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ABSTRACT

Being the first stimulated by the relative movement of foot skin and the underneath
moving support surface, the plantar tactile receptors (i.e., mechanoreceptors) play an important
role in the sensorimotor transformation giving rise to a postural reaction. In this light, a
biomimetic surface, i.e., complying with the characteristics of the mechanoreceptors and the
skin dermatoglyphs (i.e., pattern of the ridges) should facilitate the cortical processes in
response to the somatosensory stimulation involved in the balance recovery motor control.
Healthy young adults (n = 21) were standing still either on a biomimetic surface or on two
control surfaces (i.e., grooved or smooth), when a sudden but low acceleration of the supporting
surface along the lateral direction was triggered. A shorter and more robust evoked
somatosensory response (i.e., SEP) was observed when participants were standing on the
biomimetic surface. As well, a lower oscillatory response in the theta (5-7 Hz) time-frequency
domain in the left posterior parietal cortex (PPC) was observed with the biomimetic surface.
The greater shear forces induced by the interaction between the feet and the biomimetic surface
during the platform motion was likely at the origin of the increased SEP. Besides, the decrease
of theta power suggests that the balance task became less challenging. This interpretation was
tested in a second experiment by adding a cognitive task, which should be less detrimental for
the postural reaction when standing on a biomimetic surface. Consistent with this hypothesis,
a more efficient postural reaction (i.e., shorter latency and greater amplitude) was observed

when the cognitive task was performed while standing on the biomimetic surface.
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Introduction

During everyday life, unpredictable circumstances can challenge our equilibrium in
different directions while standing. This occurs for example when standing passengers are
subjected to unexpected acceleration and braking manoeuvres in public transport. Exquisitely
compliant, the skin of the foot sole is deformed well before the passenger’s reaction to the
driver’s manoeuvres. This skin deformation is due to the mechanical interaction (i.e., shear
forces) generated by the surfaces in contact (i.e., the skin of the feet and the supporting surface)
and the gravity force acting on the body mass (i.e., body weight). Although the shear forces are
small relative to the weight force during natural quiet standing, they are readily detectable by
the tactile receptors (Morasso & Schieppati, 1999). These shear forces, and the consequent skin
transient deformations, activate the mechanoreceptors located in the skin allowing the brain to
identify the direction and amplitude of the perturbation, before being detected by other sensory
inputs (e.g. visual, vestibular, or proprioceptive, Mouchnino & Blouin, 2013). These inputs
contribute to shape the postural responses during balance perturbations according to the
identified limits of postural stability (Carpenter et al., 2010; Latash et al., 2003; Mochizuki et
al., 2006; Murnaghan et al., 2011; Riley et al., 1997).

The low perceptual threshold for detecting horizontal acceleration of the support surface
(e.g., down to 0.14 m/2 in Mouchnino & Blouin, 2013) suggests a great responsiveness of the
tactile sensory system. This responsiveness could have a twofold origin. First, it could stem
from the richness of the receptor types (fast and slow adaptive, type I or II for the main tactile
receptors) and from the characteristics of the receptors’ receptive fields (round to oval in shape,
extended or small, with sharp or blurred boundaries) (Kennedy & Inglis, 2002). It could also
stem from the great compliance (i.e., deformation) of the skin in which the receptors are
embedded, which depends, among others, on the footprint (epidermal ridges) orientation. The
different fingerprint orientations, relative to the textured surface, enhance the subsurface strain
and transmission of tactile information for any direction of the shear forces (Fearing &
Hollerbach, 1985; Prevost et al., 2009). The mechanoreceptors and footprint spatial
characteristics therefore optimise skin deformation, neural encoding of this deformation and
transmission of cutaneous sensory inputs.

While the interaction between a surface and the skin has been extensively studied during
finger exploration of a surface (e.g., Hollins & Risner, 2000; Lederman & Klatzky, 2009;
Camillieri et al., 2018; Massimiani et al., 2020; see Basdogan et al., 2020 for a review),
intriguingly, most of the investigations in the field of balance control have ignored the

surface/body contact mechanics. This is particularly surprising given that the foot soles show
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93  footprints (dermatoglyphs) that have similar types and density of forms as fingerprints (e.g.,
94  ~60% of loops are shared by fingerprint and footprints, Sarma, 2020). Skin deformation during
95 tactile exploration depends not only on the morphological, topographical, and mechanical
96  properties of the skin, but also from the physio-chemical properties of the surface (i.e.,
97  materials, topographic features such as height differences, adhesion, spatial period, Cornuault
98 etal., 2015). In this light, one can hypothesise that the processing of foot cutaneous inputs could
99  be enhanced when standing on a biomimetic surface, whose texture is inspired by the spatial
100  characteristics of both mechanoreceptors and dermatoglyphs.
101 Here, to specifically test this hypothesis, we recorded and compared the amplitude of
102  the cortical evoked somatosensory potential (i.e., PiNi SEP) when the participants were
103  standing either on biomimetic or control surfaces, which translated in the lateral direction.
104  Because it witnesses the amount of sensory input processing at the cortical level (Desmedt &
105  Robertson, 1977; Himdlidinen et al., 1990; Mauguiere et al., 1997; Salinas et al., 2000; Lin et
106 al., 2003; Case et al., 2016), the amplitude of the Pi{N; SEP component was expected to be
107 greater when the participants stood on a biomimetic surface than on other types of surface (e.g.,
108  smooth) (Experiment I).
109 Moreover, since an efficient sensory processing allows a better detection of balance
110  threats, the use of a biomimetic surface should decrease the cognitive demand associated to
111 equilibrium maintenance during the translation of the support surface. To test this hypothesis,
112 we compared the changes of sensorimotor theta band power (4-7 Hz) evoked by the translation
113 of the biomimetic and control surfaces. Indeed, recent studies have shown that an increased
114  theta power over sensorimotor areas is an electrophysiological biomarker of the increased
115  difficulty of the balance task. For instance, Sipp et al. (2013) found significant increases of
116 theta power in the left sensorimotor cortex before imminent rightward or leftward loss of
117 balance. This localized change of theta power spread afterward over other cortical areas (e.g.,
118  anterior parietal and anterior cingulate areas). Similar increase of theta band activity was
119  observed during the preparation of a challenging balance recovery task that required
120  participants to keep the feet-in place and to refrain stepping responses (Solis-Escalante et al.,
121 2019). Increased theta band activity is also observed in the PPC during the transition from a
122 stable to an unstable surface (Hiilsdiinker et al., 2015; Mierau et al., 2017). This is in line with
123 de Lafuente & Romo (2006) who showed (in Monkey) responses of the superior PPC to tactile
124  stimulation which occurred ~60 ms following SI responses. Since the PPC is involved in

125  sensory information integration and generates decision-related activity (see Romo et
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126 de Lafuente 2012 for a review), this associative cortical area is likely involved in motor
127 recovery response to balance perturbation.

