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Single-particle tracking microscopy is a powerful technique

to investigate how proteins dynamically interact with their en-

vironment in live cells. However, the analysis of tracks is con-

founded by noisy molecule localization, short tracks, and rapid

transitions between different motion states, notably between im-

mobile and diffusive states. Here, we propose a probabilistic

method termed ExTrack that uses the full spatio-temporal in-

formation of tracks to extract global model parameters, to cal-

culate state probabilities at every time point, to reveal distri-

butions of state durations, and to refine the positions of bound

molecules. ExTrack works for a wide range of diffusion coef-

ficients and transition rates, even if experimental data deviate

from model assumptions. We demonstrate its capacity by apply-

ing it to slowly diffusing and rapidly transitioning bacterial en-

velope proteins. ExTrack greatly increases the regime of compu-

tationally analyzable noisy single-particle tracks. The ExTrack

package is available in ImageJ and Python.
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Introduction

Studying the motion of proteins by single-particle tracking

(SPT) allows to characterize how proteins dynamically in-

teract with their environment (1, 2). Notably, single-particle

tracking can reveal if and where proteins are diffusive or im-

mobile (3–5). This information has significantly improved

our understanding of important biological processes such as

transcription-factor binding dynamics, antibody recognition,

cytoskeletal dynamics, or intracellular transport (2, 6–13).

Molecules often transition between different motion

states. If transitions happen rarely and if trajectories are

long, different states such as immobile or diffusive states

are reliably detected from time-averaged quantities such as

the mean-squared displacement (MSD) (14–17). However,

molecules often undergo rapid transitions between different

states (5, 6, 10). Furthermore, tracks are often short as par-

ticles can bleach or diffuse out of the field of view or fo-

cal plane (17). In such situations, probabilistic methods are

better suited to determine global parameters such as diffu-

sion coefficients and transition rates (3, 7, 18–26). Some of

these methods can also predict the motion states of individ-

ual molecules at every time point (3, 7, 26, 27), which can

reveal the locations of binding sites, spatial correlations, and

complex, potentially non-Markovian dynamics (28).

Previous probabilistic methods for diffusive models

shown to correctly estimate diffusion and transition param-

eters (3, 25) are based on absolute distances between subse-

quent localizations. These methods have been developed for

situations where physical displacements are large in compar-

ison to the localization uncertainty for each molecule. How-

ever, when molecules transition rapidly between states, high

time resolution is needed, which results in small physical dis-

placements, which, in turn, make identifying different motion

states hard or impossible (Fig. 1a-c). On the contrary, the

whole track still allows the distinction of states (Fig. 1a), sim-

ply because subsequent positions of immobile or slowly dif-

fusing molecules fall in the same small area determined by lo-

calization error, while subsequent positions of fast-diffusing

molecules are nearly uncorrelated.

To account for those spatial correlations, the full se-

quence of track positions must be taken into account. This

approach has been used to characterize a single population

of diffusing molecules (29, 30). However, if molecules tran-

sition between states, this approach becomes computation-

ally demanding, because all possible sequences of single-

molecule states need to be considered. To avoid this com-

putational complexity, different mean-field approximations

(20, 21, 31–33) and machine learning approaches (34) have

been proposed. However, their performance across model pa-

rameters remains to be investigated.

Here, we propose an alternative probabilistic method to

extract diffusive motion states and transitions: We tackle the

combinatorial problem of different motion states by intro-

ducing a sliding window that maintains the most important

spatio-temporal correlations. The method is fast and accu-

rate for a large range of parameters, even if physical dis-

placements are similar to the localization error. The method

is also robust with respect to deviations between data and

model assumptions. Additionally, the method annotates the

state probabilities at the single-molecule level, refines local-

izations (33) and extracts distributions of state durations. We

demonstrate its versatility by analyzing two bacterial mem-

brane proteins that diffuse slowly and transition rapidly be-

tween immobile and diffusive states.

Results

ExTrack is a maximum-likelihood method to detect dif-

ferent diffusion states in single-molecule tracks.

We developed ExTrack, a maximum-likelihood estimation

(MLE) method that contains two main modules: A fitting

module fits a multi-state Markovian diffusion model to a

data set of noisy single-molecule tracks. This module in-
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Figure 1. ExTrack permits to assess a wide range of multi-state diffusion models. a: Example track of a molecule transitioning between immobile

and diffusive states with d1 = 2 σ. Arrows: observed displacements; dots: actual positions of immobile (blue) and diffusive (red) molecules. b: Con-

secutive observed distances of the track from a. c: Density function of observed distances of coefficiently immobile (blue) or diffusive (red) molecules

for d1 = 2 σ. d-e: Left: Simulated two-state (d) and three-state (e) diffusion models with diffusion length and transition rates as indicated. Right: Model

parameters estimated by ExTrack (mean ± standard deviation) assuming a two-state (d) or three-state (e) model (localization error σ, diffusion lengths

d0 and d1, initial immobile fraction F0, transition rates). Dotted lines: ground truth. ExTrack settings: two-state data: 2 sub-steps, window length =

10; three-state data: no sub-steps, window length = 7. f: Heatmap of the relative errors of d1, F0, ku and kb obtained from a two-state model fit to

two-state simulations as in d. Error: mean absolute relative errors from 10 replicates per condition. White lines indicate regions of < 10% error for

model parameters hardest to fit for ExTrack (ku, solid), vbSPT and anaDDA (kb, dashed, see g). g: Error on kb of vbSPT and anaDDA (same protocol

and color map as in f). See Fig S4 for errors on the other parameters.

fers global model parameters including localization error, dif-

fusion lengths, transition rates, and the initial fractions of

molecules (at the first time point of all tracks). Part of these

global parameters can also be provided by the user, and lo-

calization error can even be provided for each peak (35, 36) if

desired. ExTrack is flexible in terms of the number of states

and spatial dimensions. Additionally, it can explicitly con-

sider molecules leaving the field of view, which otherwise

introduces bias (17). Based on global parameters, a single-

molecule annotation module then estimates state probabili-

ties pb(i) for molecules to reside in state b at each time point

i. To characterize single-molecule tracks further, we devel-

oped two additional modules: A position-refinement mod-

ule refines molecule positions by taking advantage of spatial

correlations between subsequent localizations, conceptually

similar to (33). This feature allows to maintain high temporal

resolution for state transitions, while attaining high spatial

resolution for immobile molecules. A fourth module pro-

duces histograms of state durations. This module can reveal

non-Markovian behavior, even if ExTrack assumes Markov

transitions.

ExTrack is based on a Hidden Markov Model (HMM)

that approximates a continuous-time process by a discrete-

time Markov model (37). The method calculates the prob-
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ability density of observing each track given a set of global

parameters (32). In principle, this calculation requires in-

tegrating the joint probability density of all single-molecule

states, real positions, and observed positions over all possible

sequences of hidden diffusive single-molecule states and over

all possible real (physical) molecule positions (see Methods,

section A). This problem is computationally intractable for

long tracks (computational time scales as Nn, where n is the

number of time points and N the number of states). To re-

duce computational time, we took advantage of the fact that

the real position at a given time step is little influenced by the

actual state a few time points away. This allows us to intro-

duce a sliding-window approximation that reduces computa-

tional time to the order of Nm+1, where m is a user-defined

window size (Methods, section A.4). We suggest m = 2 −7,

depending on expected diffusion lengths.

In many HMMs it is assumed that state transitions can

only occur at the time points of the measurement (37). How-

ever, this approximation introduces a bias towards higher

fractions of fast diffusing molecules. Instead, we assume

state transitions to occur at the middle of steps (see Meth-

ods, A.2). Additionally, ExTrack can consider sub-steps to

further reduce bias at high transition rates.

ExTrack is available both as a Python library (38) and as

a TrackMate module (39) on Fiji.

Performance and comparison to alternative methods.

First, we tested the performance of the ExTrack fitting mod-

ule by applying it to computationally simulated noisy tracks

of molecules (10.000 tracks of 10 positions each, if not

stated otherwise) that transition between an immobile state

(state 0) and a slowly diffusive state (state 1). The latter is

characterized by a small diffusion length d1 = 2 σ, where

σ is the localization error (Fig. 1a). The diffusion length

is the typical physical displacement along each dimension:

d1 =
√

2D1∆t with D1 the diffusion coefficient and ∆t the

time step. Here, we assume symmetric binding and unbind-

ing rates ku = kb = 0.1 ∆t−1. Thus, on average, molecules

reside in each state for ten time steps.

The dimensionless parameter d∗

1 = d1/σ can be regarded

as a signal-to-noise ratio. For a typical experiment, with

σ = 20 nm and a time step of ∆t = 20 ms, a rescaled dif-

fusion length of d∗

1 = 2 corresponds to a diffusion coefficient

of D1 = 0.04 µm2.s−1, which is representative of typical

membrane proteins in vivo (40, 41).

ExTrack reliably estimates all global model parameters

(Fig. 1d) despite similar observed distances for immobile and

diffusive molecules (Fig. 1c) and despite a low number of 10

localizations per track. Since molecules are considered at

steady state in our example, the initial fraction of immobile

molecules is given by F0 = kb/(ku +kb).

