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Abstract

The ability to observe the response of neural circuits to controlled optogenetic perturbations opens

an unprecedented window into the mechanisms governing network dynamics and computations. We

combined an analysis of neuronal responses to visual and optogenetic inputs in mice and monkey V1

with theoretical modelling. In both species, we found that optogenetic stimulation of excitatory neurons

strongly modulated the activity of single neurons, but had only a weak effect on the distribution of firing

rates across the population. Key statistics of responses of mice and monkeys lay on a continuum, with

mice/monkeys occupying the low/high rate regions, respectively. At high contrast of the visual stimulus,

optogenetic inputs did not significantly affect the distribution of firing rates, i.e. they reshuffled firing

rates across the network. We show that neuronal reshuffling emerges generically in randomly connected

networks of excitatory and inhibitory neurons, as long as the combination of recurrent coupling and

feedforward input is sufficiently strong so that a powerful inhibitory feedback cancels the mean increase

in firing rate due to optogenetic input.

Introduction

Since their introduction about two decades ago, optogenetic methods have revolutionized neuroscience

(Kim et al., 2017). Optogenetic inhibition of specific areas have allowed neuroscientists to identify regions

that are necessary for specific behaviors. Optical stimulation of specific cell types, in conjunction with

electrophysiological or optical recordings of neuronal activity, can also be used to experimentally test

predictions from network models. An example of such a prediction is the ‘paradoxical effect’ - activating

all inhibitory neurons in a network of excitatory (E) and inhibitory (I) neurons leads to a paradoxical

decrease in activity, in inhibition-stabilized networks (Ozeki et al., 2009; Tsodyks and Markram, 1997).

This prediction was recently tested in multiple mouse cortical areas (V1, S1 and M1) (Sanzeni et al.,

2020). The results were consistent with an inhibition-stabilized cortex. Optogenetics can also provide

information about the structure of synaptic connectivity. For instance, activation of single neurons in

V1 was shown to lead to a suppression of other neurons, whose magnitude depends on the distance
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between their preferred orientations, consistent with a network with strong orientation specificity of E-I

connectivity (Chettih and Harvey, 2019; Sadeh and Clopath, 2020).

Understanding the mechanisms that shape the response of neural circuits to their inputs is another

question where optogenetic techniques can provide an invaluable tool, since they allow experimentalists

to target specific cell types in a controlled fashion. To obtain deeper insights into such mechanisms,

we analyzed electrophysiological recordings from both mouse (Histed, 2018) and monkey (Nassi et al.,

2015) V1, during presentation of visual stimuli of various contrasts and/or optogenetic stimulation of E

neurons. Optogenetic stimulation of E neurons leads to a broad distribution of firing rate changes in

single neurons, with some neurons being strongly excited, while others are strongly suppressed. In mice,

these changes lead to an increase of the mean response which is approximately independent of contrast.

In monkeys, we find that, although at low contrast the network responds similarly as in mice, at high

contrast, approximately equal proportions of neurons are excited and suppressed, and the average firing

rate is not significantly affected by optogenetic stimulation. In fact, the entire distribution of firing rates

is unaffected by optogenetic stimulation, even though the variance of firing rate changes is comparable to

the variance of rates prior to optogenetic stimulation. Thus, optogenetic stimulation of E neurons leads

to a reshuffling of firing rates across the network, leaving invariant the whole distribution. We also find a

continuum from mice at low contrast to mice at high contrast to monkeys at low contrast to monkeys at

high contrast, along which firing rates increase and the optogenetically-induced changes in the mean and

distribution of firing rates shrink to zero.

We explored the mechanisms of such a reshuffling using a theoretical analysis of randomly connected

networks of E and I neurons. We find that such networks reproduce qualitatively all the above mentioned

features, provided the strengths of recurrent coupling and feedforward input are strong enough, the

network is inhibition dominated, and opsin-induced currents in E neurons are sufficiently heterogeneous

and weak. The continuity from mice to monkeys can be understood if mice are in a more weakly-coupled

regime than monkeys, which can arise from weaker recurrent weights and/or weaker feedforward inputs.

These results provide new insights into how cortex processes inputs, and on similarities and differences of

cortical information processing in different mammalian species.

Results

Heterogeneous optogenetic modulation of visual responses in mice and monkeys

We analyzed recordings obtained in the visual cortex (area V1) of mice (Histed, 2018) and monkeys (Nassi

et al., 2015) (experimental procedures are summarized in the Methods). These experiments shared a

number of common features: visual stimuli were gratings of different contrast ([0 − 90]% in mice and

[0 − 99]% in monkeys); virally expressed opsins were used to optogenetically stimulate pyramidal cells.

Both datasets consist of neural responses recorded extracellularly in awake animals to combinations of

visual and optogenetic stimuli. Neurons in monkeys were studied with stimuli matched to their stimulus

preferences, while in mice stimuli were not matched to specific neurons. There are also a few differences

between the recordings in (Histed, 2018) and (Nassi et al., 2015). In monkeys, visual stimuli were drifting

sinusoidal gratings centered within the receptive field and matched to each recorded unit’s preferred

size, orientation, and spatial and temporal frequencies. In mice, on the other hand, multiple neurons

were recorded simultaneously and there was no systematic relationship between the visual stimulus and

preferences of recorded neurons.

Both in mice and monkeys, as previously observed (Histed, 2018; Nassi et al., 2015), single neuron

responses to visual stimuli were strongly modulated by optogenetic stimuli, in a highly heterogeneous
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fashion (Fig. 1A-B). Specifically, responses to visual stimuli were typically either enhanced by the laser at

all contrasts, suppressed by the laser at all contrasts, or enhanced at low contrast and suppressed at high

contrast (Fig. 1A-B); the fourth possibility, suppressed at low contrast and enhanced at high contrast,

was not observed. These single neuron responses might underlie different scenarios at the population

level (Fig. 1C). (i) Optogenetic stimulation could significantly increase the mean activity in the network,

while broadening the distribution of single neuron rate. This scenario is what one would expect naively

in experiments in which optogenetic stimulation targets E neurons. (ii) Optogenetic stimulation could

broaden the distribution of rates, but a large number of suppressed cells could lead to a weak mean

increase of the population activity. (iii) Optogenetic stimulation could affect only weakly the distribution

of rates. Which of these scenarios better represents the effect of optogenetic stimulation of population

activity? Do these effects change with contrast and species?

Optogenetic stimulation reshuffles visual responses in mice and monkeys

To answer the above mentioned questions, we analyzed the statistics of population responses to visual and

optogenetic stimuli (Figs. 2). In both mice and monkeys, mean population activity increased monotoni-

cally with the contrast of visual stimuli, but firing rates in mice were significantly lower than in monkeys.

The mean visual response in mice ranged from 6 ± 0.9 spk/s (mean±sem) at 0% contrast to 16.7 ± 2.0

spk/s at high contrast, while in monkeys it ranged from 20.2± 2.0 spk/s to 72.7± 6.7 spk/s (Fig. 2A). In

both species, visual stimuli of fixed contrast generated a broad distribution of rates (Fig. 2B), and increas-

ing contrast significantly shifted distributions toward higher rates (Fig. 2C–D). Surprisingly, optogenetic

stimulation had much weaker effects at the population level (Fig. 2A–D). In mice, the mean and standard

deviation of the population activity were significantly modulated by the optogenetic stimulation only for

contrasts lower than 55% (Welch’s t–test, p–value<0.05) and 90%(f–test, p–value>0.05), respectively. In

monkeys, the mean population activity was not significantly modulated at any contrast (Welch’s t–test,

p–value>0.05) while the modulation of the standard deviation was significant only at contrasts lower

than 12% (f–test, p–value>0.05). Even more strikingly, optogenetic stimuli weakly affected the whole

distribution of rates in the network (Fig. 2D). In mice, the distribution of rates was significantly affected

only at low contrast (< 20%, KS test, p–value<0.05), for which optogenetic stimuli induced a weak but

statistically significant shift of the distribution toward higher rates. In monkeys, the distribution of rates

was not significantly affected by optogenetic stimulation at any contrast tested (KS test, p–value<0.05).

