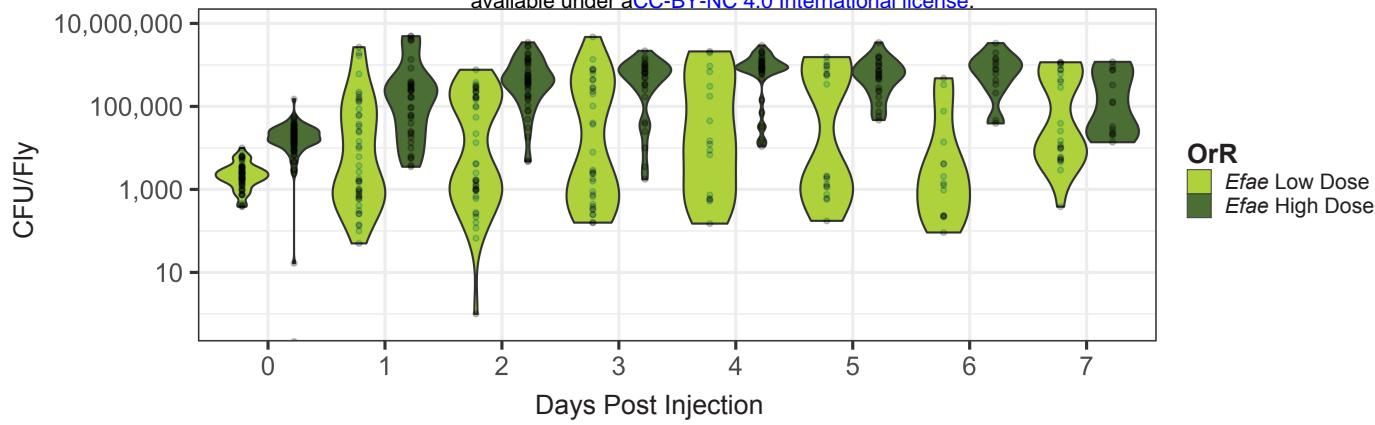
769

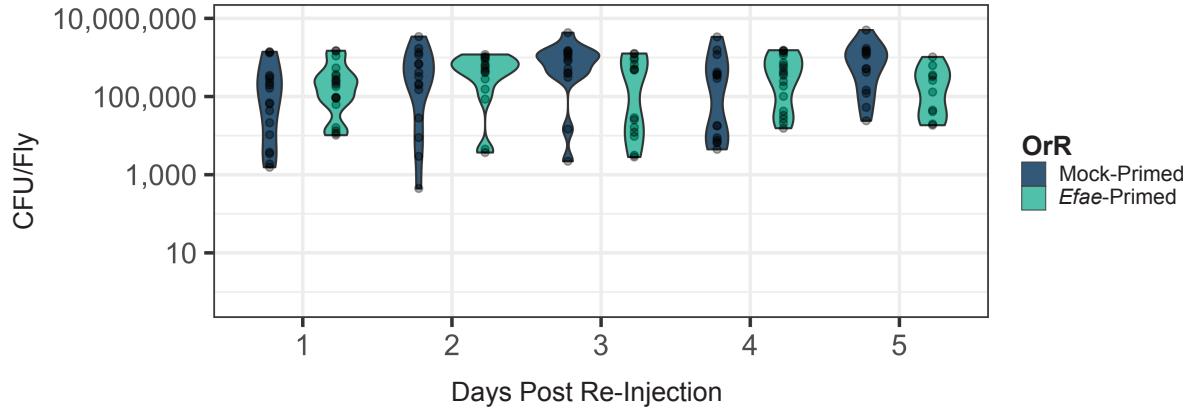

A


B


C

