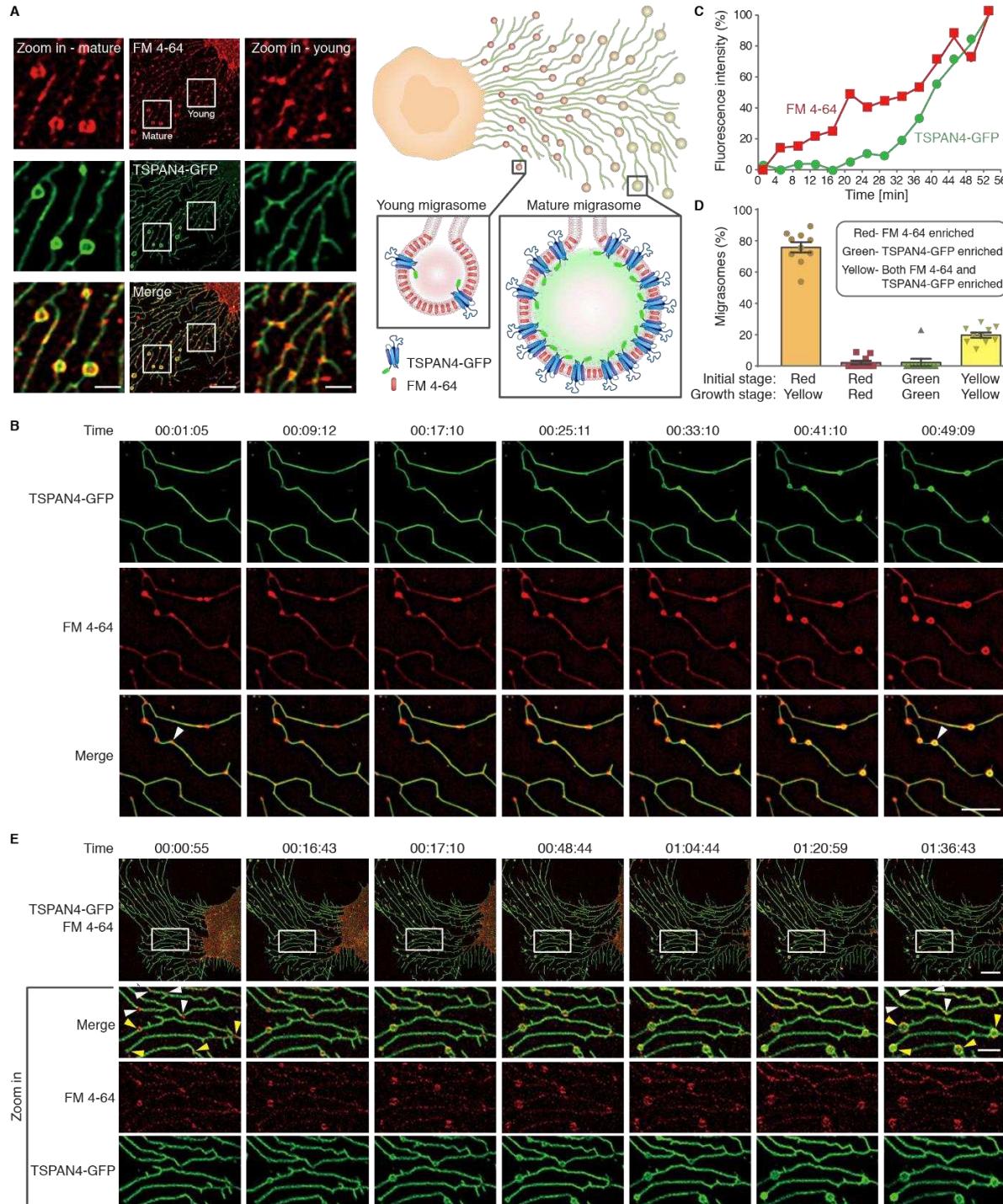


1 **Tetraspanin 4 mediates migrasome formation via a two-stage mechanism**

2 Raviv Dharan\*<sup>1,2</sup>, Yuwei Huang\*<sup>3,4</sup>, Sudheer Kumar Cheppali<sup>1,2</sup>, Shahar Goren<sup>1,2,5</sup>, Petr  
3 Shendrik<sup>1</sup>, Michael M. Kozlov<sup>2,6</sup>, Li Yu<sup>3</sup>, Raya Sorkin<sup>1,2</sup>