128 Based on the premise that balance control requires a minimum state of attention and of
129  cognitive resources (Lajoie et al., 1993; Jacobs et al., 2008; Maki & Mcllroy, 2007; see
130  Boisgontier et al., 2011 for a review), facilitating the detection of balance instability when
131 standing on a biomimetic moving surface should decrease the attentional demand required for
132  standing steadily. By using a dual task (DT) paradigm (Experiment 2) in which participants
133  were involved in a cognitive task while their supporting surface translated sideways, we
134  expected smaller interference between the postural and cognitive tasks when participants stood
135  on a biomimetic surface compared to other surfaces (e.g., smooth). This should result in a better
136  performance in the cognitive task or a sharper postural reaction to the surface translation (i.e.,
137 large, short-duration postural reactions, Redfern et al., 2002).

138

139  Methods

140  EXPERIMENT 1 - Participants and task

141 Fifteen participants (9 women) without any known neurological and motor disorders
142 participated in the experiment (mean age 26 + 3 years, mean weight 64 + 10kg). All participants,
143 except two, characterized themselves as right footed. All participants gave their written
144  informed consent to take part in this study, which conformed to the ethical standards set out in
145  the Declaration of Helsinki and which was approved by the CERSTAPS ethic committee.

146 Participants were requested to stand barefoot with their feet at a natural distance apart on
147  different types of surfaces (see below), fixed in the middle of a movable force platform. They
148 wore a safety harness attached to the structure top. We ensured that the feet position remained
149  the same throughout the experimental conditions. As the morphology of foot (i.e., flat, hollow,
150  standard) can have an impact on body stability (Klein et al., 2008), we verified that none of
151 them had any foot morphological particularities. This was done by measuring the width of the
152 forefoot (i.e., metatarsal band from the first to the 5" toe) and the isthmus width localized in
153  the middle of the foot and connecting the forefoot with the rearfoot. Computing the percentage
154  ratio ((isthmus width)/ (forefoot width) x 100) allowed us to identified hollow feet (<33%),
155  standard feet (33% to 50%) and flat feet (>50%) (Klein et al., 2008). All participants showed
156  standard feet, therefore none of them have been excluded from the analyses.

157 We used a set-up employed in previous studies for stimulating foot tactile afferents (e.g.,

158  Saradjian et al. 2019). A movable force platform is placed on two parallel rails and is held
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159  stationary by an electromagnet (Fig. 1A). A cable is attached to the platform and run laterally
160  through a pulley system with a load fixed to its extremity. The platform translation is triggered
161 by deactivating the electromagnet. The load is adapted to the weight of the participants, such
162  that switching off the electromagnet translated the platform very slowly to the right of the
163  participants, without endangering their balance. A triaxial accelerometer (MEMS, model 4630,
164  Measurement Specialities, USA; 1000 Hz) was used to measure the platform acceleration
165  (mean peak acceleration across participants of 41 + 4 cm.s™).

166 At the start of a trial, the participants looked at fixation point positioned at eye level, 2m
167  directly ahead. They were asked to close their eyes upon receiving the verbal information on
168  the nature of the upcoming condition, and to remain still. This information indicated one of
169  these two conditions: platform translation (37 trials) or platform steady (8 trials), which were
170  pseudo-randomly distributed. The later set of trials reduces the possibility of adopting a
171 stereotyped postural set linked to the forthcoming body translations. These trials were also used
172 to measure and model the noise contaminating the EEG data (see below). In all trials, the
173  participants had to maintain an upright steady posture during 5 s (i.e., duration of trial
174 recording). The platform translation occurred at any time between 2 s and 4 s after providing
175  the information about the platform translation to avoid anticipating the instant of the translation
176  onset. The trials without translation also lasted 5 s. A short break was frequently proposed to
177  the participants during the experiment.

178

179 Surfaces

180 Participants were standing on three different surfaces that were glued on the platform: a
181 biomimetic surface, a textured surface with no bioinspired features characteristics (i.e.,
182  grooved) and a smooth surface (the last two surfaces were used as controls). These surfaces
183  were created with a 3D printer (Ultimaker 2+) using biopolymer thermoplastic (Polylactic acid,
184  PLA). Three characteristics were selected to build the biomimetic surface: shape, spatial period,
185  and depth of the ridges.

186 The biomimetic surface was textured with circular or oval shapes inspired from both the
187  shape of the tactile receptors’ fields that demonstrate a preferential skin strain axis and
188  orientation of this axis, which is not the same for all units (Kennedy & Inglis, 2002; Valbo et
189  al., 1995), and the forms of the dermatoglyphs, which exhibit three main circular forms (loops,
190  whorls, and arcs, first described by Cummins & Midlo, 1926). We verified whether the radius
191 of curvature of the circular shape of the biomimetic surface complied with the participants’ toe

192 prints. To do so, we used the ink dabbing method to collect the toe prints of each participant on

6
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193 a white sheet of paper. Contrary to fingerprints, toe prints have their characteristic features in
194  the lower end of the phalanges (Sarma, 2020). Then, the rolling of the prints was taken
195  longitudinally from lower end to the upper end of the toe (i.e., opposite direction than when
196 collecting fingerprints). For each participant, we measured, and then averaged, the radius of
197 curvature of the 3 most visible ridges from 3 different toes. A t-test of means against a reference
198  value indicated that the radius of curvature on the toes surface (4.3 = 1.1 mm) did not differ
199  significantly compared to the radius of the loops printed of the biomimetic surface (t;3= 1, p=
200 0.34).

