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Single-particle tracking microscopy is a powerful technique
to investigate how proteins dynamically interact with their en-
vironment in live cells. However, the analysis of tracks is con-
founded by noisy molecule localization, short tracks, and rapid
transitions between different motion states, notably between im-
mobile and diffusive states. Here, we propose a probabilistic
method termed ExTrack that uses the full spatio-temporal in-
formation of tracks to extract global model parameters, to cal-
culate state probabilities at every time point, to reveal distri-
butions of state durations, and to refine the positions of bound
molecules. ExTrack works for a wide range of diffusion coef-
ficients and transition rates, even if experimental data deviate
from model assumptions. We demonstrate its capacity by apply-
ing it to slowly diffusing and rapidly transitioning bacterial en-
velope proteins. ExTrack greatly increases the regime of compu-
tationally analyzable noisy single-particle tracks. The ExTrack
package is available in ImageJ and Python.
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Introduction

Studying the motion of proteins by single-particle tracking
(SPT) allows to characterize how proteins dynamically in-
teract with their environment (1, 2). Notably, single-particle
tracking can reveal if and where proteins are diffusive or im-
mobile (3-5). This information has significantly improved
our understanding of important biological processes such as
transcription-factor binding dynamics, antibody recognition,
cytoskeletal dynamics, or intracellular transport (2, 6—13).
Molecules often transition between different motion
states. If transitions happen rarely and if trajectories are
long, different states such as immobile or diffusive states
are reliably detected from time-averaged quantities such as
the mean-squared displacement (MSD) (14-17). However,
molecules often undergo rapid transitions between different
states (5, 6, 10). Furthermore, tracks are often short as par-
ticles can bleach or diffuse out of the field of view or fo-
cal plane (17). In such situations, probabilistic methods are
better suited to determine global parameters such as diffu-
sion coefficients and transition rates (3, 7, 18-26). Some of
these methods can also predict the motion states of individ-
ual molecules at every time point (3, 7, 26, 27), which can
reveal the locations of binding sites, spatial correlations, and
complex, potentially non-Markovian dynamics (28).
Previous probabilistic methods for diffusive models
shown to correctly estimate diffusion and transition param-
eters (3, 25) are based on absolute distances between subse-

quent localizations. These methods have been developed for
situations where physical displacements are large in compar-
ison to the localization uncertainty for each molecule. How-
ever, when molecules transition rapidly between states, high
time resolution is needed, which results in small physical dis-
placements, which, in turn, make identifying different motion
states hard or impossible (Fig. 1a-c). On the contrary, the
whole track still allows the distinction of states (Fig. 1a), sim-
ply because subsequent positions of immobile or slowly dif-
fusing molecules fall in the same small area determined by lo-
calization error, while subsequent positions of fast-diffusing
molecules are nearly uncorrelated.

To account for those spatial correlations, the full se-
quence of track positions must be taken into account. This
approach has been used to characterize a single population
of diffusing molecules (29, 30). However, if molecules tran-
sition between states, this approach becomes computation-
ally demanding, because all possible sequences of single-
molecule states need to be considered. To avoid this com-
putational complexity, different mean-field approximations
(20, 21, 31-33) and machine learning approaches (34) have
been proposed. However, their performance across model pa-
rameters remains to be investigated.

Here, we propose an alternative probabilistic method to
extract diffusive motion states and transitions: We tackle the
combinatorial problem of different motion states by intro-
ducing a sliding window that maintains the most important
spatio-temporal correlations. The method is fast and accu-
rate for a large range of parameters, even if physical dis-
placements are similar to the localization error. The method
is also robust with respect to deviations between data and
model assumptions. Additionally, the method annotates the
state probabilities at the single-molecule level, refines local-
izations (33) and extracts distributions of state durations. We
demonstrate its versatility by analyzing two bacterial mem-
brane proteins that diffuse slowly and transition rapidly be-
tween immobile and diffusive states.

Results

ExTrack is a maximum-likelihood method to detect dif-
ferent diffusion states in single-molecule tracks.

We developed ExTrack, a maximum-likelihood estimation
(MLE) method that contains two main modules: A fitting
module fits a multi-state Markovian diffusion model to a
data set of noisy single-molecule tracks. This module in-
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Figure 1. ExTrack permits to assess a wide range of multi-state diffusion models. a: Example track of a molecule transitioning between immobile
and diffusive states with d; = 2 o. Arrows: observed displacements; dots: actual positions of immobile (blue) and diffusive (red) molecules. b: Con-
secutive observed distances of the track from a. c¢: Density function of observed distances of coefficiently immobile (blue) or diffusive (red) molecules
for di = 2 0. d-e: Left: Simulated two-state (d) and three-state (e) diffusion models with diffusion length and transition rates as indicated. Right: Model
parameters estimated by ExTrack (mean + standard deviation) assuming a two-state (d) or three-state (e) model (localization error o, diffusion lengths
do and di, initial immobile fraction Fy, transition rates). Dotted lines: ground truth. ExTrack settings: two-state data: 2 sub-steps, window length =
10; three-state data: no sub-steps, window length = 7. f: Heatmap of the relative errors of d1, Fp, k., and k; obtained from a two-state model fit to
two-state simulations as in d. Error: mean absolute relative errors from 10 replicates per condition. White lines indicate regions of < 10% error for
model parameters hardest to fit for ExTrack (ku, solid), voSPT and anaDDA (&, dashed, see g). g: Error on k; of vbSPT and anaDDA (same protocol
and color map as in f). See Fig S4 for errors on the other parameters.

fers global model parameters including localization error, dif-
fusion lengths, transition rates, and the initial fractions of
molecules (at the first time point of all tracks). Part of these

oped two additional modules: A position-refinement mod-
ule refines molecule positions by taking advantage of spatial
correlations between subsequent localizations, conceptually

global parameters can also be provided by the user, and lo-
calization error can even be provided for each peak (35, 36) if
desired. ExTrack is flexible in terms of the number of states
and spatial dimensions. Additionally, it can explicitly con-
sider molecules leaving the field of view, which otherwise
introduces bias (17). Based on global parameters, a single-
molecule annotation module then estimates state probabili-
ties py(7) for molecules to reside in state b at each time point
1. To characterize single-molecule tracks further, we devel-
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similar to (33). This feature allows to maintain high temporal
resolution for state transitions, while attaining high spatial
resolution for immobile molecules. A fourth module pro-
duces histograms of state durations. This module can reveal
non-Markovian behavior, even if ExTrack assumes Markov
transitions.

ExTrack is based on a Hidden Markov Model (HMM)
that approximates a continuous-time process by a discrete-
time Markov model (37). The method calculates the prob-
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ability density of observing each track given a set of global
parameters (32). In principle, this calculation requires in-
tegrating the joint probability density of all single-molecule
states, real positions, and observed positions over all possible
sequences of hidden diffusive single-molecule states and over
all possible real (physical) molecule positions (see Methods,
section A). This problem is computationally intractable for
long tracks (computational time scales as N, where n is the
number of time points and [V the number of states). To re-
duce computational time, we took advantage of the fact that
the real position at a given time step is little influenced by the
actual state a few time points away. This allows us to intro-
duce a sliding-window approximation that reduces computa-
tional time to the order of N™ 11 where m is a user-defined
window size (Methods, section A.4). We suggest m =2 —7,
depending on expected diffusion lengths.

In many HMMs it is assumed that state transitions can
only occur at the time points of the measurement (37). How-
ever, this approximation introduces a bias towards higher
fractions of fast diffusing molecules. Instead, we assume
state transitions to occur at the middle of steps (see Meth-
ods, A.2). Additionally, ExTrack can consider sub-steps to
further reduce bias at high transition rates.

ExTrack is available both as a Python library (38) and as
a TrackMate module (39) on Fiji.

Performance and comparison to alternative methods.

First, we tested the performance of the ExTrack fitting mod-
ule by applying it to computationally simulated noisy tracks
of molecules (10.000 tracks of 10 positions each, if not
stated otherwise) that transition between an immobile state
(state 0) and a slowly diffusive state (state 1). The latter is
characterized by a small diffusion length d; = 2 o, where
o is the localization error (Fig. la). The diffusion length
is the typical physical displacement along each dimension:
d1 = /2D At with Dq the diffusion coefficient and At the
time step. Here, we assume symmetric binding and unbind-
ing rates ky = kp, = 0.1 At~ Thus, on average, molecules
reside in each state for ten time steps.