Next, we simulated tracks for a three-state model, with

d∗

0 = 0, d∗

1 = 2 and d∗

2 = 5, where transition rates are ki,j =
0.1 ∆t−1 for all pairs of states. Fig. 1e demonstrates that

ExTrack estimates global model parameters reliably. If the

data contains long enough tracks, ExTrack can also correctly

predict two immobile states of different lifetimes and their

associated transition rates (Table S1). We will revisit more

complex data sets below.

Returning to the simpler two-state model, ExTrack is ca-

pable to predict global model parameters reliably for a large

range of model parameters (Fig. 1f). Predictions are accurate

for diffusion lengths as low as the localization error and tran-

sition rates as high as 0.5 ∆t−1 (for independent variations

of kb and ku see Fig. S1). To account for rapid transitions, we

employed ExTrack considering two sub-steps. However, the

method predicts parameters almost equally reliably without

sub-steps (Fig. S2), while achieving improved computational

time (Fig. S3).

Next, we compared ExTrack with the two MLE-based

methods vbSPT (3) and anaDDA (42) that use absolute dis-

tances between localizations for parameter estimation. While

vbSPT uses a HMM for the likelihood estimate (3) anaDDA

is based on an analytical form of the distributions of appar-

ent diffusion coefficients from short tracks (42). Both meth-

ods are restricted to a smaller parameter range than ExTrack

(Fig. 1f-g and Fig. S4a) in the tested regime. The errors of

parameter estimation by vbSPT are largely due to systematic

bias, while the error of anaDDA is predominantly stochastic

(Fig. S5) (42). We also tested a mean-field approximation

based on track positions and considering hidden particle po-

sitions, the variational method UncertainSPT (32). We found

that UncertainSPT performs worse and takes more computa-

tional time than ExTrack, anaDDA, or vbSPT (Fig. S4b).

ExTrack is robust with respect to non-ideal motion

properties.

Single-molecule tracks in real cells often deviate from our ba-

sic model assumptions. Here, we investigated three different

types of such deviations: i) variations of diffusion coefficients

or localization precision, ii) finite track lengths due to a finite

field of view or focal depth, and iii) physical confinement:

Diffusion coefficients can show intra- or inter-track vari-

ations (21, 43, 44), for example due to local variations of

viscosity (43), and localization error can vary, for example

if molecules are out of focus. We thus simulated tracks of

a two-state model with diffusion coefficients or localization

precision drawn from a chi-squared distribution with fixed

mean and variable coefficient of variation (CV). First, we

show that ExTrack gives very accurate predictions when lo-

calization error is specified for each peak instead of being

treated as a single global fitting parameter (Fig. S6a). How-

ever, even when no prior information on localization error is

given, ExTrack reliably predicts the average model param-

eters for variations up to 30-50% (Fig. 2a), in contrast to

the distance-based methods anaDDA and vbSPT (Fig. S7).

Track-to-track variations in diffusion coefficient of similar

magnitude (up to about 50%) do also not affect predictions

of average parameters (Fig. 2b).

In situations, where the diffusion coefficient is even more

broadly distributed, ExTrack can be used assuming a three-

state model followed by aggregation of two diffusive states

(Fig. S6b). We tested this aggregation approach with simu-

lations of one immobile and five diffusive states, mimicking
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Figure 2. Robustness of ExTrack to various sources of bias. Heatmaps of relative errors on d1, ku and kb in case of two-state parameter fits to

two-state simulations with one immobile state and one diffusive state, for different sources of bias as a function the source of bias (Y axis) and transition

rates k. a-b: We simulated track-to-track variations of localization error σ (a) or diffusion coefficient D1 (b). Varied parameters followed chi-square

distributions (white graphs in b) re-scaled so the mean localization error equals 0.02 µm (a) or the mean diffusion coefficient equals 0.25 µm2.s−1,

which corresponds to a diffusion length of d∗

1
= 5 (b). c: Membrane proteins diffuse on a cylindrical surface and leave the field of view on the sides (see

cartoon). We varied the width w of the field of view as indicated in the cartoon, while maintaining d1 and σ fixed. d: Cytoplasmic proteins can leave the

focal plane anywhere (see cartoon). We varied the focal depth while maintaining d1 and σ fixed. e: Particles confined in a symmetric cube. We varied

the box size while maintaining d and σ fixed.

10 replicates per condition. If not stated otherwise, d0 = 0 µm, d1 = 0.1 µm and σ = 0.02 µm. ExTrack settings: window length = 7, no sub-steps.

a broad distribution of diffusion lengths and jump distances

(Fig. S6b, Table S2). The aggregated three-state approach

reliably quantifies transitions between aggregated states and

corresponding state fractions, thus providing a practical ap-

proach to the often encountered difficulty of choosing the

right number of diffusive states.

Second, molecules can leave the field of view depend-

ing on microscopy modality and substrate geometry. For

example, cytoplasmic molecules studied by confocal or epi-

fluorescence microscopy diffuse in and out of the the focal

plane, and proteins embedded or attached to a cylindrical

membrane (for example, in bacteria) studied by TIRF mi-

croscopy leave the illumination field (Fig. 2c-d). Thus, im-

mobile or slowly diffusing molecules are over-represented

among long tracks, which has previously been described as

’defocalization bias’ (17). We alleviate this bias by taking

track termination into account explicitly (Methods, section

A.6) similarly to previous approaches (17, 45). In both free

3D diffusion and diffusion along a cylindrical membrane,

ExTrack reliably estimates model parameters as long as the
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typical dimension (focal depth or width of the field of view)

is at least twice the diffusion length (Fig. 2c-d).

Finally, we tested the ability of ExTrack to analyse tracks

of spatially confined molecules, as frequently found in mem-

brane domains or small volumes such as bacteria or intracel-

lular compartments. ExTrack performed robustly as long as

confining dimensions are at least two to four times larger than

the diffusion length (Fig. 2e).

ExTrack computes state probabilities at every time

point and refines positions.

Next, we tested the performance of the single-molecule prob-

abilistic annotation module of ExTrack, which is based on

global model parameters and annotates state probabilities for

every time point (31).

Fig. 3a-b shows tracks from the simulation of a two-state

model with an immobile and a slowly diffusive state (d∗ = 2).

Despite the small value of d∗, motion states are reliably esti-

mated. High uncertainty is only observed at time points close

to transition times (Fig. S8a), close to track boundaries, or if

d∗ < 2 (Fig. 3c). To demonstrate the accuracy of the prob-

abilistic annotation, we confirmed that among all molecules

predicted to reside in the diffusive state with probability p1,

the fraction of molecules actually diffusive also equals p1

(Fig. S8b). We also found ExTrack annotations to be robust

with respect to wrongly chosen global parameters (Fig. S8c).

While previous methods often classify molecules cate-

gorically into the most likely state (3, 32, 46) state probabili-

ties allow discriminating regions of highly likely states from

regions of intrinsically high uncertainty. However, even if

categorically classifying molecules (Fig. S8d), ExTrack per-

forms better than the binary method vbSPT (Fig. S8e).

Next, we tested the capacity of ExTrack to refine po-

sitions by calculating the most likely physical position for

each time point. Fig. 3d-e demonstrates that the position-

refinement module effectively reduces the localization error

of immobile molecules by
√

N , where N is the number of

localizations in the immobile segment. This feature allows

to obtain accurate positions of molecular binding sites inside

cells, while still resolving state transitions dynamics.

ExTrack computes distributions of state durations to

characterize transition kinetics beyond the Markov as-

sumption.

ExTrack provides a histogram module that generates proba-

bility distributions of state durations. Instead of considering

only the most likely set of states, ExTrack considers a large

number of potential state vectors with their corresponding

probabilities. To test the histogram module, we first simu-

lated a Markovian two-state model. The predicted diffusive

and immobile state durations are distributed exponentially, as

expected, and in agreement with the simulated data (Fig. 3f).

Therefore, any deviation from exponential decay can reveal

more complex transition behavior: As an example, we simu-

lated molecules that transition between two immobile states

and one diffusive state (Fig. 3g). The histogram of immobile

state durations then accurately reveals two sub-populations,

even though ExTrack considers a two-state HMM model.

Our approach thus indicates the presence of a third state, as

confirmed by the exponential distributions of state durations

after fitting the data to a three-state model (Fig. 3g).

The histogram approach is also relevant when the transi-

tions are non-Markovian, for example if transition rates are

spatially dependent (28, 47) or if states have minimum du-

rations. In summary, the histogram module can help identify

hidden or non-Markovian states and thus guide model choice.

Application of ExTrack to experimental tracks of bac-

terial envelope proteins.

To test our approach on experimental data, we used

TIRF microscopy to track single green-fluorescent-protein

(monomeric super-folder-GFP) fusions to two bacterial

membrane proteins in Escherichia coli, each involved in one

of the two major pathways of cell-wall synthesis.

First, we studied the cell-wall-inserting penicillin-

binding protein PBP1b, which was previously described to

reside in immobile or diffusive states (48, 49). However, tran-

sition rates and potentially hidden states remain unknown.

When assuming a two-state model, ExTrack indeed reveals

an immobile and a diffusive fraction (Fig. 4a), with the im-

mobile fraction increasing with decreasing expression level

(Fig. 4b) as expected (49). However, distributions of state

durations obtained through the histogram module suggest the

presence of at least two immobile populations with distinct

unbinding rates (Fig. 4c). Since applying ExTrack assuming

a three-state model revealed one immobile and two diffusive

states (rather than two immobile states, Fig. S10), we also ap-

plied ExTrack with a four-state model (Fig. 4d-e, Fig. S11).