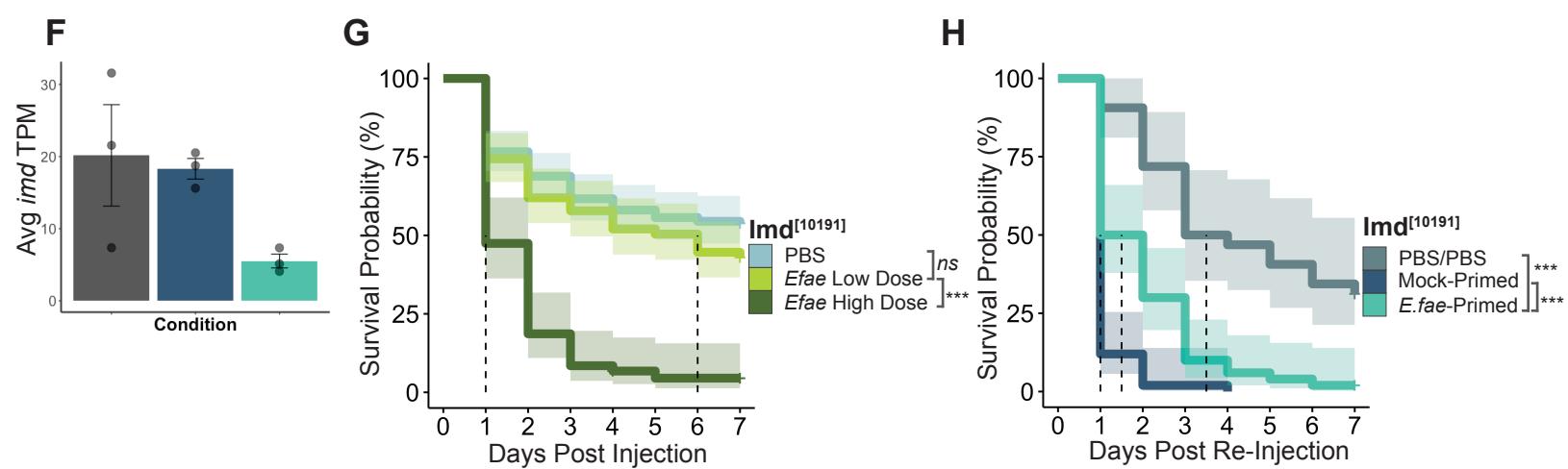
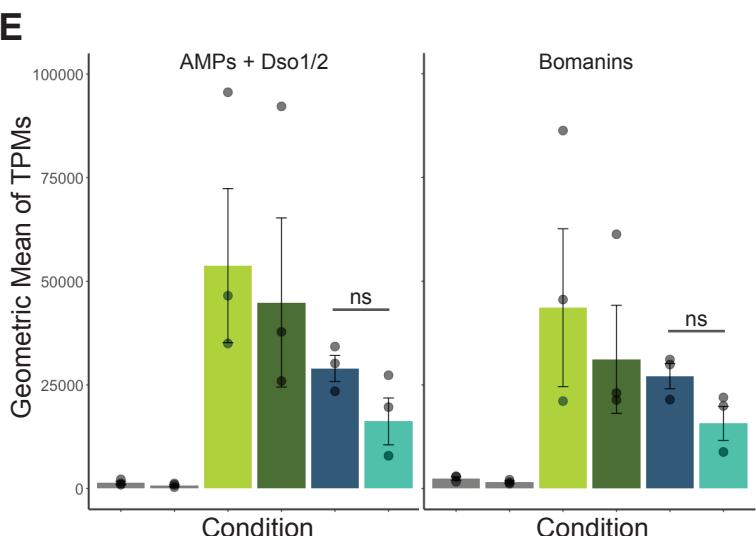
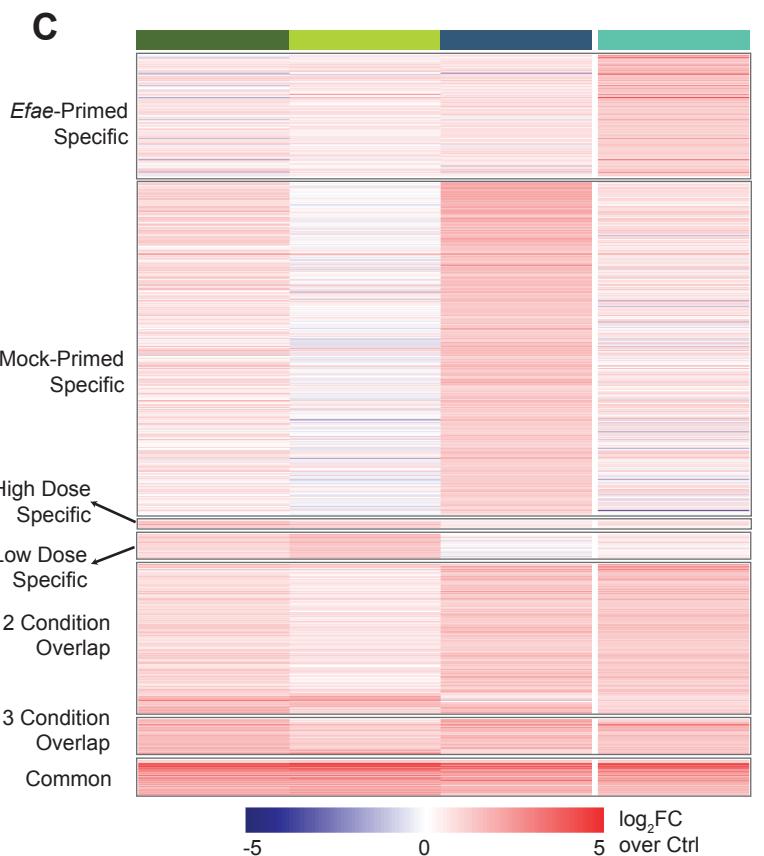