The dimensionless parameter dj = d; /o can be regarded
as a signal-to-noise ratio. For a typical experiment, with
o = 20 nm and a time step of At = 20 ms, a rescaled dif-
fusion length of d} = 2 corresponds to a diffusion coefficient
of D1 = 0.04 um2.s™!, which is representative of typical
membrane proteins in vivo (40, 41).

ExTrack reliably estimates all global model parameters
(Fig. 1d) despite similar observed distances for immobile and
diffusive molecules (Fig. 1¢) and despite a low number of 10
localizations per track. Since molecules are considered at
steady state in our example, the initial fraction of immobile
molecules is given by Fy = ky/(ky + k).

Next, we simulated tracks for a three-state model, with
dy =0, di = 2 and d3 = 5, where transition rates are k; ; =
0.1 At~! for all pairs of states. Fig. le demonstrates that
ExTrack estimates global model parameters reliably. If the
data contains long enough tracks, ExTrack can also correctly
predict two immobile states of different lifetimes and their
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associated transition rates (Table S1). We will revisit more
complex data sets below.

Returning to the simpler two-state model, ExTrack is ca-
pable to predict global model parameters reliably for a large
range of model parameters (Fig. 1f). Predictions are accurate
for diffusion lengths as low as the localization error and tran-
sition rates as high as 0.5 At~! (for independent variations
of ky, and k, see Fig. S1). To account for rapid transitions, we
employed ExTrack considering two sub-steps. However, the
method predicts parameters almost equally reliably without
sub-steps (Fig. S2), while achieving improved computational
time (Fig. S3).

Next, we compared ExTrack with the two MLE-based
methods vbSPT (3) and anaDDA (42) that use absolute dis-
tances between localizations for parameter estimation. While
vbSPT uses a HMM for the likelihood estimate (3) anaDDA
is based on an analytical form of the distributions of appar-
ent diffusion coefficients from short tracks (42). Both meth-
ods are restricted to a smaller parameter range than ExTrack
(Fig. 1f-g and Fig. S4a) in the tested regime. The errors of
parameter estimation by vbSPT are largely due to systematic
bias, while the error of anaDDA is predominantly stochastic
(Fig. S5) (42). We also tested a mean-field approximation
based on track positions and considering hidden particle po-
sitions, the variational method UncertainSPT (32). We found
that UncertainSPT performs worse and takes more computa-
tional time than ExTrack, anaDDA, or vbSPT (Fig. S4b).

ExTrack is robust with respect to non-ideal motion
properties.

Single-molecule tracks in real cells often deviate from our ba-
sic model assumptions. Here, we investigated three different
types of such deviations: i) variations of diffusion coefficients
or localization precision, ii) finite track lengths due to a finite
field of view or focal depth, and iii) physical confinement:

Diffusion coefficients can show intra- or inter-track vari-
ations (21, 43, 44), for example due to local variations of
viscosity (43), and localization error can vary, for example
if molecules are out of focus. We thus simulated tracks of
a two-state model with diffusion coefficients or localization
precision drawn from a chi-squared distribution with fixed
mean and variable coefficient of variation (CV). First, we
show that ExTrack gives very accurate predictions when lo-
calization error is specified for each peak instead of being
treated as a single global fitting parameter (Fig. S6a). How-
ever, even when no prior information on localization error is
given, ExTrack reliably predicts the average model param-
eters for variations up to 30-50% (Fig. 2a), in contrast to
the distance-based methods anaDDA and vbSPT (Fig. S7).
Track-to-track variations in diffusion coefficient of similar
magnitude (up to about 50%) do also not affect predictions
of average parameters (Fig. 2b).

In situations, where the diffusion coefficient is even more
broadly distributed, ExTrack can be used assuming a three-
state model followed by aggregation of two diffusive states
(Fig. S6b). We tested this aggregation approach with simu-
lations of one immobile and five diffusive states, mimicking
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Figure 2. Robustness of ExTrack to various sources of bias. Heatmaps of relative errors on di, ky and k in case of two-state parameter fits to
two-state simulations with one immobile state and one diffusive state, for different sources of bias as a function the source of bias (Y axis) and transition
rates k. a-b: We simulated track-to-track variations of localization error o (a) or diffusion coefficient D; (b). Varied parameters followed chi-square
distributions (white graphs in b) re-scaled so the mean localization error equals 0.02 um (a) or the mean diffusion coefficient equals 0.25 um?2.s~1,
which corresponds to a diffusion length of d7 =5 (b). ¢: Membrane proteins diffuse on a cylindrical surface and leave the field of view on the sides (see
cartoon). We varied the width w of the field of view as indicated in the cartoon, while maintaining d; and o fixed. d: Cytoplasmic proteins can leave the
focal plane anywhere (see cartoon). We varied the focal depth while maintaining d; and o fixed. e: Particles confined in a symmetric cube. We varied

the box size while maintaining d and o fixed.

10 replicates per condition. If not stated otherwise, dg =0 pm, d; = 0.1 um and o = 0.02 pm. ExTrack settings: window length = 7, no sub-steps.

a broad distribution of diffusion lengths and jump distances
(Fig. S6b, Table S2). The aggregated three-state approach
reliably quantifies transitions between aggregated states and
corresponding state fractions, thus providing a practical ap-
proach to the often encountered difficulty of choosing the
right number of diffusive states.

Second, molecules can leave the field of view depend-
ing on microscopy modality and substrate geometry. For
example, cytoplasmic molecules studied by confocal or epi-
fluorescence microscopy diffuse in and out of the the focal
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plane, and proteins embedded or attached to a cylindrical
membrane (for example, in bacteria) studied by TIRF mi-
croscopy leave the illumination field (Fig. 2c-d). Thus, im-
mobile or slowly diffusing molecules are over-represented
among long tracks, which has previously been described as
"defocalization bias’ (17). We alleviate this bias by taking
track termination into account explicitly (Methods, section
A.6) similarly to previous approaches (17, 45). In both free
3D diffusion and diffusion along a cylindrical membrane,
ExTrack reliably estimates model parameters as long as the

Simon etal. | ExTrack characterizes noisy single-particle tracks
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typical dimension (focal depth or width of the field of view)
is at least twice the diffusion length (Fig. 2c-d).

Finally, we tested the ability of ExTrack to analyse tracks
of spatially confined molecules, as frequently found in mem-
brane domains or small volumes such as bacteria or intracel-
lular compartments. ExTrack performed robustly as long as
confining dimensions are at least two to four times larger than
the diffusion length (Fig. 2e).

ExTrack computes state probabilities at every time
point and refines positions.

Next, we tested the performance of the single-molecule prob-
abilistic annotation module of ExTrack, which is based on
global model parameters and annotates state probabilities for
every time point (31).

Fig. 3a-b shows tracks from the simulation of a two-state
model with an immobile and a slowly diffusive state (d* = 2).
Despite the small value of d*, motion states are reliably esti-
mated. High uncertainty is only observed at time points close
to transition times (Fig. S8a), close to track boundaries, or if
d* < 2 (Fig. 3c). To demonstrate the accuracy of the prob-
abilistic annotation, we confirmed that among all molecules
predicted to reside in the diffusive state with probability pq,
the fraction of molecules actually diffusive also equals p;
(Fig. S8b). We also found ExTrack annotations to be robust
with respect to wrongly chosen global parameters (Fig. S8c).

While previous methods often classify molecules cate-
gorically into the most likely state (3, 32, 46) state probabili-
ties allow discriminating regions of highly likely states from
regions of intrinsically high uncertainty. However, even if
categorically classifying molecules (Fig. S8d), ExTrack per-
forms better than the binary method vbSPT (Fig. S8e).