The four-state model confirmed two diffusive states and two

immobile states: among the immobile states we found a long-

lived state (lifetime of around 0.5 s) that is highly dependent

on expression level (Fig. 4e), likely reflecting enzymatically

active PBP1b, and a short-lived state with a lifetime of about

50 ms, likely reflecting non-specific associations with the cell

wall. Thus, PBP1b displays rapid transitions between at least

four different states.

Next, we investigated the motion of RodZ, a trans-

membrane protein that physically links cytoplasmic MreB-

actin filaments to a multi-enzyme complex that inserts new

peptidoglycan while continuously moving around the cell cir-

cumference over minutes (50–52). Here, we studied the mo-

tion of GFP-RodZ on short time scales of seconds, where

continuously moving complexes appear as immobile. As-

suming a two-state model, the fitting module reveals that

70% of RodZ molecules are immobile (Fig. S13a-c), with

a lifetime of about 0.7 s. This timescale is much shorter

than the minute-long lifetime of the rod complex (13, 48, 50)

demonstrating that a majority of immobile RodZ molecules

is not stably associated. Instead, these molecules might

transiently bind the MreB-actin cytoskeleton. Interestingly,

RodZ molecules seem to often unbind and rebind in very

close vicinity from the initial binding site (Fig. 4f, Fig. S14).

Such behavior would be expected if RodZ could bind any-

where along extended MreB filaments, since filaments con-
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probability density of refined positions. Simulation parameters: d
∗

0
= 0, d

∗

1
= 5, k01 = k10 = 0.1 ∆t

−1 (c); d
∗

0
= 0, d

∗

1
= 1.5 d

∗

2
= 5, all k = 0.05 ∆t

−1

(d). g: Histogram module: state-duration histograms of tracks of at least 21 positions for the indicated 2-state model. Dashed lines: distributions from

ground truth. h: Same as e for 3-state tracks with 2 immobile states. Left: ExTrack fit assuming a 2-state model; Right: ExTrack fit assuming a 3-state

model.

strain diffusion in two dimensions (Fig. 4g). To test whether

proximal rebinding occurs more often than randomly, we

compared tracks that were initially bound, then diffusive for 4

steps, and then either rebound or remained diffusive (Fig. 4g).

Short distances were indeed over-represented among rebind-

ing molecules compared to molecules that remained diffusive

(Fig. 4h). This behavior contrasts with PBP1b, which appears

to bind to random sites (Fig. S13d). The annotation mod-

ule of ExTrack thus allows us to identify spatial patterns of

molecule binding that can be responsible for non-Markovian

binding (28).

Discussion

In summary, ExTrack provides a suite of robust tools to char-

acterize single-particle tracks, extracting global model pa-

rameters, state probabilities at every time point, refined po-

sitions, and histograms of state durations, even if tracks are

noisy, transitions are rapid, and tracks deviate from idealized

model assumptions.

In tracking experiments, a major challenge is to iden-

tify the relevant number of immobile and diffusive states.

Multiple previous methods obtain this number automatically

(3, 19, 24, 33). However, at least some of these approaches

tends to over-fit the data (25, 33). In more recent approaches,
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Figure 4. Characteristing PBP1b and RodZ motion. a-e: Analysis of GFP-PBP1b tracks (time step 25 ms) using ExTrack with two (a-c) or four states
(d,e). a: GFP-PBP1b track (130% expression level). Color bar: Probability of diffusion. b: Diffusion lengths and fractions from two-state parameter
fitting. (3 replicates, each with > 17.000 tracks of at least 3 positions, with average lifetimes from 6.3 to 7.5 positions). c: State-duration histograms of
PBP1b tracks of at least 21 positions (> 600 tracks per replicate with average lifetimes from 28.5 to 32 positions), using global parameters from fitting a
two-state model (a and Fig S9). d: Example PBP1b track (from 130% expression level) with associated state probabilities along time (first position on the
left). e: Fractions from 4-state parameter fitting to the same datasets used in a. f-h: Analysis of GFP-RodZ molecules: f: RodZ tracks with overlapping
binding sites. Color bar: Probability of diffusion . g: Cartoon illustrating rebinding of diffusive RodZ molecule to extended MreB-actin filament in two
dimensions. Blue solid line indicates distance between initial position and position after four diffusive steps for molecules rebinding (left) or continuing
diffusion (right). h: Histograms of distances between initial bound site and the site after 4 diffusive steps. Tracks rebind in closer vicinity to the initial
binding site 33% more often than expected in case of random motion. Mann–Whitney U test: p-value = 1.6e-6. See Methods section H for details.
Error bars and shaded regions: standard deviations between replicates.

a high number of states is fixed followed by aggregation into
one aggregated immobile state and one aggregated diffusive
state, based on a user-defined diffusion-coefficient threshold
(53). Here, we propose an alternative and iterative approach
to complex tracking data: Data is initially fit to a coarse-
grained two- or three-state model that can subsequently be
expanded depending on desired variables and fitting results.
For example, if one is predominantly interested in the ex-
change between immobile and diffusive molecules but not in
the presence of multiple diffusive states, we propose a coarse-
grained two-state or an aggregated three-state model that reli-
ably predicts immobile-diffusive transitions, even if diffusion
coefficient is variable or if molecules transition between dif-
ferent diffusive states (Fig. 2b, Fig. S6b). At the same time,
ExTrack can also distinguish multiple diffusive states explic-
itly (Fig. 1e). Additionally, the distribution of immobile state
durations can reveal the presence of multiple immobile frac-
tions, which can then motivate the increase of the number of
states.

The capacity of ExTrack to work with noisy single-

molecule tracks is based on the explicit consideration of all
sequences of states within a sliding window when computing
the probabillity of every track, while states outside the slid-
ing window are taken into account through averaging to limit
computational time. In the future, this versatile principle can
be extended to capture different and more complex dynamics,
for example by considering persistent motion (6, 7), anoma-
lous diffusion (54) and spatial maps of diffusion coefficients
or states (44).

Acknowledgements

We thank Andrey Aristov for setting up the TIRF micro-
scope, Antoine Vigouroux for the GFP-PBP1b strains, and
Gizem Özbaykal for her guidance for experiments. We
also thank Felipe Bendezú and Piet De Boer for the GFP-
RodZ fusion. This work was supported by the European
Research Council (ERC) under the Europe Union’s Horizon
2020 research and innovation program [Grant Agreement No.
(679980)] to SVT, the French Government’s Investissement

Simon et al. | ExTrack characterizes noisy single-particle tracks bioRχiv | 7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2022. ; https://doi.org/10.1101/2022.07.13.499913doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499913
http://creativecommons.org/licenses/by/4.0/


d’Avenir program Laboratoire d’Excellence “Integrative Bi-
ology of Emerging Infectious Diseases” (ANR-10-LABX-
62-IBEID, SVT), France BioImaging (ANR-10-INBS-04,
JYT), the Mairie de Paris “Emergence(s)” program to SVT, a
NSERC Discovery Grant to SVT, a FRQS Salary Fellowship
to SVT, as well as support from the Volkswagen Foundation
to SVT.

Bibliography

1. Suliana Manley, Jennifer M Gillette, George H Patterson, Hari Shroff, Harald F Hess, Eric
Betzig, and Jennifer Lippincott-Schwartz. High-density mapping of single-molecule trajec-
tories with photoactivated localization microscopy. Nature methods, 5(2):155–157, 2008.

2. Akihiro Kusumi, Taka A Tsunoyama, Kohichiro M Hirosawa, Rinshi S Kasai, and Takahiro K
Fujiwara. Tracking single molecules at work in living cells. Nature chemical biology, 10(7):
524–532, 2014.

3. Fredrik Persson, Martin Lindén, Cecilia Unoson, and Johan Elf. Extracting intracellular
diffusive states and transition rates from single-molecule tracking data. Nature methods, 10
(3):265, 2013.

4. Stephan Uphoff. Super-resolution microscopy and tracking of dna-binding proteins in bac-
terial cells. In Chromosome Architecture, pages 221–234. Springer, 2016.

5. Koen JA Martens, Sam PB van Beljouw, Simon van der Els, Jochem NA Vink, Sander
Baas, George A Vogelaar, Stan JJ Brouns, Peter van Baarlen, Michiel Kleerebezem, and
Johannes Hohlbein. Visualisation of dcas9 target search in vivo using an open-microscopy
framework. Nature communications, 10(1):1–11, 2019.

6. Paolo Pierobon, Sarra Achouri, Sébastien Courty, Alexander R Dunn, James A Spudich,
Maxime Dahan, and Giovanni Cappello. Velocity, processivity, and individual steps of single
myosin v molecules in live cells. Biophysical journal, 96(10):4268–4275, 2009.

7. Nilah Monnier, Zachary Barry, Hye Yoon Park, Kuan-Chung Su, Zachary Katz, Brian P En-
glish, Arkajit Dey, Keyao Pan, Iain M Cheeseman, Robert H Singer, et al. Inferring transient
particle transport dynamics in live cells. Nature Methods, 12(9):838, 2015.