4 1. School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,  
5 Israel  
6 2. Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel  
7 3. The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint  
8 Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.  
9 4. Beijing Frontier Research Center for Biological Structure, Beijing, China  
10 5. School of Mechanical Engineering, The Ivy and Aladar Fleischman faculty of engineering, Tel  
11 Aviv University  
12 6. Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University,  
13 Tel Aviv, Israel


14 \* These authors contributed equally

15 **Abstract**

16 Migrasomes are recently discovered signalling organelles, enriched with tetraspanin  
17 proteins (TSPAN)<sup>1</sup>. They form by local swelling of retraction fibers, the cylindrical protrusions  
18 of cell membranes that form as a result of cell migration along external substrates.  
19 Migrasomes can grow up to several micrometers in diameter<sup>2</sup>, and allow cells to release  
20 contents such as chemokines at specific locations, hence, transmitting signals to  
21 surrounding cells through the relevant chemokine receptors. Recently, evidence emerged  
22 showing that migrasomes play essential roles in fundamental cellular processes such  
23 transfer of mRNA and proteins<sup>3</sup>, organ morphogenesis<sup>4</sup>, and mitochondria quality control<sup>5</sup>.  
24 Thus, understanding the mechanism of migrasome biogenesis is of outstanding  
25 importance. Previously, it was established that the molecules crucial for migrasome  
26 formation are tetraspanin proteins and cholesterol forming macrodomains in the  
27 migrasome membrane, while the physical forces driving local swelling of the retraction  
28 fibers originate from membrane tension and bending rigidity<sup>1</sup>. Yet, it remained unknown  
29 how and in which time sequence these factors are involved in migrasome nucleation, growth,  
30 and stabilization, and what are the possible intermediate stages of migrasome biogenesis.

31 Here we reveal that tetraspanin 4 (TSPAN4) mediates a two-stage process of  
32 migrasome formation. At the first stage, membrane swellings form along retraction fibers.  
33 At the second stage, TSPAN4 migrates toward and onto these swellings, which grow to  
34 migrasomes of several microns in size. This TSPAN4 recruitment to the swellings is essential  
35 for migrasome growth and stabilization. We demonstrate this mechanism by imaging

36 migrasome generation in live cells and validate it by recreating the conditions leading to  
 37 migrasome-like vesicle generation in a biomimetic model system. Based on these findings  
 38 we propose that the major role of TSPAN proteins is in stabilizing the migrasome structure  
 39 while the migrasome nucleation and initial growth stages can be driven by membrane  
 40 mechanical stresses.



41 Figure 1. Two-stage mechanism of migrasome formation. (A) Confocal images of NRK TSPAN4-  
42 GFP (green) cells stained by FM4-64 (red). Scale bar, 10  $\mu$ m; zoom in, 2.5  $\mu$ m. On the right,  
43 schematic representation of young migrasomes with low TSPAN4-GFP concentration and  
44 mature migrasomes with TSPAN4-GFP enrichment. (B) Time-lapse images of NRK TSPAN4-  
45 GFP cells stained by FM4-64. Imaging by structural illumination microscopy (SIM). Scale bar,  
46 5  $\mu$ m. (C) Normalized fluorescence intensity as function of the time of TSPAN4-GFP and FM4-  
47 64 on a representative migrasome in B, indicated by a white arrow. Normalization based on  
48 retraction fiber fluorescence. (D) Statistical analysis of 4 different kinds of migrasomes during  
49 biogenesis (red-yellow, red-red, green-green, yellow-yellow), based on a series of time-lapse  
50 images of NRK TSPAN4-GFP cells stained by FM4-64 under confocal microscopy. N=252, from  
51 11 individual cells from three independent experiments. (E) Confocal Time-lapse images of  
52 NRK TSPAN4-GFP cells stained by FM4-64. White arrows point to migrasomes that form and  
53 shrink back; yellow arrow heads point to growing migrasomes. Scale bar, 10  $\mu$ m; zoom in, 3  
54  $\mu$ m. Time in B and E is hh:mm:ss.

