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Abstract 

Modern oncology offers a wide range of treatments and therefore choosing the best option 

for particular patient is very important for optimal outcomes. Multi-omics profiling in 

combination with AI-based predictive models have great potential for streamlining these 

treatment decisions. However, these encouraging developments continue to be hampered 

by very high dimensionality of the datasets in combination with insufficiently large numbers 

of annotated samples. In this study, we propose a novel deep learning-based method to 

predict patient-specific anticancer drug response from three types of multiomics data. The 

proposed DeepInsight-3D approach relies on structured data-to-image conversion that then 

allows use of convolutional neural networks, which are particularly robust to high 

dimensionality of the inputs while retaining capabilities to model highly complex relationships 

between variables. Of particular note, we demonstrate that in this formalism additional 

channels of an image can be effectively used to accommodate data from different 8omics 

layers while explicitly encoding the connection between them. DeepInsight-3D was able to 

outperform two other state-of-the-art methods proposed for this task. These advances can 

facilitate the development of better personalized treatment strategies for different cancers 

in the future. 

 

Introduction 

Precision oncology is rapidly developing. However, only a very small percentage of patients 

can currently take advantage of it [1]. The risks of side effects can be reduced by improving 

the prediction rate of drug response from targeted therapy which would undoubtedly 

improve patients9 treatment. In this respect, in vitro projects have compiled datasets such as 

Genomics of Drug Sensitivity in Cancer (GDSC) [2] and Cancer Cell Line Encyclopedia (CCLE) 

[3]. These datasets consist of multi-omics profiles such as gene expression, copy number 

alteration (CNA) and somatic mutations. Although gene expression datasets have shown to 

be very useful [2, 4], adding more omic layers could improve the predictability of pan-cancer 

models [5].  

 

Drug prediction on in vivo datasets is a step towards clinical applicability. However, since in 

vivo data like The Cancer Genome Atlas (TCGA) repository has a scarcity of patient records 

and drug responses, it is difficult to train a model on in vivo datasets. Considering this 

challenge, Sharifi-Noghabi et al. [5] trained their computational model on in vitro data and 

obtained predictability on in vivo data. Nevertheless, the platforms of these datasets are 
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different. Furthermore, there exists a scarcity of related samples in GDSC datasets. This 

augments the problem of adequately estimating a model on the training set of the data.  

 

In [5], the MOLI method is proposed and learned on datasets from GDSC. It predicts response 

to a drug from TCGA and patient-derived xenograft (PDX) [6] datasets. These collated datasets 

have multi-omics profiles: gene expression, CNA, and somatic mutation. The MOLI method 

reported the area under the curve (AUC) on seven datasets from TCGA and PDX. Their average 

AUC over the seven datasets was 0.63. Park et al. [7] also constructed training and test dataset  

from GDSC and TCGA/PDX resulting in more than seven datasets and proposed the Super.FELT 

method. The performance of their method also included the seven datasets used in [5], 

though some of the resulting test samples slightly differed due to methodology. Nonetheless, 

their average AUC over the seven datasets was reported to be 0.68. When we reimplemented 

the Super.FELT method on the MOLI test sets, an average AUC of 0.65 was obtained. 

 

In this work, we propose the DeepInsight-3D model, which first converts multi-omic or multi-

layered data into corresponding images and then applies a convolutional neural network 

(CNN) to find the AUC. While the sample sizes of datasets are minimal, DeepInsight-3D with 

CNN can still perform well if the model is appropriately tuned. To compare with the 

benchmarked methods, we also utilized the same seven test sets as the MOLI study and 

achieved an average AUC of 0.72.  

 

The proposed method is based on the DeepInsight method [8] and the DeepFeature method 

[9]. The DeepInsight method pioneered a strategy by converting non-image data to image 

form and then processing it to CNN for classification for various kinds of datasets. It has been 

widely used in various fields such as in cancer research [10-12], viral infections [13], sparse 

data [14], power energy [15], business and manufacturing [16], time-series data [17-19], 

traffic cash analysis [20], human activity recognition [21], feature representation [22], 

intrusion detection [23], spine surgery [24] and HVAC fault diagnosis [25]. Moreover, 

DeepInsight was a component in the Kaggle.com competition hosted by MIT and Harvard 

University that secured rank1 on the leaderboard [26]. Using dimensionality reduction 

techniques, such as t-SNE [27], DeepInsight arranges similar elements together in a 2D pixel 

frame and then performs element mappings. It turns tabular data into organized images, 

allowing CNN classification through automatic feature extraction. Furthermore, the 

DeepFeature method applied class-activation maps (CAMs) [28] to perform feature selection.  