8. Mathew Stracy, Marcin Jaciuk, Stephan Uphoff, Achillefs N Kapanidis, Marcin Nowotny,
David J Sherratt, and Pawel Zawadzki. Single-molecule imaging of uvra and uvrb recruit-
ment to dna lesions in living escherichia coli. Nature communications, 7(1):1–9, 2016.

9. Julie Jézéquel, Julien P Dupuis, François Maingret, and Laurent Groc. Tracking single
membrane targets of human autoantibodies using single nanoparticle imaging. Journal of

neuroscience methods, 304:76–82, 2018.
10. Andrea Callegari, Christian Sieben, Alexander Benke, David M Suter, Beat Fierz, Davide

Mazza, and Suliana Manley. Single-molecule dynamics and genome-wide transcriptomics
reveal that nf-kb (p65)-dna binding times can be decoupled from transcriptional activation.
PLoS genetics, 15(1):e1007891, 2019.

11. Gene-Wei Li and X Sunney Xie. Central dogma at the single-molecule level in living cells.
Nature, 475(7356):308–315, 2011.

12. Ignacio Izeddin, Vincent Récamier, Lana Bosanac, Ibrahim I Cissé, Lydia Boudarene, Claire
Dugast-Darzacq, Florence Proux, Olivier Bénichou, Raphaël Voituriez, Olivier Bensaude,
et al. Single-molecule tracking in live cells reveals distinct target-search strategies of tran-
scription factors in the nucleus. Elife, 3:e02230, 2014.

13. Gizem Özbaykal, Eva Wollrab, Francois Simon, Antoine Vigouroux, Baptiste Cordier, An-
drey Aristov, Thibault Chaze, Mariette Matondo, and Sven van Teeffelen. The transpepti-
dase pbp2 governs initial localization and activity of the major cell-wall synthesis machinery
in e. coli. Elife, 9:e50629, 2020.

14. Xavier Michalet. Mean square displacement analysis of single-particle trajectories with lo-
calization error: Brownian motion in an isotropic medium. Physical Review E, 82(4):041914,
2010.

15. Lindsay CC Elliott, Moussa Barhoum, Joel M Harris, and Paul W Bohn. Trajectory analysis
of single molecules exhibiting non-brownian motion. Physical Chemistry Chemical Physics,
13(10):4326–4334, 2011.

16. Peter J Bosch, Johannes S Kanger, and Vinod Subramaniam. Classification of dynamical
diffusion states in single molecule tracking microscopy. Biophysical journal, 107(3):588–
598, 2014.

17. Anders S Hansen, Maxime Woringer, Jonathan B Grimm, Luke D Lavis, Robert Tjian, and
Xavier Darzacq. Robust model-based analysis of single-particle tracking experiments with
spot-on. Elife, 7:e33125, 2018.

18. Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodologi-

cal), 39(1):1–22, 1977.
19. Jan-Willem Meent, Jonathan Bronson, Frank Wood, Ruben Gonzalez Jr, and Chris Wiggins.

Hierarchically-coupled hidden markov models for learning kinetic rates from single-molecule
data. In International Conference on Machine Learning, pages 361–369. PMLR, 2013.

20. Christopher P Calderon. Data-driven techniques for detecting dynamical state changes in
noisily measured 3d single-molecule trajectories. Molecules, 19(11):18381–18398, 2014.

21. Paddy J Slator, Christopher W Cairo, and Nigel J Burroughs. Detection of diffusion hetero-
geneity in single particle tracking trajectories using a hidden markov model with measure-
ment noise propagation. PloS one, 10(10):e0140759, 2015.

22. Carlas S Smith, Karina Jouravleva, Maximiliaan Huisman, Samson M Jolly, Phillip D
Zamore, and David Grunwald. An automated bayesian pipeline for rapid analysis of single-
molecule binding data. Nature communications, 10(1):1–9, 2019.

23. Rebeca Cardim Falcao and Daniel Coombs. Diffusion analysis of single particle trajectories
in a bayesian nonparametrics framework. Physical biology, 17(2):025001, 2020.

24. Joshua D Karslake, Eric D Donarski, Sarah A Shelby, Lucas M Demey, Victor J DiRita,
Sarah L Veatch, and Julie S Biteen. Smaug: Analyzing single-molecule tracks with non-
parametric bayesian statistics. Methods, 193:16–26, 2021.

25. Jochem NA Vink, Stan JJ Brouns, and Johannes Hohlbein. Extracting transition rates in
particle tracking using analytical diffusion distribution analysis. Biophysical Journal, 119
(10):1970–1983, 2020.

26. Johanna Rahm, Sebastian Malkusch, Ulrike Endesfelder, Marina Dietz, and Mike Heile-
mann. Diffusion state transitions in single-particle trajectories of met receptor tyrosine ki-
nase measured in live cells. Frontiers in Computer Science, page 104, 2021.

27. Vincent Briane, Myriam Vimond, Cesar Augusto Valades-Cruz, Antoine Salomon, Christian
Wunder, and Charles Kervrann. A sequential algorithm to detect diffusion switching along
intracellular particle trajectories. Bioinformatics, 36(1):317–329, 2020.

28. Anel Mahmutovic, David Fange, Otto G Berg, and Johan Elf. Lost in presumption: stochastic
reactions in spatial models. Nature methods, 9(12):1163–1166, 2012.

29. Andrew J Berglund. Statistics of camera-based single-particle tracking. Physical Review E,
82(1):011917, 2010.

30. Peter K Relich, Mark J Olah, Patrick J Cutler, and Keith A Lidke. Estimation of the diffusion
constant from intermittent trajectories with variable position uncertainties. Physical Review

E, 93(4):042401, 2016.
31. Jason Bernstein and John Fricks. Analysis of single particle diffusion with transient binding

using particle filtering. Journal of theoretical biology, 401:109–121, 2016.
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Methods

In the following sections we will describe the ExTrack
method with its four different modules: the fitting module
(Section A), the annotation module (Section B), the position-
refinement module (Section C) and the histogram module
(Section D). Subsequently, we will describe the generation
of computationally simulated datasets (F), the interpretation
of results by vbSPT (Section G), and the experimental meth-
ods (Sections H to J).

A. ExTrack Fitting Module.

A.1. Introduction. ExTrack fits a multi-state diffusion model
to noisy single-particle tracking data. We assume that tracks
come about according to a continuous-time Markov model,
where molecules transition randomly between N diffusive
states at rates ki,j . As long as molecules reside in state
i, they undergo Brownian diffusion with diffusion coeffi-
cient Di. Additionally, observed positions ci are displaced
from real positions ri according to a Gaussian distribution
fσ(ci − ri), where the standard deviation equals the local-
ization error σ. Here and in the following, fx(y) generally
denotes a Gaussian distribution of standard deviation x. The
N -state diffusion model is thus characterized by the parame-
ters θ = (σ,Di,Fi,ki,j) for all states i, j ∈ 1, . . . ,N . Here, Fi

are the fractions of molecules residing in state i at the first po-
sition of the track. Later, we will introduce additional param-
eters for additional spatial dimensions and for the treatment
of non-constant track lengths.

Parameters are estimated based on a maximum likelihood
estimate approach (MLE), which, in turn, is based on accu-
rately computing fC(C |θ), the probability density of observ-
ing a track of positions C = (c1, c2, ..., cn). The likelihood
of the parameters given the data L(θ | all C) then equals the
product of fC(C | θ) for all tracks C. By maximizing this
function, we can find θ∗, the optimal estimator of the under-
lying parameters. Optimal parameters θ∗ are found by MLE
using the Powell method. ExTrack also allows to fix indi-
vidual or multiple parameters. This generally speeds up the
fitting process and reduces variations in the remaining param-
eters. In this realm, we also found that fixing the localization
error to a slightly wrong value has little impact on the fit-
ting of the other parameters as long as it does not deviate by
more than about 20 − 30%. Here and in the following we
treat localization error as a model parameter, but the user can
also provide spot-specific localization errors based on photon
counts (35).

In the following sections, we will first compute fC. This
calculation is presented in one spatial dimension (1D). How-
ever, the model is easily extendable to 2D or 3D due to the
independence of the displacements and localization error in
each axis, as we will see below.

A.2. Parameter fitting based on the probability distribution

of observed positions. Tracks are generally described by
their sequence of observed positions C = (c1, c2, ..., cn).
Those positions come about based on the sequence of phys-
ical molecule positions R = (r1, r2, ..., rn), which, in turn,
are the stochastic result of the sequence of diffusive states
B = (b1, b2, ..., bn).