55

56 We followed the formation of migrasomes of Normal rat kidney (NRK) cells over-  
57 expressing TSPAN4-GFP stained with FM4-64 membrane dye under confocal microscopy.  
58 Migrasomes formed along retraction fibres following cell migration (Fig.1A). Closer to the cell  
59 body, FM4-64 enriched puncta could be seen along the retraction fibres (Fig.1A and  
60 supplementary movie1). Further from the cell, large migrasomes were observed, enriched  
61 with both Tspan4-GFP and FM4-64 (Fig.1A and supplementary movie1). The fact that mature  
62 migrasomes were enriched with TSPAN4 while the newly generated ones were not, suggests  
63 the initial stage of migrasome biogenesis to occur ahead of the TSPAN4 recruitment. To  
64 further test this hypothesis, we conducted time-lapse imaging of living cells by using structural  
65 illumination microscopy (SIM) (Fig. 1B). At an early stage, FM4-64 was locally enriched as  
66 puncta on the retraction fibers. The small puncta could move along the retraction fibers and  
67 coalesce to bulge out from the thin retraction fibers as small swellings. At this initial stage,  
68 Tspan4-GFP was relatively homogeneously distributed along the retraction fibers. At the next  
69 stage TSPAN4-GFP was gradually recruited onto the swellings, which grew into migrasomes  
70 (Fig. 1B, C). To address this process quantitatively, we followed the formation of 252  
71 individual migrasomes. We divided the migrasomes into four groups based on the lipid and  
72 TSPAN4-GFP fluorescence intensity at the initial stage of migrasome formation versus the  
73 migrasome growth stage (detailed examples of these stages are shown in figure S1). The  
74 groups are defined as follows: (1) initial-stage is red (enriched in FM4-64), growth stage is  
75 yellow (enriched in FM4-64 and TSPAN4-GFP), (2) initial stage is red, growth stage is red, (3)  
76 initial stage is green (enriched in TSPAN4-GFP), growth stage is green, (4) initial stage is yellow,

77 growth stage is yellow (Fig. 1D). Most of the mature migrasomes (almost 80% (Fig. 1D))  
78 started to form from FM4-64 enriched small puncta and then grew in size concomitantly with  
79 further TSPAN4-GFP enrichment.

80 We have further concluded that TSPAN4 recruitment to the migrasomes is necessary  
81 for migrasome stabilization. We observed two populations of migrasomes (Fig. 1E). The  
82 population indicated by the white arrows initially increased in size, but eventually shrunk back  
83 within the time course of the experiment. The migrasomes indicated by yellow arrows grew  
84 and stably maintained their large sizes throughout the experiment. The main visible  
85 difference between these two types of migrasomes was in their TSPAN4 signal which was  
86 increased in the stable migrasomes. Overall, these results strongly suggest a two-stage  
87 mechanism of migrasome biogenesis, the first stage being formation of FM4-64 positive small  
88 swellings, and the second stage being migrasome growth and stabilization through TSPAN4  
89 recruitment.