The weak optogenetic modulation observed at the population level was not due to small changes in single

neuron firing. In fact, both in mice and monkeys, distributions of optogenetic modulations of single neuron

visual responses were broad (Fig. 2E–F). Furthermore, unlike what was found in response to visual stimuli

(Fig. 2C–D), the distribution of changes in rate due to optogenetic stimulation were characterized by a

mean that was considerably smaller than the standard deviation (Fig. 2A, E) and by a significant fraction

of suppressed cells (e.g. at high contrast, 16/55 in mice and 37/50 in monkeys, respectively). Specifically,

across contrasts, changes in rates due to optogenetic input in mice and monkeys were 4.2 ± 8.9 spk/s

(mean±std) and −0.7 ± 43 spk/s (mean±std), respectively. The distribution of optogenetic responses

was contrast invariant in mice (KS test, p-value>0.05). The distribution of optogenetic responses was

contrast invariant in mice (KS test, p-value>0.05). In monkeys, on the other hand, optogenetic responses

observed at zero contrast followed a distribution that was significantly different from those at higher

contrasts (KS test, p-value>0.05). This difference between the two species is consistent with previous

analyses (Histed, 2018; Nassi et al., 2015), which have reported that visual and optogenetic stimuli were

summed linearly in mice (Histed, 2018) and sublinearly in monkeys (Nassi et al., 2015). The difference

in response distribution observed in monkeys at low contrast came from weaker suppression, and appears
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Figure 2: Effects of optogenetic stimulation on population statistics in mice and monkeys. (A)

Population average response to visual and optogenetic stimuli. Optogenetic modulation of mean responses to visual

stimuli was weak; it was only significant in mice at low contrast (< 55%, Welch’s t–test, p–value>0.05). (B)

Standard deviation of the distribution of firing rates across the population. In both species, the standard deviation

of firing rates is increased significantly by light only at low contrast (in mice, < 90%; In monkeys, < 12%; f–test,

p–value>0.05). (C-D) Cumulative distribution function (CDF) of firing rates at low C and high D contrasts of

visual stimuli, with (colored) and without (black) optogenetic stimuli. In both species, optogenetic stimuli weakly

modulate the CDF. Such modulation was only significant for mice at low contrast (6% and 12%, KS test, p–

value<0.05). (E) Standard deviation of the change in firing induced by optogenetic stimulation as a function of

contrast of the visual stimulus (colored lines). In both species, the standard deviation of the change in firing rate

was larger than the mean and of the same order of the standard deviation of rates without the laser (dashed black

lines). (F) Cumulative distribution function of changes in firing rate (∆r) induced by optogenetic stimulation at

three example contrasts (indicated by transparency levels). In both species, and at all contrasts, optogenetic stimuli

generated a broad distribution of firing rate changes, with a large fraction of suppressed cells. (G) Change in firing

rate induced by optogenetic stimulation as a function of baseline activity (i.e. activity without optogenetic stimuli).

Each cell is represented once for every value of contrast of the visual stimuli. Continuous black lines represent mean

∆r in quartiles of the distribution of rates without optogenetic stimuli. In both species, cells with lower baseline

firing tend to be excited by optogenetic stimuli, while cells with higher baseline firing tend to be less excited or,

as in the case of monkeys at high contrast, suppressed. (H) Normalized covariance of baseline rates and change in

rates induced by optogenetic stimuli (ρ =Cov(r,∆r)/Var(∆r)). This ratio decreases with contrast in both species

and, in monkeys, it approaches the value -0.5. As described in the text, a ratio close to -0.5 is required to obtain

invariance of the distribution of rates.
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to be a consequence of the fact that the decrease in firing of cells cannot exceed their activity in the ab-

sence of optogenetic stimuli. The response statistics characterized here suggest that optogenetic stimuli

reshuffled visual responses in mice and monkeys: they strongly modulated single neuron responses but

overall led to a weak modulation of population activity.

How can optogenetic stimulation leave the distribution of rates unchanged, while at the same time

leading to large changes in firing rates of individual neurons, whose standard deviation is comparable

to the standard deviation of firing rates in the absence of optogenetic inputs (Fig. 2B)? If optogenetic

responses were independent from baseline firing, as one might expect intuitively, optogenetic stimuli would

significantly broaden the distribution of visual responses. The rate variance with (σ2
r+∆r) and without

(σ2
r ) optogenetic stimuli are related by σ2

r+∆r = σ2
r +σ2

∆r+2Cov (r,∆r). Thus, independence of r and ∆r

would imply the rate variance is increased by σ2
∆r, which as we have seen (Fig. 2E) is comparable in size

to σ2
r . If the distribution of rates is not modified by optogenetic stimuli, then σ2

r+∆r = σ2
r , which requires

a negative covariance between r and ∆r, with value Cov (r,∆r) = −0.5σ2
∆r.

The relationship between change in rate induced by laser ∆r and rate without laser r is illustrated

in Fig. 2G for both mice and monkeys. In mice, the two are weakly anticorrelated (Pearson correlation

coefficient was -0.06), consistent with a significant increase in the width of the rate distribution with

optogenetic stimulation, while in monkeys, there is a strong anticorrelation between ∆r and r (Pearson

correlation coefficient was -0.38) – neurons with higher (lower) baseline rates were more likely to be

suppressed (excited) by optogenetic stimuli. To quantify the degree to which this anticorrelation leaves

the distribution of firing rates invariant, we define a normalized covariance

ρ =
cov (r,∆r)

σ2
∆r

; (1)

so that ρ is equal to −0.5 when optogenetic stimuli leave invariant the distribution of rates. ρ is plotted

as a function of visual contrast in Fig. 2H. The normalized covariance is close to zero for mice at low

contrast, but becomes significantly negative at high contrast. In monkeys, it is negative at all contrasts and

gets close to -0.5 at high contrast, consistent with invariance of the distribution of rates and consequent

reshuffling of rates by optogenetic stimulation.

The analysis shown so far shows common trends in mice and monkeys but also significant quantitative

differences. We wondered whether these quantitative differences might at least partly be explained by

the differences between the firing rates observed in the two animals. Therefore, we plotted dimensionless

variables characterizing the effect of optogenetic stimuli on the statistics of network activity in the pres-

ence of a given visual stimulus as a function of the average firing rate induced by that visual stimulus.

Remarkably, Figs. 3A–B show for all considered statistics, curves traced by monkey data seem to be the

continuation of those for mouse data, with mice occupying the low rate region of underlying common

curves, while monkeys occupy the high rate region. These figures show that in both species, the mean
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Figure 4: Strong coupling leads to large fractions of suppressed cells, negative covariance and activity

reshuffling in randomly connected E-I network models. (A) Schematic of network model. We investigated

networks with randomly connected E and I rate units. The network is driven by a feedforward input, targeting

both cell types, and by an optogenetic input targeting only E neurons. In the model, opsin expression in E cells

is distributed according to a lognormal distribution.(B-D) Responses to optogenetic stimulation of E cells in a

weakly coupled network model. In all panels, dots represent numerical simulations while lines are mean field theory

predictions. For weak coupling, optogenetic stimulation strongly affects the distribution of firing rates (B), with

only a weak fraction of suppressed cells (C). Changes in firing rates are positively correlated with baseline activity

(D, Pearson correlation coefficient are 0.1 and 0.6 for E and I cells, respectively). (E-G) As in panels B-D, but in a

strongly coupled network model. For strong enough coupling, optogenetic stimulation does not affect significantly

the distribution of rates (E). Firing rate changes are broadly distributed, with a mean around zero and a large

fraction of suppressed cells (F). Firing rate changes are anticorrelated with baseline activity (G, Pearson correlation

coefficient are −0.3 and −0.2 for E and I cells, respectively). In the simulations, J = 0.01mV and 0.3mV for weak

and strong coupling, respectively. Other simulation parameters can be found in table 1 in the Methods. In all

panels, only cells whose response was higher than 1 spk/s in at least one of the two conditions are shown (100% in

weak coupling and 43% for strong coupling.)

of ∆r relative to its standard deviation decreases as a function of contrast until it becomes negligible at

high firing rate. The normalized covariance also decreases with firing rate, getting closer to -0.5 at high

rate.

Network reshuffling emerges in strongly coupled network models

To understand the mechanisms underlying reshuffling of visual responses by optogenetic stimuli, as well

as the observed differences between mice and monkeys, we investigated the response properties of a

mathematical model of cortical circuits. We analyzed a network of randomly connected E and I rate

neurons (Harish and Hansel, 2015; Kadmon and Sompolinsky, 2015; Sompolinsky et al., 1988). In the

model, the single neuron response function (firing rate vs input current relationship) was taken to be the

f-I curve of leaky integrate-and-fire neurons driven by white noise (Amit and Brunel, 1997; Amit and

Tsodyks, 1991; Sanzeni et al., 2020; Siegert, 1951). This transfer function shows all the expected features

of transfer functions of cortical neurons in vivo: supralinear at low mean input due to fluctuations in
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these inputs, transitioning to sublinear at high input due to saturation, but the results presented here do

not depend on this specific choice (see supplementary information, Fig. S1). Visual stimuli are described

by feedforward inputs to E and I units; optogenetic inputs are described by an additional input to E cells,

whose strength is drawn from a log-normal distribution.

Through numerical simulations and analytical calculations, we found that the network model repro-

duces the main features of the experimental data provided that recurrent connectivity and visual input

are strong enough, and the distribution of opsin expression is heterogeneous enough. In particular, we first

focus on the dependence of optogenetic responses on the network’s effective synaptic coupling strength

(referred below as coupling strength), which is defined as the synaptic strength times the sensitivity of

the postsynaptic cell to synaptic input ((Ahmadian and Miller, 2021)). This sensitivity is the cell’s gain,

i.e. the slope of its input/output function. In the supralinear portion of the input/output function, this

increases with network activation and thus with the strength of visual input.