 

The DeepInsight-3D model extends the utility of DeepInsight and DeepFeature methods to 

multi-omics data, particularly 3D layers. It is well known that if the samples are sufficiently 

large, then CNN performs very well. Nonetheless, we have shown that the DeepInsight-3D 

model can also perform on a limited sample case. The overview of the proposed model is 

given in Fig. 1 (see Methods for the details).  
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Figure 1. An overview of the DeepInsight-3D model. From the left multi-omics layers are processed via 

DeepInsight methodology and common pixel locations are found. After mapping omics data, corresponding 

images are constructed, which are processed to a convolutional neural network. Afterwards, CAM is used to find 

activation regions and element decoder is used to find a subset of genes.  

 

In this work, DeepInsight-3D is used for multi-omics datasets. However, the proposed method 

is not limited to omics data. It can handle different kinds of multi-layered tabular data (as long 

as the elements and samples of diverse layers are arranged in the same order). This method 

does not require any specific biological information such as chromosome locations and 

visualizes non-image data through multi-layered mappings.  

 

The contributions of this work are as follows. DeepInsight-3D pipeline is presented where 

classification and feature selection can be performed for multi-layered non-image samples 

(or tabular data) through the application of CNNs. Two ways of image construction are 

introduced, 1) by mapping elements to the pixel locations of the dominant layer (shown in 

Fig. 1), and 2) by mapping elements to the pixel locations obtained by giving equal importance 

to all the three layers (implemented in the DeepInsight-3D package as an option). Element 

decoder is implemented to find genes or elements from the activation maps. We also 

demonstrate how the developed system can be used to interpret the CNN model and report 

on the identified key genes and biological processes identified as important for drug response 

prediction by respective models. 

 

Results 

 

Performance evaluation 
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Two recently developed methods, MOLI and Super.FELT, were used as benchmark methods. 

Both these methods were compared with many preceding algorithms and showed superior 

performance. The test set configurations (in terms of the number of samples) were kept the 

same for a fairer comparison. The AUCs were computed for all possible drugs-method 

combinations and are given in Table 2. 

 
Table 2: A comparison of DeepInsight-3D for drug response prediction with multi-omics profiles using test 

AUCs. The test samples are the same for all the comparators. The highest results are marked with bold 

fonts. 

Drug MOLI Super.FELT DeepInsight-3D 

Paclitaxel (PDX) 0.74 0.64 0.74 

Gemcitabine (PDX) 0.64 0.65 0.72 

Cetuximab (PDX) 0.53 0.55 0.71 

Erlotinib (PDX) 0.63 0.76 0.85 

Docetaxel (TCGA) 0.58 0.64 0.78 

Cisplatin (TCGA) 0.66 0.73 0.68 

Gemcitabine (TCGA) 0.65 0.61 0.53 

Average 0.63 0.65 0.72 

 

It can be observed from Table 2 that for Paclitaxel, MOLI and DeepInsight-3D produced 

promising AUCs. For Cisplatin, Super.FELT had the highest, and for Gemcitabine (TCGA), MOLI 

produced the highest. For the remaining 5 drugs, Gemcitabine (PDX), Cetuximab, Erlotinib 

and Docetaxel, DeepInsight-3D produced the highest AUCs. The average AUC over all the 

seven datasets for the MOLI method was 0.63 and for Super.FELT was 0.65. DeepInsight-3D 

produced an encouraging average AUC of 0.72. For confusion matrix over seven datasets, 

please see Table S3 (Supplement File 1). 

 

DeepInsight-3D can also perform feature selection via class-activation maps (CAMs) to 

identify genes of interest for each dataset. Since the data dimensionality is very large 

compared to the number of samples available, there is a high chance of producing an unstable 

model estimate. Furthermore, not all genes can be well represented in a limited pixel-

framework. Appropriate feature selection would reveal background scientific mechanisms. 