Next, we tested the capacity of ExTrack to refine po-
sitions by calculating the most likely physical position for
each time point. Fig. 3d-e demonstrates that the position-
refinement module effectively reduces the localization error
of immobile molecules by V/N, where N is the number of
localizations in the immobile segment. This feature allows
to obtain accurate positions of molecular binding sites inside
cells, while still resolving state transitions dynamics.

ExTrack computes distributions of state durations to
characterize transition kinetics beyond the Markov as-
sumption.

ExTrack provides a histogram module that generates proba-
bility distributions of state durations. Instead of considering
only the most likely set of states, ExTrack considers a large
number of potential state vectors with their corresponding
probabilities. To test the histogram module, we first simu-
lated a Markovian two-state model. The predicted diffusive
and immobile state durations are distributed exponentially, as
expected, and in agreement with the simulated data (Fig. 3f).
Therefore, any deviation from exponential decay can reveal
more complex transition behavior: As an example, we simu-
lated molecules that transition between two immobile states
and one diffusive state (Fig. 3g). The histogram of immobile
state durations then accurately reveals two sub-populations,
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even though ExTrack considers a two-state HMM model.
Our approach thus indicates the presence of a third state, as
confirmed by the exponential distributions of state durations
after fitting the data to a three-state model (Fig. 3g).

The histogram approach is also relevant when the transi-
tions are non-Markovian, for example if transition rates are
spatially dependent (28, 47) or if states have minimum du-
rations. In summary, the histogram module can help identify
hidden or non-Markovian states and thus guide model choice.

Application of ExTrack to experimental tracks of bac-
terial envelope proteins.

To test our approach on experimental data, we used
TIRF microscopy to track single green-fluorescent-protein
(monomeric super-folder-GFP) fusions to two bacterial
membrane proteins in Escherichia coli, each involved in one
of the two major pathways of cell-wall synthesis.

First, we studied the cell-wall-inserting penicillin-
binding protein PBP1b, which was previously described to
reside in immobile or diffusive states (48, 49). However, tran-
sition rates and potentially hidden states remain unknown.
When assuming a two-state model, ExTrack indeed reveals
an immobile and a diffusive fraction (Fig. 4a), with the im-
mobile fraction increasing with decreasing expression level
(Fig. 4b) as expected (49). However, distributions of state
durations obtained through the histogram module suggest the
presence of at least two immobile populations with distinct
unbinding rates (Fig. 4c). Since applying ExTrack assuming
a three-state model revealed one immobile and two diffusive
states (rather than two immobile states, Fig. S10), we also ap-
plied ExTrack with a four-state model (Fig. 4d-e, Fig. S11).
The four-state model confirmed two diffusive states and two
immobile states: among the immobile states we found a long-
lived state (lifetime of around 0.5 s) that is highly dependent
on expression level (Fig. 4e), likely reflecting enzymatically
active PBP1b, and a short-lived state with a lifetime of about
50 ms, likely reflecting non-specific associations with the cell
wall. Thus, PBP1b displays rapid transitions between at least
four different states.

Next, we investigated the motion of RodZ, a trans-
membrane protein that physically links cytoplasmic MreB-
actin filaments to a multi-enzyme complex that inserts new
peptidoglycan while continuously moving around the cell cir-
cumference over minutes (50-52). Here, we studied the mo-
tion of GFP-RodZ on short time scales of seconds, where
continuously moving complexes appear as immobile. As-
suming a two-state model, the fitting module reveals that
70% of RodZ molecules are immobile (Fig. S13a-c), with
a lifetime of about 0.7 s. This timescale is much shorter
than the minute-long lifetime of the rod complex (13, 48, 50)
demonstrating that a majority of immobile RodZ molecules
is not stably associated. Instead, these molecules might
transiently bind the MreB-actin cytoskeleton. Interestingly,
RodZ molecules seem to often unbind and rebind in very
close vicinity from the initial binding site (Fig. 4f, Fig. S14).
Such behavior would be expected if RodZ could bind any-
where along extended MreB filaments, since filaments con-
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Figure 3. ExTrack annotates and refines single-molecule positions and extracts state-duration distributions. a-b: Example tracks from simu-
lations of immobile and diffusive (d7 = 2) molecules with symmetric transition rates of 0.1 At~ with short tracks of 10 positions (a) or long tracks
of 25 positions (b). Top: real positions with states in colors, bottom: noisy positions with probabilities (color bar), right: state probabilities along time.
c: Distribution of the probability to be diffusive from similar simulations than in a for different d}. d-e: Position refinement module: Examples of 2-state
track (f) and 3-state track (e). From left to right: Observed track and associated states probabilities; refined positions (colored) and observed positions
in gray; probability density map of the consecutive positions. Top right: State probabilities as a function of time. Bottom right: standard deviation of the
probability density of refined positions. Simulation parameters: dfj =0, dj =5, ko1 = k10 = 0.1 At~ (c); d;=0,dy =1.5d5=5,all k=0.05 A1
(d). g: Histogram module: state-duration histograms of tracks of at least 21 positions for the indicated 2-state model. Dashed lines: distributions from
ground truth. h: Same as e for 3-state tracks with 2 immobile states. Left: ExTrack fit assuming a 2-state model; Right: ExTrack fit assuming a 3-state

model.

strain diffusion in two dimensions (Fig. 4g). To test whether
proximal rebinding occurs more often than randomly, we
compared tracks that were initially bound, then diffusive for 4
steps, and then either rebound or remained diffusive (Fig. 4g).
Short distances were indeed over-represented among rebind-
ing molecules compared to molecules that remained diffusive
(Fig. 4h). This behavior contrasts with PBP1b, which appears
to bind to random sites (Fig. S13d). The annotation mod-
ule of ExTrack thus allows us to identify spatial patterns of
molecule binding that can be responsible for non-Markovian

binding (28).
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Discussion

In summary, ExTrack provides a suite of robust tools to char-
acterize single-particle tracks, extracting global model pa-
rameters, state probabilities at every time point, refined po-
sitions, and histograms of state durations, even if tracks are
noisy, transitions are rapid, and tracks deviate from idealized
model assumptions.

In tracking experiments, a major challenge is to iden-
tify the relevant number of immobile and diffusive states.
Multiple previous methods obtain this number automatically
(3, 19, 24, 33). However, at least some of these approaches
tends to over-fit the data (25, 33). In more recent approaches,

Simon etal. | ExTrack characterizes noisy single-particle tracks
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Figure 4. Characteristing PBP1b and RodZ motion. a-e: Analysis of GFP-PBP1b tracks (time step 25 ms) using ExTrack with two (a-c) or four states
(d,e). a: GFP-PBP1b track (130% expression level). Color bar: Probability of diffusion. b: Diffusion lengths and fractions from two-state parameter
fitting. (3 replicates, each with > 17.000 tracks of at least 3 positions, with average lifetimes from 6.3 to 7.5 positions). ¢: State-duration histograms of
PBP1b tracks of at least 21 positions (> 600 tracks per replicate with average lifetimes from 28.5 to 32 positions), using global parameters from fitting a
two-state model (a and Fig S9). d: Example PBP1b track (from 130% expression level) with associated state probabilities along time (first position on the
left). e: Fractions from 4-state parameter fitting to the same datasets used in a. f-h: Analysis of GFP-RodZ molecules: f: RodZ tracks with overlapping
binding sites. Color bar: Probability of diffusion . g: Cartoon illustrating rebinding of diffusive RodZ molecule to extended MreB-actin filament in two
dimensions. Blue solid line indicates distance between initial position and position after four diffusive steps for molecules rebinding (left) or continuing
diffusion (right). h: Histograms of distances between initial bound site and the site after 4 diffusive steps. Tracks rebind in closer vicinity to the initial
binding site 33% more often than expected in case of random motion. Mann-Whitney U test: p-value = 1.6e-6. See Methods section H for details.