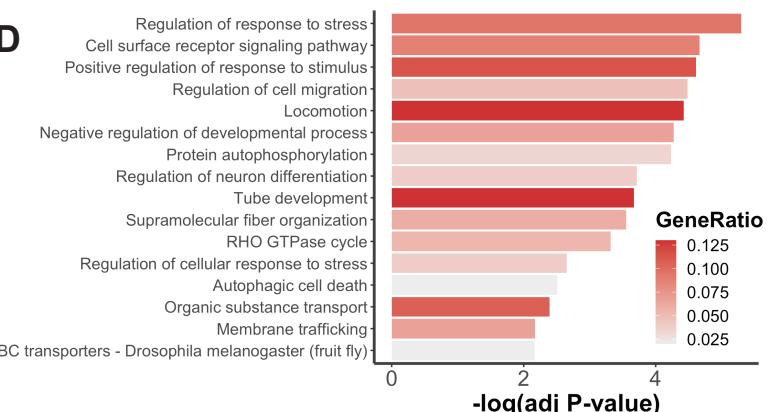
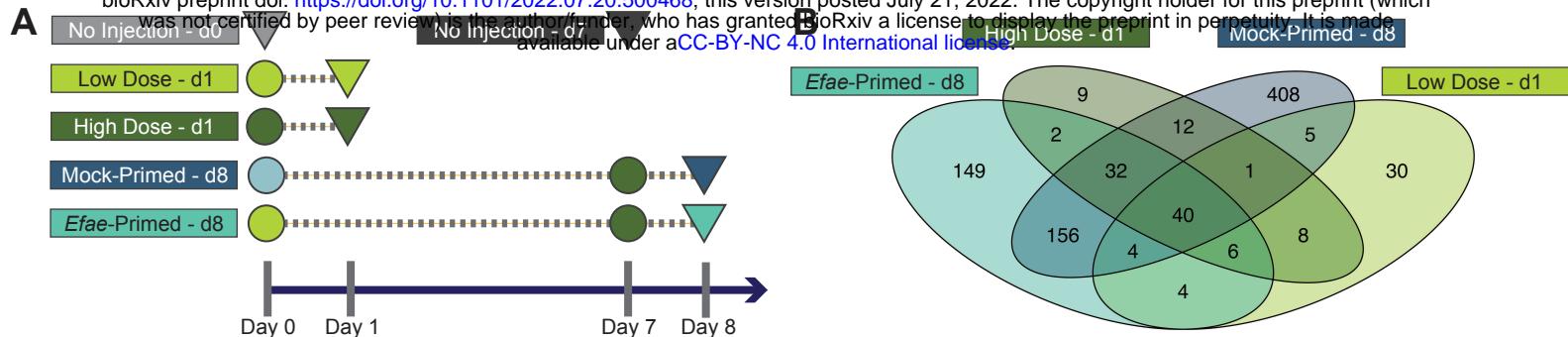
D