201 The spatial period of the biomimetic surface complied with the period of the participants’
202  toeprints ridges. This was confirmed by the result of the t-test of means against a reference
203  value showing that the mean period of the biomimetic surface (0.9 mm) was not significantly
204  different from the period of the toeprints ridges (0.87 + 0.06 mm) (t13= -1.66, p= 0.12). Note
205  that the spatial period of the biomimetic surface also complied with the distance between the
206  centre of adjacent receptive fields of the mechanoreceptors (from 0.9 to 3.8 mm; Johansson &
207  Vallbo, 1983).

208  Finally, the depth of the valley was computed from what we know from finger surface
209  exploration and balance maintenance literature. The depth to properly perceive the stimulus on
210  the finger skin is estimated as 0.1 mm with a 0.5 N normal force (Camillieri et al., 2018; Peyre
211 etal., 2017). In a previous study, we found that the minimum shear forces amplitude to detect
212 support translation beneath the feet standing in a natural position was ~3.5 N (Mouchnino &
213 Blouin, 2013). This lead to the suggestion that a 0.7 mm depth of the valley should enable to
214  perceive the minimal shear force when bearing our body weight.

215 A smooth surface also printed in PLA but without any designed patterns was used as a
216  control surface. While the smooth surface is used as standard control surface, a textured surface
217 (i.e., grooved surface) with different texture parameters, different from the ones of the
218  dermatoglyphs and characterized by a main direction, allows for excluding a simple effect of
219  the local strain variation due to a general texture. Comparing the biomimetic texture with a
220  standard texture can then highlight the role played by a geometrical distribution of the texture
221 mimicking the receptive features of the foot skin. Such a biomimetic geometry can give rise to
222 local stress and strain distributions with a specific orientation pattern, which can favour the
223  detection of the transient strain variations by the mechanoreceptor activation. The texture of the
224  grooved surface was composed of rectilinear ridges with a depth of 0.3 mm and a period of 7

225 mim.
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226 The order of the 3 surface expositions was counterbalanced across participants. The
227  participants were not informed prior to the experiment about the reason the standing surface
228  was changed during the recording session. When the participants were asked after the
229  experiment whether they had perceived that they stood on surfaces having different textures,
230  none of them reported having done so.

231

232  Recordings and analyses

233 Electroencephalography (EEG) activity was continuously recorded from 64 Ag/AgCl
234  surface electrodes embedded in an elastic cap (BioSemi ActiveTwo system: BioSemi,
235  Netherlands). Specific to the BioSemi system, “ground” electrodes were replaced by Common
236  Mode Sense active and Driven Right Leg passive electrodes. The signals were pre-amplified at
237  the electrode sites, post amplified with DC amplifiers, and digitized at a sampling rate of 1024
238  Hz (Actiview acquisition program). The signals of each electrode were referenced to the mean
239  signal of all electrodes. Four Ag/AgCl electrodes placed near the canthus of each eye and
240  under/over the left eye orbital allowed us to control for blinks, and horizontal and vertical eye
241 movements.

242 The continuous EEG signal was segmented into epochs synchronized relative to the onset
243 of the platform translation, which was identified at the onset of the monotonic increase of the
244  shear force. After artefact rejections based on visual inspection, for each participant and surface,
245  aminimum of 96% of the trials were included in the analyses. The signals were filtered off-line
246  with a 50 Hz digital notch filter (24 dB/octave) and with a 0.1-48 Hz band-pass digital filter
247 (48 dB/octave) implemented in BrainVision Analyzer 2 software (Brain Products, Germany).
248  For each participant, the SEPs were obtained by averaging all epochs of each surface for each
249  participant. The average amplitude computed 50 ms prior to the platform translation served as
250  baseline. Consistent with studies recording cortical potentials evoked by lower limb stimulation
251 (Altenmiiller et al., 1995, Saradjian et al., 2013), the SEPs were found to be maximal over the
252 vertex (Cz electrode). Therefore, this electrode was used to assess the SEPs. We primarily based
253  our analyses on the PiN; wave evoked by the sensory stimulation induced by the platform
254  translation. The amplitude of P1N; was measured peak to peak, and its latency was assessed
255  measuring the P latency.

256
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257  Cortical sources

258 Neural sources of the SEPs were estimated with the dynamical Statistical Parametric
259  Mapping (dSPM, Dale et al., 2000) implemented in the Brainstorm software. A boundary
260 element model (BEM) with three realistic layers (scalp, inner skull, and outer skull) was used
261  to compute the forward model on the anatomical MRI brain template from the Montreal
262  Neurological Institute (MNI Colin27). Using a realistic model has been shown to provide more
263  accurate solution than a simple three concentric spheres model (Sohrabpour et al, 2015). We
264  used of a high number of vertices (i.e., 15 002 vertices) to enhance the spatial resolution of the
265  brain template. Such EEG source reconstruction has proved to be suited for investigating the
266  activity of outer and inner cortical surfaces with 64 sensors (Chand & Dhamala, 2017; Ponz et
267  al., 2014). Measuring and modelling the noise contaminating the EEG data is beneficial to
268  source estimation. Noise covariance matrices were computed using the 8 trials with the platform
269  steady condition, while the participants stood still. The current maps were averaged from the
270  start of the shear forces to N1, for each participant and surface condition.

271 The data were transformed into time-frequency domain using Morlet wavelet transforms.
272 We used a 1 Hz central frequency (full width at half maximum FWHM tc=3sec) which offers
273 a good compromise between temporal and spectral resolutions (Allen & MacKinnon, 2010).
274  The power of theta (5-7 Hz) was computed for each trial in the source space in a region of
275 interest (ROI, 589 vertices) encompassing the left inferior and superior PPC (based on the
276  Destrieux cortical atlas, Destrieux et al., 2010). Then, the signal was expressed as a change of
277  theta power computed over the first 400 ms of the platform translation (which included the
278  PINI1 SEP) with respect to a 350 ms window baseline taken before the translation (-400 to -50
279 ms). For each participant, the resulting event-related synchronization/desynchronization
280  (ERS/ERD) was then averaged across trials and surface conditions. The same procedure was
281 applied with the signals computed in a control ROI (650 vertices) encompassing the inferior

282  and superior PPC of the right hemisphere.