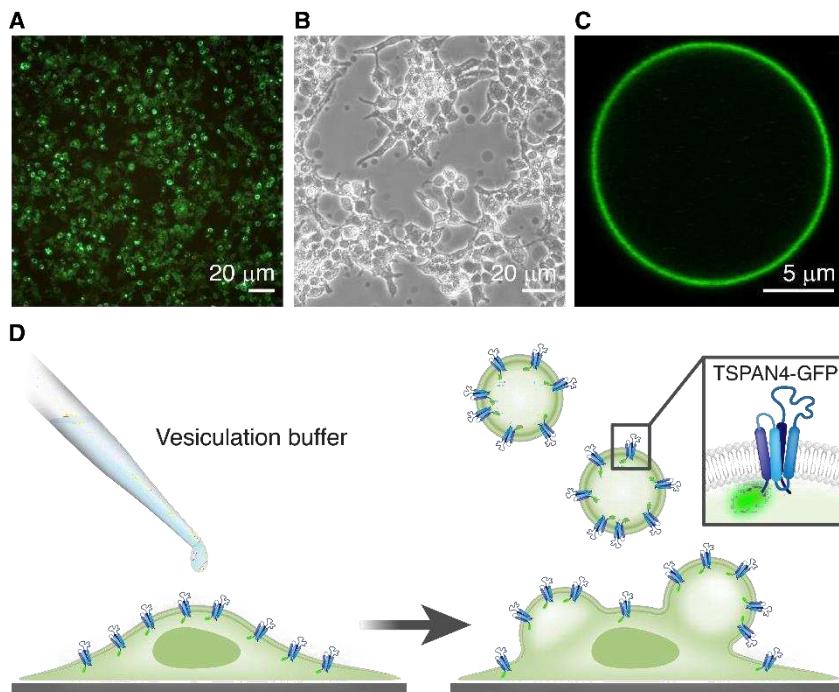



Figure 2. Formation of giant plasma-membrane- vesicles (GPMVs) from transfected HEK293T cells expressing TSPAN4-GFP. (A) Microscopy image of HEK293T cells expressing TSPAN4-GFP 24 hours after transfection. (B) Microscopy image of HEK293T cells, expressing TSPAN4-GFP, after treatment with a vesiculation buffer. GPMVs, which appear dark in phase contrast image, can be seen floating in the sample or attached to the cells. (C) Confocal microscopy images of GPMVs containing TSPAN4-GFP. (D) Schematic representation of a transfected cell, treated with vesiculation buffer, producing GPMVs with TSPAN4-GFP in their membrane.

90 In order to get insight into the main factors underlying the two-stage mechanism of  
91 migrasome biogenesis, we designed a biomimetic system emulating a cell with a retraction  
92 fiber and enabling an experimental simulation of migrasome formation. We used optical  
93 tweezers combined with confocal fluorescence microscopy and micropipette aspiration<sup>6,7</sup>. As  
94 a model for the cell, we used a giant plasma membrane vesicle (GPMV)<sup>8</sup>, which we generated  
95 from HEK293T cells expressing TSPAN4-GFP (Fig. 2). To imitate a retraction fiber, we pulled a  
96 membrane tube out of an aspirated GPMV by attaching a polystyrene bead to the vesicle and  
97 then moving the bead away by optical tweezers (Fig. 3A). This setup enabled us to control the  
98 membrane tension of the GPMV and, hence, the tube diameter through setting the aspiration  
99 pressure, to measure the force pulling the tube by the optical tweezers, to perform confocal  
100 fluorescence imaging of the system, and monitor the system evolution in real time via bright-  
101 field microscopy.