Example network simulations for weak and strong coupling are shown in Fig. 4B-G. In the absence

of optogenetic stimulation, and consistent with previous theoretical studies (Amit and Brunel, 1997;

Palmigiano et al., 2020; Roxin et al., 2011; Sanzeni et al., 2022; van Vreeswijk and Sompolinsky, 1996),

the distribution of rates is narrow for weak coupling and broad for strong coupling. As predicted from

the theoretical analysis described below, responses to optogenetic stimulation strongly depend on the

strength of coupling. For weak coupling, optogenetic stimulation generates a significant shift of the

distribution of rates (Fig. 4B). This leads to a broad distribution of optogenetic responses, characterized

by a positive mean and a lack of significantly suppressed cells (Fig. 4C). Moreover, single neuron responses

to optogenetic stimulation are positively correlated with baseline activity (Fig. 4D, Pearson correlation

coefficients are 0.1 and 0.6 for E and I cells, respectively). This positive correlation follows from the

supralinear shape of the transfer function at low rates. This effect is more pronounced in I cells because,

with respect to E cells, they have a shorter membrane time constant and hence a larger supralinear

region (Sanzeni et al., 2020). The response structure observed in weakly coupled networks matches

naive expectations but strongly differs from experimental observations. When coupling is strong, on the

other hand, optogenetic stimulation does not modify significantly the distribution of rates (Fig. 4E). It

produces a broad distribution of rate changes, characterized by a mean that is close to zero, and a large

fraction of suppressed cells (Fig. 4F). In this regime, single neuron responses to optogenetic stimulation

are negatively correlated with baseline activity (Fig. 4G, Pearson correlation coefficient are −0.3 and

−0.2 for E and I cells, respectively). These response properties are strikingly similar to experimental

observations in monkeys at high contrast.

We now turn to a deeper investigation of the circuit mechanisms underlying these different aspects of

the response of the network to optogenetic stimulation, using mean-field analysis.

Mechanisms shaping the response to optogenetic inputs in network models

We performed numerical and mean field analyses of the network (see details in the Methods) to elucidate

the circuit mechanisms underlying the simulation results highlighted in Fig. 4. These analyses show that

strong recurrent connectivity generates a weak change in average firing rate to optogenetic input, provided

the network is inhibition-dominated (Fig. 5). In particular, numerical simulations and mean field theory

show that the average change in firing rate due to optogenetic stimulation decreases when (Fig. 5A-C,

first row) the firing rate rX of the neurons providing feedforward inputs to the network increases, synaptic

efficacies J become stronger, the strength of inhibition onto E neurons gE becomes stronger, and/or the

strength of inhibition onto I neurons gI becomes weaker. These results can be understood by noticing

that, for small enough optogenetic input and neglecting the contributions coming from quenched disorder
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Figure 5: Dependence of the statistics of network response to optogenetic input on network param-

eters and optogenetic input statistics. (A) Statistics of network response to optogenetic stimuli as a function

of feedforward input rX , for different values of recurrent synaptic efficacies (J , colors; J is the E-to-E efficacy, but

all 4 efficacies ({E,I}-to-{E,I}) are proportional to J). Panels show (from top to bottom): mean change in firing

rate; standard deviation of the change in firing rates; normalized covariance between baseline rate and change in

rates (Eq. 1). Lines under the second row indicate parameters leading to chaotic dynamics. Dots with errorbars

correspond to averages (mean±sem) computed over 20 realizations of the network model. Continuous lines rep-

resent mean field theory predictions. Increasing feedforward inputs to the network generates smaller mean rate

change, while only mildly affecting the standard deviation of rate changes. Negative covariances are obtained for

strong feed-forward inputs, provided J is strong enough. Note that negative covariances can appear both in chaotic

networks (red curve in lower panel) and in non-chaotic networks (e.g. green curve in that panel). (B) Same as in

A but as a function of J , for different values of rX (colors). Increasing J significantly decreases mean rate change

and response covariance, while affecting only mildly the standard deviation of rate changes. (C) Same as in A but

as a function of the strength of inhibition to E cells gE , for different values of the strength of inhibition to I cells

gI . These parameters weakly affect the width of the distribution of responses. Stronger inhibition to E cells, and

weaker inhibition to I cells, both lead to lower mean rate changes, and more negative covariance of rate change with

baseline rate. Networks with gE < gI are not analyzed because they are either unstable or multistable (Sanzeni

et al., 2020). (D) Same as in A but as a function of the CV of the distribution of opsin expression σλ/λ, for different

values of J . The ratio σλ/λ weakly affects the mean rate changes, but strongly affects the width of the distribution

of responses, and the response covariance. In particular, heterogeneous opsin expression (σλ/λ > 1) is required to

generate broad distributions of responses and negative covariance. Simulations parameters are: σλ/λ = 2 in panels

A-C; gE , gI = 8, 3 in panels A,B,D; rX = 10spk/s and 18spk/s in panel C and D; J = 0.6mV in panel C.
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in the connectivity and in the opsin expression, the implicit equation defining the mean rates (see Eq. (12)

of the Methods) can be linearized and solved analytically. Using these approximations, the mean changes

in firing induced by optogenetic stimulation in E and I populations are

∆rE =
gIλ

KJτE (gE − gI)φ′

E

, ∆rI =
λ

γKJτE (gE − gI)φ′

E

(2)

where λ is the mean optogenetic input, K and γK are the average number of E and I recurrent connections

per neuron, while ∆rA, τA, and φ′

A are the mean change in firing, the membrane time constant, and

the single neuron transfer function at the network operation point of population A ∈ [E, I]. Eq. (2)

captures qualitatively the dependency on J , rX and gE,I observed in simulations (Fig. 5A-C, first row).

The dependence of the network response on φ′

E generates, in models with supralinear single neuron

input-output function, an effective strength of interactions between cells that increases with the activity

level (Ahmadian et al., 2013). Therefore, Eq. (2) shows that stronger coupling, generated either by larger

synaptic efficacy J or through an increased activity level, leads to weaker mean optogenetic response.

In the model, the opsin expression heterogeneity generates a cell-specific input that, unlike the average

optogenetic input, cannot be compensated by recurrent interactions and produces highly heterogeneous

responses (Figure 5, second row). This effect increases with the variability in opsin expression (σλ, Fig. 5D,

second row), and weakly depends on coupling strength (Fig. 5A–C, second row). Heterogeneous opsin

expression and strong coupling also lead to a large number of suppressed cells (Figs. 4.) In sum, when

coupling is strong, cell-to-cell fluctuations (which can be both positive or negative) dominate over the

small mean change in input produced by optogenetic stimuli, and therefore determine the changes in

firing of neurons.

Another noteworthy result of our analysis is that a combination of strong coupling and a broad

distribution of opsin expression naturally leads to a normalized covariance ρ closer to −0.5 (Fig. 5, third

row) and to network reshuffling (Fig. 4E–G). The fact that ρ becomes negative is due to an interplay

between single neuron nonlinearities and the strong inhibitory feedback canceling the mean network

response to optogenetic input. In the model, recurrent inhibition acts to counterbalance the change in

rate caused by optogenetic input and thus produce a small change in mean firing rate across the network,

while heterogeneities in opsin expression and recurrent interactions generate a broad distribution of firing

rate changes, characterized by a large fraction of suppressed cells. Strong couplings leads to a broad

distribution of baseline rates and therefore a large fraction of cells with very low baseline rates. Upon

heterogeneous optogenetic stimulation, the non-negative nature of firing rates biases the response of cells

with very low baseline rates toward excitation (see Fig.4G). To compensate for this bias, and generate a

close to zero mean change in rate, the circuit produces, on average, suppression in neurons with higher

baseline activity (see Fig.4G). This leads to a negative correlation between baseline activity and response

to optogenetic input, i.e. a negative ρ.

Previous theoretical works have shown that the dynamics of rate networks becomes chaotic when

recurrent connections are strong (Harish and Hansel, 2015; Kadmon and Sompolinsky, 2015; Sompolinsky

et al., 1988). Consistent with these results, we observed the emergence of chaotic dynamics in our

simulations as J and/or rX increase (Fig. 5, lines under the first row). Note that in our simulations chaos

is heterogeneous, with a broad distribution of temporally-averaged firing rates that reflects the quenched

disorder in the inputs and synaptic connectivity. Since negative covariance and neuronal reshuffling

emerge at large contrast, we wondered if the appearance of these features is related to chaotic dynamics.

To answer this question, we have systematically compared the regions of parameter space in which negative

covariance and chaotic dynamics appear (supplementary information Fig. S2) but found that they only

partially overlap. These results show that negative covariance and chaotic dynamics are two distinct
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phenomena that emerge in networks of strongly coupled neurons.

Network models capture experimental recordings in mice and monkeys

Optogenetic responses in mice and monkeys have qualitatively similar features, which we summarized

above with the term “network reshuffling”, but also important quantitative differences (Figs. 1 and 2).

Compared to monkeys, optogenetic responses in mice had a larger mean over standard deviation ratio

and weaker normalized covariance. However, when dimensionless quantities characterizing the statistics

of network responses are plotted as a function of population rate in the absence of optogenetic stimuli,

these differences seem to largely arise because of different ranges of firing rates, possibly due to a difference

in external inputs to both animals (Fig. 3A–B). This observation supports the idea that the strength of

feedforward inputs might be the main factor explaining differences between mice and monkeys. To test this

hypothesis, we investigated if the same network model can capture responses observed in the two species,

provided that the strength of external stimuli to both animals differs. We fitted our network model to

recordings in mice and monkeys (see methods section for details of the fitting procedure) assuming common

network parameters (J , K, gE,I , β, σλ/λ, CVK) across species, but allowing for different feedforward (rX)

and optogenetic (L) inputs. Results are shown in Fig. 6A (dashed lines). The figure shows that our model

captures the main features of the recordings: weak mean optogenetic response; large standard deviation of

optogenetic response; and increasingly negative normalized covariance with contrast of the visual stimulus.