For a given track C, the probability density function fC

can be calculated from fC,B,R, which is the joint probabil-
ity density function of observed positions C = (c1, . . . , cn),
real (physical) molecule positions R = (r1, . . . , rn), and time-
dependent diffusion states B = (b1, . . . , bn), by integration
over all possible values of R and by summation over all pos-
sible values of B:

fC(C |θ) =
∑

B

fC,B(C,B |θ)

=
∑

B

∫

R

fC,B,R(C,B,R |θ) dR ,
(1)

where we defined the joint probability density function
fC,B(C,B |θ) of having C and B given θ. The joint probabil-
ity density fC,B,R can be decomposed into a product of three
terms: the a priori probability of B, the probability density of
the physical displacements fR|B, and the probability density
of the distances between real position and observed positions
fC|R, respectively:

fC,B,R(C,B,R |θ) = P (B |θ) fR|B(R | B,θ) fC|R(C |R,θ) .
(2)

Here, the a priori probability of the sequence of states
P (B | θ), which we refer to as β for brevity, results from the
Markovian processes of transitioning between states (55). β
is obtained as

β = P (B |θ) = Fb1

n−1
∏

i=1

pbi,bi+1
, (3)

where Fb1
indicates the fraction of molecules in state b1 at

time point 1, and where pbi,bi+1
indicates the probability to

transition from state bi at time point i to bi+1 at time point
i + 1. The transition probabilities can be computed from the
continuous-time transition rates (see Subsection A.5). The
initial fraction Fb1

can either be an independent parameter
or constrained by transition rates at steady state (for a two-
state model, F0 = k10/(k10 + k01)). fR|B is the probability
density function of real positions R given the sequence of
states B and θ. fC|R is the probability density function of the
sequence of observed positions C given the real positions R
and θ.

fC|R can be expressed as a product of Gaussian distribu-
tions with standard deviation equal to σ:

fC|R(C |R,θ) =
n

∏

i=1

fσ(ci − ri) .

Next, we express fR|B(R | B,θ) as a product of Gaus-
sians:

fR|B(R |B,θ) =
1

l

n−1
∏

i=1

fδi
(ri+1 − ri) . (4)
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Here, l is the length of the space of real positions. Without
any prior on R, we consider the limit l → ∞. However, since
l only appears as a constant prefactor, we can ignore it in the
calculation of the log likelihood. According to previous sug-
gestions, the width of the distribution δi should equal the dif-
fusion length corresponding to the current state bi (37). How-
ever, this discretization of the continuous-time Markov pro-
cess introduces a bias towards diffusive motion. This is easily
illustrated in case of an immobile-diffusive model: There, a
particle initially immobile starts moving before the first mea-
sured time point where the particle is observed to be diffusive.
Similarly, it stops moving after the last time point, where it
is observed to be diffusive. Then, a model assuming diffu-
sion to only be dependent on the current hidden state will
overestimate the time spent in diffusive state by up to half a
step in case of high diffusion. Logically, this results in un-
derestimating the binding rate (Fig. S4c), immobile fraction
and diffusion length when transitions are frequent. To alle-
viate this issue, we assume transitions to occur at the middle
of two time points. The standard deviation of the probability
density function fδi

then equally depends on states at each of
the two subsequent time points, with

δi =
√

(d 2
bi

+d 2
bi+1

)/2 .

This assumption effectively decreases the bias inherent to
the discrete approximation of continuous tracks (Fig. S4c).
Later, we will also introduce sub-steps between time points
that improve the approximation (see Subsection A.5).

Taking advantage of the expressions of fC|R,θ and fR|B,θ,
Equation (2) becomes

fC,B,R(C,B,R |θ) =
β

l

[

n−1
∏

i=1

fδi
(ri+1 − ri) fσ(ri − ci)

]

×

fσ(rn − cn) .

Inserting this expression into Equation (1), we then in-
tegrate step-wise over all real positions R = (r1, . . . , rn).
This allows us to use the recusion principle (30) to com-
pute fC,B(C,B | θ): The first step consists in integrating
the two Gaussian distributions dependent on r1 (displace-
ment and localization error terms). This integration results
in a Gaussian distribution fs1

(r2 − c1), of standard devia-

tion s1 =
√

σ2 + δ1
2 (constituting a convolution of two inde-

pendent random variables with Gaussian distributions). For
each of the next integrals over ri, we integrate the product
of three Gaussian distributions (for the random displacement
ri+1 −ri, the localization error ri − ci, and the previous term
of the distribution fsi-1 ). The result of this integration can be
expressed by a scalar Ki times a Gaussian distribution fsi

,
according to

∫

ri∈R

fδi
(ri+1 − ri) fσ(ri − ci) fsi-1(ri −µi-1) dri

= Ki ∗fsi
(ri+1 −µi) ,

(5)

where fsi
is a Gaussian distribution of standard deviation si

and mean 0. The standard deviation si and mean µi can be

expressed depending on si-1 and µi-1:

si =

√

δ2
i σ2 + δ2

i s2
i-1 +σ2s2

i-1

σ2 +s2
i-1

µi =
µi-1σ2 + cis

2
i-1

σ2 +s2
i-1

Ki =

exp

(

− (ci−µi-1)2)

2(σ2+s2
i-1)

)

√

2π(σ2 +s2
i-1)

.

(6)

The recursion process can then be summarized by the se-
quences s1 : sn-1 and µ1 : sn-1 which depends on C,B and
θ. At the last step (integration over rn), we integrate the
product of the two remaining Gaussian distributions: the pre-
vious term fsn-1(rn − µn-1) and the localization error term
fσ(cn − rn), as described for the first step to compute the
density function fC,B(C,B |θ).

Finally, we compute the value of the probability den-
sity function of the observed track fC(C | θ) as the sum of
fC,B(C,B |θ) over all possible B.

A.3. Extension to 2D and 3D. Since diffusive motion is
independent in each spatial dimension, the principle de-
scribed above for one dimension can simply be extended
to two or three dimensions by multiplication of indepen-
dent distribution functions. For example, in 2D, the func-
tion fC,B(C,B | θ) is simply replaced by the product
fC,B(Cx,B |θ)fC,B(Cy,B |θ).

In principle each axis can have a different localization
error and different diffusion lengths for each state. This is
especially true for localization in the direction of the optical
axis compared to the lateral axes. ExTrack therefore allows
to have independent localization errors for each axis.

Alternatively, the user can also provide localization er-
ror for each peak, for example using the Cramer-Rao lower
bound estimate (32, 56). Since these and other estimators
might underestimate the true localization error, peak-wise lo-
calization estimates can also be implemented as scaling fac-
tors that are then assumed to be linearly related to the true
localization error estimated by ExTrack.

A.4. Using a window to reduce calculation time. This
method has a number of operations which initially scales with
Nn, where N the number of states and n the number of time
points. This means the calculation time can become unre-
alistically long when analysing long tracks. To alleviate this
issue we developed a window method to allow it to work with
longer tracks in a reasonable time scaling with nNm+1 (m
the window length of minimal value 1). For computational
reasons, we advise to use a window length of 7 for 2-state
models, 5 for 3-state models and 3 or 4 for more states.

Here, we briefly motivate and describe the implementa-
tion of the window method: During the recurrence process
described above, Equations (5) and (6), fsi

can be regarded
as a density probability function of the position ri+1 know-
ing the previous observed positions c1, . . . , ci and states from
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positions 1 to i + 1. We realized that the current localiza-
tion of a particle is very little affected by its state m steps ago
when m � 1. Thus, for a given track, two sequences of states
varying only for their first state should give very similar fsi

.
The values µm and sm of these normal distributions should
also be similar.

For example, if the track has been diffusive during at least
one of the positions from steps i − m to i, the current ob-
served position ci is much more informative for the real posi-
tion ri+1 than the first observed position c1. If the molecule
has been immobile from position i−m to i, all observed po-
sitions ci−m to ci are equally informative. However, even the
past 5-7 positions are likely sufficient to predict the distribu-
tion fsi

.
As we saw in Subsection A.2, for a given sequence of

states B, computing fC,B(C,B | θ) is nothing but computing
three sequences s1:sn, µ1:µn and K1:Kn until the last step
where we simply have to compute fsn

(cn).
In the recursion process, in case of a two-state model, we

start by computing four values each for s2, µ2 and K2 that
we will differentiate as s2,(b1,b2), µ2,(b1,b2) and K2,(b1,b2),
corresponding to the transition between the state b1 at time
point 1 and state b2 at time point 2. For this recursion step,
the four values of s2, µ2 and K2 arise from the follow-
ing four combinations of states (0,0), (0,1), (1,0), (1,1).
At i = 3, we get 8 possible state combinations, at i = 4
we get 16, etc. At step m, any sequence of states has
a characteristic µm,(b1,b2,...,bm+1), sm,(b1,b2,...,bm+1) and
Km,(b1,b2,...,bm+1). In order to limit the number of consid-
ered sequences to 2m, we can merge µm,(0,b2,...,bm+1) and
µm,(1,b2,...,bm+1) to an average µm,(∗,b2,...,bm+1) (same for

s2
m):

µm,(∗,b2,...,bm+1) = αm,(0,b2,...,bm+1) µm,(0,b2,...,bm+1)

+αm,(1,b2,...,bm+1) µm,(1,b2,...,bm+1) ,

s2
m,(∗,b2,...,bm+1) = αm,(0,b2,...,bm+1) s2

m,(0,b2,...,bm+1)

+αm,(1,b2,...,bm+1) s2
m,(1,b2,...,bm+1) ,

Km,(∗,b2,...,bm+1) = Km,(0,b2,...,bm+1) +Km,(1,b2,...,bm+1) ,

where α are the averaging weights according to the joint
probability density

fC,B((c1, c2, . . . , cm),(b1, b2, . . . , bm+1) |θ)

of observed positions c1, . . . , cm and states b1, . . . , bm+1.
For brevity we express this probabillity density as
Pm,(b1,b2,...,bm+1) in the following expression for α:

αm,(0,b2,...,bm+1) =
Pm,(0,b2,...,bm+1))

Pm,(0,b2,...,bm+1)) +Pm,(1,b2,...,bm+1))

αm,(1,b2,...,bm+1) =
Pm,(1,b2,...,bm+1))

Pm,(0,b2,...,bm+1)) +Pm,(1,b2,...,bm+1))
.

