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Abstract

Modern oncology offers a wide range of treatments and therefore choosing the best option
for particular patient is very important for optimal outcomes. Multi-omics profiling in
combination with Al-based predictive models have great potential for streamlining these
treatment decisions. However, these encouraging developments continue to be hampered
by very high dimensionality of the datasets in combination with insufficiently large numbers
of annotated samples. In this study, we propose a novel deep learning-based method to
predict patient-specific anticancer drug response from three types of multiomics data. The
proposed Deeplnsight-3D approach relies on structured data-to-image conversion that then
allows use of convolutional neural networks, which are particularly robust to high
dimensionality of the inputs while retaining capabilities to model highly complex relationships
between variables. Of particular note, we demonstrate that in this formalism additional
channels of an image can be effectively used to accommodate data from different ‘omics
layers while explicitly encoding the connection between them. Deeplnsight-3D was able to
outperform two other state-of-the-art methods proposed for this task. These advances can
facilitate the development of better personalized treatment strategies for different cancers
in the future.

Introduction

Precision oncology is rapidly developing. However, only a very small percentage of patients
can currently take advantage of it [1]. The risks of side effects can be reduced by improving
the prediction rate of drug response from targeted therapy which would undoubtedly
improve patients’ treatment. In this respect, in vitro projects have compiled datasets such as
Genomics of Drug Sensitivity in Cancer (GDSC) [2] and Cancer Cell Line Encyclopedia (CCLE)
[3]. These datasets consist of multi-omics profiles such as gene expression, copy number
alteration (CNA) and somatic mutations. Although gene expression datasets have shown to
be very useful [2, 4], adding more omic layers could improve the predictability of pan-cancer
models [5].

Drug prediction on in vivo datasets is a step towards clinical applicability. However, since in
vivo data like The Cancer Genome Atlas (TCGA) repository has a scarcity of patient records
and drug responses, it is difficult to train a model on in vivo datasets. Considering this
challenge, Sharifi-Noghabi et al. [5] trained their computational model on in vitro data and
obtained predictability on in vivo data. Nevertheless, the platforms of these datasets are
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different. Furthermore, there exists a scarcity of related samples in GDSC datasets. This
augments the problem of adequately estimating a model on the training set of the data.

In [5], the MOLI method is proposed and learned on datasets from GDSC. It predicts response
to a drug from TCGA and patient-derived xenograft (PDX) [6] datasets. These collated datasets
have multi-omics profiles: gene expression, CNA, and somatic mutation. The MOLI method
reported the area under the curve (AUC) on seven datasets from TCGA and PDX. Their average
AUC over the seven datasets was 0.63. Park et al. [7] also constructed training and test dataset
from GDSC and TCGA/PDX resulting in more than seven datasets and proposed the Super.FELT
method. The performance of their method also included the seven datasets used in [5],
though some of the resulting test samples slightly differed due to methodology. Nonetheless,
their average AUC over the seven datasets was reported to be 0.68. When we reimplemented
the Super.FELT method on the MOLI test sets, an average AUC of 0.65 was obtained.

In this work, we propose the Deeplnsight-3D model, which first converts multi-omic or multi-
layered data into corresponding images and then applies a convolutional neural network
(CNN) to find the AUC. While the sample sizes of datasets are minimal, Deeplnsight-3D with
CNN can still perform well if the model is appropriately tuned. To compare with the
benchmarked methods, we also utilized the same seven test sets as the MOLI study and
achieved an average AUC of 0.72.

The proposed method is based on the Deeplnsight method [8] and the DeepFeature method
[9]. The Deeplnsight method pioneered a strategy by converting non-image data to image
form and then processing it to CNN for classification for various kinds of datasets. It has been
widely used in various fields such as in cancer research [10-12], viral infections [13], sparse
data [14], power energy [15], business and manufacturing [16], time-series data [17-19],
traffic cash analysis [20], human activity recognition [21], feature representation [22],
intrusion detection [23], spine surgery [24] and HVAC fault diagnosis [25]. Moreover,
Deeplnsight was a component in the Kaggle.com competition hosted by MIT and Harvard
University that secured rankl on the leaderboard [26]. Using dimensionality reduction
techniques, such as t-SNE [27], Deeplnsight arranges similar elements together in a 2D pixel
frame and then performs element mappings. It turns tabular data into organized images,
allowing CNN classification through automatic feature extraction. Furthermore, the
DeepFeature method applied class-activation maps (CAMs) [28] to perform feature selection.