E


Figure 1: *E. faecalis* can induce immune priming in *D. melanogaster*

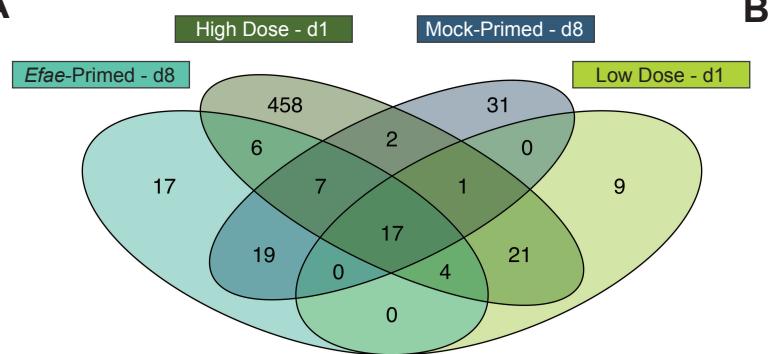
A). Schematic of single and double-injection experiments. **B).** Survival of Oregon-R flies injected with PBS (n = 149), *Efae* Low Dose (~3,000 CFU/fly, n = 129), and *Efae* High Dose (~30,000 CFU/fly, n = 74). Dotted line indicates median survival time. Shaded area indicates 95% confidence interval. PBS vs Low Dose: p = 0.081; Low Dose vs. High Dose: p < 0.0001; all survival significance testing is log rank-sum test [^{*} p<0.01, ^{**} p<0.001, ^{***} p<0.0001]. **C).** Survival of primed OrR flies versus double-injected, non-primed controls (PBS/PBS: n = 74, Mock-Primed: n = 81, *Efae*-Primed: n=78). PBS/PBS vs *Efae*-Primed: p = 0.13; Mock-Primed vs. *Efae*-Primed: p < 0.0001. **D).** Survival of OrR flies primed with heat-killed *E. faecalis* (EKill-Primed: n = 55) versus flies primed with live *E. faecalis*: p = 0.00068. **E).** Survival of primed phagocytosis-deficient, *eater*-mutant flies versus double-injected, non-primed controls (PBS/PBS: n = 65, Mock-Primed: n = 58, *Efae*-Primed: n=69). PBS/PBS vs *Efae*-Primed: p < 0.0001; Mock-Primed vs. *Efae*-Primed: p < 0.0001.