In this way, two sequences of states are merged (for
example, the sequences starting with (0,0,0,1,1,1) and
(1,0,0,1,1,1)). We thus reduce the number of µm, s2

m and
Km from 2m+1 to 2m. By recursion of this principle over all
steps from m to n−1 we limit the computation time to 2m+1

for a two-state model, or, more generally, to Nm+1 for a N -
state model. In the following Subsection A.5, we will intro-
duce sub-steps between the discrete observation time points.
Our approach is easily generalized to sub-steps by consider-
ing state vectors.

Applying our approach with a window length m = 5−7,
we observed similar functional dependencies of the likeli-
hood on the model parameters θ, allowing us to drastically
speed up our method without loosing accuracy.

A.5. Approximating continuous transitions with a discrete

model of one or multiple sub-steps per time frame. ExTrack
fits data of a continuous-time process to a discrete-time
Markov model. Without the introduction of sub-steps,
ExTrack assumes that transitions can only happen once per
time step. It then estimates transition probabilities per time
step, which must be translated into transition rates ki,j that
describe the continuous-time Markov model. For continuous-
time Markov processes, transition probabilities can be con-
verted into rates according to a simple relationship P =
eG∆t, where P is the transition probability matrix, which
contains the transition probabilities pi,j from state i to j, and
where G is the generator matrix with elements Gi,j = ki,j

for i 6= j and Gi,i = −∑

i 6=j ki,j (57). Here, the transition
probabilities pi,j allow the molecule to transition from state
i to j via any number of intermediate states.

However, the implementation of this relation into
ExTrack leads to a systematic overestimation of transition
rates. The reason for this overestimation is found in our ap-
proximate representation of the distribution of physical dis-
placements between time points (Equation (4)) , which is
based on the false assumption that transitions can only occur
at the middle of steps, contrary to the continuous-time nature
of the underlying physical process. We found that this error
could be compensated for by using a slightly different ap-
proximation for state transitions pi,j = 1 − exp(−ki,j · ∆t).
In the limit of small ki,j∆t, this approximation asymptot-
ically equals the exact expression P = eG∆t, which also
asymptotically equals pi,j = ki,j∆t. We found that ExTrack
using the approximate relationship performs better in the case
of two-state and three-state models for a large range of tran-
sition rates. However, ExTrack (python version) also allows
using the generator-matrix based relationship, if the user de-
sires.

When transition rates are high (when k · ∆t > 0.4 for the
two-state model), our method allows to subdivide time steps
into a number of u sub-steps (where u = 2 corresponds to
dividing each step into two). This allows ExTrack to ac-
count for multiple transitions and transition times that are dif-
ferent from the midpoints of time steps ∆t. To take states
at sub-steps into account, we introduce a new state vec-
tor B = (b1,1, b1,2, . . . b1,u, . . . , bn-1,u, bn,1)) and new phys-
ical positions, that require integration according to Equa-
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tion (1). This integration is straight-forward: The probability
β, (Equation (2)) is simply replaced by the product of all state
transitions between subsequent sub-positions. The probabil-
ity distribution of real positions (Equation (4)), is replaced
by the corresponding distribution of sub-positions. Since
the physical displacement during ∆t is the sum of Gaus-
sian random variables (the sub-displacements), the functional
form of Equation (4) (a product of n − 1 Gaussians) can
be maintained while replacing the standard deviations δi =
√

d2
i +d2

i+1 by δi =
√

∑u
k=1 δ2

i,k/u, where δi,k are the cor-

responding diffusion lengths for the sub-steps.
The use of a window length m will allow the user to do

accurate computations for m sub-steps. Thus, at a given m,
the number of observed positions c considered within the
window equals floor(m/u). To consider the same amount
of observed positions per window, one thus needs to increase
the window length. A trade-off between number of states,
window length, and number of sub-steps has to be found (see
Subsection E).

A.6. Extension of ExTrack to consider a finite field of

view. Tracks can terminate due to different reasons: photo-
bleaching, diffusive molecules leaving the field of view, or
molecules transiently not being detected. The process of
leaving the field of view requires diffusive motion. Obser-
vation of long-lived molecules within a finite field of view
can thus show a bias towards non-moving or slowly moving
molecules. An extension of ExTrack can take this bias into
account by explicitly modeling the probability of track termi-
nation. We consider two contributions to track termination:
first, a constant termination probability pK , which is inde-
pendently of the motion state. This probability summarizes
photobleaching and the probability to not detect a molecule,
for example because of low signal to noise ratio; second, a
probability of leaving the field of view (or observation vol-
ume) pL that depends on the diffusion length and the dimen-
sions of the field of view. In case of a cytoplasmic particle
tracked through epi-fluorescence or confocal microscopy, the
monitored length is the depth of field (or focal depth). In case
of a membrane protein moving around a cylindrical cell im-
aged in TIRF microscopy, the monitored length is a fraction
of the cell diameter (Fig. 2c-d).

In principle, pL can be calculated depending on the po-
sition of the molecule with respect to the boundaries of the
field of view. However, we decided to implement an approx-
imate form of pL(δi) that does not require this information
and instead considers the position of the observed molecule
as random inside the field of view. Within this approxima-
tion, the probability of leaving the field of view is given by

pL(δi) = 1−
∫

x∈[0,l]
F

(

l −x

δi

)

−F

(−x

δi

)

dx,

where F (x) is the cumulative density function of the standard
normal law.

We thus modify fC,B,R(C,B,R | θ) in Equation (2) by
multiplication of the left-hand terms with the probability of

observing a track of n positions, which is given by

(1−pL(δi))
n−1(1−pK)n−1 [pK +(1−pK)pL(δn)] .

B. Annotation module.

The annotation module allows to compute the probabilities to
be in any state at any time point of all tracks. According to
conditional probabilities and results from Section A we can
compute the probability of the sequences of states having the
parameters θ for each track C:

P (B | C,θ) =
fC,B(C,B |θ)

fC(C |θ)

For a given track C, at each time point i, the probability of the
current state bi to be in state s ∈ {0,1} can then be computed
by summing over all B with bi = s:

P (bi = s |C,θ) =
∑

B

P (bi = s |B,θ)
fC, B(C,B |θ)

fC(C |θ)
.

The annotation module can also take advantage of the
window approximation decribed in Subsection A.4 to reduce
computational time and make the computation tractable in
case of long tracks.

Since the annotation module does not require parameter
fitting and thus many iterations, the window length can be
chosen larger than for the fitting module. A large window
length is also more important for precise state prediction than
for accurate global parameter fitting.

C. Position-refinement module.

ExTrack can improve the estimation of molecule positions
based on a track, in particular if molecules move slowly. Po-
sitions can be estimated by computing the probability density
function of each real positions ri (32). To do so, we compute
fC(C | θ) without integrating at position ri. This results in
a probability density function f(ri | C,θ) (Fig. 3d-e) which
is a sum of Gaussian functions for each sequence of states.
While this probability density can be obtained explicitly, it
is much faster to obtain the expected value and standard de-
viation of the density function. Those values are computed
by averaging the parameters of the Gaussian distributions as-
sociated with each sequence of states weighted by their re-
spective probability. Like for the fitting method, the window
method is applied (Subsection A.4).

D. Histogram module.

Computing state-duration histograms allows to assess non-
Markovian transition behaviors or to reveal multiple hidden
states with different transition rates. For a given state, the re-
sulting rate is then the sum of track-termination rate (bleach-
ing, track termination due to low SNR, leaving the focal plan)
and the transition rates to other states. If the track-termination
rate is low, the histogram allows to identify one or multiple
transition rates (see, for example, Fig. 3f-g). Picking only
long tracks can help removing the contribution from bleach-
ing.
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ExTrack estimates the histograms hs for each state s:

hs(i) =
∑

C

∑

B

g(i,s |B)
fC, B(C,B |θ)

fC(C |θ)

with g(i,s |B) the number of sequences of i consecutive time
points of state s in the sequence of states B. As long tracks
have to be assessed and all states of B kept in memory, the
window method cannot be applied, we then only keep the
most likely B (1000 in Fig. 3f-e).

E. Implementation and computational time.

ExTrack is available as a Python (Python 3) package (38).
A version with the core functionality is also available as a
TrackMate module (39) on Fiji. The TrackMate implementa-
tion can fit data to a two-state model and annotate states ac-
cording to the results from the fit or manually chosen param-
eters. It then allows interactive visualization of tracks colored
with state probabilities for each displacement. We allow par-
allelization with GPU (cupy library) (python version only) or
multiple CPUs (both python and TrackMate versions).

As mentioned in Subection A.5, a trade-off between num-
ber of states N , window length m, and the number of sub-
steps u has to be found for reasonable computational time.
When running the ExTrack fitting module on a computer with
Intel® Core™ i7-9700 processor (10 000 tracks of 10 posi-
tions) for 200 iterations using a two-state model, a window
length of m = 2, and no sub-step (u = 1) the analysis can be
as fast as 20 seconds. For the dependency of computational
time on numbers of states, sub-steps, and window length see
Fig. S3.