Therefore, we applied an iterative way of conducting feature selection. Gene selection can be 

performed in 3 ways, 1) considering CAM values for every training sample, 2) taking an 

average of CAM over training samples, and 3) class-based CAM (described in the Methods 

section) where the average over a particular class is considered. In this work, class-based CAM 

has been applied for gene selection. Table 3 depicts the number of genes selected for each 

drug dataset. For parameters related to feature selection, see Table S4 and feature selection 

procedure in Figure S1. The activation maps are shown in Figure S2 and Figure S3. 

 
Table 3: Gene selection using DeepInsight-3D 

Drug #Genes #Genes per class CAM Threshold 

Paclitaxel (PDX) 1057 [891, 520] 0.25 

Gemcitabine (PDX) 1108 [882, 738] 0.30 

Cetuximab (PDX) 1229 [1147, 692] 0.25 

Erlotinib (PDX) 1204 [881, 1015] 0.23 

Docetaxel (TCGA) 1043 [720, 576] 0.25 

Cisplatin (TCGA) 949 [752, 278] 0.25-0.30 

Gemcitabine (TCGA) 1424 [1034, 782] 0.3 
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Pathway-centric context of discovered gene sets 

Gene sets identified as important by each drug-specific model were mapped to KEGG 

pathways and IPA knowledgebase, as described in the methods section. This analysis has 

revealed that the there was both a unique as well as a shared component that was identified 

as important for all of the drugs. In several cases most significantly enriched subsets have 

previously been reported in literature as being linked to particular drugs or that class of drugs. 

This suggests that the proposed system does have some functionality to not only improve 

quality of drug response prediction, but also allow discovery of meaningful biological 

processes that may be involved. Full results of these analyses are available as a 

Supplementary file XX; and relevant key findings are summarized below. 

 

Discussion 

DeepInsight-3D extends the versatility of applying CNN to multi-layered tabular data. In this 

work, DeepInsight-3D provided very encouraging results on drug response multi-omics data. 

DeepInsight-3D was able to produce an average AUC of 0.72 over seven drug response 

datasets which is encouraging compared to competing methods in the literature.  

 

Deep learning nets, such as CNN, have many merits, such as automatic feature extraction, 

finding hidden structures from hyper-dimensional data, finding higher-order statistics of 

image and non-linear correlations, economical use of neurons for large input sizes allowing 

much deeper networks are plausible with fewer parameters [29], and a parsimonious 

memory footprint. These properties of CNN can be integrated with the inception of 

DeepInsight-3D for non-image tabular data with multi layers. 

 

In machine learning techniques for tabular data, any two features are considered mutually 

independent. However, DeepInsight tries to establish a relationship through the element 

arrangement step by positioning similar elements together and dissimilar ones apart [8]. 

DeepInsight-3D further extends this property to multi-layered data. Moreover, the 

application of DeepFeature is extended. DeepFeature enables a powerful means for the 

identification of biologically relevant gene sets and provides methodological basement for 

"explainable AI". [9]. This has been integrated with DeepInsight-3D to simultaneously identify 

elements for multi layered data. 

 

Although the results were promising, the severe scarcity of training and test samples hindered 

getting a reasonable model estimate. The same was true for MOLI and Super.FELT methods, 

as their results were sensitive to parameter tuning. In general, CNN works very well when the 

samples are sufficiently large. However, this was not the case in the work. Nonetheless, all 

these methods provided a good platform in this direction. DeepInsight-3D can perform 

sufficiently well when the sample size is sufficient such as in the case of single-cell analysis. 

This would be our future direction of work.  

 

Methods 

This section covers the proposed DeepInsight-3D methodology. The model consists of the 

following constituents 1) image transformation by DeepInsight-3D, 2) ResNet-50 model of 

CNN architecture, 3) class-based CAM to find activation maps, and 4) element decoder to 

decode genes. These procedures are described hereunder. 
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DeepInsight-3D: Conversion of multi-layered tabular data to image for CNN  

Let a multi-layered sample be depicted by �!"
# , where � represents elements or features, � 

represents samples, and � represents layers. Therefore, a single layer data can be depicted as 

�# = �!"
#  for � = 1,2, & , �, � = 1,2, & , � and � = 1,2, & , �, where � is the dimensionality of 

the data, � is the number of samples, and � is the total number of layers. For multi-omics 

data in this work, � = 3, which gives a multi-layered dataset � = {�$, �%, �&} * ='×)×*. 