This agreement with experimental data shows that the mechanism we proposed for neuronal reshuffling

can emerge with biologically realistic values of model parameters.

Our model, in which the only difference between two species comes from parameters of visual and

optogenetic inputs, captures key differences between mice and monkeys: a lower visual response in mice;

a larger ratio between mean and standard deviation of the change in rate by optogenetic stimuli in mice;

and a more negative normalized covariance in monkeys. These results support the idea that the strength

of feedforward inputs is a key factor shaping differences between the two species. At the same time, the

model fails to capture quantitatively the mean optogenetic response and the amplitude of the normalized

covariance in monkeys. These discrepancies suggest that differences in the network structure and in the

distribution of opsin expression might be important to fully capture the observed response properties. In

agreement with this observation, we found that repeating the fitting procedure in models with independent

structure for mice and monkeys gives a better description of experimental recordings (Fig. 6A, continuous

lines). The best fit parameters are characterized by weaker inhibition (bigger gI produces stronger self-

inhibition of I cells and larger network response, e.g. see Eq. (2)) and less heterogeneous optogenetic

expression in mice than in monkeys.

Previous theoretical work (Ahmadian and Miller, 2021; Rubin et al., 2015; Sanzeni et al., 2020) has

suggested that cortical circuits operate in a loosely balanced regime, characterized by a net input to cells

(the sum of excitatory and inhibitory inputs) comparable to its individual (excitatory and inhibitory)

components. This property can be quantified by the balance index, defined as the ratio between the net

input (excitatory minus inhibitory and the total excitatory inputs to cells (Ahmadian and Miller, 2021).

In our model, using the parameters inferred from data, we found a smaller balance index in monkeys

than in mice (Fig. 6C). Recordings in mice were consistent with the underlying network being loosely

balanced at low and intermediate contrast (balance index greater than 0.1). Somewhat tighter balance

was observed at high contrast in mice and for all contrasts in monkeys, for the model in which mice

and monkeys were jointly fit, while monkeys showed very tight balance in the model in which they were

independently fit. Our theoretical analysis suggested that, in order for the mean optogenetic response

to be weak, the average optogenetic current should be small compared to other inputs in the circuit.
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Figure 6: Fitting mice and monkey data with the network model. (A) Comparison between data (circles

represent means, shaded regions are mean±sem) and network model with parameters that best fit data (dashed and

continuous lines) in mice (left) and monkeys (right). Dashed lines represent best fits obtained with the same network

model in mice and monkeys, but different feedforward and optogenetic inputs. Continuous lines represent best fits

obtained with different network models. Model plots are obtained from simulations, averaging over 20 realizations.

Network models reproduce key features of experimental data, including: weak mean changes in firing rate; broad

distribution of responses; and increasingly negative covariance with contrast of the visual stimulus. (B) Average

discrepancy (AD, measured as log
10

of the ratio between the actual and the minimum error) between best model

predictions and experimental data for mice (left) and monkeys (right) obtained with models where two parameters

are constrained to the values specified by both axis. Red circles indicate optimal parameters, used to generate panels

A (open circles: same parameters in mice and monkeys; filled circles: dfferent parameters in mice and monkeys). In

both species, consistent with Fig. 5D, better fits are obtained for σλ/λ > 1, i.e. highly heterogeneous optogenetic

expression, and for biologically realistic values of J , in the range of [0.1− 1]mV. (C) Inferred values of the balance

index (Ahmadian and Miller, 2021), i.e. the ratio between net input current (excitatory minus inhibitory) and

the total excitatory input in response to visual stimuli. The lower index observed in monkeys indicates stronger

coupling in this species than in mice. (D) Inferred values of the ratio between optogenetic input and the total

visually-driven excitatory input. Both in mice and monkeys, the model requires a small mean optogenetic input,

relative to visually-driven excitatory input, to capture experimental data.
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Consistent with this assumption, we found that the model fitted to data had mean optogenetic inputs

significantly smaller than the visually-driven excitatory inputs, with this difference becoming very strong

in the model that was fit independently to monkey data (Fig. 6D).

Discussion

Summary of the results

We analyzed electrophysiological recordings of mice and monkey V1 while the animals viewed visual

stimuli, with or without concurrent optogenetic stimulation of E neurons. In both species, and for

all contrasts of visual stimuli, optogenetic stimuli generate a broad distribution of responses, whose

mean is considerably smaller than the standard deviation. This large heterogeneity of responses to

optogenetic stimuli results in particular in large fractions of suppressed cells. The main quantitative

differences between the two species are that the amplitude of single-cell responses to visual and optogenetic

stimulation, and the fraction of suppressed cells, are larger in monkeys, while the mean optogenetic

response in monkeys is smaller. The heterogeneity of cell responses underlies a simple pattern at the

population level. In monkeys, at all contrasts, optogenetic stimuli strongly modulate the activity of single

neurons, while leaving invariant the distribution of rates across the population. This feature is specific to

optogenetic stimuli (visual stimuli shift the distribution toward higher rates), and it appears also in mice

at high contrast. Intriguingly, statistics of optogenetic responses across the two species form a single,

continuous function of baseline (visually-induced) population activity, with mouse and monkey responses

corresponding to lower and higher baseline activities, respectively.

To understand the mechanisms that are responsible for this network reshuffling by optogenetic inputs,

we analyzed a cortical network model composed of randomly-connected E and I neurons. When recurrent

connectivity and/or feedforward input is sufficiently strong, the strong inhibitory feedback balances the

mean excitatory optogenetic input, leading to a small change in mean firing rates, while heterogeneities in

opsin expression and recurrent interactions lead to a broad distribution of firing rate changes, with a large

fraction of suppressed cells. The rectification of the single cell input-output function biases responses of

neurons with nearly silent baseline activity towards excitation, while the circuit dynamically generates

suppression in neurons with higher baseline activity in order to maintain the small change in mean firing

rate. This negative correlation between baseline firing rate and optogenetically induced change in firing

rate is consistent with experiment and generates reshuffling of neural activity in the network model like

that observed in mice and monkeys.

Theoretical implications: Coupling strength in cortex

Balanced network models (Ahmadian and Miller, 2021; Ahmadian et al., 2013; Amit and Brunel, 1997;

Brunel, 2000; Roxin et al., 2011; Rubin et al., 2015; Sanzeni et al., 2020, 2022; van Vreeswijk and Som-

polinsky, 1996, 1998) have been successful in reproducing several ubiquitous features of cortical activity:

highly irregular firing (Compte et al., 2003; Softky and Koch, 1993), excitation/inhibition balance (Haider

et al., 2006), and broad distributions of firing rates (Buzsáki and Mizuseki, 2014; Hromádka et al., 2008;

O’Connor et al., 2010). These properties can arise either in networks that are tightly balanced or loosely

balanced (Ahmadian and Miller, 2021), meaning that the net input after cancellation of excitation and

inhibition is respectively much smaller than, or comparable in size to, the cancelling factors. Here, we

showed that such networks can reproduce the surprising effect of an approximate invariance of the distri-

bution of firing rate to optogenetic input, in spite of the fact that this input causes large changes of firing
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rates of individual neurons - i.e., reshuffling. This provides further evidence that recurrent connectivity

in V1 is powerful, and stabilized by strong inhibition. A key property of the loosely balanced regime, as

exemplified by the supralinear stabilized network (SSN) model (Ahmadian and Miller, 2021; Ahmadian

et al., 2013; Rubin et al., 2015), is that network behavior depends on the network’s activation level. In

our model, this accounts for the strong dependence of the results of optogenetic stimulation on the state

of the network prior to stimulation, which in the experiments described here is controlled by the contrast

of the visual stimulus.

The best fits of our network model to experimental data provide evidence that cortical circuits in mice

operate in a loosely balanced regime at low contrast, while balance appears to be tighter at high contrast

in mice and at all contrasts in monkeys. The tighter balance observed in our analysis is inconsistent with

previous estimates that balance in sensory cortex is loose (Ahmadian and Miller, 2021). This inconsistency

might be due to the fact that previous estimates were derived assuming average firing rates significantly

lower than those reported in Nassi et al. (2015) (however, electrode recording as in Nassi et al. 2015 can

produce over-estimates of average firing rates, due to under-representation of weakly active or silent cells,

e.g.Barth and Poulet 2012). Alternatively, the stronger coupling we have found might be a consequence

of the simple structure assumed in our model, which completely neglects the structured connectivity in

cortical circuits (further discussed below).

The model investigated here is a randomly connected firing rate model, similar to previously studied

models (Harish and Hansel, 2015; Kadmon and Sompolinsky, 2015). Given that the transfer function we

used is that derived analytically for leaky integrate-and-fire neurons in the presence of noise, we expect

similar results to hold in networks of LIF neurons with similar parameters, and also more generally in net-

works of more realistic spiking neurons, provided these networks operate in an asynchronous state, which

we know can be realized for realistic single neuron and synaptic parameters (Brunel, 2000; Renart et al.,

2010). Indeed, the mean-field equations for such networks should be very similar to the equations derived

in this paper (SI), with the exception of additional equations relating the variance of the fluctuations in

synaptic inputs self-consistently to the statistics of the firing rates of the network. We do not expect

this difference to affect our results qualitatively. These results should also hold in networks in weakly

synchronized irregular states in which firing rates depend only weakly on the degree of synchronization

(Brunel and Hakim, 1999; Brunel and Wang, 2003), as well as in spatially structured networks generating

irregular traveling waves (Davis et al., 2020; Muller et al., 2018).