To save computational time, we recommend to initially
run ExTrack with low values of u and m and then to in-
crease u if model predictions suggest high transition rates or
m for low predicted diffusion lengths. Specifically, we sug-
gest to make the following adjustments: If localization error
is negligible, for instance if there is no immobile state and all
di > 2σ, window length m can be set to its minimal value
of 1. Similarly, m = 1 should perform alright when there is
one immobile state and all diffusive states have large di > 5).
In such cases, multiple sub-steps can be used at little com-
putational cost. More generally, if predicted transition rates
are larger than 0.4 ∆t−1 but localization error is not negligi-
ble, we suggest increasing u to 2 for most accurate estimates
(Fig. S2 vs Fig. 1f). In the hardest cases of small d∗ . 2 and
high transition rates (& 0.4), we recommend using u = 2 and
m ≥ 8.

F. Computational simulation of tracks.

To test the predictive power of the different methods, we
conducted overdamped Brownian Dynamics simulations of
tracks in two or three spatial dimensions with molecules tran-
sitioning randomly between the different states at discrete
time points. To mimic a continuous-time Markov model for
state transitions we used a small time step τ = ∆t/50 �
1/ki,j , where ki,j are the transition rates. Brownian Dynam-
ics simulations were carried out by randomly drawing phys-
ical displacements in each spatial dimension from Gaussian

distributions of standard deviation
√

2D dt, where D is the
diffusion coefficient corresponding to the diffusive state. An
additional Gaussian distributed noise of standard deviation σ
was added to simulate localization uncertainty.

Except if specified otherwise, we simulated 10 000 tracks
of 10 time points with localization error σ = 0.02 µm, ∆t =
0.06 s, d0 = 0 µm, d1 = 0.1 µm, bound fraction F0 = 0.5,
transition fractions per steps k01 = k10 = 0.1 ∆t−1, with
infinite field of view and perfectly stroboscopic tracks. We
also assumed that molecules reached steady state, that is,
F0 ·k01 = (1−F0) ·k10.

To test the robustness of ExTrack and the other meth-
ods to more complex behaviors we also simulated tracks with
variations of localization error or diffusion coefficients, a fi-
nite field of view or physical confinement as follows (see
Fig. 2 for illustrations):

Track-to-track variations of localization error (or diffu-
sion coefficients) were simulated with localization error σ (or
diffusion coefficient D) following χ2 distributions of given
coefficients of variation and mean 0.02µm (or 0.25 µm2.s−1

for D), ∆t = 0.02 s. Models with multiple diffusion states
were simulated as continuous-time transitions with model pa-
rameters detailed in Table S2.

To simulate a finite field of view in two dimensions, we
simulated tracks in a box that is infinite in one spatial dimen-
sion (y) and finite in the other dimension (x) with size 3l,
where l is the size of the field of view. All tracks or part of
tracks that fall into the field of view are considered for further
analysis. A single particle can thus result in several tracks if
leaving the field of view and coming back. A finite field of
view in three spatial dimensions was simulated analogously:
The simulation box is infinite in x- and y-directions, while
the box has periodic boundary conditions in the z-direction.

To simulate physical confinement, we considered tracks
to move within a square area of indicated side length, using
reflecting boundary conditions.

G. Comparison to vbSPT.

To compare our results with vbSPT we fixed the number of
states to two so both algorithms performed exactly the same
task. vbSPT does not consider localization error but a metric
that we will call u. In case of pure diffusion, u = D · ∆t but
in case of immobile particle with localization error u = σ2/2
in principle. We can thus infer σ and D according to σ =√

2 ·u0 and D = (u1 −u0)/∆t.

H. Computational analysis of molecule rebinding.

To assess the propensity of RodZ molecules to rebind in close
vicinity of their initial binding site, we first annotated tracks
using parameters obtained from the ExTrack fitting module.
We considered the 16 first time points of tracks of at least
16 time points. Among tracks labeled as initially immobile
for at least 3 time points (pimmobile > 0.5) then diffusive for
4 time points (with at least three time point of probability
pdiffusive > 0.7), we grouped tracks into two subgroups, the
ones rebinding right after and the ones, which continue to dif-
fuse for at least 1 more time point. The histograms represent
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the distributions of distances between initially bound posi-
tion and the position at the 4th time point after unbinding. If
molecules were to rebind at random locations, the distribu-
tions of the distribution of distances for rebinding particles
should be the as for particles, which continue to diffuse. Nei-
ther PBP1b (Fig. S13d) nor tracks obtained from immobile
fluorescent beads (of similar signal-to-noise ratio) showed
any significant rebinding, which excludes wrong conclusions
on RodZ data due to miss-annotations.

I. Cell cultures.

We used the IPTG-inducible GFP-RodZ strain
FB60(iFB273) (∆rodZ, Plac:: gfp-rodZ) by (58) and
the GFP-PBP1b-containing strain AV51 (msfgfp-mrcB,
∆mrcA) (49). Cells were grown overnight at 37°C (shaking)
in LB medium and then washed and diluted at least 1:1000
in M63 minimal medium (Miller, 1972) supplemented with
0.1% casamino acids, thiamine (5 × 10−5 %), glucose
(0.2%) and MgSO4 (1 mM) and grown for 6 hours to early
exponential phase (maximum OD600 of 0.1) at 30°C (shak-
ing). Cells were then spread on an agar pad made from the
same M63 media as described above. RodZ production was
induced with 100 µM IPTG. In the strain AV51, CRISPR
repression of msfGFP-PBP1b is induced with 100 ng/ml of
anhydro-tetracycline (Acros Organics). When necessary,
strains were supplemented with kanamycine (50 µg/ml) or
carbenicillin (100 µg/ml) during overnight cultures. Biologi-
cal replicates result from independent cultures starting from
separate colonies.

J. Single-particle tracking of msfGFP-PBP1b and

GFP-RodZ proteins.

Cells were all positioned in the same focal plan in between
an agar pad (1%) and a coverslip to be imaged in TIRF mi-
croscopy. Coverslips were cleaned by 60 min sonication in
saturated KOH solution followed by two washing steps (15
min sonication in milli-Q water). Single-particle tracking of
GFP-PBP1b was performed with a custom-designed fluores-
cence microscope based on an ASI Rapid Automated Modu-
lar Microscope System, equipped with a 100x TIRF objective
(Apo TIRF, 100x, NA 1.49, Nikon), Coherent Sapphire 488-
200 laser, and a dichroic beamsplitter (Di03-R488/561-t3-25
× 36, Semrock). Excitation was controlled with an acousto-
optic tunable filter (AA Optoelectronics) through an Arduino
(15 ms light exposure per frame). Images were acquired us-
ing an Andor iXon Ultra EMCCD camera with an effective
pixel size of 130 nm. Image acquisition was supervised with
MicroManager.

Data analysis with ExTrack was restricted to tracks with
at least 3 position. For long tracks, only the first 50 positions
were analyzed.
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Supplementary Figure 1. ExTrack parameter fits for independently varied binding and unbding rates. 3D map of the mean error on extracted

parameters from simulations similar to those in Fig. 1, of two-state models with one immobile and one diffusive state as a function of diffusion length d
∗

1
,

unbinding rate ku and binding rate kb. Errors are obtained from 5 replicates. Errors are indicated as absolute or relative errors, as indicated. ExTrack

settings: no sub-steps, window length = 7.
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Supplementary Figure 2. ExTrack parameter fits for a symmetric two-state model without sub-steps. Heat map of mean relative error on extracted

parameters from the same simulations as in Fig. 1, but inferred with no sub-steps. ExTrack settings: no sub-steps, window length = 10.
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Supplementary Figure 3. Computational time of ExTrack depending on sub-steps, window length and number of states. Computational time

of ExTrack fitting module for 200 iterations (typical number of iterations needed for the fit of a two-state model) depending on the window length m

from 1 to 10: Without sub-steps or with 2 sub-steps for tracks of 10 positions or 100 positions (a) or depending on the number of states N (b). with

multiprocessing, 7 cores (see Methods section E).
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Supplementary Figure 4. Error on two-state model parameters for different methods. a: Heat maps of mean relative error on extracted parameters

from the same two-state simulations as in Fig. 1 for vbSPT and anaDDA. b-c: Plots of estimated transition rates as a function of the actual rates for

a subset of the simulations in a. b: Results from UncertainSPT for different diffusion lengths. c: Results from a modified version of Extrack with a

time-discretization approach (labeled Classical), which assumes transitions to occur at time points of molecule observations, and with our approach

(labeled ExTrack), which assumes transitions to occur at the middle of each time steps (see Methods section A.2). Tracks simulated with d
∗

0
= 0, d

∗

1
= 5.
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Supplementary Figure 5. Identifying the sources of error of the different methods. Error, standard deviation and bias of parameters predicted

by ExTrack (a), vbSPT (b) and anaDDA (c) depending on the number of tracks in case of two-state tracks (5 positions per track, ku = kb = 0.1 ∆t−1,

d∗

0
= 0 and d∗

1
= 5). The error (RMSE) can be decomposed into bias (absolute value of the difference between the average estimate from all replicates

and true parameter) and standard deviation (std) of the estimated parameters. Error =
√

bias2 + std2. Obtained from 100 replicates. Here, all estimated

values are relative to their true value. ExTrack settings: number of sub-steps = 2, window length = 10.
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Supplementary Figure 6. Robustness of ExTrack to biases due to distributions of diffusion coefficients or localization error. a: Predictions

of d1, ku and kb in case of two-state parameter fits to two-state simulations with one immobile state and one diffusive state. Position at each time

point show variable localization errors σ. Peak-wise localization errors were specified to the model. σ followed a chi-square distributions re-scaled

so the mean localization error equals 0.02 µm (for sample distributions see inset of Fig. 2b). Simulations with d1 = 0.1µm and k = ku = kb = 0.1.