The DeepInsight model [8] converts non-image data �#  to image data �#. The size of an image 

sample is � × �. The DeepInsight transform consists of dimensionality reduction techniques 

(such as t-SNE [30], UMAP [31] or Kernel PCA [32]), convex hull algorithm, rotation of 

Cartesian coordinates, finding pixel locations and mapping of elements to these pixel 

locations. We can obtain pixel locations by 

 

�# = +(�#) for � = 1,& �    (1) 

 

where �#  is the pixel locations of layer �, + denotes the DeepInsight transform to find pixel 

locations and �#  is a single layer of training set (e.g. gene expression data). Once the 

framework of the locations is discovered using Eq (1), elements can be mapped to find the 

corresponding images, such as 

 

�" = §(�!"
# ) for � = 1,& , � and � = 1,& , �  (2) 

 

where § maps a non-image sample � * ='  to an image sample �" * 1+×,, here 1 is a pixel-

coordinates system, and, �  and �  are sizes of rows and columns, respectively. Therefore, 

from Eq (2) we get §: � ³ �. The transformation § also normalizes the values between [0,1] 

or [0,255]. In this work, norm-2 has been employed which was introduced in [8]. 

 

Thus, the first layer of image data (� = 1) obtained from Eq (2) is 

 

�$ = {�$, �%, & , �)}     (3) 

 

For simplicity, the superscript � is ignored on �". However, this dataset obtained from Eq (3) 

is for layer � = 1. For � = 2, we did not compute the transform +, however, only Eq (2) has 

been used to find �%. Similarly, for � = 3, we can obtain the dataset �& from Eq (2). Therefore, 

for � = 1, . . , �, we get a multi-layered image dataset with common pixel locations �$. In this 

work, � = 3, so we get a 3D colored image of a multi-omics sample. 

 

In the above model, it has been assumed that information from layer 1 is more than the other 

two layers, and that9s why all the other samples of the remaining two layers also mapped on 

�$. If it cannot be determined which layer has more information compared to others, then all 

the layers can be used simultaneously to find common pixel locations. In that case, transform  

+ for � = 1,& , � will be applied. However, it would produce multiple pixel locations (�$&�*) 

and we need to find the common pixel locations from these pixel locations. This requires a 

two-stage process and is implemented in the DeepInsight-3D package by setting up the 

parameter Parm.FeatureMap to 809. However, since this option has not been used in this work, 

the detailed description is avoided in this paper.  

 

CNN architecture for classification and feature selection 
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In this work, ResNet-50 has been used for CNN. For feature selection, we have incorporated 

class-activation maps (CAMs) [28]. However, other series nets supported by CAM can be used. 

ResNet-50 has a fixed input image size of 224 × 224 × 3. However, different image sizes can 

be used, as package resizes and corrects the size according to the requirements of the net. 

The last ReLu layer has been used to find activation maps. The activation maps express the 

region of interest for decision making. It provides 3 colored layers in order of importance as 

red, yellow and blue. Since the red zone is the most informative, it has been used for feature 

selection purposes using the element decoder (Fig. 1). The training set and validation set are 

used to estimate and validate the model. The test set is used to evaluate the performance of 

the trained model. For CAM, only the training set has to be used to compute activations. The 

default values of hypermeters of CNN net, such as momentum, L2 regularization and initial 

learning rate have been used (as per version 2 of the DeepInsight package https://alok-ai-

lab.github.io/DeepInsight/). However, a Bayesian optimization technique has been employed 

for Cisplatin to tune the hyperparameters. Further description is given in the Supplement File. 

 

Class activation maps (CAMs) and element decoder 

CAMs are computed for each image sample from the training set �". CAM produce 3 colors 

and if we denote �"  as the computed CAM values of the red zone for a sample �", then �" >

�/���/���  depicts a region of interest for this sample. Since samples �"  falls in different 

classes (here respondents and non-respondents), we can take an average of �"  over the 

samples of a class. Therefore, class-based CAM can be computed as 

 

����! =
$

)!