Error bars and shaded regions: standard deviations between replicates.

a high number of states is fixed followed by aggregation into
one aggregated immobile state and one aggregated diffusive
state, based on a user-defined diffusion-coefficient threshold
(53). Here, we propose an alternative and iterative approach
to complex tracking data: Data is initially fit to a coarse-
grained two- or three-state model that can subsequently be
expanded depending on desired variables and fitting results.
For example, if one is predominantly interested in the ex-
change between immobile and diffusive molecules but not in
the presence of multiple diffusive states, we propose a coarse-
grained two-state or an aggregated three-state model that reli-
ably predicts immobile-diffusive transitions, even if diffusion
coefficient is variable or if molecules transition between dif-
ferent diffusive states (Fig. 2b, Fig. S6b). At the same time,
ExTrack can also distinguish multiple diffusive states explic-
itly (Fig. 1e). Additionally, the distribution of immobile state
durations can reveal the presence of multiple immobile frac-
tions, which can then motivate the increase of the number of
states.

The capacity of ExTrack to work with noisy single-

Simon etal. | ExTrack characterizes noisy single-particle tracks

molecule tracks is based on the explicit consideration of all
sequences of states within a sliding window when computing
the probabillity of every track, while states outside the slid-
ing window are taken into account through averaging to limit
computational time. In the future, this versatile principle can
be extended to capture different and more complex dynamics,
for example by considering persistent motion (6, 7), anoma-
lous diffusion (54) and spatial maps of diffusion coefficients
or states (44).
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Methods

In the following sections we will describe the ExTrack
method with its four different modules: the fitting module
(Section A), the annotation module (Section B), the position-
refinement module (Section C) and the histogram module
(Section D). Subsequently, we will describe the generation
of computationally simulated datasets (F), the interpretation
of results by vbSPT (Section G), and the experimental meth-
ods (Sections H to J).

A. ExTrack Fitting Module.

A.1. Introduction. ExTrack fits a multi-state diffusion model
to noisy single-particle tracking data. We assume that tracks
come about according to a continuous-time Markov model,
where molecules transition randomly between N diffusive
states at rates k; ;. As long as molecules reside in state
i, they undergo Brownian diffusion with diffusion coeffi-
cient D;. Additionally, observed positions ¢; are displaced
from real positions 7; according to a Gaussian distribution
fo(ci —r;), where the standard deviation equals the local-
ization error o. Here and in the following, f;(y) generally
denotes a Gaussian distribution of standard deviation x. The
N -state diffusion model is thus characterized by the parame-
ters 0 = (0, D;, F, k; ;) forall states ¢, j € 1,..., N. Here, F}
are the fractions of molecules residing in state 7 at the first po-
sition of the track. Later, we will introduce additional param-
eters for additional spatial dimensions and for the treatment
of non-constant track lengths.

Parameters are estimated based on a maximum likelihood
estimate approach (MLE), which, in turn, is based on accu-
rately computing fc(C'|6), the probability density of observ-
ing a track of positions C' = (¢1,¢2,...,¢,). The likelihood
of the parameters given the data L(6 | all C') then equals the
product of fc(C | 6) for all tracks C. By maximizing this
function, we can find 6*, the optimal estimator of the under-
lying parameters. Optimal parameters 6* are found by MLE
using the Powell method. ExTrack also allows to fix indi-
vidual or multiple parameters. This generally speeds up the
fitting process and reduces variations in the remaining param-
eters. In this realm, we also found that fixing the localization
error to a slightly wrong value has little impact on the fit-
ting of the other parameters as long as it does not deviate by
more than about 20 — 30%. Here and in the following we
treat localization error as a model parameter, but the user can
also provide spot-specific localization errors based on photon
counts (35).

In the following sections, we will first compute fc. This
calculation is presented in one spatial dimension (1D). How-
ever, the model is easily extendable to 2D or 3D due to the
independence of the displacements and localization error in
each axis, as we will see below.

Simon etal. | ExTrack characterizes noisy single-particle tracks

A.2. Parameter fitting based on the probability distribution
of observed positions. Tracks are generally described by
their sequence of observed positions C' = (c1,¢2,...,¢p).
Those positions come about based on the sequence of phys-
ical molecule positions R = (r1,72,...,7,), which, in turn,
are the stochastic result of the sequence of diffusive states
B = (b1,ba,....by).

For a given track C', the probability density function f¢
can be calculated from fcpgr, which is the joint probabil-
ity density function of observed positions C' = (c1,...,¢n),
real (physical) molecule positions R=(r1,...,ry,), and time-
dependent diffusion states B = (by,...,by,), by integration
over all possible values of R and by summation over all pos-
sible values of B:

fe(C18) chg C,B16)

:Z/ fear(C,B,R|0)dR
B R

where we defined the joint probability density function
fes(C,B|0) of having C and B given . The joint probabil-
ity density fcpr can be decomposed into a product of three
terms: the a priori probability of B, the probability density of
the physical displacements frig, and the probability density
of the distances between real position and observed positions
fcir, respectively:

fC,B,R(CvB7R|9) =

@)

P(B|0) fris(R | B,0) fcr(C|R,0).
2

Here, the a priori probability of the sequence of states
P(B|6), which we refer to as 3 for brevity, results from the
Markovian processes of transitioning between states (55). 3
is obtained as

n—1
) = Fy, H Dby b1 s 3)

=1

3=P(B0

where Fy,, indicates the fraction of molecules in state by at
time point 1, and where py, p,,, indicates the probability to
transition from state b; at time point 7 to b;41 at time point
1+ 1. The transition probabilities can be computed from the
continuous-time transition rates (see Subsection A.5). The
initial fraction F},, can either be an independent parameter
or constrained by transition rates at steady state (for a two-
state model, Fy = k10/(k10 + ko01)). fri is the probability
density function of real positions R given the sequence of
states B and 6. fcr is the probability density function of the
sequence of observed positions C' given the real positions R
and 6.

fcir can be expressed as a product of Gaussian distribu-
tions with standard deviation equal to o

Hfo‘ Ci — ’L .

Next, we express frip(R | Bﬁ) as a product of Gaus-
sians:

fer(C|R,6) =

n—1

fris(R|B,9) H f5,(ris1 — 1) €)]
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Here, [ is the length of the space of real positions. Without
any prior on R, we consider the limit [ — co. However, since
[ only appears as a constant prefactor, we can ignore it in the
calculation of the log likelihood. According to previous sug-
gestions, the width of the distribution d; should equal the dif-
fusion length corresponding to the current state b; (37). How-
ever, this discretization of the continuous-time Markov pro-
cess introduces a bias towards diffusive motion. This is easily
illustrated in case of an immobile-diffusive model: There, a
particle initially immobile starts moving before the first mea-
sured time point where the particle is observed to be diffusive.
Similarly, it stops moving after the last time point, where it
is observed to be diffusive. Then, a model assuming diffu-
sion to only be dependent on the current hidden state will
overestimate the time spent in diffusive state by up to half a
step in case of high diffusion. Logically, this results in un-
derestimating the binding rate (Fig. S4c), immobile fraction
and diffusion length when transitions are frequent. To alle-
viate this issue, we assume transitions to occur at the middle
of two time points. The standard deviation of the probability
density function f5, then equally depends on states at each of
the two subsequent time points, with

0; = <db2i+db2i+1)/2'

This assumption effectively decreases the bias inherent to
the discrete approximation of continuous tracks (Fig. S4c).
Later, we will also introduce sub-steps between time points
that improve the approximation (see Subsection A.5).

Taking advantage of the expressions of fcir ¢ and frip,6.
Equation (2) becomes

-1
ﬁ n
fepr(C,B,R|0) = 7 I f5.(riss =7) fo(ri—ci) | x
i=1
fo(rn—cn).
Inserting this expression into Equation (1), we then in-
tegrate step-wise over all real positions R = (r,...,7p).