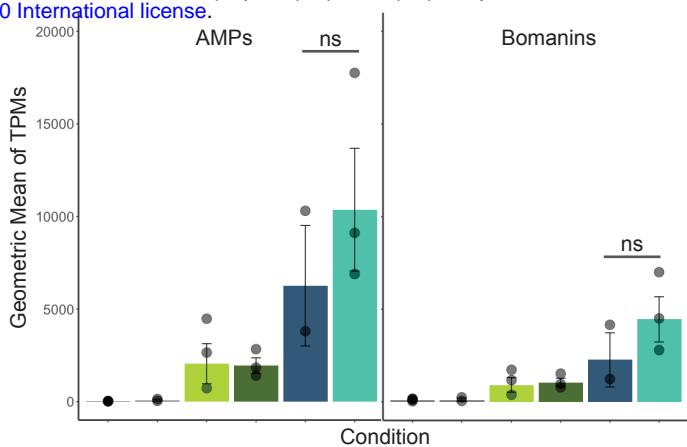
A

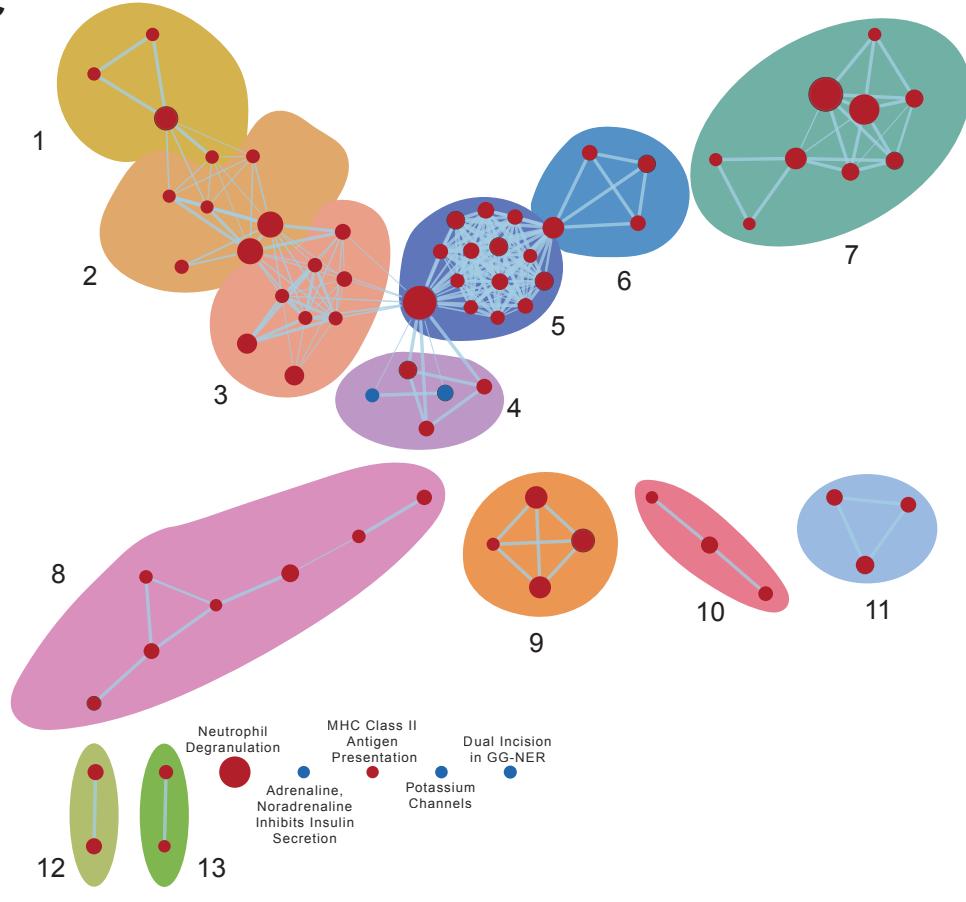
B

Figure 2: Bacterial clearance is not correlated with primed survival against *E. faecalis* re-infection


A). Bacterial load of single-injected flies. Flies were abdominally injected with either *E. faecalis* Low Dose (~3,000 CFU/fly) or *E. faecalis* High Dose (~30,000 CFU/fly), and a subset was dilution plated every 24 hours. **B).** Bacterial load of double-injected flies. Mock-Primed and *Efae*-Primed flies do not differ in their bacterial load over time (Kruskal-Wallis Test: $df = 6$, $\chi^2 = 7.6661$, $p = 0.2636$). Data displays up to day 5 because of the strong survivor bias inherent to selecting flies that are still alive after that point (reference survival at day 5 and after in **Fig 1C**).


Figure 3: Fat bodies have a high degree of priming-specific transcriptional up-regulation