3 �""*.!
 for � = 1,& , �    (4) 

 

where �!  denotes �-th class, �  is the number of classes (here 2), and �!  is the number of 

training samples in this class.  

 

For class-based CAMs, instead of taking �" > �/���/��� , one can consider ����! >

�/���/��� from Eq (4). Under this activated region, element decoder finds the gene subset. 

The decoder will locate the argument or index of a pixel falling under this region. A pixel �/, 

located at (�/ , �/)  is defined by normalized value [0,1] . However, depending upon the 

compression, it may contain one gene, more than one gene, or no gene. Searching all the 

pixels under the activated region (as defined by Eq (4)), would reveal a list of selected genes. 

This procedure will provide class-based features (or genes or elements), however, some 

elements could be common across different classes. 

 

Let �!  be the gene subset found from the �-th class, then the overall selected genes are 

denoted as 

 

� =*!0$
1 �!        (5) 

 

Experimental setup 

We used the same setup of datasets as done in [5], where training sets were collated from 

GDSC cell lines resource [2]. The test sets were collated from TCGA patients with the drug 

response [33] and PDX encyclopedia resource [6].  
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The data was downloaded from the Zenodo repository (https://zenodo.org/record/4036592) 

and correlated into the seven testing and training using R. 

 

Test samples have two labels, non-responders (NR) and responders (R). The test set labels are 

exactly the same as [5] and are shown in Table 1. The total samples used for training models 

are also derived from GDSC resource, same as [5], however, the number of NR and R may be 

different. For all the training sets, first we applied a median of log ��50 to separate NR and R 

labels. This attempt balanced the NR and R samples in the training sets. However, in the case 

of Cisplatin, the validation accuracy was not promising, and so we then applied 8mean9 to 

separate the labels.  

 

Since the number of samples is very limited for all the drug response data, we augmented the 

training and validation sets during the training phase of CNN (see Methods for the details). 

 
Table 1: Training and test sets configurations for the drugs with multi-omics profiles. 

Drug Training/Test 

Resources 

#Test Samples #Genes #Training 

Samples 

Paclitaxel GDSC/PDX 43 (38 NR; 5 R) 13494 389 

Gemcitabine GDSC/PDX 25 (18 NR; 7 R) 13039 844 

Cetuximab GDSC/PDX 60 (55 NR; 5 R) 13348 856 

Erlotinib GDSC/PDX 21 (18 NR; 3 R) 13324 362 

Docetaxel GDSC/TCGA 16 (8 NR; 8 R) 15016 829 

Cisplatin GDSC/TCGA 66 (6 NR; 60 R) 15500 829 

Gemcitabine GDSC/TCGA 57 (36 NR; 21 R) 15381 844 

 

All the experiments were done on Intel Xeon Gold 5220R Server (2.2GHz) with 24 CPU cores 

and 2 parallel NVIDIA A100 PCIe GPUs (CUDA cores: 6912 with 40GB GPU memory on each 

A100 GPU). The operating system used was Linux (Ubuntu Desktop version 20.04). 

 

Pre-processing of mutation data 

Cancer mutation data is most often extremely sparse, meaning that only a small number of 

different genes have consequential mutations in each sample. This presents a unique 

challenge when using it with a CNN classifier - as most inputs in this channel would be zero 

most of the time, it can result in inefficient use of information in that layer due to <dead= 

artificial neurons [34]. To counter this, we have used guilt-by-association principle to 

propagate the likely impact of mutations by using protein-protein interaction network. Briefly, 

the goal of this approach was to assign some part of an <impact= for each actual mutation to 

proximal genes in the network, as these are likely to be involved in similar biological functions. 

In this way, some meaningful value is assigned to each gene in all situations, while the 

information about actual mutations is still preserved by assigning them the highest possible 

score. Note that the fine calibration of the impact score is not necessary for this use-case, as 

neural network is able to discover its own optimal weighting as long as the generated 

distribution is consistent across all of the training set. 