This allows us to use the recusion principle (30) to com-
pute fcp(C,B | 0): The first step consists in integrating
the two Gaussian distributions dependent on r; (displace-
ment and localization error terms). This integration results
in a Gaussian distribution fs, (r2 — ¢1), of standard devia-

tion s1 =V 02+ 91 2 (constituting a convolution of two inde-
pendent random variables with Gaussian distributions). For
each of the next integrals over r;, we integrate the product
of three Gaussian distributions (for the random displacement
ri+1 — T, the localization error ; — ¢;, and the previous term
of the distribution f, ;). The result of this integration can be
expressed by a scalar K; times a Gaussian distribution f,,
according to

- fo,(risn —1i) fo(ri—ci) fs;q (ri— i) dry -
= Ki* fs;(riss — 1) ,

where f, is a Gaussian distribution of standard deviation s;
and mean 0. The standard deviation s; and mean pu; can be

10 | bioRxiv

expressed depending on s;-1 and p;.1:

2 92 £2.2 2.2
o 0702 +0;785 1 + 02574
Si = 2 2
(e

_ mino®Feist
’ 02452, (6)

o )2
exp <_ (2(11726::2?1)))

27 (02 +s$_1)

K=

The recursion process can then be summarized by the se-
quences s1 : Sp.1 and g : sp,-1 which depends on C,B and
0. At the last step (integration over 7,), we integrate the
product of the two remaining Gaussian distributions: the pre-
vious term fs, (rn, — pin-1) and the localization error term
fo(cn —rn), as described for the first step to compute the
density function fcp(C,B|0).

Finally, we compute the value of the probability den-
sity function of the observed track fc(C' | 6) as the sum of
fes(C, B|6) over all possible B.

A.3. Extension to 2D and 3D.Since diffusive motion is
independent in each spatial dimension, the principle de-
scribed above for one dimension can simply be extended
to two or three dimensions by multiplication of indepen-
dent distribution functions. For example, in 2D, the func-
tion fcp(C,B | 6) is simply replaced by the product
fen(Cx,B|0)fcp(Cy, B10).

In principle each axis can have a different localization
error and different diffusion lengths for each state. This is
especially true for localization in the direction of the optical
axis compared to the lateral axes. ExTrack therefore allows
to have independent localization errors for each axis.

Alternatively, the user can also provide localization er-
ror for each peak, for example using the Cramer-Rao lower
bound estimate (32, 56). Since these and other estimators
might underestimate the true localization error, peak-wise lo-
calization estimates can also be implemented as scaling fac-
tors that are then assumed to be linearly related to the true
localization error estimated by ExTrack.

A.4. Using a window to reduce calculation time. This
method has a number of operations which initially scales with
N™, where N the number of states and n the number of time
points. This means the calculation time can become unre-
alistically long when analysing long tracks. To alleviate this
issue we developed a window method to allow it to work with
longer tracks in a reasonable time scaling with nN™+1 (m
the window length of minimal value 1). For computational
reasons, we advise to use a window length of 7 for 2-state
models, 5 for 3-state models and 3 or 4 for more states.
Here, we briefly motivate and describe the implementa-
tion of the window method: During the recurrence process
described above, Equations (5) and (6), fs, can be regarded
as a density probability function of the position ;11 know-
ing the previous observed positions ¢y, ..., c; and states from
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positions 1 to ¢+ 1. We realized that the current localiza-
tion of a particle is very little affected by its state m steps ago
when m > 1. Thus, for a given track, two sequences of states
varying only for their first state should give very similar f;,.
The values i, and s,, of these normal distributions should
also be similar.

For example, if the track has been diffusive during at least
one of the positions from steps ¢ —m to i, the current ob-
served position ¢; is much more informative for the real posi-
tion ;41 than the first observed position c;. If the molecule
has been immobile from position ¢ —m to 7, all observed po-
sitions ¢;_, to ¢; are equally informative. However, even the
past 5-7 positions are likely sufficient to predict the distribu-
tion fg,.

As we saw in Subsection A.2, for a given sequence of
states B, computing fcg(C, B | 0) is nothing but computing
three sequences §1:5n, p41:44n and K7: K, until the last step
where we simply have to compute fs, (cy,).

In the recursion process, in case of a two-state model, we
start by computing four values each for so, o and Ko that
we will differentiate as $a (5, 6,)> 12, (by,b5) a0 K2 (b; 5y)s
corresponding to the transition between the state by at time
point 1 and state by at time point 2. For this recursion step,
the four values of ss, uo and Ko arise from the follow-
ing four combinations of states (0,0), (0,1), (1,0), (1,1).
At ¢ = 3, we get 8 possible state combinations, at ¢ = 4
we get 16, etc. At step m, any sequence of states has
a characteristic iy, (by by, .byi1)s Sm,(by,ba,....bmat) A0
K (b1,bs,...,bm41)- In order to limit the number of consid-
ered sequences to 2, we can merge Ly, (0,bs,...,by 1) a0d
Fony(1,bg,....byq) (O AN AVETAZE Ly (x by, ... by ) (SaME fOr
52)):

o, (b2, bimg1) = @m,(0,b2,..,bm41) Hm,(0,b2,....bm 1)
HFm,(Lbo,csbm1) Bmy (1,2, bing1) 0
s =« s2
m,(%,b2,00sbmr1) = M,y (0,b2,.,bmt1) “m,(0,ba,...,bmy1)
2
T, (1,b2,..,bm 1) Sm,(1,b2,...,bm 1)

sz(*7b27-~7b'm+1) = K”L7(07b27---7b7rL+1) + K"L7(17b21-~-7an+1) ?

where « are the averaging weights according to the joint
probability density

fC,B((Cl7CQa--'7cm)a(b17b25"'7bm+1) |0)

of observed positions cy,...,c,, and states by,...,by41.
For brevity we express this probabillity density as
P (b1,b2,....bm 1) 1 the following expression for o

P (0,62, by 1))
P (0,62, 6m11)) T P, (1,b2,0bmt1))
Pm,(17b27~~7bm+1))

Om,(0,b2,...,bm+1) —

A, (1,b2,. sbmr1) — :
P (0,62, 6m11)) T P, (1,62, bm 1))
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In this way, two sequences of states are merged (for
example, the sequences starting with (0,0,0,1,1,1) and
(1,0,0,1,1,1)). We thus reduce the number of fi;y,, s?n and
K,, from 2™+ to 2™ By recursion of this principle over all
steps from m to n — 1 we limit the computation time to 21
for a two-state model, or, more generally, to N m+1 fora N-
state model. In the following Subsection A.5, we will intro-
duce sub-steps between the discrete observation time points.
Our approach is easily generalized to sub-steps by consider-
ing state vectors.

Applying our approach with a window length m =5—7,
we observed similar functional dependencies of the likeli-
hood on the model parameters 6, allowing us to drastically
speed up our method without loosing accuracy.

A.5. Approximating continuous transitions with a discrete
model of one or multiple sub-steps per time frame. ExTrack
fits data of a continuous-time process to a discrete-time
Markov model. Without the introduction of sub-steps,
ExTrack assumes that transitions can only happen once per
time step. It then estimates transition probabilities per time
step, which must be translated into transition rates k; ; that
describe the continuous-time Markov model. For continuous-
time Markov processes, transition probabilities can be con-
verted into rates according to a simple relationship P =
YAt where P is the transition probability matrix, which
contains the transition probabilities p; ; from state 7 to j, and
where G is the generator matrix with elements G; ; = k; ;
for i # j and G;; = —Zi# ki ;j (57). Here, the transition
probabilities p; ; allow the molecule to transition from state
i to 7 via any number of intermediate states.

However, the implementation of this relation into
ExTrack leads to a systematic overestimation of transition
rates. The reason for this overestimation is found in our ap-
proximate representation of the distribution of physical dis-
placements between time points (Equation (4)) , which is
based on the false assumption that transitions can only occur
at the middle of steps, contrary to the continuous-time nature
of the underlying physical process. We found that this error
could be compensated for by using a slightly different ap-
proximation for state transitions p; j = 1 —exp(—k; ;j - At).
In the limit of small k; ;At, this approximation asymptot-
ically equals the exact expression P = e“4t which also
asymptotically equals p; ; = k; jAt. We found that ExTrack
using the approximate relationship performs better in the case
of two-state and three-state models for a large range of tran-
sition rates. However, ExTrack (python version) also allows
using the generator-matrix based relationship, if the user de-
sires.