An interesting feature of our analysis is that the coupling strength parameters that best fit the data

are close to a transition to chaos in the rate model (Engelken et al., 2020; Harish and Hansel, 2015;

Kadmon and Sompolinsky, 2015; Sompolinsky et al., 1988). This makes sense since both reshuffling and

chaos require strong coupling. We note however that chaos is not required for our results to hold, since

non-chaotic networks reproduce all the main features in the data.

Mice vs monkeys

Our work provides to our knowledge the first systematic comparison of how optogenetic stimuli modulate

visual responses in mice and monkeys. It shows that baseline firing plays a key role in determining the

statistics of neural responses, and suggests that the different activity levels, due to different strengths of

feedforward input, could underlie differences observed in the two species. When key statistics were plotted

as a function of baseline rate, curves traced by mice and monkey data seem to lie on the same underlying

curve, with mice occupying the low rate region while monkeys occupy the high rate region. Consistent

with this observation, fitting data from both species with a network model with the same parameters, but

different input strengths, gives a reasonable description of the data, though the quality of the fit improves
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when network parameters are allowed to differ between the two species.

A recent electron microscopy study performed a detailed comparison of reconstructed neurons and

their synaptic connections in mouse and primate V1 (Wildenberg et al., 2021). Surprisingly, synaptic

connectivity in primates was found to be much more sparse than in mice, with a larger ratio of excitatory

to inhibitory synapses in mice. The larger ratio of excitatory to inhibitory synapses in mice seems

consistent with the weaker inhibition we found in mice. However, the weaker coupling in monkeys than in

mice reported in (Wildenberg et al., 2021) seems at first sight at odds with our conclusions that monkeys

appear to be in a more strongly coupled regime than mice. However, strong coupling can arise from

stronger synaptic connections and/or stronger activation levels, and the latter are larger in monkeys.

Furthermore, the model reproduces well the data in broad regions of parameter space (see, in Fig. 6B, the

broad blue regions which indicate reasonable fits in a broad range of values of J) and thus our results are

not incompatible with (Wildenberg et al., 2021). Finally, electron microscopy can tell us about numbers

of synapses per neuron, but not about the strength of individual connections, which leaves open the

possibility that synaptic coupling strength is comparable in mice and monkey.

The recordings in monkeys were done in cells that optimally responded to the orientation, spatial

frequency, and size of the presented stimulus, whereas in the mouse recordings there was no systematic

relationship between cell preferences and the stimulus. The use of optimal stimuli in monkeys would bias

observed rates to the high end of the rate distribution. It is possible that these higher-firing cells are

more likely to be suppressed by optogenetic stimulation, and that this could contribute to the greater

suppression seen in optogenetic responses of monkey vs. mouse.

Relations with previous experimental works and computational consequences

The modulation of visual responses by optogenetic stimuli we have described, characterized by large

changes in single neuron firing that weakly affect the overall activity of the network, might be relevant

to understand responses of neurons observed in other conditions. Large numbers of suppressed cells in

response to optogenetic activation of pyramidal cells have been reported in experiments using one-photon

stimulation in mouse visual cortex (O’Rawe et al., 2022), ferret visual cortex (Wang et al., 2022), and

targeted two-photon stimulation of small ensembles in mouse barrel cortex (Dalgleish et al., 2020).

In the monkey, optogenetic drive to one ocular dominance (OD) domain causes suppression of the

activity of cells in the other domain (Chernov et al., 2018). Given that in our monkey data the diameter

of the optogenetic perturbation is around 680 µm, it is possible that it targets one OD region more

than another and the suppression observed here could also correspond, at least partially, to a mis-match

between the OD region that is predominantly stimulated and that of the measured cell. Surprisingly,

and at odds with the results presented here (see Fig. 2), recent works in monkeys have reported large

changes in mean firing rate with optogenetic stimulation of E cells (Andrei et al., 2019; Chen et al., 2022).

In (Andrei et al., 2019), the near absence of suppressed cells could be due to the very weak stimulus

contrast utilized (for which both our data and our models indicate weaker suppression), and to the

orientation-specific stimulus, which, as visual stimuli, is able to drive the mean activity. In (Chen et al.,

2022), optogenetic stimulation to E cells causes a large change in the mean activity from the response

to stimuli of contrast up to 60%. This discrepancy is less likely to be explained by the weaker values

of contrast utilized. It should be noted, however, that comparisons of results reported in (Nassi et al.,

2015) and (Chen et al., 2022) are complicated by the different recording approaches used in these studies:

the former used electrophysiology to measure single unit responses to their preferred visual stimuli; the

latter used wide-field calcium imaging and measured responses reflected the pooled spiking activity of a

large population of neurons with diverse tuning properties. Because averages were performed on the entire
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population and not only the cells which respond maximally to the visual stimulus (as in our monkey data),

the effects of reshuffling could have been partially masked. Finally, because the optogenetic stimulation

in (Chen et al., 2022) was delivered in the context of a visual discrimination task, it is possible that the

network response in this case differs from the case studied here, were there was no training involved and

the optogenetic input was simply a perturbation of activity. In fact, recent work (Akitake et al., 2022)

has shown that mice can learn to respond to an optogenetic input, and the response to the stimulation

in that case can dramatically increase with learning.

The response properties of cortical networks to optogenetic inputs we have found here might also be

relevant to understanding the response of cortex to modulatory inputs (Sherman and Guillery, 1998).

In fact, weak changes in mean population activity together with large changes in individual neuron

firing rates, appear after learning in experiments involving brain-machine interfaces (Engelhard et al.,

2019), and due to behavioral modulations of activity, like head movements (Bouvier et al., 2020), and

running (Liska et al., 2022).

Our results also shed light on the mechanisms of normalization, a widespread phenomenon in cortical

circuits (Carandini and Heeger, 2012; Reynolds and Heeger, 2009). The normalization model has been

shown to be a good phenomenological description of how neurons respond to both visual and optogenetic

inputs in primate V1 (Nassi et al., 2015). In our model, as in previous theoretical works (Ahmadian

et al., 2013; Rubin et al., 2015), nonlinearities in the mean response of a population of neurons, such as

those traditionally described by the normalization model, emerge because of activity-dependent coupling

strength. The striking heterogeneity of normalization properties observed across neurons (Nassi et al.,

2015), on the other hand, arises from the heterogeneity of weights and inputs, as also observed in previous

models (Rubin et al., 2015). A new feature we have found is that the cells whose responses to the

optogenetic stimulus are most “normalized” or suppressed tend to be those that have the highest baseline

(visually-induced) firing rates.

Limitations and future directions

The network studied here has a purely random connectivity. The mechanism by which the mean response,

but not the standard deviation of the response, is suppressed is in large part that of the tightly balanced

network (van Vreeswijk and Sompolinsky, 1998). The randomly connected network, when strongly cou-

pled, elicits recurrent inhibition that largely cancels the mean external input to the network, but cannot

cancel the differences in input across cells. As described above, analysis of sensory cortical data from mice

and cats suggests that balance is loose (Ahmadian and Miller, 2021). We can obtain negative covariances

of rate and rate changes comparable to those in the data with balance indices indicating loose balance

(not shown), but we did not find parameters to simultaneously also match other observed statistics in the

monkey without quite small balance indices, i.e.quite tight balance. This suggests a problem with the

present scenario although, as noted above, it is possible that the high firing rates reported in monkey V1

might imply a tighter balance than previously estimated.

A related limitation is that, to match the observation that the mean optogenetic response is small

relative to the mean visual response, the mean optogenetic input must be small relative to the mean

visually-evoked excitatory input to the network. In layer 4 of mouse V1, peak visually-evoked excitatory

current has been estimated to be 60-150pA across cells (Li et al., 2013; Lien and Scanziani, 2013). In

cultured neurons, optogenetically-evoked currents are 100’s to 1000’s of pA (Mattis et al., 2011), but

light is severely attenuated with transmission through cortex, by 50% over about 40 microns (Yona et al.,

2016). Thus, it is difficult to assay whether the model’s requirement is met in vivo in cortical cells, but

this could also be a problem for the present scenario.
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Models with structured connectivity might alleviate these possible problems. Both synaptic connec-

tivity and visual input depend on selectivity of neurons for visual stimulus properties such as orientation,

spatial phase, and spatial position. In particular, a notable difference between the visual and optogenetic

stimuli studied here is that visual stimuli provide input to neurons selectively according to their tuning,

while optogenetic stimuli target all excitatory cells indiscriminately. Thus, an alternative explanation of

the small mean response might be that neurons inhibit cells that differ from them in such features as

preferred orientation (e.g. Liu et al., 2011), preferred spatial phase (e.g. Kayser and Miller, 2002; Troyer

et al., 1998) or preferred direction (Rossi et al., 2020) more strongly than they excite cells with simi-

lar tuning, so that a nonspecific stimulus evokes a net inhibition. Such a mechanism might yield small

mean response with more substantial optogenetic input, and this might not depend as strongly on the

tight cancellation associated with very strong coupling. Given this alternative mechanism for suppress-

ing mean response, the other properties examined here would likely follow: heterogeneity of optogenetic

inputs would produce a broad range of optogenetic responses, and a bias of weakly activated cells to

show optogenetic excitation would then cause the negative covariance of rate and rate changes and the

associated preservation of the overall distribution of firing rates.