This was done by mapping all of the genes in the dataset to the corresponding proteins of the 

protein interaction network obtained from STRING database v11.0 [35]. A diffusion state 

distance matrix was calculated for the network based on the original definition of this 

distance metric [36]. Then, each node was assigned a score equal to the normalized inverse 

distance value of the closest mutated gene. In this way, the approach has facilitated the 
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identification of possible functionally equivalent mutations as well as mutation hotspots, 

which have also been demonstrated to be an important network-based feature potentially 

predictive of clinical outcomes [37].    

 

Model evaluation 

In order to validate DeepInsight-3D, the training sets (besides the test sets) were subdivided 

into two sets with a 90:10 ratio. The larger set was employed to estimate the model and the 

smaller set was applied to validate it. The AUC was computed on the test set. In general, the 

default parameters of DeepInsight (version 2) were employed (https://alok-ai-

lab.github.io/DeepInsight/) for this method with a few variations (see Table S1, Supplement 

File 1 for details). Some important parameters were norm-2 normalization (log transform) [8], 

t-SNE to obtain a 2D plane for gene expression data, and that CNA and mutations were 

mapped to the 2D plane obtained by gene expression, as it is generally considered that gene 

expression has more information compared to the other profiles. For CNN, we applied a pre-

trained ResNet-50. This transfer learning helped to achieve promising results. In order to have 

faster training, default parameters were applied for all the datasets, and the obtained 

performance was satisfactory. However, for Cisplatin, we did not get promising results. 

Therefore, for Cisplatin, Bayesian optimization technique of hyperparameter tuning was 

applied for ResNet-50. The hyperparameters that best performed over the validation set have 

been used for the test set (see Table S2, Supplement File 1 for details).  

 

Finding gene subsets through an iterative process 

The number of genes in genomic or multi-omics data is typically very large, making it difficult 

to put all of them into a finite image size due to fixed technology limits. In this instance, 

quantized images are unavoidable, meaning that specific image pixels will carry several genes 

in a single spot. This leads to another issue of selecting a gene from those batch genes (where 

batch gene refers to a set of two or more genes having the same pixel location in the frame). 

To address this overlapping issue up to some extent, DeepInsight-3D can be run iteratively to 

gradually select the elements. The initial iteration will identify a subset of elements that can 

be utilized as input in subsequent iterations to find a smaller subset of genes or elements.  

 

Functional annotation and interpretation of identified gene sets 

The analysis described above resulted in two gene lists (one each for responder and non-

responder class) from each trained model that contained the genes identified as important 

for classifying training samples into a respective category. Functional interpretation of the 

recovered gene subsets was done individually, by mapping them onto metabolic and signaling 

pathways as defined by KEGG database [38]. This was followed by gene set enrichment 

analysis done using Fisher9s exact test with a Benjamini-Hochberg false discovery rate 

correction. A complementary perspective was produced using Ingenuity Pathway Analysis 

software from QIAGEN Digital Insights, which facilitates discovery of upstream/downstream 

regulatory context of particular genes and interpretation of likely effects on related 

mechanisms and biological processes. 

 

Conclusions 

The proposed method, DeepInsight-3D demonstrates how data-to-image approach for 

analysis of biological data can effectively incorporate different types of 8omics data and 

preserve the explicit connections between these layers by placing them in the same positions 
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but in different channels of an input image. As was demonstrated in our previous work, once 

converted to image form data becomes suitable for use with image-specific convolutional 

neural network architectures. This study is the first to use this type of 8omics integration and 

likewise the first to apply this type of approach to the problem of personalized cancer drug 

response prediction. Our results have shown that DeepInsight-3D can outperform previously 

proposed methods and can also be very powerful way to discover underlying important genes, 

which can then be interpreted understand the decisions made by the classifier and also 

identify key biological processes of potential interest. 
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Code Availability 

DeepInsight3D software package (in Matlab), a dataset, installation instructions and user-

manual are available from the GitHub link https://github.com/alok-ai-lab/DeepInsight3D_pkg. 

The example PDX_Paclitaxel dataset is also separately available from the link 

http://emu.src.riken.jp/DeepInsight/download_files/dataset1.mat , note the size is 88MB. 

The following links for other related packages can be accessed via http://www.alok-ai-

lab.com/tools.php and/or http://emu.src.riken.jp/.  
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