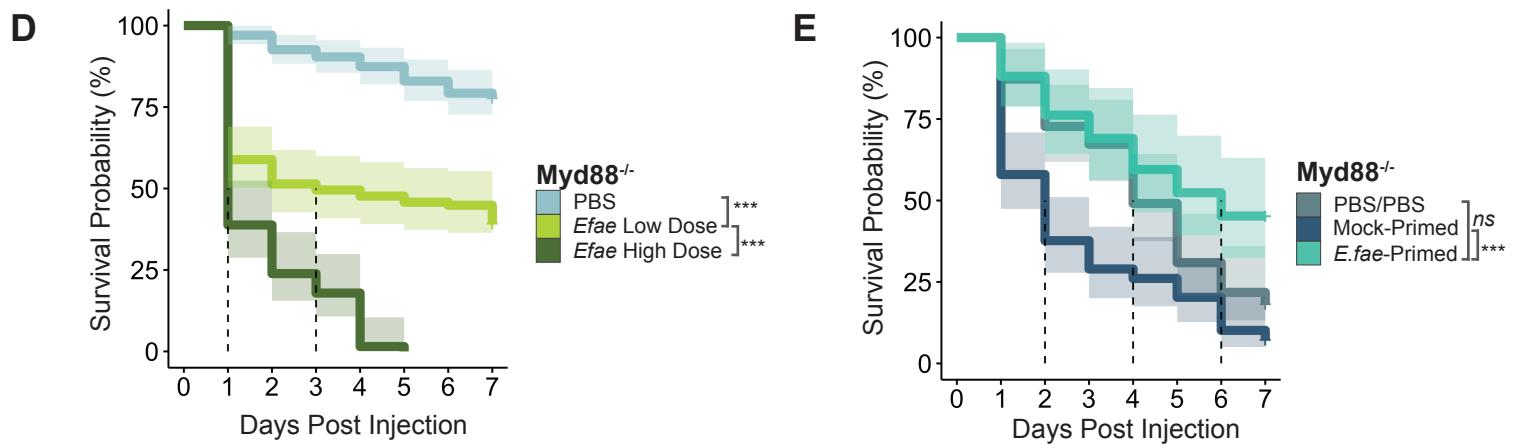
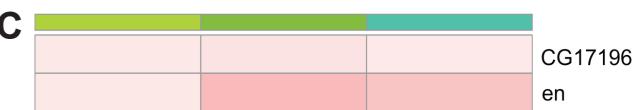
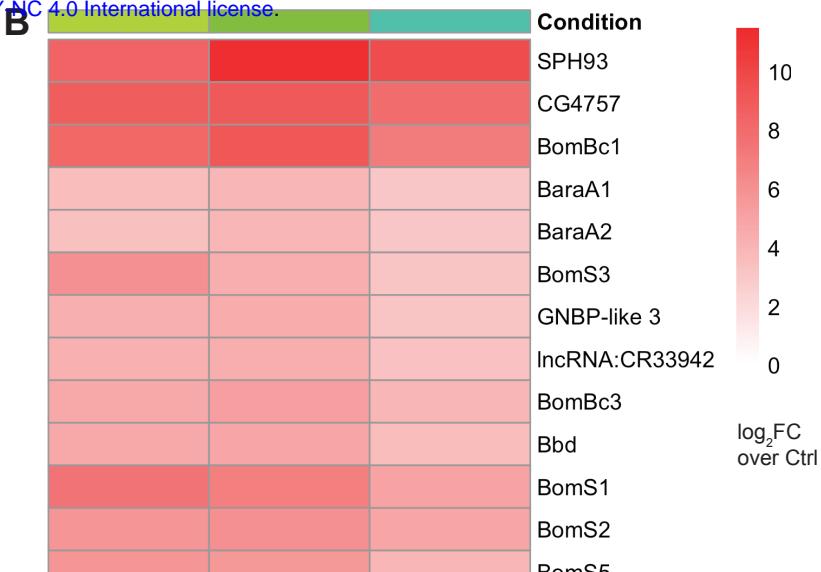
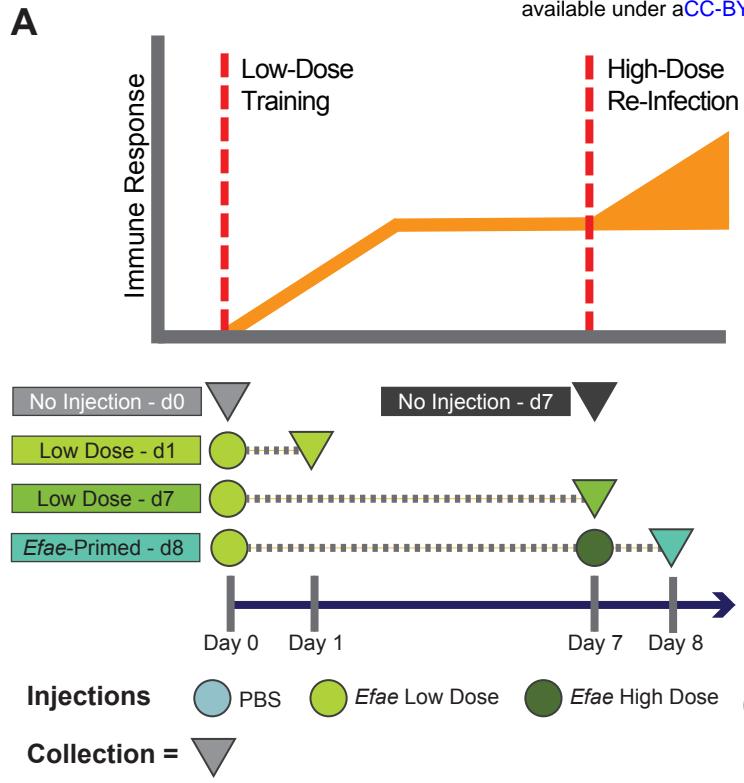
A). Sample collection for RNA-seq experiments. Conditions are the same as **Figure 1A**, with the addition of age-matched, non-injected controls at Day 0 and Day 7. Circles represent injections and triangles represent time of collection. **B).** Venn-diagram of significantly up-regulated genes ($\log_2\text{FC} > 1$ & false discovery rate (FDR) < 0.05) for conditions in **A** compared to age-matched controls. **C).** Heat map of significantly up-regulated genes as corresponding to **B** (scale: $\log_2\text{FC}$ over age-matched controls) **D).** GO term enrichment from fat body priming-specific, up-regulated genes. **E).** Geometric means of transcripts per million (TPMs) of core fat body *E. faecalis*-response genes across collected fat body samples. Genes are divided up by identity: [left] AMPs + Daisho 1&2 (Mock-Primed vs *Efae*-primed; Welch's t-Test: $p = 0.1835$) or [right] Bomanins (Mock-Primed vs *Efae*-primed; Welch's t-Test: $p = 0.112$) **F).** Average TPMs for the gene *imd* in double-injected fat body samples. **G).** Survival single injected *imd*-mutant flies. PBS ($n = 167$), *Efae* Low Dose ($n = 121$), and *Efae* High Dose ($n = 59$). PBS vs Low Dose: $p = 0.098$; Low Dose vs. High Dose: $p < 0.0001$; all survival significance testing is log rank-sum test. Dotted line represents the median survival time; shaded region indicates 95% confidence interval. **H).** Survival of primed *imd*-mutant versus double-injected, non-primed controls (PBS/PBS: $n = 55$, Mock-Primed: $n = 69$, *Efae*-Primed: $n = 42$). PBS/PBS vs *Efae*-Primed: $p < 0.0001$; Mock-Primed vs. *Efae*-Primed: $p < 0.0001$.