When transition rates are high (when k - At > 0.4 for the
two-state model), our method allows to subdivide time steps
into a number of w sub-steps (where u = 2 corresponds to
dividing each step into two). This allows ExTrack to ac-
count for multiple transitions and transition times that are dif-
ferent from the midpoints of time steps At. To take states
at sub-steps into account, we introduce a new state vec-
tor B = (b1,1,b1,2,.-.b1,u,---,bn-1,u,bn,1)) and new phys-
ical positions, that require integration according to Equa-

bioRxiv | 11


https://doi.org/10.1101/2022.07.13.499913
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.13.499913; this version posted July 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

tion (1). This integration is straight-forward: The probability
B, (Equation (2)) is simply replaced by the product of all state
transitions between subsequent sub-positions. The probabil-
ity distribution of real positions (Equation (4)), is replaced
by the corresponding distribution of sub-positions. Since
the physical displacement during At is the sum of Gaus-
sian random variables (the sub-displacements), the functional
form of Equation (4) (a product of n — 1 Gaussians) can
be maintained while replacing the standard deviations d; =
\/d2+dz+1 by §; =
responding diffusion lengths for the sub-steps.

The use of a window length m will allow the user to do
accurate computations for m sub-steps. Thus, at a given m,
the number of observed positions ¢ considered within the
window equals floor(m/u). To consider the same amount
of observed positions per window, one thus needs to increase
the window length. A trade-off between number of states,
window length, and number of sub-steps has to be found (see
Subsection E).

\/ k107 ./ u, Where §; , are the cor-

A.6. Extension of ExTrack to consider a finite field of
view. Tracks can terminate due to different reasons: photo-
bleaching, diffusive molecules leaving the field of view, or
molecules transiently not being detected. The process of
leaving the field of view requires diffusive motion. Obser-
vation of long-lived molecules within a finite field of view
can thus show a bias towards non-moving or slowly moving
molecules. An extension of ExTrack can take this bias into
account by explicitly modeling the probability of track termi-
nation. We consider two contributions to track termination:
first, a constant termination probability pg, which is inde-
pendently of the motion state. This probability summarizes
photobleaching and the probability to not detect a molecule,
for example because of low signal to noise ratio; second, a
probability of leaving the field of view (or observation vol-
ume) py, that depends on the diffusion length and the dimen-
sions of the field of view. In case of a cytoplasmic particle
tracked through epi-fluorescence or confocal microscopy, the
monitored length is the depth of field (or focal depth). In case
of a membrane protein moving around a cylindrical cell im-
aged in TIRF microscopy, the monitored length is a fraction
of the cell diameter (Fig. 2c-d).

In principle, p;, can be calculated depending on the po-
sition of the molecule with respect to the boundaries of the
field of view. However, we decided to implement an approx-
imate form of pr,(d;) that does not require this information
and instead considers the position of the observed molecule
as random inside the field of view. Within this approxima-
tion, the probability of leaving the field of view is given by

l—x —x
pL(5i)=1—/ F( >—F<> dz,
z€[0,]] di i

where F'(x) is the cumulative density function of the standard
normal law.

We thus modify fcpr(C,B,R | 6) in Equation (2) by
multiplication of the left-hand terms with the probability of
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observing a track of n positions, which is given by
(1=pr(6:)""

B. Annotation module.

The annotation module allows to compute the probabilities to
be in any state at any time point of all tracks. According to
conditional probabilities and results from Section A we can
compute the probability of the sequences of states having the
parameters 6 for each track C:

(1—pr)" px + (1 —pr)pL(dn)] -

fCB (C,B|0)

P(B|C,0) = e(C10)

For a given track C, at each time point ¢, the probability of the
current state b; to be in state s € {0,1} can then be computed
by summing over all B with b; = s:

fCB(CBW)

P(bi:8|09 (C|0>

ZPb =s|B,f)r=

The annotation module can also take advantage of the
window approximation decribed in Subsection A.4 to reduce
computational time and make the computation tractable in
case of long tracks.

Since the annotation module does not require parameter
fitting and thus many iterations, the window length can be
chosen larger than for the fitting module. A large window
length is also more important for precise state prediction than
for accurate global parameter fitting.

C. Position-refinement module.

ExTrack can improve the estimation of molecule positions
based on a track, in particular if molecules move slowly. Po-
sitions can be estimated by computing the probability density
function of each real positions r; (32). To do so, we compute
fc(C'| 9) without integrating at position 7;. This results in
a probability density function f(r; | C,0) (Fig. 3d-e) which
is a sum of Gaussian functions for each sequence of states.
While this probability density can be obtained explicitly, it
is much faster to obtain the expected value and standard de-
viation of the density function. Those values are computed
by averaging the parameters of the Gaussian distributions as-
sociated with each sequence of states weighted by their re-
spective probability. Like for the fitting method, the window
method is applied (Subsection A.4).

D. Histogram module.

Computing state-duration histograms allows to assess non-
Markovian transition behaviors or to reveal multiple hidden
states with different transition rates. For a given state, the re-
sulting rate is then the sum of track-termination rate (bleach-
ing, track termination due to low SNR, leaving the focal plan)
and the transition rates to other states. If the track-termination
rate is low, the histogram allows to identify one or multiple
transition rates (see, for example, Fig. 3f-g). Picking only
long tracks can help removing the contribution from bleach-

ing.
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ExTrack estimates the histograms hg for each state s:

N . fen(C.B10)
hali) = 323 0611 B2 T

with ¢(4, s| B) the number of sequences of i consecutive time
points of state s in the sequence of states B. As long tracks
have to be assessed and all states of B kept in memory, the
window method cannot be applied, we then only keep the
most likely B (1000 in Fig. 3f-e).

E. Implementation and computational time.

ExTrack is available as a Python (Python 3) package (38).
A version with the core functionality is also available as a
TrackMate module (39) on Fiji. The TrackMate implementa-
tion can fit data to a two-state model and annotate states ac-
cording to the results from the fit or manually chosen param-
eters. It then allows interactive visualization of tracks colored
with state probabilities for each displacement. We allow par-
allelization with GPU (cupy library) (python version only) or
multiple CPUs (both python and TrackMate versions).

As mentioned in Subection A.5, a trade-off between num-
ber of states [NV, window length m, and the number of sub-
steps u has to be found for reasonable computational time.
When running the ExTrack fitting module on a computer with
Intel® Core™ i7-9700 processor (10 000 tracks of 10 posi-
tions) for 200 iterations using a two-state model, a window
length of m = 2, and no sub-step (v = 1) the analysis can be
as fast as 20 seconds. For the dependency of computational
time on numbers of states, sub-steps, and window length see
Fig. S3.

To save computational time, we recommend to initially
run ExTrack with low values of u and m and then to in-
crease u if model predictions suggest high transition rates or
m for low predicted diffusion lengths. Specifically, we sug-
gest to make the following adjustments: If localization error
is negligible, for instance if there is no immobile state and all
d; > 20, window length m can be set to its minimal value
of 1. Similarly, m = 1 should perform alright when there is
one immobile state and all diffusive states have large d; > 5).
In such cases, multiple sub-steps can be used at little com-
putational cost. More generally, if predicted transition rates
are larger than 0.4 At~! but localization error is not negligi-
ble, we suggest increasing w to 2 for most accurate estimates
(Fig. S2 vs Fig. 1f). In the hardest cases of small d* < 2 and
high transition rates (2 0.4), we recommend using u = 2 and
m > 8.

F. Computational simulation of tracks.

To test the predictive power of the different methods, we
conducted overdamped Brownian Dynamics simulations of
tracks in two or three spatial dimensions with molecules tran-
sitioning randomly between the different states at discrete
time points. To mimic a continuous-time Markov model for
state transitions we used a small time step 7 = A¢/50 <
1/k; ;, where k; ; are the transition rates. Brownian Dynam-
ics simulations were carried out by randomly drawing phys-
ical displacements in each spatial dimension from Gaussian
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distributions of standard deviation /2 D dt, where D is the
diffusion coefficient corresponding to the diffusive state. An
additional Gaussian distributed noise of standard deviation o
was added to simulate localization uncertainty.