283  Behavioural recordings and analyses

284 The ground reaction forces and moments were recorded with an AMTI force platform (60
285 % 120 cm, Advanced Mechanical Technology Inc., USA) at a sampling rate of 1000 Hz. The
286  ground reaction shear forces were analysed along the mediolateral (M/L) axis, as they represent
287  the earliest signature of the cutaneous stimulation evoked by the platform translation. The onset
288  of this stimulation was defined as the first time the M/L shear force started to increase
289  monotonically. Figure 1B shows and the dynamics of the M/L shear forces resulting from the

290  platform acceleration.
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291 A general pattern of events emerged:

292 1) the first phase shows a ramp of the platform acceleration (constant jerk) corresponding to a
293  ramp in the traction force; this phase lasted on average 197 + 11ms leading to a platform
294  displacement of about 2.93 + 0.30 mm. Due to the inertia of the body, this displacement is
295  accommodated mainly by the skin deformation. The peak amplitude of this force was measured
296  with respect to its baseline value (i.e., prior to the translation onset);

297  1ii) in a following transition phase, a low valley was observed; the jerk decreases and becomes
298  negative. This is a crucial phase, where the contact between the skin and the surface is
299  characterized by high superficial shearing, leading to transient variations of the local strain
300  distribution (“skin-surface contact transitions”), which are directly affected by the topography
301  of both the skin and the surface itself; moreover, local detachments and slipping can occur,
302  leading to transient deformations and waves propagating in the skin, which are likely to activate
303 the mechanoreceptors (“contact stimuli”); a similar phenomenon has been observed in
304 literature, when considering the motion of a surface under a stationary fingertip, showing that
305 the deformation of the skin increases until the frictional force (i.e., shear force) cannot anymore
306  resist the sliding (i.e., stick/slip phenomenon, Rabinowicz 1956); within this phase, the shear
307  forces result from a balance between inertia effects and contact accommodation.

308  1iii) Afterwards the shear forces continued to increase in the same direction until a second peak
309  was reached before reversing the forces. This second increase can be considered as a postural
310  reaction (Lhomond et al., 2021; Saradjian et al., 2019). The duration of the postural reaction
311 was defined as the time elapsed between these peaks.

312 The amplitudes of both peaks of the shear forces were normalized to the body mass index (BMI)

313  of each participant.

10
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316  Figure 1. A. Experimental set up. The participant stood on one of the three surfaces glued on

317  the force platform which, on deactivation of the electromagnet, would undergo a translation to
318  gravity loading. They wore a safety harness (not shown in the figure) attached to the structure
319  top. B. Mean lateral forces and platform acceleration of the 15 participants. At the platform
320 translation onset (broken line) two consecutive phases in lateral force were observed. The first
321  peak force corresponds to the maximal extensibility of the skin under the feet until the frictional
322  force (i.e., shear force) cannot anymore resist the sliding leading to transient variations of the
323 local strain distribution (“skin-surface contact transitions”). Afterwards, a second force peak
324  occurred and corresponds to a postural reaction.

325

326 Head acceleration was measured with a triaxial accelerometer (model 4630, Measurement
327  Specialities, USA; 1000 Hz) placed on the participants’ chin. We measured head acceleration
328  to evaluate the latency of the vestibular stimulation induced by the platform translation. The
329  onset of the vestibular stimulation was defined at the first moment head acceleration exceeded
330  0.048 m.s (i.e., threshold for vestibular stimulation, Gianna et al. 1996). We measured the lag
331  between the head acceleration and the shear forces to determine if the vestibular stimulation
332 occurred after the stimulation of the foot mechanoreceptors.

333 Bipolar surface electromyography (EMG, Bortec AMT-8 system, Bortec Bomedical,
334  Canada) was used to record the activity of the long fibular muscle (FL) of both legs. The FL.
335 muscles are responsible (with other muscles) for controlling stance. They contribute to the
336 eversion movement of the foot, and also to the maintenance of the arch of the foot to ensure
337  optimal postural stability (Pietrosimone & Gribble, 2012; Jeon et al., 2021). The FL EMG
338  signals were pre-amplified at the skin site (x1000), sampled at 1000 Hz, band pass filtered from
339 20 to 250 Hz, and rectified. Two participants were excluded from the EMG analyses due to
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340 noisy EMG signals. To quantify the muscle activity, we computed the integral of the EMG
341 activity GEMG) over two intervals. The first corresponded to the “resting interval”. It lasted 1s
342  and ended at the onset of the platform translation. The second interval covered the time elapsed
343  between the platform onset and the N1 component of the SEP. The duration of this second
344  period was specific to each participant. In order to be able to compare muscle activities between
345  the two intervals, we normalized, for each participant, the EMG activity of the resting interval
346  to the duration of the second interval “N1 latency” (~180ms). We also calculated the latencies
347  of EMG changes relative to the onset of the platform translation. This was done by first
348  computing the mean and standard deviation of the muscle background activity (i.e., during the
349  resting interval) for each participant and surface. The onsets of the EMG increased, or decreased
350 activities were defined as the times at which the EMG activity increased above or decreased
351  below a threshold level set at twice the standard deviation of the mean background activity.
352

353 EXPERIMENT 2 - Participants and task

354 The goal of Experiment 2 was to test whether the attentional demand required for
355  equilibrium maintenance is reduced when standing on the biomimetic surface, compared to a
356  control surface. To further compare the effect between standing on a biomimetic and standing
357  on a non-biomimetic textured surfaces, the grooved surface used in Experiment I was selected
358 as the control surface.

359 Twenty-one new participants (7 women) without any known neurological and motor
360 disorders participated in the experiment (mean age 22 + 2 years, mean weight 67 = 10kg). All
361  participants gave their written informed consent to take part in this study, which conformed to
362 the ethical standards set out in the Declaration of Helsinki and which was approved by the
363 CERSTAPS ethic committee.