10 replicates per condition. ExTrack settings: window length = 7, no sub-steps. b: We considered tracks from simulated particles with one immobile

state (d∗

0
= 0) and five diffusive states with similar diffusion lengths of values 0.04, 0.06, 0.08, 0.1 and 0.12 µm (corresponding to d∗ from 2 to 12), all

transition rates between each pair of diffusive states equal 0.1 ∆t−1 (resulting in average lifetimes of 2 ∆t for each diffusive state). This model results

in indistinguishable diffusive tracks. Left: Distribution of displacements (for each dimension) of the five diffusive states. The grey dashed line represents

the sum of the distributions. Right: Bar plots of true and estimated parameters obtained from fitting to a three-state model followed by aggregation of the

diffusive states and computation of the resulting parameters. Here, the fractions are the global fractions computed from rates. See Table S2 for more

details.
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Supplementary Figure 7. Robustness of vbSPT and anaDDA to biases due to a distribution of diffusion coefficients. Heatmaps of relative errors

on d1, ku and kb with variable diffusion coefficient following the same protocol than in Fig. 2b for vbSPT and anaDDA.
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Supplementary Figure 8. Capacity of the annotation module. Assessment of the annotation module accuracy by comparing state estimations (either

probabilistic or categorical) with ground truth from simulated tracks. If not stated otherwise, d∗

0
= 0, d∗

1
= 5 and ku = kb = 0.1 ∆t−1. a,c-e: Categorical

state predictions are obtained by picking the most likely state for each time point. The fraction of mislabeled time points can thus be computed by

comparison to the known true states. a: Fraction of mislabeled time points depending on (temporal) distance to transition time points. b: Fraction of time

points actually in diffusive state depending on the probability to be diffusive estimated by ExTrack. More specifically, time points are binned according

to their probability to be diffusive (x-axis) and for each bin we computed the fraction actually in diffusive state (y-axis). Binning of 0.01. c: Fractions of

mislabeled time points using correct parameters except for one of them specified in the legend. X axis: relative error of the varied parameter compared

to the true value underlying the simulated tracks. For this particular simulation, we used 10 000 tracks of 20 positions. Window length of 10. d: Heatmap

of the fractions of mislabeled time points depending on d∗

1
and k. e: Fraction of mislabeled time points depending on d∗

1
for ExTrack and vbSPT. The

grey dotted curve (annotated as Error dif.) is the relative difference of the fraction of mislabeled time points between vbSPT and ExTrack (error vbSPT -

error ExTrack) / error ExTrack.
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Supplementary Figure 9. 2-state model fits of PBP1b data. Results from parameter fits to experimental tracks of GFP-PBP1b of at least 3 time

points (and considering not more than the first 50 time points assuming 2 states in ExTrack (3 replicates per condition, each replicate has at least 17.000

tracks of average lifetime from 6.3 to 7.5 positions). ExTrack settings: Window length = 4, no sub-steps. State fractions obtained from rates.

Error bars: standard deviations between replicates.
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Supplementary Figure 10. 3-state model fits of PBP1b data. Results from parameter fits to the same experimental tracks of GFP-PBP1b considered

in Fig. 9 but assuming 3 states in ExTrack. ExTrack settings: Window length = 4. State fractions obtained from rates.

Error bars: standard deviations between replicates.
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Supplementary Figure 11. 4-state model fits of PBP1b data. Results from parameter fits to the same experimental tracks of GFP-PBP1b considered

in Fig. 9 but assuming 4 states in ExTrack. Window length = 5. State fractions obtained from rates.

Error bars: standard deviations between replicates.
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Supplementary Figure 12. State annotations of GFP-PBP1b using a 4-state model. State annotation from parameters obtained from the 4-state fits

to GFP-PBP1b data at 130% PBP1b expression. Immobile (state 0 and 1) in blue, intermediate diffusion state (state 2) in green and diffusive state (state

3) in red. The ternary plot represents the intermediate probabilities. ExTrack settings: window length = 7, no sub-steps. Annotation using parameter

obtain from ExTrack fits on the same data. d1 is so low that on the short timescale of transient binding molecules are nearly immobile.
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Supplementary Figure 13. Complementary results for GFP-RodZ and GFP-PBP1b tracks. a-c: ExTrack analysis of GFP-RodZ data (same as in

Fig. 4f-h) a: Parameters found by ExTrack for GFP-RodZ tracks (3 replicates, each replicate has at least 25.000 tracks of average lifetime from 6.3 to

7.4 positions), considering all tracks with at least 3 time points and restricting analysis to the 50 first time points. b: Histogram of the time spent in

bound or diffusive states, among tracks of at least 21 time points using parameters from a. c: Examples of long bound RodZ tracks in linear motion.

d: PBP1b rebinding. Histograms of the distances in between initially bound position and after 4 diffusive steps of PBP1b tracks that are subsequently

either rebinding (blue) or not rebinding (red) (see Methods). Histograms show no noticable difference.

Error bars and shaded regions: standard deviations between replicates.
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Supplementary Figure 14. State annotation or RodZ tracks that show rebinding. Two-state annotations of GFP-RodZ initially immobile (at least 3

positions), then diffusive for 4 positions and then immobile again. Annotation using parameters obtained from fits on the same data. Immobile (state 0)

in blue and diffusive (state 1) in red. ExTrack settings: window length = 10. Colorbar: probability of state 1 (diffusive).
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Supplemental Tables

3-state models σ d0 d1 d2 F0 F1 F2 k01 k02 k10 k12 k20 k21

True 0.020 0.000 0.040 0.100 0.333 0.333 0.333 0.100 0.100 0.100 0.100 0.100 0.100
1

Estimated 0.020 0.001 0.040 0.101 0.342 0.330 0.328 0.097 0.093 0.098 0.093 0.098 0.098

True 0.020 0.000 0.000 0.140 0.069 0.517 0.414 0.300 0.000 0.000 0.040 0.050 0.000
2

Estimated 0.020 0.000 0.000 0.141 0.069 0.518 0.413 0.297 0.005 0.000 0.040 0.050 0.000

True 0.020 0.000 0.000 0.140 0.077 0.462 0.462 0.000 0.300 0.050 0.000 0.000 0.050
3

Estimated 0.020 0.000 0.000 0.141 0.089 0.494 0.417 0.075 0.190 0.047 0.009 0.000 0.051

True 0.020 0.000 0.000 0.140 0.060 0.489 0.451 0.250 0.050 0.020 0.040 0.040 0.010
4

Estimated 0.020 0.000 0.000 0.141 0.046 0.504 0.450 0.358 0.046 0.000 0.041 0.042 0.009

Supplementary Table 1. Here, we use ExTrack to fit parameters of a three-state model to different simulations of three-state data with qualitatively

different types of transitions. Model 1: immobile state, intermediate diffusion state and high diffusion state. 10 000 tracks of 10 positions. Model 2 to 4

represent harder models with two immobile states and one diffusive state (10 000 tracks of 50 positions each). They all have a transient immobile state

(state 0), a stable immobile state (state 1) and a diffusive state (state 2). Model 2: transitions from state 0 to 1 to 2 to 0 in a circular fashion. Model 3:

transitions from state 2 to 1 to 0 to 2 in a circular fashion. Model 4: more complex transitions between states.

ExTrack Model Set of d ki,j Parameters σ d0 d1 F0 ku* kb*

2 states (0.04, 0.06, 0.08, 0.10, 0.12) 0.10 Estimated 0.021 0.001 0.090 0.458 0.130 0.110

True 0.020 0.000 - 0.375 0.1 0.06

ExTrack Model Set of d ki,j Parameters σ d0 d1 d2 F0 ku kb

0.00 Estimated 0.020 0.001 0.054 0.107 0.395 0.101 0.066

0.02 Estimated 0.020 0.001 0.053 0.107 0.387 0.101 0.064(0.04, 0.06, 0.08, 0.10, 0.12)

0.10 Estimated 0.020 0.000 0.053 0.110 0.399 0.102 0.068
3 states

(0.04, 0.08, 0.12, 0.16, 0.20) 0.02 Estimated 0.020 0.000 0.064 0.174 0.405 0.105 0.072

True 0.020 0.000 - - 0.375 0.100 0.060

Supplementary Table 2. 2-state and 3-state fits of tracks from simulated particles either in immobile state (state 0) or in one of 5 diffusive states

(states 1 to 5). Here, unbinding rates k0,j = 0.02 ∆t−1, binding rates k0,j = 0.06 ∆t−1 and other rates ki,j = 0, 0.02 or 0.1 ∆t−1 for i and

j from 1 to 5. *, ku and kb are the global unbinding and binding rates, respectively, obtained as the sum of the unbinding rates, and the average

of the binding rates weighted by the fractions in diffusive state. ExTrack settings: window length = 6. All distances in µm and rates in ∆t−1.
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