Except if specified otherwise, we simulated 10 000 tracks
of 10 time points with localization error o = 0.02 um, At =
0.06 s, dg = 0 um, d; = 0.1 um, bound fraction Fy = 0.5,
transition fractions per steps kg1 = k19 = 0.1 At~—1, with
infinite field of view and perfectly stroboscopic tracks. We
also assumed that molecules reached steady state, that is,
Fy ko1 = (1—Fp) - k1o-

To test the robustness of ExTrack and the other meth-
ods to more complex behaviors we also simulated tracks with
variations of localization error or diffusion coefficients, a fi-
nite field of view or physical confinement as follows (see
Fig. 2 for illustrations):

Track-to-track variations of localization error (or diffu-
sion coefficients) were simulated with localization error ¢ (or
diffusion coefficient D) following x? distributions of given
coefficients of variation and mean 0.02um (or 0.25 pm?.s~ 1
for D), At = 0.02 s. Models with multiple diffusion states
were simulated as continuous-time transitions with model pa-
rameters detailed in Table S2.

To simulate a finite field of view in two dimensions, we
simulated tracks in a box that is infinite in one spatial dimen-
sion (y) and finite in the other dimension (x) with size 31,
where [ is the size of the field of view. All tracks or part of
tracks that fall into the field of view are considered for further
analysis. A single particle can thus result in several tracks if
leaving the field of view and coming back. A finite field of
view in three spatial dimensions was simulated analogously:
The simulation box is infinite in x- and y-directions, while
the box has periodic boundary conditions in the z-direction.

To simulate physical confinement, we considered tracks
to move within a square area of indicated side length, using
reflecting boundary conditions.

G. Comparison to vbSPT.

To compare our results with vbSPT we fixed the number of
states to two so both algorithms performed exactly the same
task. vbSPT does not consider localization error but a metric
that we will call u. In case of pure diffusion, v = D - At but
in case of immobile particle with localization error u = o2 /2
in principle. We can thus infer ¢ and D according to o =

V2 ug and D = (u1 —ug)/At.

H. Computational analysis of molecule rebinding.

To assess the propensity of RodZ molecules to rebind in close
vicinity of their initial binding site, we first annotated tracks
using parameters obtained from the ExTrack fitting module.
We considered the 16 first time points of tracks of at least
16 time points. Among tracks labeled as initially immobile
for at least 3 time points (Pimmobile > 0.5) then diffusive for
4 time points (with at least three time point of probability
Ddiffusive > 0.7), we grouped tracks into two subgroups, the
ones rebinding right after and the ones, which continue to dif-
fuse for at least 1 more time point. The histograms represent
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the distributions of distances between initially bound posi-
tion and the position at the 4th time point after unbinding. If
molecules were to rebind at random locations, the distribu-
tions of the distribution of distances for rebinding particles
should be the as for particles, which continue to diffuse. Nei-
ther PBP1b (Fig. S13d) nor tracks obtained from immobile
fluorescent beads (of similar signal-to-noise ratio) showed
any significant rebinding, which excludes wrong conclusions
on RodZ data due to miss-annotations.

I. Cell cultures.

We used the IPTG-inducible GFP-RodZ strain
FB60(iFB273) (ArodZ, Plac:: gfp-rodZ) by (58) and
the GFP-PBPlb-containing strain AV51 (msfgfp-mrcB,
AmrcA) (49). Cells were grown overnight at 37°C (shaking)
in LB medium and then washed and diluted at least 1:1000
in M63 minimal medium (Miller, 1972) supplemented with
0.1% casamino acids, thiamine (5 X 10—° %), glucose
(0.2%) and MgSO4 (1 mM) and grown for 6 hours to early
exponential phase (maximum OD600 of 0.1) at 30°C (shak-
ing). Cells were then spread on an agar pad made from the
same M63 media as described above. RodZ production was
induced with 100 uM IPTG. In the strain AV51, CRISPR
repression of msfGFP-PBP1b is induced with 100 ng/ml of
anhydro-tetracycline (Acros Organics). When necessary,
strains were supplemented with kanamycine (50 pg/ml) or
carbenicillin (100 pg/ml) during overnight cultures. Biologi-
cal replicates result from independent cultures starting from
separate colonies.

J. Single-particle tracking of msfGFP-PBP1b and

GFP-RodZ proteins.
Cells were all positioned in the same focal plan in between
an agar pad (1%) and a coverslip to be imaged in TIRF mi-
croscopy. Coverslips were cleaned by 60 min sonication in
saturated KOH solution followed by two washing steps (15
min sonication in milli-Q water). Single-particle tracking of
GFP-PBP1b was performed with a custom-designed fluores-
cence microscope based on an ASI Rapid Automated Modu-
lar Microscope System, equipped with a 100x TIRF objective
(Apo TIRF, 100x, NA 1.49, Nikon), Coherent Sapphire 488-
200 laser, and a dichroic beamsplitter (Di03-R488/561-t3-25
x 36, Semrock). Excitation was controlled with an acousto-
optic tunable filter (AA Optoelectronics) through an Arduino
(15 ms light exposure per frame). Images were acquired us-
ing an Andor iXon Ultra EMCCD camera with an effective
pixel size of 130 nm. Image acquisition was supervised with
MicroManager.

Data analysis with ExTrack was restricted to tracks with
at least 3 position. For long tracks, only the first 50 positions
were analyzed.
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Supplementary Figure 1. ExTrack parameter fits for independently varied binding and unbding rates. 3D map of the mean error on extracted

parameters from simulations similar to those in Fig. 1, of two-state models with one immobile and one diffusive state as a function of diffusion length d7,

unbinding rate k, and binding rate ky,. Errors are obtained from 5 replicates. Errors are indicated as absolute or relative errors, as indicated. ExTrack
settings: no sub-steps, window length = 7.
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Supplementary Figure 2. ExTrack parameter fits for a symmetric two-state model without sub-steps. Heat map of mean relative error on extracted
parameters from the same simulations as in Fig. 1, but inferred with no sub-steps. ExTrack settings: no sub-steps, window length = 10.
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Supplementary Figure 3. Computational time of ExTrack depending on sub-steps, window length and number of states. Computational time
of ExTrack fitting module for 200 iterations (typical number of iterations needed for the fit of a two-state model) depending on the window length m
from 1 to 10: Without sub-steps or with 2 sub-steps for tracks of 10 positions or 100 positions (a) or depending on the number of states N (b). with
multiprocessing, 7 cores (see Methods section E).
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Supplementary Figure 4. Error on two-state model parameters for different methods. a: Heat maps of mean relative error on extracted parameters
from the same two-state simulations as in Fig. 1 for voSPT and anaDDA. b-c: Plots of estimated transition rates as a function of the actual rates for
a subset of the simulations in a. b: Results from UncertainSPT for different diffusion lengths. c¢: Results from a modified version of Extrack with a
time-discretization approach (labeled Classical), which assumes transitions to occur at time points of molecule observations, and with our approach
(labeled ExTrack), which assumes transitions to occur at the middle of each time steps (see Methods section A.2). Tracks simulated with dfj = 0, d7 = 5.
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Supplementary Figure 5. Identifying the sources of error of the different methods. Error, standard deviation and bias of parameters predicted
by ExTrack (a), vbSPT (b) and anaDDA (c¢) depending on the number of tracks in case of two-state tracks (5 positions per track, ky = kp = 0.1 At—1,
di = 0and d} = 5). The error (RMSE) can be decomposed into bias (absolute value of the difference between the average estimate from all replicates

and true parameter) and standard deviation (std) of the estimated parameters. Error = v/bias? + std2. Obtained from 100 replicates. Here, all estimated
values are relative to their true value. ExTrack settings: number of sub-steps = 2, window length = 10.
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Supplementary Figure 6. Robustness of ExTrack to biases due to distributions of diffusion coefficients or localization error. a: Predictions
of d1, ky and ky in case of two-state parameter fits to two-state simulations with one immobile state and one diffusive state. Position at each time
point show variable localization errors o. Peak-wise localization errors were specified to the model. o followed a chi-square distributions re-scaled
so the mean localization error equals 0.02 pum (for sample distributions see inset of Fig. 2b). Simulations with dy = 0.1ym and k = k, = k, = 0.1.
10 replicates per condition. ExTrack settings: window length = 7, no sub-steps. b: We considered tracks from simulated particles with one immobile
state (df; = 0) and five diffusive states with similar diffusion lengths of values 0.04, 0.06, 0.08, 0.1 and 0.12 pum (corresponding to d* from 2 to 12), all
transition rates between each pair of diffusive states equal 0.1 At~ (resulting in average lifetimes of 2 At for each diffusive state). This model results
in indistinguishable diffusive tracks. Left: Distribution of displacements (for each dimension) of the five diffusive states. The grey dashed line represents
the sum of the distributions. Right: Bar plots of true and estimated parameters obtained from fitting to a three-state model followed by aggregation of the
diffusive states and computation of the resulting parameters. Here, the fractions are the global fractions computed from rates. See Table S2 for more