364 The procedure was identical to that in Experiment I with one exception that pertained to
365 the dual task (DT) paradigm. We used a demanding cognitive task to increase the participants’
366 attentional load while their supporting surface was translated as in Experiment 1. Participants
367  were asked to listen to a series of 10 different three-digit numbers (1Hz) that ended 60ms before
368  the platform translation. The 10 numbers were spelled out at high speed (being completed in
369 10 s) by a computer voice. The series of numbers varied across trials but were the same for both
370  surface conditions and participants. Participants were instructed to count silently the number of
371  times that 7 was part of the three-digit numbers and to provide their response at an auditory
372 tone occurring 3 s after the platform translation onset (i.e., after the data analysed intervals).

373 The same procedure was used for the trials in the steady platform condition. We
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374  counterbalanced the presentation of the different conditions (i.e., biomimetic or grooved
375  surfaces, with or without translation; single or dual tasks) across participants but prevented the
376  occurrence of 2 successive conditions involving the dual task.

377 The participants’ performance in the cognitive task was assessed by computing, for each
378  surface condition, the averaged percentage of errors ((number of errors/10 numbers) x 100). An
379  error was counted each time that the participant reported a wrong number of times that 7 was
380  part of the spelled-out numbers.

381

382  Statistical analyses

383 The behavioural and EEG data were submitted to separate analysis of variance
384 (ANOVA) with repeated measurements. In Experiment 1, one-way ANOVAs were used for
385 mean comparisons with the support surface (Smooth, Grooved, Biomimetic) as intra-
386  participants factor. We computed statistical maps by contrasting the current maps (i.e., each
387  vertice) computed when standing on a biomimetic surface and control surfaces using t-tests
388  (significance threshold p < 0.05) (Tadel et al., 2011). We applied an FDR (False Discovery
389  Rate) correction for multiple comparisons across regions (Benjamini & Hochberg, 1995).

390 In Experiment 2, a 2x2 ANOVA was used for mean comparisons with the support surface
391 (Grooved, Biomimetic) and task (single or dual task) as intra-participants factors. Significant
392  effects (statistical threshold of p < 0.05) were further analysed using Newman-Keuls post-hoc
393 tests.

394
395  Experiment 1

396  Results

397  Augmented peripheral stimulation by the biomimetic design of the surface

398 As shown in Fig. 1B, the shear forces increased in the leftward direction at the onset of
399  the rightward platform translation until a clear break down point was reached (see methods).
400  The results showed that the amplitude of this early force differed significantly between surfaces
401 (Fig. 2B; Fo28=13.84, p < 0.05). Post-hoc analyses revealed that the amplitude was greater for
402  the biomimetic (0.40 £ 0.05 N/BMI) than for the grooved and smooth surfaces (Ps < 0.05),
403  which did not differ significantly (p = 0.20; overall mean of 0.38 + 0.05 N/BMI).

404  The latency of the break down point did not depend on the surface (overall mean of 117 £+ 12ms;
405  Fo28=0.12, p=0.89). It occurred before reaching the maximal value of the platform acceleration

406  (overall mean -26 + 11ms) for all surfaces (no significant surface effect F225=2.09, p= 0.14);
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this suggested that the early peak of the shear forces was not generated by the reaching of the
maximum acceleration of the platform and the consequent change in the sign of the jerk.

In addition, the EMG analyses (Fig. 2A) showed that the activity of the right FL muscle started
to increase 40 + 20 ms after the break down point and that the latencies of these increases were
not significantly affected by the surface (F224= 0.64; p = 0.54). The left FL activity decreased
simultaneously with the right FL activation in 10 out to 13 participants. The delay of the
changes in the FL muscles activities relative to the break down point suggested that the early
shear forces were not muscularly induced, but rather passively/mechanically evoked by the
contact transmission between the stretched skin and the platform.

Besides, the observations that only the right FL. (among the 2 recorded muscles) started to be
activated after the “skin-surface contact transitions” (i.e., during the postural reaction, Fig. 2A)
suggested that it was engaged in the breaking of balance perturbation. The postural reaction
was not altered by the surface conditions, neither for its amplitude (F228=2.50; p = 0.10, mean
=0.53 £ 0.10 N/BMI) nor for its duration (F223= 0.20; p= 0.82, mean = 296 + 64ms). The head
started moving (i.e., accelerate) during the postural reaction with a latency of 172 + 38 ms
relative to the platform translation (Fig. 2A). This lag, which likely resulted from the body mass
inertia, was not significantly affected by the surface condition (F2258 = 1.48; p=0.25).
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Cortical facilitation of sensory input when standing on a biomimetic surface

To determine whether the SEP (i.e., P1N) originated from tactile and/or vestibular
peripheral inputs, we compared the latencies of P1 and N to the vestibular stimulation onset.
The onset of the vestibular stimulation was defined at the first moment head acceleration
exceeded 0.048 m.s? (i.e., threshold for vestibular stimulation, Gianna et al. 1996). This
threshold latency was not significantly affected by the surface condition (F2p8= 1.75; p =
0.19).Paired t-tests showed that P; and N; latencies significantly preceded vestibular
stimulation onset for all the surfaces (see Table 1). This indicated that the SEP was not evoked
by vestibular inputs, but more likely by cutaneous inputs originated from the shear forces (i.e.,

skin strain) evoked by the platform translation.

Smooth Grooved Biomimetic
Vestibular threshold
211ms (+40) 225ms (£27) 207ms (£32)
P1 N1 P1 N1 P1 N1
138ms (+11) 186ms (£15) 137ms (£13) 184ms (+18) 126ms (+£16) 187ms (£13)
T test
t=7.09; p<0.001 | t=2.79;p=0.01 I t=12.12; p<0.001 | t=5.50; p<0.001 [ t=9.93; p<0.001 | t=2.68;p=0.02

Table 1. Mean latencies of all participants (n = 15) and inter participants standard deviation
(SD) for the P1, N1 and the time when the head reached the vestibular threshold as a function
of the surfaces on which participants were standing. The paired t test corresponds to the
comparison between the P1 or N1 and the vestibular threshold.