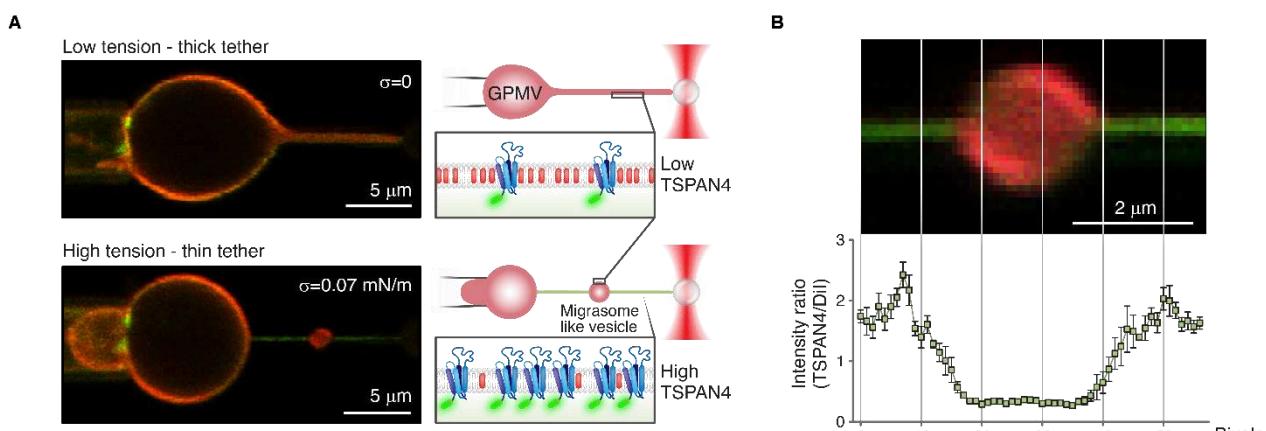



Figure 3. Swelling formation on membrane tube induced by rapid tension increase. (A) Confocal microscopy images of a membrane tube pulled from GPMVs containing TSPAN4-GFP (green) and Dil-C12 (red) aspirated with micropipette. In the top image the suction pressure was zero (corresponds to zero tension applied, T=0). Next, the tension increased immediately to 0.07 mN/m. On the right side, schematic representation of tension-induced swelling formation assay. (B) TSPAN4-GFP and Dil-C12 fluorescence intensity ratio of membrane tubes containing a swelling (n=4 membrane tubes, having swelling with relatively same size, pulled from 4 vesicles, error bars are SEM). On the right, a representative image of a membrane tube containing a swelling.

102  
103 To simulate the initial stage of the migrasome formation we reasoned that the generic  
104 factor driving local swellings of membrane tubules might be an abrupt increase of membrane  
105 tension, which is known to lead to tube pearling instability<sup>9</sup>. A crucial role of membrane

106 tension in migrasome formation is supported by the previous work<sup>1</sup>. To test this idea, we  
107 designed an experiment of a two-step tension application to a membrane tube. First, the tube  
108 was pulled out of a GPMV subject to a relatively low membrane tension such that the tube  
109 radius was relatively large. Next, we rapidly increased the GPMV aspiration pressure and,  
110 hence the membrane tension<sup>10</sup> (supplementary movie2). The time of the tension increase  
111 was substantially shorter than the time needed for the tube relaxation to a new equilibrium  
112 configuration of a homogeneous cylinder with a reduced cross-sectional radius corresponding  
113 to the new level of the tension, which required a slow decrease of the intra-tubular volume  
114 through liquid flow into the GPMV. This condition of a transiently constant volume  
115 corresponded to that of the pearlning instability<sup>9</sup>. Indeed, the abrupt increase of tension led to  
116 generation of the migrasome-like local swellings of the tube (Fig. 3A, S2). The swellings were  
117 able to move along the tube (Figure S3). The constricted regions of the tube were enriched  
118 with TSPAN4 whereas the swellings were enriched with Dil-C12 (Figure 3B), which is a  
119 membrane dye known to preferentially partition in disordered lipid phase<sup>11</sup>.

120 As a following step, we examined whether TSPAN4 in our model self-organizes into  
121 clusters. The functionality of tetraspanins is thought to be dependent on their ability to  
122 associate among themselves and with other integral proteins and adhesion molecules,  
123 forming a distinct class of membrane domains<sup>12,13</sup>. TSPAN domains have been shown to be  
124 dynamic and varying in composition and organization between different cell lines and cell  
125 states<sup>14</sup>. In a previous study, TSPAN4 molecules were found to organize into highly dynamic  
126 clusters on the retraction fibers<sup>1</sup>. We found that in our system, while being highly enriched in  
127 the tubular membranes, TSPAN4 was ununiformly distributed along the tubes and formed  
128 mobile puncta (Fig. S4A), which can be classified as clusters, as previously observed in cellular  
129 retraction fibers<sup>1</sup>. We further demonstrated that TSPAN4 clusters formed also on the flat  
130 membrane of GPMVs as a result to shear forces induced by buffer flow (Figure S4B). In this  
131 experiment, the GPMVs were injected into a microfluidics chamber under high pressure,  
132 which led to substantial shear forces. Altogether our results demonstrate the tendency of  
133 TSPAN4 to cluster and form domains.

134 Next, we sought to examine whether our model system is able to recreate TSPAN  
135 enrichment in the swellings, as observed for the migrasome biogenesis in live cells. In 7 out  
136 of 23 experiments, we observed TSPAN4-GFP migration to the swellings prior to tube rupture

137 (Fig. 4A). TSPAN4 migrated to the swellings in the form of TSPAN-enriched domains and  
138 stayed on the swellings until the tube rupture. To quantify the swelling enrichment with  
139 TSPAN4, we calculated the relative intensities of TSPAN4-GFP and Dil-C12 on the swellings  
140 compared to the GMPV, which increased with time (Fig. 4B). Furthermore, TSPAN4 containing  
141 tubes exhibited an augmented tendency to rupture as compared to the control tubules i.e.,  
142 without TSPAN4 (Fig.S5A). The swellings were observed to remain intact after the rupture  
143 (Fig. S5B). The likely reason for the lack of partitioning of TSPAN4 domains to the swellings in  
144 all the experiments was the tubule rupture, which did not leave enough time for the domains  
145 to migrate. The rupture may be promoted by the membrane structural defects emerging  
146 along the boundaries of the TSPAN4 enriched domains as suggested by previous reports  
147 showing that the lipid phase separation can lead to the tubule rupture<sup>15</sup>.