A

B

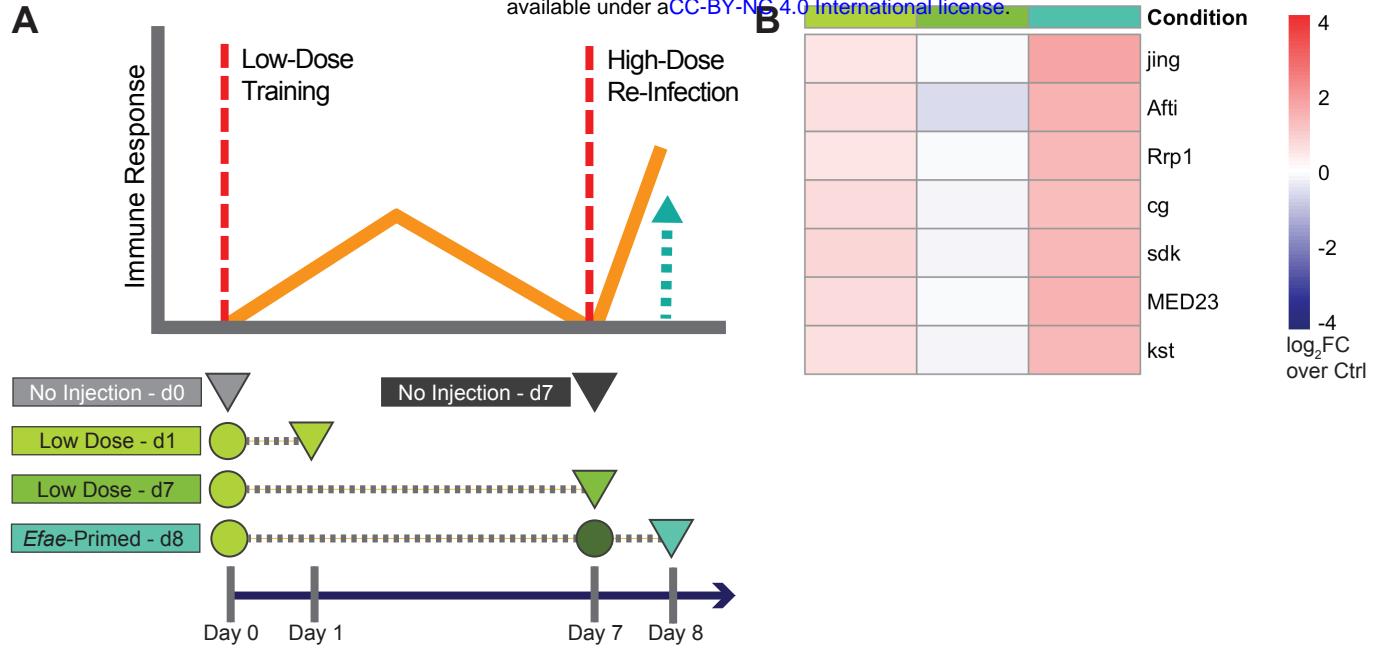
C

Hemocyte GSEA Efae-Primed vs Mock-Primed





- 1: RTK signaling
- 2: Stressor-mediated metabolism
- 3: Ubiquitination & Wg pathways
- 4: rRNA processing
- 5: Translation
- 6: Mitochondrial translation
- 7: Golgi-mediated protein shipping
- 8: Peroxisome & oxidation
- 9: Rho GTPase function
- 10: Vitamin metabolism
- 11: Electron transport chain
- 12: Autophagy
- 13: Nucleotide metabolism

● Enriched in Efae-Primed

● Enriched in Mock-Primed


Figure 4: Hemocytes do not significantly increase effector expression when primed, but differentially activate metabolic pathways

A). Venn diagram of significantly up-regulated ($\log_2\text{FC} > 1$ & $\text{FDR} < 0.05$) genes for hemocytes collected at the same conditions as **Fig 3A.** **B).** Geometric means of TPMs of core hemocyte *E. faecalis*-response genes across collected hemocyte samples. Genes are divided up by identity: [left] AMPs (Mock-primed vs *Efae*-primed; Welch's t-Test: $p = 0.4391$) or [right] Bomanins (Mock-primed vs *Efae*-primed; Welch's t-Test: $p = 0.3773$). **C).** Gene set enrichment analysis for *Efae*-Primed versus Mock-Primed hemocytes. This visualization represents relationships between statistically significant terms ($\text{FDR} < 0.05$), manually curated with clusters that summarize the relationships between terms. Full results are found in **Supplementary Table 5**.

Figure 5: Toll effector genes loiter throughout *E. faecalis* immune priming

A). Schematic of immune loitering from priming into re-infection. Experimental conditions are the same as **Figure 1A**, with the addition of age-matched, non-injected controls at Day 0 and Day 7 as well as an additional time point at Day 7 for collection of samples late in priming. Circles represent injections and triangles represent time of collection **B)**). Immune loitering genes in fat bodies (scale: $\log_2 FC$ over age-matched controls). **C)**). Immune loitering genes in adult hemocytes (scale: $\log_2 FC$ over age-matched controls). **D)**). Survival of single injected *Myd88*-mutant flies. PBS (n = 135), *Efae* Low Dose (n = 107), and *Efae* High Dose (n = 67). PBS vs Low Dose: p < 0.0001; Low Dose vs. High Dose: p < 0.0001; all survival significance testing is log rank-sum test. **E)**). Survival of primed *Myd88*-mutant versus double-injected, non-primed controls (PBS/PBS: n = 55, Mock-Primed: n = 69, *Efae*-Primed: n = 42). PBS/PBS vs *Efae*-Primed: p = 0.021; Mock-Primed vs. *Efae*-Primed: p < 0.0001.

Figure 6: Few potentiated genes are recalled in *E. faecalis* immune priming

A). Schematic of immune recall response. **B).** Potentiated recall genes in fat bodies (scale: \log_2 FC over age-matched controls).