The Deeplnsight-3D model extends the utility of Deeplnsight and DeepFeature methods to
multi-omics data, particularly 3D layers. It is well known that if the samples are sufficiently
large, then CNN performs very well. Nonetheless, we have shown that the Deeplnsight-3D
model can also perform on a limited sample case. The overview of the proposed model is
given in Fig. 1 (see Methods for the details).
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Figure 1. An overview of the Deeplnsight-3D model. From the left multi-omics layers are processed via

Deeplnsight methodology and common pixel locations are found. After mapping omics data, corresponding

images are constructed, which are processed to a convolutional neural network. Afterwards, CAM is used to find

activation regions and element decoder is used to find a subset of genes.
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In this work, Deeplnsight-3D is used for multi-omics datasets. However, the proposed method
is not limited to omics data. It can handle different kinds of multi-layered tabular data (as long
as the elements and samples of diverse layers are arranged in the same order). This method
does not require any specific biological information such as chromosome locations and
visualizes non-image data through multi-layered mappings.

The contributions of this work are as follows. Deeplnsight-3D pipeline is presented where
classification and feature selection can be performed for multi-layered non-image samples
(or tabular data) through the application of CNNs. Two ways of image construction are
introduced, 1) by mapping elements to the pixel locations of the dominant layer (shown in
Fig. 1), and 2) by mapping elements to the pixel locations obtained by giving equal importance
to all the three layers (implemented in the Deeplnsight-3D package as an option). Element
decoder is implemented to find genes or elements from the activation maps. We also
demonstrate how the developed system can be used to interpret the CNN model and report
on the identified key genes and biological processes identified as important for drug response
prediction by respective models.

Results

Performance evaluation
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Two recently developed methods, MOLI and Super.FELT, were used as benchmark methods.
Both these methods were compared with many preceding algorithms and showed superior
performance. The test set configurations (in terms of the number of samples) were kept the
same for a fairer comparison. The AUCs were computed for all possible drugs-method
combinations and are given in Table 2.

Table 2: A comparison of Deeplnsight-3D for drug response prediction with multi-omics profiles using test
AUCs. The test samples are the same for all the comparators. The highest results are marked with bold
fonts.

Drug MOLI Super.FELT Deeplnsight-3D
Paclitaxel (PDX) 0.74 0.64 0.74
Gemcitabine (PDX) 0.64 0.65 0.72
Cetuximab (PDX) 0.53 0.55 0.71
Erlotinib (PDX) 0.63 0.76 0.85
Docetaxel (TCGA) 0.58 0.64 0.78
Cisplatin (TCGA) 0.66 0.73 0.68
Gemcitabine (TCGA) 0.65 0.61 0.53
Average 0.63 0.65 0.72

It can be observed from Table 2 that for Paclitaxel, MOLI and Deeplnsight-3D produced
promising AUCs. For Cisplatin, Super.FELT had the highest, and for Gemcitabine (TCGA), MOLI
produced the highest. For the remaining 5 drugs, Gemcitabine (PDX), Cetuximab, Erlotinib
and Docetaxel, Deeplnsight-3D produced the highest AUCs. The average AUC over all the
seven datasets for the MOLI method was 0.63 and for Super.FELT was 0.65. Deeplnsight-3D
produced an encouraging average AUC of 0.72. For confusion matrix over seven datasets,
please see Table S3 (Supplement File 1).