148 We suggest the following explanation for TSPAN4 recruitment to migrasomes. While  
149 TSPAN4 molecules exhibit high positive intrinsic curvature corresponding to an effective  
150 molecular shape of an inverted cone (we characterize this in detail in a separate publication),  
151 TSPAN4 assembly into clusters and larger domains can reduce its intrinsic curvature. This  
152 leads to migration of the domains onto the membrane swellings that have a smaller curvature  
153 and, therefore, a better curvature compatibility with the domains. The hypothesis of lower  
154 intrinsic curvature of large TSPAN-enriched domains compared with single TSPAN proteins is

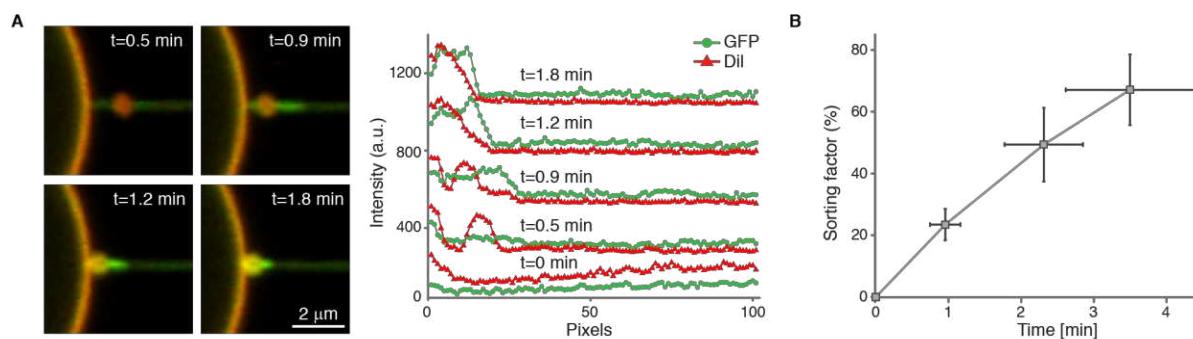
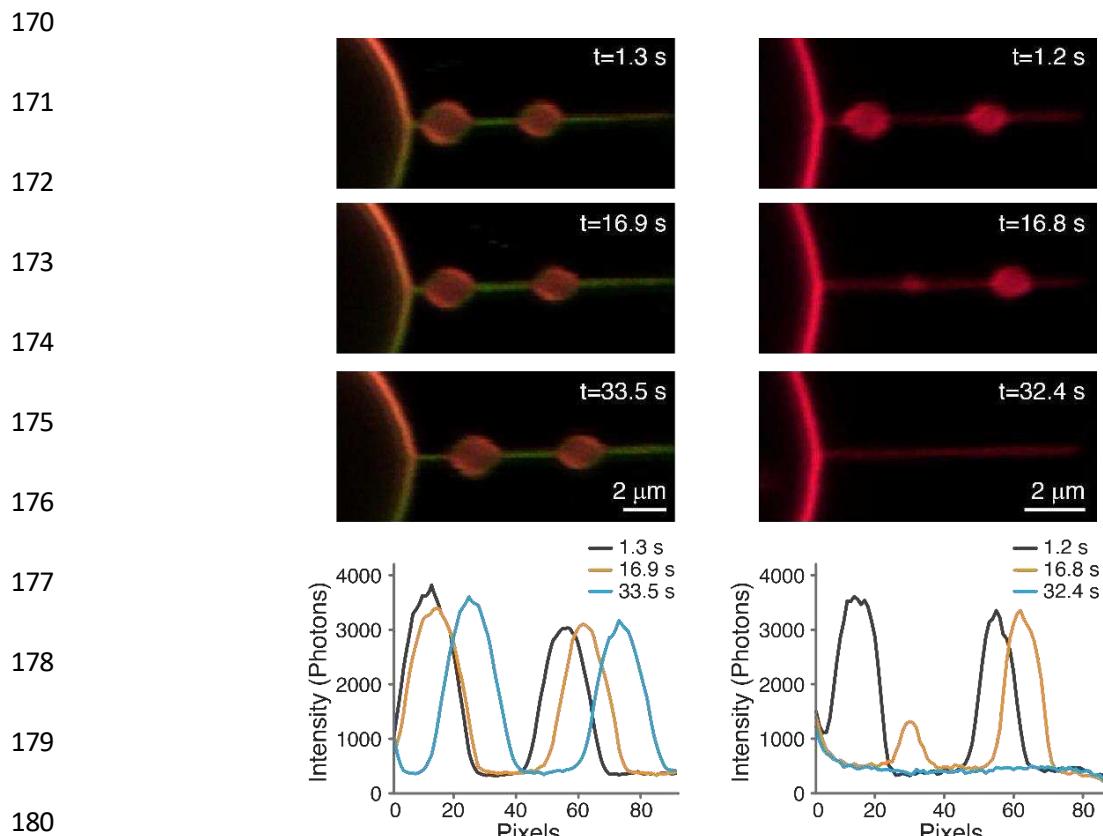