Importantly, the latency of P1 was shorter and the amplitude of the PN was greater for
the biomimetic surface than for the smooth and grooved surfaces (Fig. 3). The significant main
effect of the surface condition (contact stress and strain distribution obtained by the biomimetic
topography) was confirmed by the Py latency (F2.28 = 6.65, p = 0.004) and the P;N; amplitude
(F208=3.55, p = 0.04), which did not show difference between the two control surfaces either
for Py latency (p=0.81) or P1N; amplitude (p=0.65). There was no significant effect of surface
on N1 latency (F22s8= 0.41, p=0.67).
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452 Figure 3. A. Grand average (n=15) of the SEP recorded over Cz electrode for the 3 surfaces
453  (biomimetic, smooth, grooved). The broken line indicates the moment of the stimulation (i.e.,
454  translation onset). B. Mean Pl latency and amplitude of the averaged PINI SEP for all
455  participants on the three surfaces (biomimetic, smooth, grooved). Error bars represent
456  standard deviation across participants, *p < 0.05; **p<0.01; ns = not significant.

457

458 To verify if the SEP facilitation (i.e., shorter P; latency and greater PiN; amplitude)
459  observed with the biomimetic surface could be linked to a change in leg muscle activity, we
460  compared the iEMG of the right and left FL. during the N latency interval. The ANOVA did
461 not show a surface condition effect on the IEMG (F224=0.57; p=0.57 and F224=1.11; p=0.34,
462  for the right and left FL, respectively). These results suggest that the changes in the SEP
463  observed over the somatosensory cortex when the participants stood on the biomimetic surface
464  stemmed from an increased afferent volley from the foot sole mechanoreceptors rather than
465  from an altered motor command (i.e., muscle activity).

466

467  Standing surface-specific source localization

468 The statistical cortical maps revealed significant greater activation (i.e., current) in the
469  left precuneus (medial extent of Brodmann area 7, warm colour) for the biomimetic surface for
470  both the biomimetic/smooth (Fig. 4A) and biomimetic/grooved (Fig. 4B) contrasts. The same
471 contrasts also showed significantly greater activity of the extrastriate body areas (EBA, BA19).
472 On the other hand, these contrasts revealed greater activities of the left premotor (PM) and
473  anterior cingular (ACC) cortices (see cold colors in Fig. 4A) for the smooth surface and greater
474  activation of the right inferior PPC (BA39) for the grooved surface (Fig. 4B, cold colour).

475
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Figure 4. Statistical source estimation maps for Biomimetic versus Smooth (A), Biomimetic
versus Grooved (B) contrasts. Significant t-values (p < 0.05, n = 15) of the source localization
were shown during the time window from 0 ms to NI latency. Sources are projected on a
cortical template (MNI'’s Colin 27). For each contrast, we display the top and the left and right
inner cortical views.

Modulation of theta (5-7 Hz) oscillations in the left PPC

The time-frequency analysis showed that theta power computed in the left PPC was
significantly modulated by the type of surface on which the participants were standing (F2.28 =
3.99; p = 0.03). Post-hoc analyses revealed that theta power was significantly smaller for the
biomimetic than for the smooth and grooved surfaces (ps < 0.05), with no significant difference
between the two control surfaces (p= 0.67, ps > 0.05) (Fig. 5C). This effect was lateralized to
the left hemisphere as it was not observed in the right PPC (F228=1.32; p = 0.28).
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493  Figure 5. A. Localization of the regions of interest (ROIs) on the anatomical MRI Colin 27
494  brain template that was used to compute cortical activations. Note that similar ROIs were
495  defined for the left and right Parietal Posterior Cortex (PPC). B. Time-frequency power
496  (ERS/ERD) of the signals by means of a complex Morlet’s wavelet transform applied on the
497  ROIs for each surface of each participant then averaged. Cooler colors indicate ERD and
498  warmer colors, indicates ERS. Frequency bands from 1 to 90 Hz were provided to have an
499  overview of the full spectral content of cortical neural oscillations. We showed the spectrum
500  from O to 400 ms to focus on the analyzed time window of the ERS/ERD (thereby removing edge
501  effects). The theta band has been circled in dotted line for each surface. C. Mean of theta (5-7
502  Hz) frequency band computed during (0; 400 ms) time window in the left and right PPC for
503  each surfaces (smooth, grooved, biomimetic). Error bars are standard error across
504  participants, * p < 0.05, ns = not significant

505
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506  Discussion

507  Standing on a biomimetic surface speeds up and enhances the sensory transmission from foot
508  fo cortical areas

509 Complying with both dermatoglyphs and mechanoreceptors characteristics, the
510  biomimetic surface in interaction with the feet evoked faster and greater cortical response to
511  the platform translation (i.e., P1N1), with respect to both control surfaces (i.e., grooved and
512 smooth). The greater amplitude of the SEP, when standing on the biomimetic surface, suggests
513  augmented cutaneous afferent processes (see Desmedt & Robertson, 1977; Himéldinen et al.,
514 1990; Salinas et al., 2000; Lin et al., 2003; Case et al., 2016; Lhomond et al., 2016). The
515  increase PiN; amplitude and the shortening of the evoked response latency (i.e., P1) could be
516  due to an accentuation of the deformation of the skin when interacting with the biomimetic
517  surface. The enhanced skin transient deformations was witnessed by an increase amplitude of
518  the peak force during the “skin-surface contact transitions” while no concomitant change of its
519  duration was observed. This is in line with Tang et al.'s (2020) study showing that a greater
520  deformation of the fingers’ skin generates greater friction force, and stress that induce stronger
521  tactile stimulation of the mechanoreceptors. Similarly, the interaction of the foot and the
522 biomimetic surface increased the intensity of the skin mechanoreceptors stimulation, which in
523  turn boosted the transmission of cutaneous signals to the primary somatosensory cortex (SI)
524  where neurons respond to various tactile stimulations (e.g., Bensmaia et al., 2008; Weber et al.,
525 2013).