Deeplnsight-3D can also perform feature selection via class-activation maps (CAMs) to
identify genes of interest for each dataset. Since the data dimensionality is very large
compared to the number of samples available, there is a high chance of producing an unstable
model estimate. Furthermore, not all genes can be well represented in a limited pixel-
framework. Appropriate feature selection would reveal background scientific mechanisms.
Therefore, we applied an iterative way of conducting feature selection. Gene selection can be
performed in 3 ways, 1) considering CAM values for every training sample, 2) taking an
average of CAM over training samples, and 3) class-based CAM (described in the Methods
section) where the average over a particular class is considered. In this work, class-based CAM
has been applied for gene selection. Table 3 depicts the number of genes selected for each
drug dataset. For parameters related to feature selection, see Table S4 and feature selection
procedure in Figure S1. The activation maps are shown in Figure S2 and Figure S3.

Table 3: Gene selection using Deeplnsight-3D

Drug #Genes #Genes per class CAM Threshold
Paclitaxel (PDX) 1057 [891, 520] 0.25
Gemcitabine (PDX) 1108 [882, 738] 0.30
Cetuximab (PDX) 1229 [1147, 692] 0.25

Erlotinib (PDX) 1204 [881, 1015] 0.23

Docetaxel (TCGA) 1043 [720, 576] 0.25

Cisplatin (TCGA) 949 [752, 278] 0.25-0.30

Gemcitabine (TCGA) 1424 [1034, 782] 0.3
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Pathway-centric context of discovered gene sets

Gene sets identified as important by each drug-specific model were mapped to KEGG
pathways and IPA knowledgebase, as described in the methods section. This analysis has
revealed that the there was both a unique as well as a shared component that was identified
as important for all of the drugs. In several cases most significantly enriched subsets have
previously been reported in literature as being linked to particular drugs or that class of drugs.
This suggests that the proposed system does have some functionality to not only improve
quality of drug response prediction, but also allow discovery of meaningful biological
processes that may be involved. Full results of these analyses are available as a
Supplementary file XX; and relevant key findings are summarized below.

Discussion

Deeplnsight-3D extends the versatility of applying CNN to multi-layered tabular data. In this
work, Deeplnsight-3D provided very encouraging results on drug response multi-omics data.
Deeplnsight-3D was able to produce an average AUC of 0.72 over seven drug response
datasets which is encouraging compared to competing methods in the literature.

Deep learning nets, such as CNN, have many merits, such as automatic feature extraction,
finding hidden structures from hyper-dimensional data, finding higher-order statistics of
image and non-linear correlations, economical use of neurons for large input sizes allowing
much deeper networks are plausible with fewer parameters [29], and a parsimonious
memory footprint. These properties of CNN can be integrated with the inception of
Deeplnsight-3D for non-image tabular data with multi layers.

In machine learning techniques for tabular data, any two features are considered mutually
independent. However, Deeplnsight tries to establish a relationship through the element
arrangement step by positioning similar elements together and dissimilar ones apart [8].
Deeplnsight-3D further extends this property to multi-layered data. Moreover, the
application of DeepFeature is extended. DeepFeature enables a powerful means for the
identification of biologically relevant gene sets and provides methodological basement for
"explainable Al". [9]. This has been integrated with Deeplnsight-3D to simultaneously identify
elements for multi layered data.

Although the results were promising, the severe scarcity of training and test samples hindered
getting a reasonable model estimate. The same was true for MOLI and Super.FELT methods,
as their results were sensitive to parameter tuning. In general, CNN works very well when the
samples are sufficiently large. However, this was not the case in the work. Nonetheless, all
these methods provided a good platform in this direction. Deeplnsight-3D can perform
sufficiently well when the sample size is sufficient such as in the case of single-cell analysis.
This would be our future direction of work.