In a preliminary investigation of the effects of structure, we implemented a discrete ring model with

wider inhibition than excitation, representing inhibition that is wider in preferred orientation than exci-

tation, as observed in mouse simple cells (Liu et al., 2011). We chose ring model parameters that give

similar baseline firing rates compared to the structureless model from Figure 5 panel A, but with an

eight-fold increase in the mean optogenetic input (see Figure S3). We found that when only measuring

neurons that match the orientation tuning of the visual stimulus, as is done for the monkey data, the ring

model can achieve equal or greater reshuffling compared to the structureless model even with increased

optogenetic input. Thus, at least qualitatively, a structured model can alleviate the possible problem with

the size of the optogenetic input. In future work we will examine scenarios of structured connectivity to

determine whether the data can be quantitatively well fit while relaxing both possible problems discussed

above.

Several other factors might also play a role in the differences between monkey and mouse responses.

First, as discussed above, the use of optimal stimuli in monkeys might contribute to monkey optogenetic

responses showing greater suppression than mouse. Second, the differences in V1 functional architectures

of rodents (with ‘salt and pepper’ orientation selectivity (Ohki et al., 2005a)) and monkeys (with orien-

tation columns (Hubel and Wiesel, 1977)), along with the tendencies of synaptic coupling to decrease in

strength both with cortical distance (Rossi et al., 2020) and with difference in feature preferences (Cos-

sell et al., 2015; Ko et al., 2011), might contribute to weaker synaptic coupling in mice as compared to

monkeys.

Conclusions

The over 70 million years of evolution separating mice and monkeys (Siepel, 2009) have produced sub-

stantial differences in the structure of their cerebral cortices, e.g. in the presence of orientation and ocular

dominance columns in primates (Hubel and Wiesel, 1977) but their absence in rodents (Dräger, 1974;

Ohki et al., 2005b; Van Hooser et al., 2005) the size of their receptive fields (Van Den Bergh et al., 2010),

and their connection statistics (Wildenberg et al., 2021). Our analysis of optogenetic modulation of visual

response in V1 shows that, despite these differences, mice and monkeys may share a common remarkable

resistance of their cortex to optogenetic inputs at the population level, in spite of large changes in single

neuron firing rates. These results might more generally yield insight into circuit mechanisms underlying

differences in the effects of sensory or driving vs. modulatory inputs on cortical responses.
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Methods

Experimental methods

Mice

A detailed description of the experimental methods is given in (Histed, 2018). In brief, neurophysiological

data from Emx1-Cre animals (n = 4) were collected. Animals kept on a monitored water schedule were

given small drops of water (∼1 µl) every 60–120 s during recording to keep them awake and alert. The

visual stimulus, a Gabor patch with spatial frequency 0.1 cycle/deg and sigma 12.5 deg, were presented

for 115 ms [full width at half maximum (FWHM) intensity], and successive visual stimuli were presented

every 1 s. Optogenetic light pulses were delivered on alternating sets of 10 stimulus presentations (light

onset 500 ms before first stimulus; offset 500 ms after end of last stimulus; total light pulse duration

10.2 s). A 1-s delay was added after each set of 10 stimulus presentations. Extracellular probes were 32-

site silicon electrodes (Neuronexus, probe model A4x8). Channelrhodpsin-2 (ChR2) was expressed in E

neurons (as described in Histed and Maunsell, 2014) using viral (AAV-EF1a-DIO-ChR2-mCherry, serotype

2 or 8; http://openoptogenetics.org) injections into the Emx1-Cre (Gorski et al., 2002; #5628, Jackson

Laboratory) line. Virus (0.25–1.0 µl) was injected into a cortical site whose retinotopic location was

identified by imaging autofluorescence responses to small visual stimuli. Light powers used for optogenetic

stimulation were 500 µW/mm2 on the first recording session; in later sessions, dural thickening was visible

and changes in firing rate were smaller, so power was increased (maximum 3 mW/mm2) to give mean

spontaneous rate increases of approximately ∼5 spk/s in that recording session. Optogenetic light spot

diameter was 400–700 µm (FWHM) as measured by imaging the delivered light on the cortical surface.

Spike waveforms were sorted after the experiment using OfflineSorter (Plexon, Inc.). Single units (SU)

were identified as waveform clusters that showed clear and stable separation from noise and other clusters,

unimodal width distributions, and interspike interval histograms consistent with cortical neuron absolute

and relative refractory periods. To compute neurons’ visual responses, we counted spikes over a 175-ms

period beginning 25 ms after stimulus onset. Zero-contrast responses were computed from the 175 ms

period immediately preceding stimulus onset.

Monkeys

A detailed description of the experimental methods is given in (Nassi et al., 2015). In brief, two adult male

rhesus macaques (Macaca mulatta) were each implanted with a custom titanium head post and silicone-

based artificial dura recording chamber over V1. We injected a VSVg-pseudotyped lentivirus carrying the

C1V1-EYFP gene behind the 1.3 kb CaMKIIα promoter (lenti-CaMKIIα-C1V1E162T-ts-EYFP; titer 3 ×

1010 TU/ml) into a single location in V1 in each of the two monkeys (monkeys A and M) while they were

anesthetized and secured in a stereotactic frame. Injections of the same viral construct were made into

V1 of one additional monkey in order to assess specificity of viral expression to E neurons. In a second,

distant location in V1 of monkey A, we injected an adeno-associated virus carrying the eArch3.0-EYFP

gene behind the 1.3 kb CamKIIα promoter (AAV5-CamKIIα-eArch3.0-ts-EYFP; titer 4 × 1012 VP/ml).

Monkeys were alert and head restrained during all experiments. Single- and multi-unit waveforms were

recorded using thin glass-coated tungsten electrodes (Alpha Omega, Engineering Inc., Nazareth, Israel).

After isolating a single-unit or multi-unit cluster, we first assessed sensitivity to optogenetic stimulation.

We randomly interleaved different stimulation intensities. Stimulation on each trial was continuous and

lasted for 200 ms. Each condition was repeated at least five times. For a subset of light-sensitive units, we

proceeded to measure responses to simultaneous optogenetic stimulation and visual stimulus presentation.
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The presented visual stimuli consisted of circular patches of drifting sinusoidal gratings whose size was

matched to each recorded unit’s preferred size (median diameter = 0.63deg), of mean luminance matching

the surround (42 cd-m2) at the optimal orientation and spatial and temporal frequencies. Each stimulus

condition was presented at least five times. For simultaneous optogenetic stimulation and visual stimulus

presentation, we varied the contrast of the presented gratings in log steps (0%, 6%, 12%, 25%, 50%,

and 99%) and stimulated with four different intensities including zero. Visual contrast and stimulation

intensity were randomly interleaved. Here, we show results only for zero and the largest intensity, but

similar results hold also for intermediate intensities.

Mathematical methods

Network model. We investigated large randomly connected networks of E and I rate neurons. The single

single neuron response function (firing rate vs input current relationship) was taken to be the f-I curve of

leaky integrate-and-fire neurons driven by white noise (Amit and Brunel, 1997; Amit and Tsodyks, 1991;

Sanzeni et al., 2020; Siegert, 1951). Specifically, the firing of a neuron belonging to population A ∈ [E, I]

in response to an input x, is given by

rA = φA (x) =

[

τrp + τA
√
π

∫ umax,A

umin,A

eu
2

(1 + erf(u)) du

]

−1

, (3)

with

umax,A =
θ − x

σA
, umin,A =

Vr − x

σA
. (4)

In Eq. 3, τrp indicates the single neuron refractory period so that 1/τrp is the maximal single neuron

firing rate; τA is the membrane time constant; σA is a parameter controlling the smoothness of the

transfer function. Throughout the paper, we assumed the values τrp = 2ms, θ = 20mV, Vr = 10mV,

τE,I = 20, 10ms and σE,I = 10mV.

Indicating with riA and µi
A the rate and the total input (recurrent + feedforward) of the i-th cell in

population A ∈ [E, I], activity in the network evolves in time according to the equation

τA
driA
dt

= −riA + φA

(

µi
A

)

, µi
A =

∑

B∈[E,I,X]

NB
∑

j=1

cijABW
ij
ABτAr

j
B (5)

Here cij is the adjacency matrix and NB is the number of neurons in population B where (X) indicates

the externally driven input, i.e. visual input. In the theoretical analysis of the model (mean field theory

described below and simulations shown in Figures 4 and 5 and in supplementary information), the network

connectivity was assumed to follow an Erdös–Rényi statistics, i.e. each element of the adjacency matrix

cij was 1 with probability p and 0 otherwise. In fitting the model to data (Figure 6), we considered more

general statistics by generating cij as follows: for each row i, a random number of elements Ki (Gaussian

distributed, with mean K and standard deviation CVK K) was fixed to 1, the other elements were fixed to

0. Throughout the paper, we assumed uniform W s (specifically, W ij
AB = WAB) and NX = NE = 4NI =

10K. The matrix WAB was parameterized as follows

WEE = J , WEI = JgE , WEX = (GIgENI/NE −GE)WEE

WIE = J/β , WII = JgI/β , WIX = (GIgINI/NE −GE)WIE .
(6)

These definitions were chosen so that the parameters GI and GE give the gain of the E and I population

in the strong coupling limit (see (Sanzeni et al., 2020)).
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With optogenetic input, the network dynamics becomes

τA
d(riA +∆riA)

dt
= −riA −∆riA + φA

(

µi
A +∆µi

A + λi
A

)

, ∆µi
A =

∑

B∈[E,I,X]

NB
∑

j=1

cijABW
ij
ABτA∆rjB , (7)

where λi
A represents the optogenetic input of the i-th neuron in the network, which varies according to

the opsin expression in that neuron, while ∆riA and ∆µi
A indicate the change in rate and in the recurrent

inputs produced by optogenetic stimuli.