526 Our source analyses showed that changing the standing surface significantly altered the
527  current recorded in the left PPC but had no significant effect on the current recorded in SI. This
528  suggests that the sensory facilitation observed with the biomimetic surface may have involved
529  direct thalamocortical projections to the PPC. The basis for this suggestion is twofold. First,
530  neuroanatomical studies in the macaque have shown direct projections of cutaneous
531 information from the thalamus to the PPC (Pearson et al., 1978; Padberg et al., 2009; Impieri
532 et al., 2018; Gamberini et al., 2020). Secondly, our results showed an increased activation of
533  the medial extent of the SPL (i.e., precuneus) for the biomimetic surface, with respect to both
534  control surfaces, in line with functional interactions (e.g., somatomotor function) between the
535  precuneus and the thalamus (Cunningham et al., 2017; Gamberini et al., 2020). In this light, the
536  shared connectivity between the precuneus and the extrastriate body area (EBA) (Zeharia et al.,
537  2019), which showed an enhanced activity in the biomimetic surface condition, is consistent

538  with the role of the EBA in enhancing the local spatial processing of body information on the
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539  direction of a stimuli out of view (Striem-Amit & Amedi, 2014; Urgesi et al., 2007), such as
540 the skin stretch under the feet in the current study.

541 The shorter latencies of the SEP observed when the participants stood on the translating
542  biomimetic surface could suggest some contribution of muscle-stretch receptors, as it is well-
543  established that muscle spindle endings are extremely sensitive stretch receptors (see Starr et
544  al., 1981; Cohen et al., 1985). However, the evoked potentials that arise from the stimulation
545  of the lower limbs endings exhibit much shorter latencies (i.e., 20-65 ms; Starr et al., 1981;
546  Cohen et al., 1985) than those observed in the current study (126 ms, for the biomimetic
547  surface). Furthermore, the increased activity of the leg muscles induced by the translation of
548  the biomimetic surface occurred ~160 ms after the onset of the translation, i.e., after the P1
549  occurrence. This reduces the possibility for a significant role of muscle-stretch receptors in
550  generating the SEP when the participants stood on the translating surface, irrespectively of the
551 type of supporting surface. Neither is vestibular input a likely candidate for evoking the cortical
552 response, as P1 and N1 had shorter latencies than the latency with which the head reached the
553  acceleration threshold for activating vestibular receptors (i.e., 207 ms, for the biomimetic
554  surface).

555

556  Decreased balance task difficulty when standing on the biomimetic surface

557 Finally, the results of theta oscillations analyses were consistent with the likely role of
558  the left PPC in attentional processes (Hiilsdiinker et al., 2015; Mierau et al., 2017). Our
559  participants showed a significant decreased power of theta oscillations in the left PPC when
560 they stood on the biomimetic surface compared to the control surfaces (i.e., grooved and
561 smooth). Since theta oscillations are considered as a neural correlate of a need for attentional
562 demand in challenging balance tasks (i.e., theta power increases with increased attentional
563  demand, Sipp et al., 2013; Hiilsdiinker et al., 2015; Gebel et al., 2020), the significant decrease
564  of theta-band power with the biomimetic surface may reflect a decrease in the attentional
565 demand and a down modulation in the difficulty of the task (Vuillerme & Nafati, 2007).
566  Alternatively, the increased theta power, observed when standing on both control surfaces, may
567  witness the increase attentional and cognitive demands. This is consistent with the greater
568  activities observed within the pre-motor cortex (e.g., SMA) and ACC of the left hemisphere
569  observed when the tactile salience of the surface decreases, as when standing on a smooth
570  surface (as compared to either the biomimetic or grooved surfaces). Previous studies have
571  suggested that the SMA plays an important role in the control of demanding balance tasks

572 (Taubert et al., 2010, 2011). This was notably evidenced by the significant structural and
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573  functional adaptation of the SMA activity after balance training (Taubert et al., 2011).
574  Therefore, the enhanced activity of the SMA, found when individuals stood on the smooth
575  surface, may suggest that the standing task was more demanding with this surface than with
576  textured surfaces (biomimetic or grooved). The increased activity observed in the ACC would
577  also be consistent with this suggestion as the role of this cortical region is well-recognized when
578  individuals are uncertain about fulfilling the required task appropriately (e.g., Gemba et al.
579  1986) or in error-recognition (Holroyd et al., 1998; see Holroyd & Coles, 2002, for a review).
580  These interpretations are also supported by the proposed function of the ACC in the regulation
581  of attention and cognitive control (Botvinick et al., 2001; Bryden et al., 2011; Petersen &
582  Posner, 2012). Enhancing the need for attention when standing on a smooth surface could be a
583  mean for withholding potentially erroneous responses in conditions with impoverished tactile
584  cues on platform translation until other sensory modalities (e.g., vestibular, visual) can resolve
585  the ambiguity of the support displacement. In addition to the increased theta oscillations power
586  for the control grooved surface, the source analyses revealed an increased activation of the right
587  PPC. This findings are consistent with the crucial role of this cortical area in the processing of
588  somaesthetic gravitational information for postural control, as shown in neglect patients after
589  right hemispheric strokes (Pérennou, 2006).

590 Overall, our results point to a reduced difficulty of the balance task when standing on a
591  biomimetic surface. In Experiment 2, we tested the hypothesis that standing on such a surface
592  benefits postural control when the balance task is challenged by increasing the attentional load
593  Indeed, because postural control is known to requires attention (Lajoie et al., 1993), therefore
594  the postural perturbation observed when performing a simultaneous cognitive task would be
595  due to the sharing of limited attentional resources (Stelmach et al., 1990; Chen et al., 1996;
596  Shumway-Cook & Woollacott, 2000; see Woollacott & Shumway-Cook, 2002 for a review).

597

598  Experiment 2

599  Results

600  Cognitive task performance

601 To verify whether the participants’ performance in the cognitive task differed when
602  standing on the moving biomimetic and the grooved surfaces, we analysed the averaged
603  percentage of errors reporting the number of times that 7 was part of the series of 3-digit
604  numbers spelled out with high speed. A paired t-test did not reveal significant difference in the

605  percentage of errors between the biomimetic and the grooved surfaces (t2o=-0.20; p = 0.85; 24
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606 + 11.5%). As shown in Fig. 6A, 2 out 21 participants exhibited values three times above the
607  standard deviation of the mean (i.e., 59% and 66% of errors). These large errors suggest that
608  the task was too difficult for these participants or that they did not allocate enough attentional
609  resources to the cognitive task. These participants were excluded from the analyses.