Methods

This section covers the proposed Deeplnsight-3D methodology. The model consists of the
following constituents 1) image transformation by Deeplnsight-3D, 2) ResNet-50 model of
CNN architecture, 3) class-based CAM to find activation maps, and 4) element decoder to
decode genes. These procedures are described hereunder.
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Deeplnsight-3D: Conversion of multi-layered tabular data to image for CNN

Let a multi-layered sample be depicted by xfj, where i represents elements or features, j
represents samples, and [ represents layers. Therefore, a single layer data can be depicted as
M, = xl-lj fori=12,..,d,j=12,..,nandl = 1,2, ..., L, where d is the dimensionality of
the data, n is the number of samples, and L is the total number of layers. For multi-omics
data in this work, L = 3, which gives a multi-layered dataset M = {M,, M,, M3} € R¥*"*L,
The Deeplnsight model [8] converts non-image data M, to image data E;. The size of an image
sample is p X g. The Deeplnsight transform consists of dimensionality reduction techniques
(such as t-SNE [30], UMAP [31] or Kernel PCA [32]), convex hull algorithm, rotation of
Cartesian coordinates, finding pixel locations and mapping of elements to these pixel
locations. We can obtain pixel locations by

Pl:}[(Ml)forlzl,...L (1)

where P, is the pixel locations of layer [, H denotes the Deeplnsight transform to find pixel
locations and M; is a single layer of training set (e.g. gene expression data). Once the
framework of the locations is discovered using Eq (1), elements can be mapped to find the
corresponding images, such as

ej=d(xj)forj=1,..,nandi=1,..,d (2)

where ® maps a non-image sample x € R? to an image sample e € FP*4 here F is a pixel-
coordinates system, and, p and g are sizes of rows and columns, respectively. Therefore,
from Eq (2) we get @: x — e. The transformation @ also normalizes the values between [0,1]
or [0,255]. In this work, norm-2 has been employed which was introduced in [8].

Thus, the first layer of image data (I = 1) obtained from Eq (2) is

El = {6’1, 82, ey en} (3)

For simplicity, the superscript [ is ignored on e;. However, this dataset obtained from Eq (3)
is for layer [ = 1. For [ = 2, we did not compute the transform H, however, only Eq (2) has
been used to find E,. Similarly, for [ = 3, we can obtain the dataset E; from Eq (2). Therefore,
forl =1,..,L, we get a multi-layered image dataset with common pixel locations P;. In this
work, L = 3, so we get a 3D colored image of a multi-omics sample.

In the above model, it has been assumed that information from layer 1 is more than the other
two layers, and that’s why all the other samples of the remaining two layers also mapped on
P;. If it cannot be determined which layer has more information compared to others, then all
the layers can be used simultaneously to find common pixel locations. In that case, transform
H forl =1,...,L will be applied. However, it would produce multiple pixel locations (P; ... P;)
and we need to find the common pixel locations from these pixel locations. This requires a
two-stage process and is implemented in the Deeplnsight-3D package by setting up the
parameter Parm.FeatureMap to ‘0’. However, since this option has not been used in this work,
the detailed description is avoided in this paper.

CNN architecture for classification and feature selection
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In this work, ResNet-50 has been used for CNN. For feature selection, we have incorporated
class-activation maps (CAMs) [28]. However, other series nets supported by CAM can be used.
ResNet-50 has a fixed input image size of 224 X 224 X 3. However, different image sizes can
be used, as package resizes and corrects the size according to the requirements of the net.
The last RelLu layer has been used to find activation maps. The activation maps express the
region of interest for decision making. It provides 3 colored layers in order of importance as
red, yellow and blue. Since the red zone is the most informative, it has been used for feature
selection purposes using the element decoder (Fig. 1). The training set and validation set are
used to estimate and validate the model. The test set is used to evaluate the performance of
the trained model. For CAM, only the training set has to be used to compute activations. The
default values of hypermeters of CNN net, such as momentum, L2 regularization and initial
learning rate have been used (as per version 2 of the Deeplnsight package https://alok-ai-
lab.github.io/Deeplnsight/). However, a Bayesian optimization technique has been employed
for Cisplatin to tune the hyperparameters. Further description is given in the Supplement File.