For the discrete ring model, the recurrent connection probability and all synaptic weights are scaled

by a structured component that depends on the distance between two oriented locations on the ring or

between the input orientation and the ring orientation (between 0◦ − 180◦). This structured factor has

the form
exp

[

cos(2∆θ)/(2σ)2
]

exp [1/(2σ)2]
. (8)

The synaptic weights between a tuned external population and populations on the ring are shaped by

a width σX . The recurrent connection probability and weights are shaped by common widths σE for

excitation and σI for inhibition.

Network simulations. Simulations of the network dynamics were performed in python. For each

parameter set, we generated one realization of the network structure (adjacency matrix Cij
AB, firing of the

feedforward population riX (generated from a Gaussian distribution with mean rX and standard deviation

σX = 0.2 rX), opsin expression λi
A (generated from a lognormal distribution with mean λ and standard

deviation σλ) and simulated the network dynamics given by Eqs. (5) and (7) using the explicit Runge-

Kutta method of order 5 (implemented with the function solve ivp of the python package scipy.integrate).

The network dynamics was run for a total simulated time of 200τE = 4s and computed rates were stored

every τI/3 = 3.33ms. The firing rate of a cell was obtained by measuring its average rate over the

simulation time (excluding the initial 10τE = 0.2s.) To measure optogenetic responses, we simulated the

same realization of network structure twice, once with λi
A 6= 0 and once with λi

A = 0.

Fitting procedure. Predictions of the model depend on a list of unknown parameters (indicated in

what follows as Θ) related to: connectivity (J , K, β, gE , gI , CVK); external inputs (GE , GI and one value

of rX per each contrast); and optogenetic inputs (λ, σλ). To fit these parameters to experimental data,

we assumed GI = 2GE , consistent with the fact that in vivo, I firing rates are typically about twice E

firing rates (e.g. (Sanzeni et al., 2020)). This choice is motivated by the fact that experimental recordings

do not distinguish cell types; this limitation makes our model under-constrained by the data (since the

same average firing could be obtained by an infinite combination of firing rates of E and I cells). Without

loss of generality, we assumed GE = 1 (any other choice can be obtained by rescaling rX) and K = 500

(any other choice can be obtained by rescaling J ∼ 1/
√
K). Moreover, we took σX = 0, and controlled

variability in the feedforward input by varying CVK .

With the above assumptions, model parameters were inferred as follows. First, we measured optoge-

netic responses in a large number (457964) of network simulations; each one obtained assuming model

parameters generated randomly and uniformly in the intervals

gE ∈ [3, 7] , gI ∈ [2, gE − 0.5] , log10(β) ∈ [−1, 1] ,

log10(σλ/λ) ∈ [−1, 1] , log10(J) ∈ [−5,−3] , log10(rX) ∈ [−0.3, 1.7] ,

log10(λ) ∈ [−0.3, 1.7] , log10(CVK) ∈ [−3.5,−0.5].

(9)

Starting from the results of these simulations, we trained a multilayer perceptron (MLPRegressor from

python package sklearn.neural network; specifics were activation=ReLU, hidden layer sizes=(100, 150,
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50),)) to predict the mapping f(Θ) between model parameters (Θ) and moments of the optogenetic re-

sponse (r, ∆r, σr, σ∆r, Cov(r, ∆r)). The learned multilayer perceptron was able to predict the outcome

of simulations with high accuracy (with 20% of held-out simulations, the crossvalidated performance had

R2 = 0.965). We then fitted model parameters Θ to data by minimizing the squared error between pre-

dictions given by f(Θ) and moments of the optogenetic responses measured in experiments (least squares

function from python package scipy.optimize).

Figure 4 Figure 6

Parameter Symbol Units (weak, strong) Figure 5 (comb., mice, monk.)

Mean E connections per neuron K 2000 500 500

Coeff. of Variation of In-Degree CVK 1/
√
K 1/

√
K (0.0056,

0.0258, 0.0070)

Connection probability p 0.1 0.1 0.1

Number of excitatory neurons NE K/p K/p K/p

Ratio of I to E Population Size γ 0.25 0.25 0.25

E time constant τE ms 20 20 20

I time constant τI ms 10 10 10

Synaptic efficacy J mV (0.01, 0.3) (C) 0.6 (0.099, 0.07, 0.07)

Ratio of I-to-E over E-to-E gE 8 (A,B,D) 8 (8.10, 8.80, 8.11)

Ratio of I-to-I over E-to-I gI 3 (A,B,D) 3 (6.82, 7.64, 4.70)

Ratio of E-to-E over E-to-I β 1 1 (0.177, 0.256, 1.788)

Gain of the E population GE from Eq. 6 1 1

Gain of the I population GI from Eq. 6 2 2

Strength of FF input to E WEX 3 from Eq. 6 from Eq. 6

Strength of FF input to I WIX (0.5,2.5) from Eq. 6 from Eq. 6

Mean FF input rates rX spk/s 20 (C) 10, (D) 17.97 ([10.41 - 24.9] &

[31.96 - 82.21],

[3.69 - 9.74],

[10.87 - 36.51])

Std FF input rates σX spk/s 0.2rX 0.2rX 0

Mean optogenetic input strength λL mV 20 20 (2.38 & 7.31,

12.69, 3.31)

Std / mean of opsin expression σλ/λ 1 (A,B) 2.15, (C) 1 (1.62, 0.90, 8.57)

Table 1: List of network parameters.

Mean field theory. For NB � 1, µi
A and ∆µi

A in Eqs. (5) and (7) are well approximated by

correlated random Gaussian variables with

µA = τA
∑

B∈[E,I,X]

WABKBrB , σ2
µA

= τ2A
∑

B∈[E,I,X]

W 2
ABKB

[

σ2
rB

+ (1− p)r2B
]

,

∆µA = τA
∑

B∈[E,I]

WABKB∆rB , σ2
∆µA

= τ2A
∑

B∈[E,I]

W 2
ABKB

[

σ2
∆rB

+ (1− p)∆r2B
]

,

Cov(µA,∆µA) = τ2A
∑

B∈[E,I]

W 2
ABKB [Cov(rB,∆rB) + (1− p)rB∆rB] .

(10)

In Eq. (10), µA (∆µA) and σµA
(σ∆µA

) are the mean and variance of µi
A (∆µi

A). The covariance
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Cov(µA,∆µA) is computed starting from

µi
A +∆µi

A =
∑

B∈[E,I,X]

τAWAB

NB
∑

j=1

cijAB

(

rjB +∆rjB

)

, (11)

applying the identity V ar(X +Y ) = V ar(X)+V ar(Y )+ 2Cov(X,Y ) to both sides and using the central

limit theorem. Note that optogenetic input affects firing differently than feed-forward and recurrent

inputs. In fact, firing depends on the whole distribution of λi
A but only on the first two moments of

feed-forward and recurrent inputs.

If the network dynamics settle in a stable fixed point, the statistics of currents and rates in the network

are related by

riA = φA

[

µi
A

]

, riA +∆riA = φA

[

λi
A + µi

A +∆µi
A

]

, (12)

and moments of the rates can be computed by self-consistently solving a set of ten equations



































rA =
∫

∞

−∞
dµi

AP (µi
A)φ(µ

i
A) ,

σ2
rA

=
∫

∞

−∞
dµi

AP (µi
A)φ(µ

i
A)

2 − r2A ,

∆rA =
∫

∞

−∞
dµi

Ad∆µi
Adλ

i
AP (µi

A,∆µi
A)P (λi

A)
[

∆φi
A

]

,

σ2
∆rA

=
∫

∞

−∞
dµi

Ad∆µi
Adλ

i
AP (µi

A,∆µi
A)P (λi

A)
[

∆φi
A

]2 −∆r2A ,

Cov(rA,∆rA) =
∫

∞

−∞
dµi

Ad∆µi
Adλ

i
AP (µi

A,∆µi
A)P (λi

A)
[

φ(µi
A)− rA

] [

∆φi
A −∆rA

]

,

(13)

with ∆φi
A = φ(µi

A +∆µi
A + λi

A)− φ(µi
A).

If the fixed point of the network dynamics is unstable, rates and currents become time-dependent.