610 Furthermore, the activity observed over both the anterior prefrontal and orbito-frontal
611 cortices during the last part of the counting (i.e., over a 2000 ms interval before the platform
612  translation) were greater in the dual task than in the single task (Fig. 6B). This confirmed the
613  participants' engagement in the cognitive task (McGuire & Botvinick, 2010; Wallis, 2007).
614  Note that no such activities of the frontal lobe were observed in the 2 participants that were

615  discarded from the analyses, due to their high error rate.
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618  Figure 6. A. Percentage of errors for the cognitive task of each participant on both surfaces
619  (grooved, biomimetic). B. Source localization during the time window from -2000 to 0 ms
620 latency interval on both surfaces (grooved, biomimetic) during solely the motor task (i.e.,
621  control) and the dual task. We display the front view of the sources are projected on a cortical
622  template (MNI’s Colin 27). C. Mean postural reaction amplitude normalized by the BMI for all
623  participants computed on both surfaces (grooved, biomimetic) during solely the motor task
624  (i.e., control) and the dual task. Error bars represent standard deviation across participants; *
625 p <0.05) D. Mean postural reaction latency for all participants (n = 21) computed on both
626  surfaces (grooved, biomimetic) during solely the motor task (i.e., control) and the dual task.
627  Error bars represent standard deviation across participants; *** p < 0.001).
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628  Postural reaction in response to surface translation

629 The ANOVA indicated that postural reaction was of greater magnitude when performing
630  the dual task (combined cognitive and motor tasks) than the single motor task (Fy13= 4.78;
631  p=0.04), and when standing on the biomimetic as compared to the grooved surface (F;,13=5.92,
632  p=0.03) (Fig. 6C). No significant interaction was observed between Task and Surface (Fi,13=
633  0.76; p=0.39). The ANOVA also revealed that the duration of the postural reaction was shorter
634  when performing a dual task (Fi,18= 21.183; p < 0.05) and when standing on the biomimetic
635  surface (Fi,18= 6.95; p = 0.02) (Fig. 6D). The interaction Task x Surface was not significant
636  (Fi,18=0.43; p=0.51).

637 Although the ANOVAs performed on the variables related to the postural reaction did
638  not reveal significant Task x Surface interactions, the inspection of the results shown in Fig. 6
639  suggests that the most efficient postural reaction was found when participants stood on the
640  biomimetic surface in the dual-task condition (i.e., greater amplitude (Fig. 6C) and smaller
641 duration (Fig. 6D) of the postural reaction). In support with this assumption, the results of
642  planned contrasts post-hoc tests revealed that the postural reaction had significantly greater
643  amplitude (F =10.51; p <0.005) and smaller duration (F =37.70; p < 0.001) when standing on

644  a biomimetic surface, rather than in the 3 other conditions.

645  Discussion

646 The intriguing result of Experiment 2 is that the postural reaction observed during the
647  platform translation had shorter duration and greater magnitude in the dual task than in the
648  single task, irrespectively of the standing surfaces. These behavioral features comply with the
649  spatiotemporal characteristics of an efficient postural reaction (Ikai et al., 2003; Horak et al.,
650 1997 for a review). They were observed to a greater extent when the participants stood on the
651  biomimetic surface. Therefore, the participants’ engagement in the cognitive task did not have
652  a deleterious consequence on the postural control as often reported in previous studies (e.g.,
653  Shumway-Cook et al., 1997; Kerr et al., 1985; Rankin et al., 2000; Melzer et al., 2001). The
654  greatest efficiency of the postural reaction observed in participants standing on the biomimetic
655  surface could stem from a greater capacity to shift the attentional focus from the primary motor
656  task to the secondary cognitive task. Such external focus is known to diminish motor-related
657  conscious attentional processes (Vuillerme & Nafati, 2007; Wulf & Prinz, 2001, for a review)
658 compared to an internal focus of attention (Sherwood et al., 2020), and improve motor
659  performance. This has been clearly demonstrated by Wulf et al. (1998) in a study in which

660  participants had to make oscillatory movements (ski-type slalom movements) when standing
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661  of platform mounted on wheels that ran laterally on two bowed rails. Elastic rubber belts
662  attached to the platform ensured that the platform returned to the center position during the
663  oscillatory movements. The authors showed that the motor performance decreased when the
664  participants’ attention was focused on the force that the feet should exert on the supporting
665  platform (i.e., internal focus) as compared to when their attention was focused on the wheels of
666  the platform (external focus). These results, combined with those of Experiment 1 showing
667  similar postural reactions between the different surfaces, suggest that during small accelerations
668  of the standing platform, the advantage of standing on a biomimetic surface to safeguard
669  stability is expressed when one is involved in a dual task (Experiment 2). Although it is often
670  the case that one is engaged in a cognitive task while standing (e.g., listening to people, singing
671  while showering, etc.), greater platform accelerations could be needed for the biomimetic
672  surface to improve postural reactions compared to other types of surface.

673 It is possible that the equilibrium demands in response to support translations decreased
674  when standing on a biomimetic surface, as also suggested by the smaller theta power observed
675  in Experiment I with this surface. The biomimetic surface may therefore facilitate the use of
676  low-level sensorimotor loops, which are less permeable to cognitive load and which enable
677  speedy performance (see Wulf & Prinz, 2001 for a review). As mentioned in Discussion 1,
678  thalamic projections to the left pre-cuneus (Cunningham et al., 2017; Gamberini et al., 2020),
679  which has dense interconnections with the motor and premotor cortices (see Krubitzer et
680  Disbrow 2008 for a review) may have contributed to the facilitation of the neural responses to
681  the tactile stimulation observed with the biomimetic surface (i.e., increased PIN1 SEP). These
682  thalamocortical connections areas could constitute the neural underpinning of the efficient
683  spatiotemporal pattern of the postural reaction when standing on the biomimetic surface.

684
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