Class activation maps (CAMs) and element decoder

CAMs are computed for each image sample from the training set e;. CAM produce 3 colors
and if we denote R; as the computed CAM values of the red zone for a sample ej, then R; >
threshold depicts a region of interest for this sample. Since samples e; falls in different
classes (here respondents and non-respondents), we can take an average of R; over the
samples of a class. Therefore, class-based CAM can be computed as

avgR; = nlizjewiRj fori=1,..,c (4)

where w; denotes i-th class, c is the number of classes (here 2), and n; is the number of
training samples in this class.

For class-based CAMs, instead of taking R; > threshold, one can consider avgR; >
threshold from Eq (4). Under this activated region, element decoder finds the gene subset.
The decoder will locate the argument or index of a pixel falling under this region. A pixel py,
located at (ay, by) is defined by normalized value [0,1]. However, depending upon the
compression, it may contain one gene, more than one gene, or no gene. Searching all the
pixels under the activated region (as defined by Eq (4)), would reveal a list of selected genes.
This procedure will provide class-based features (or genes or elements), however, some
elements could be common across different classes.

Let G; be the gene subset found from the i-th class, then the overall selected genes are
denoted as

G =US_, G; (5)

Experimental setup

We used the same setup of datasets as done in [5], where training sets were collated from
GDSC cell lines resource [2]. The test sets were collated from TCGA patients with the drug
response [33] and PDX encyclopedia resource [6].
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The data was downloaded from the Zenodo repository (https://zenodo.org/record/4036592)
and correlated into the seven testing and training using R.

Test samples have two labels, non-responders (NR) and responders (R). The test set labels are
exactly the same as [5] and are shown in Table 1. The total samples used for training models
are also derived from GDSC resource, same as [5], however, the number of NR and R may be
different. For all the training sets, first we applied a median of log IC50 to separate NR and R
labels. This attempt balanced the NR and R samples in the training sets. However, in the case
of Cisplatin, the validation accuracy was not promising, and so we then applied ‘mean’ to
separate the labels.

Since the number of samples is very limited for all the drug response data, we augmented the
training and validation sets during the training phase of CNN (see Methods for the details).

Table 1: Training and test sets configurations for the drugs with multi-omics profiles.

Drug Training/Test #Test Samples #Genes #Training
Resources Samples
Paclitaxel GDSC/PDX 43 (38 NR; 5 R) 13494 389
Gemcitabine GDSC/PDX 25 (18 NR; 7 R) 13039 844
Cetuximab GDSC/PDX 60 (55 NR; 5 R) 13348 856
Erlotinib GDSC/PDX 21 (18 NR; 3 R) 13324 362
Docetaxel GDSC/TCGA 16 (8 NR; 8 R) 15016 829
Cisplatin GDSC/TCGA 66 (6 NR; 60 R) 15500 829
Gemcitabine GDSC/TCGA 57 (36 NR; 21 R) 15381 844

All the experiments were done on Intel Xeon Gold 5220R Server (2.2GHz) with 24 CPU cores
and 2 parallel NVIDIA A100 PCle GPUs (CUDA cores: 6912 with 40GB GPU memory on each
A100 GPU). The operating system used was Linux (Ubuntu Desktop version 20.04).

Pre-processing of mutation data

Cancer mutation data is most often extremely sparse, meaning that only a small number of
different genes have consequential mutations in each sample. This presents a unique
challenge when using it with a CNN classifier - as most inputs in this channel would be zero
most of the time, it can result in inefficient use of information in that layer due to “dead”
artificial neurons [34]. To counter this, we have used guilt-by-association principle to
propagate the likely impact of mutations by using protein-protein interaction network. Briefly,
the goal of this approach was to assign some part of an “impact” for each actual mutation to
proximal genes in the network, as these are likely to be involved in similar biological functions.
In this way, some meaningful value is assigned to each gene in all situations, while the
information about actual mutations is still preserved by assigning them the highest possible
score. Note that the fine calibration of the impact score is not necessary for this use-case, as
neural network is able to discover its own optimal weighting as long as the generated
distribution is consistent across all of the training set.