One can again use a Gaussian ansatz, in which the total inputs at different times (µi
A(s) and µi

A(t)) are

jointly Gaussian with means µA(s), µA(t) and covariance σ2
µA

(s, t). Analogously, rates at different times

(riA(s) and riA(t)) are jointly Gaussian with means rA(s), rA(t) and covariance σ2
rA
(s, t). At any given pair

of time points t and s, the moments of rates and currents are related by Eq. (10). The temporal evolution

of the moments can be computed using standard techniques (Sompolinsky et al., 1988). In particular,

indicating with CrA(s, t) = N−1
A

∑NA

i=1 r
i
A(s)r

i
A(t) the autocorrelation function of the rates of population

A at times s and t, we can define the autocovariance function of the rates as

σ2
rA
(s, t) = CrA(s, t)− rA(s)rA(t) . (14)

By multiplying Eq. (7) at times s and t, averaging over cells in population A, and rearranging terms we

see that CrA(s, t) evolves in time according to
(

τA
d

ds
+ 1

)(

τA
d

dt
+ 1

)

CrA(s, t) = CφA[µA](s, t) .

We can repeat the above steps to derive equations for the evolution in time of all five order parameters per

population of neurons (mean, autocovariance, and cross-covariance of rates without and with optogenetic

stimuli). Defining

MφA[µA](t) = N−1
A

NA
∑

i=1

φA

[

µi
A(t)

]

and

MφA[µ̃A](t) = N−1
A

NA
∑

i=1

φA

[

µi
A(t) + ∆µi

A(t) + λi
A

]

,
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the order parameters evolve in time according to
(

τA
d

dt
+ 1

)

rA = MφA[µA](t) ,

(

τA
d

dt
+ 1

)

∆rA = MφA[µ̃A](t)−MφA[µA](t) ,

(

τA
d

ds
+ 1

)(

τA
d

dt
+ 1

)

CrA(s, t) = CφA[µA](s, t) ,

(

τA
d

ds
+ 1

)(

τA
d

dt
+ 1

)

C∆rA(s, t) = CφA[µ̃A](s, t)− Corr(φA [µA] , φA [µ̃A])(s, t)

− Corr(φA [µ̃A] , φA [µA])(s, t) + CφA[µA](s, t) ,
(

τA
d

ds
+ 1

)(

τA
d

dt
+ 1

)

Corr(rA,∆rA)(s, t) = Corr(φA [µA] , φA [µ̃A])(s, t)− CφA[µA](s, t) .

(15)

Numerical solution of Mean field equations We solve for the stationary statistics of the chaotic

network by explicitly integrating Eq. (15) in time until the order parameters converge to a steady state.

We start with initial values for rA(0) and ∆rA(0) as well as initial functions for CrA(s, 0) = CrA(0, t),

C∆rA(s, 0) = CrA(0, t), and Corr(rA,∆rA)(s, 0) = Corr(rA,∆rA)(0, t). The means rA(t) and ∆rA(t) are

integrated with the usual explicit RK4 method, but the autocovariance and cross-covariance functions

are integrated on a grid with an explicit Euler-like method derived using forward finite differences. For

example, when integrating CrA(s, t) we can express CrA(s+ dt, t+ dt) in terms of rA(s), rA(t), CrA(s, s),

CrA(t, t), CrA(s, t), CrA(s+dt, t), and CrA(s, t+dt). Assuming that we have solved for the order parameters

at all time points (s ≤ t0, t ≤ t0), we can explicitly solve for the order parameters at time points

(s ≤ t0 + dt, t0 + dt) and (t0 + dt, t ≤ t0 + dt). Furthermore, we can ignore portions of the grid for

|s− t| > T for some T that is much longer than the width of the steady state autocorrelation function in

order to reduce the computation time required for the integration.

A useful simplification of the equations governing the evolution of the order parameters is to calculate

quantities such as CφA[µA](s, t) by setting the mean and variance of µi
A at times s and t equal to the mean

and variance at time max(s, t). While this change increases the required integration time for the order

parameters to reach the steady state, it reduces the number of dependent variables needed to calculate

quantities like CφA[µA](s, t) from five to three. With only three dependent variables, it becomes feasible

to pre-calculate these autocorrelation functions on a 3D grid and interpolate between the pre-computed

points in order to accelerate the integration. In addition, we can precompute quantities such asMφA[µA](t),

which only depends on the mean and variance of the inputs, on a 2D grid and interpolate them as well.

The cross-correlation function Corr(φA [µA] , φA [µ̃A])(s, t) cannot be pre-computed and interpolated

since the means and variances of the cross-correlated variables are not equal. However, since we have

already interpolated MφA[µA](t) and MφA[µ̃A](t) we can efficiently calculate the cross-correlation function

from a single Gaussian integral.

Indicating with MφA[µA]

[

µA(t), σ
2
µA

(t, t)
]

and MφA[µ̃A]

[

µA(t) + ∆µA(t), σ
2
µA+∆µA

(t, t)
]

the precom-

puted mean rates as a function of the means and variances of the inputs, we can express the cross-

correlation function as

Corr(φA [µA] ,φA [µ̃A])(s, t) =
∫

∞

−∞

DxMφA[µA]

[

µA(s) + sign (η)x
√

|η|σµA
(s, s), (1− |η|)σ2

µA
(s, s)

]

×MφA[µ̃A]

[

µA(t) + ∆µA(t) + x
√

|η|σµA+∆µA
(t, t), (1− |η|)σ2

µA+∆µA
(t, t)

]

,

(16)

with the Pearson correlation coefficient η defined as

η =
Cov(µA, µA +∆µA)(s, t)

σµA
(s, s)σµA+∆µA

(t, t)
.
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Theoretical results are preserved with different transfer functions
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Figure S1: Neuronal reshuffling emerges in network models with different single transfer

functions. Optogenetic responses obtained in numerical simulations of inhibitory networks (dynamics

given determined by Eqs. (5) and (7), without E cells and with optogenetic stimuli targeting I cells) as a

function of J (colors) and rX , for different choices of the single neuron transfer function φA (titles). Plots

are obtained averaging over 20 realizations of the network models (dots represent means, shaded regions

are mean±sem). Transfer function used were: φ(x) = a [x]+ (ReLU, a = 1.5 mV−1); φ(x) = a[x]2+ (SSN,

a = 0.05 mV−2); φ(x) as in Eq. (3) with τrp =2ms (LIF) or τrp = 0 (LIF without saturation).
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Chaos is not required for negative covariance to appear

Figure S2: Phase diagram of chaos and negative covariance. Colored lines indicate contours of constant

normalized covariance between 0 and −0.5 as a function of the feedforward input rX and recurrent synaptic efficacies

J . The dashed line indicates the transition to chaos; Below the dashed line the baseline system is stationary, and

above the line the network is chaotic. In order to investigate the effect of finite network size, the left plot is calculated

with K = 500 while the right plot is calculated with K = 2000. Increasing K tends to increase the magnitude of

the normalized covariance while decreasing the region of chaos. All values are calculated from mean field theory.

Network parameters are identical to those used in Figure 5 panels A-B.
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Structured Connectivity Reshuffles Tuned Rates Even with Large Optogenetic Input

A Ring model 
B

Populations preferred orientations 

Tuned population (recorded activity)

Figure S3: Dependence of the statistics of tuned population response to optogenetic input on feed-

forward input for a discrete ring model. A Structure of the ring model. Each of the 8 blocks has a different

preferred orientation (colored bars). All E populations are optogenetically stimulated, but only the population with

the center orientation is recorded (gray box). B Statistics of tuned population response to optogenetic stimuli for

a discrete ring model as a function of feedforward input rX , for different values of recurrent synaptic efficacies J .

Panels in the left column are arranged as in Figure 5. Panels in the right column show (from top to bottom) inferred

values of the balance index (Ahmadian and Miller, 2021) and inferred values of the ratio between optogenetic input

and the total visually-driven excitatory input. Dashed lines indicate values from Figure 5 panel A for the traditional

EI model, whereas full lines indicate values for an equivalent ring model. The ring model was not chaotic at any of

the plotted parameters. All values are calculated from mean field theory. Most network parameters are identical to

those used in Figure 5 panel A. Ring model parameters are Nloc = 8, Krec(peak) = 200, σX , σE , σI = 20◦, 20◦, 30◦.
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Parameter Symbol Units Figure 5 (A) Figure S3

Mean E connections per neuron K 500 FF: 500

Rec. (Peak): 200

Coeff. of Variation of In-Degree CVK 1/
√
K 1/

√
K

Connection probability p 0.1 (Peak) 0.1

Number of excitatory neurons NE 5000 2000 per Location

Ratio of I to E Population Size γ 0.25 0.25

E time constant τE ms 20 20

I time constant τI ms 10 10

Synaptic efficacy J mV (0.08,0.21,0.60,1.00) (0.08,0.21,0.60,1.00)

Ratio of I-to-E over E-to-E gE 8 8

Ratio of I-to-I over E-to-I gI 3 3

Ratio of E-to-E over E-to-I β 1 1

Gain of the E population GE 1 1

Gain of the I population GI 2 2

Strength of FF input to E WEX from Eq. 6 from Eq. 6

Strength of FF input to I WIX from Eq. 6 from Eq. 6

Mean FF input rates rX spk/s [0.5 - 50] [0.5 - 50]

Std FF input rates σX spk/s 0.2rX 0.2rX
Mean optogenetic input strength λ mV 20 160

Std / mean of opsin expression σλ/λ 2.15 2.15

Number of locations on ring Nloc - 8

Width of FF input σX deg◦ - 20

Width of recurrent E σE deg◦ - 20

Width of recurrent I σI deg◦ - 30

Table 2: List of network parameters for Figure 5 Panel A and for Figure S3.
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