details.
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Supplementary Figure 8. Capacity of the annotation module. Assessment of the annotation module accuracy by comparing state estimations (either
probabilistic or categorical) with ground truth from simulated tracks. If not stated otherwise, dj =0, d] =5 and ky = kp, = 0.1 At~1. a,c-e: Categorical
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to their probability to be diffusive (x-axis) and for each bin we computed the fraction actually in diffusive state (y-axis). Binning of 0.01. ¢: Fractions of
mislabeled time points using correct parameters except for one of them specified in the legend. X axis: relative error of the varied parameter compared
to the true value underlying the simulated tracks. For this particular simulation, we used 10 000 tracks of 20 positions. Window length of 10. d: Heatmap
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Supplementary Figure 9. 2-state model fits of PBP1b data. Results from parameter fits to experimental tracks of GFP-PBP1b of at least 3 time
points (and considering not more than the first 50 time points assuming 2 states in ExTrack (3 replicates per condition, each replicate has at least 17.000
tracks of average lifetime from 6.3 to 7.5 positions). ExTrack settings: Window length = 4, no sub-steps. State fractions obtained from rates.

Error bars: standard deviations between replicates.
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Supplementary Figure 10. 3-state model fits of PBP1b data. Results from parameter fits to the same experimental tracks of GFP-PBP1b considered
in Fig. 9 but assuming 3 states in ExTrack. ExTrack settings: Window length = 4. State fractions obtained from rates.
Error bars: standard deviations between replicates.
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Supplementary Figure 11. 4-state model fits of PBP1b data. Results from parameter fits to the same experimental tracks of GFP-PBP1b considered
in Fig. 9 but assuming 4 states in ExTrack. Window length = 5. State fractions obtained from rates.
Error bars: standard deviations between replicates.
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Supplementary Figure 12. State annotations of GFP-PBP1b using a 4-state model. State annotation from parameters obtained from the 4-state fits
to GFP-PBP1b data at 130% PBP1b expression. Immobile (state 0 and 1) in blue, intermediate diffusion state (state 2) in green and diffusive state (state
3) in red. The ternary plot represents the intermediate probabilities. ExTrack settings: window length = 7, no sub-steps. Annotation using parameter
obtain from ExTrack fits on the same data. d; is so low that on the short timescale of transient binding molecules are nearly immobile.
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Supplementary Figure 13. Complementary results for GFP-RodZ and GFP-PBP1b tracks. a-c: ExTrack analysis of GFP-RodZ data (same as in
Fig. 4f-h) a: Parameters found by ExTrack for GFP-RodZ tracks (3 replicates, each replicate has at least 25.000 tracks of average lifetime from 6.3 to
7.4 positions), considering all tracks with at least 3 time points and restricting analysis to the 50 first time points. b: Histogram of the time spent in
bound or diffusive states, among tracks of at least 21 time points using parameters from a. c¢: Examples of long bound RodZ tracks in linear motion.
d: PBP1b rebinding. Histograms of the distances in between initially bound position and after 4 diffusive steps of PBP1b tracks that are subsequently
either rebinding (blue) or not rebinding (red) (see Methods). Histograms show no noticable difference.

Error bars and shaded regions: standard deviations between replicates.
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Supplementary Figure 14. State annotation or RodZ tracks that show rebinding. Two-state annotations of GFP-RodZ initially immobile (at least 3

positions), then diffusive for 4 positions and then immobile again. Annotation using parameters obtained from fits on the same data. Immobile (state 0)
in blue and diffusive (state 1) in red. ExTrack settings: window length = 10. Colorbar: probability of state 1 (diffusive).
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Supplemental Tables

3-state models | o do d1 do Fy Fy Fy ko1 koo k1o k1o koo ko1
1 True 0.020 | 0.000 | 0.040 | 0.100 | 0.333 | 0.333 | 0.333 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100
Estimated | 0.020 | 0.001 | 0.040 | 0.101 | 0.342 | 0.330 | 0.328 | 0.097 | 0.093 | 0.098 | 0.093 | 0.098 | 0.098
2 True 0.020 | 0.000 | 0.000 | 0.140 | 0.069 | 0.517 | 0.414 | 0.300 | 0.000 | 0.000 | 0.040 | 0.050 | 0.000
Estimated | 0.020 | 0.000 | 0.000 | 0.141 | 0.069 | 0.518 | 0.413 | 0.297 | 0.005 | 0.000 | 0.040 | 0.050 | 0.000
3 True 0.020 | 0.000 | 0.000 | 0.140 | 0.077 | 0.462 | 0.462 | 0.000 | 0.300 | 0.050 | 0.000 | 0.000 | 0.050
Estimated | 0.020 | 0.000 | 0.000 | 0.141 | 0.089 | 0.494 | 0.417 | 0.075 | 0.190 | 0.047 | 0.009 | 0.000 | 0.051
4 True 0.020 | 0.000 | 0.000 | 0.140 | 0.060 | 0.489 | 0.451 | 0.250 | 0.050 | 0.020 | 0.040 | 0.040 | 0.010
Estimated | 0.020 | 0.000 | 0.000 | 0.141 | 0.046 | 0.504 | 0.450 | 0.358 | 0.046 | 0.000 | 0.041 | 0.042 | 0.009

Supplementary Table 1. Here, we use ExTrack to fit parameters of a three-state model to different simulations of three-state data with qualitatively
different types of transitions. Model 1: immobile state, intermediate diffusion state and high diffusion state. 10 000 tracks of 10 positions. Model 2 to 4
represent harder models with two immobile states and one diffusive state (10 000 tracks of 50 positions each). They all have a transient immobile state
(state 0), a stable immobile state (state 1) and a diffusive state (state 2). Model 2: transitions from state 0 to 1 to 2 to 0 in a circular fashion. Model 3:
transitions from state 2 to 1 to 0 to 2 in a circular fashion. Model 4: more complex transitions between states.

ExTrack Model | Set of d k; ; | Parameters | o do dq Fy i kp*
2 states (0.04, 0.06, 0.08, 0.10,0.12) | 0.10 | Estimated | 0.021 | 0.001 | 0.090 0.458 | 0.130 | 0.110
True 0.020 | 0.000 | - 0.375 | 0.1 0.06
ExTrack Model | Set of d k; ; | Parameters | o do dq do Fy len kp
0.00 | Estimated | 0.020 | 0.001 | 0.054 | 0.107 | 0.395 | 0.101 | 0.066
3 states (0.04, 0.06, 0.08, 0.10,0.12) | 0.02 | Estimated | 0.020 | 0.001 | 0.053 | 0.107 | 0.387 | 0.101 | 0.064
0.10 | Estimated | 0.020 | 0.000 | 0.053 | 0.110 | 0.399 | 0.102 | 0.068
(0.04,0.08, 0.12, 0.16, 0.20) | 0.02 | Estimated | 0.020 | 0.000 | 0.064 | 0.174 | 0.405 | 0.105 | 0.072
True 0.020 | 0.000 | - - 0.375 | 0.100 | 0.060

Supplementary Table 2. 2-state and 3-state fits of tracks from simulated particles either in immobile state (state 0) or in one of 5 diffusive states
(states 1 to 5). Here, unbinding rates kg ; = 0.02 At~1, binding rates ko ; = 0.06 At~! and other rates k; ; = 0, 0.02 or 0.1 At~1 for i and
7 from 1 to 5. *, ky and ky are the global unbinding and binding rates, respectively, obtained as the sum of the unbinding rates, and the average
of the binding rates weighted by the fractions in diffusive state. ExTrack settings: window length = 6. All distances in um and rates in At—1.
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