This was done by mapping all of the genes in the dataset to the corresponding proteins of the
protein interaction network obtained from STRING database v11.0 [35]. A diffusion state
distance matrix was calculated for the network based on the original definition of this
distance metric [36]. Then, each node was assigned a score equal to the normalized inverse
distance value of the closest mutated gene. In this way, the approach has facilitated the
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identification of possible functionally equivalent mutations as well as mutation hotspots,
which have also been demonstrated to be an important network-based feature potentially
predictive of clinical outcomes [37].

Model evaluation

In order to validate Deeplnsight-3D, the training sets (besides the test sets) were subdivided
into two sets with a 90:10 ratio. The larger set was employed to estimate the model and the
smaller set was applied to validate it. The AUC was computed on the test set. In general, the
default parameters of Deeplnsight (version 2) were employed (https://alok-ai-
lab.github.io/Deeplnsight/) for this method with a few variations (see Table S1, Supplement
File 1 for details). Some important parameters were norm-2 normalization (log transform) [8],
t-SNE to obtain a 2D plane for gene expression data, and that CNA and mutations were
mapped to the 2D plane obtained by gene expression, as it is generally considered that gene
expression has more information compared to the other profiles. For CNN, we applied a pre-
trained ResNet-50. This transfer learning helped to achieve promising results. In order to have
faster training, default parameters were applied for all the datasets, and the obtained
performance was satisfactory. However, for Cisplatin, we did not get promising results.
Therefore, for Cisplatin, Bayesian optimization technique of hyperparameter tuning was
applied for ResNet-50. The hyperparameters that best performed over the validation set have
been used for the test set (see Table S2, Supplement File 1 for details).

Finding gene subsets through an iterative process

The number of genes in genomic or multi-omics data is typically very large, making it difficult
to put all of them into a finite image size due to fixed technology limits. In this instance,
guantized images are unavoidable, meaning that specific image pixels will carry several genes
in a single spot. This leads to another issue of selecting a gene from those batch genes (where
batch gene refers to a set of two or more genes having the same pixel location in the frame).
To address this overlapping issue up to some extent, Deeplnsight-3D can be run iteratively to
gradually select the elements. The initial iteration will identify a subset of elements that can
be utilized as input in subsequent iterations to find a smaller subset of genes or elements.

Functional annotation and interpretation of identified gene sets

The analysis described above resulted in two gene lists (one each for responder and non-
responder class) from each trained model that contained the genes identified as important
for classifying training samples into a respective category. Functional interpretation of the
recovered gene subsets was done individually, by mapping them onto metabolic and signaling
pathways as defined by KEGG database [38]. This was followed by gene set enrichment
analysis done using Fisher’s exact test with a Benjamini-Hochberg false discovery rate
correction. A complementary perspective was produced using Ingenuity Pathway Analysis
software from QIAGEN Digital Insights, which facilitates discovery of upstream/downstream
regulatory context of particular genes and interpretation of likely effects on related
mechanisms and biological processes.

Conclusions

The proposed method, Deeplnsight-3D demonstrates how data-to-image approach for
analysis of biological data can effectively incorporate different types of ‘omics data and
preserve the explicit connections between these layers by placing them in the same positions
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but in different channels of an input image. As was demonstrated in our previous work, once
converted to image form data becomes suitable for use with image-specific convolutional
neural network architectures. This study is the first to use this type of ‘omics integration and
likewise the first to apply this type of approach to the problem of personalized cancer drug
response prediction. Our results have shown that Deeplnsight-3D can outperform previously
proposed methods and can also be very powerful way to discover underlying important genes,
which can then be interpreted understand the decisions made by the classifier and also
identify key biological processes of potential interest.
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Code Availability

Deeplnsight3D software package (in Matlab), a dataset, installation instructions and user-
manual are available from the GitHub link https://github.com/alok-ai-lab/Deeplnsight3D pkg.
The example PDX_Paclitaxel dataset is also separately available from the link
http://emu.src.riken.jp/Deeplnsight/download files/datasetl.mat , note the size is 88MB.
The following links for other related packages can be accessed via http://www.alok-ai-
lab.com/tools.php and/or http://emu.src.riken.jp/.
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