Figure 4. TSPAN4 domains recruitment to the tubule swellings. (A) Time-lapse confocal microscopy images of a membrane tube pulled from a GPMV containing TSPAN4-GFP (green) and Dil-C12 (red). Following swelling formation, TSPAN4 clustering followed by TSPAN4 swelling enrichment was observed. On the right the fluorescence intensity of Dil-C12 and TSPAN4-GFP along the tube and the swelling at the indicated times (t=0 correspond to the intensity of the tube just before the swelling formation). (B) Percentage change of TSPAN4 sorting factor,  $S = \frac{(I_{TSPAN4-GFP}/I_{Dil-C12})_{bubble}}{(I_{TSPAN4-GFP}/I_{Dil-C12})_{vesicle}}$ , which is the fluorescence intensity ratio of GFP and Dil-C12 on the swelling compared to the vesicle, as function of time (n= 7 membrane tubes pulled from 6 vesicles, error bars are SEM).

155 further supported by the finding that TSPANs associate with cholesterol<sup>1</sup>. The cholesterol  
156 molecules in mixtures with common lipids have a cone-like effective shape corresponding to  
157 a negative intrinsic curvature<sup>16</sup>. Because of the opposing geometries, a complex of cholesterol  
158 and TSPAN must have an intrinsic curvature substantially lower than that of individual TSPAN  
159 molecules.

160 Finally, we tested whether our model system exhibits slower dissipation of membrane  
161 swellings in the presence of TSPAN4. We conducted control experiments with GPMVs that did  
162 not contain over-expressed TSPAN4. Strikingly, the swellings demonstrated a behavior very  
163 similar to that of the TSPAN4-depleted migrasomes in live cells, where they dissipated in the  
164 absence of TSPAN4 (Fig. 5). Specifically, after an abrupt tension increase in a GMPVs lacking  
165 TSPAN4, the swellings formed along the membrane tube, similarly to the results presented in  
166 Figure 3, and then rapidly disappeared within on average a 30 second time span after  
167 formation (Fig.S5C). In the experiments with GMPVs containing TSPAN4, however, the formed  
168 swellings were much more stable (Fig. 5), their lifetime being at least 5 times longer than that  
169 measured in the control experiments (Fig.S5C)).



181 Figure 5. TSPAN4 inhibit swelling dissipation. Time-lapse confocal microscopy images of  
membrane tubes with a swelling, dyed with Dil-C12 (red) in the presence of (left images) and  
without (right images) TSPAN4-GFP (green). At the bottom: fluorescence intensity profiles of  
Dil-C12 along the membrane tube and swellings at the indicated times.

182 Overall, we investigated the temporal pathway of migrasome formation in  
183 conjunction with TSPAN4 dynamics on retraction fibers of live cells and designed a bio-  
184 mimetic system emulating these processes in a minimal artificial system. In this system, we  
185 recreated the crucial aspects of migrasome biogenesis observed in live cells: formation on  
186 membrane tubes of initial migrasome-like local swellings having relatively low TSPAN  
187 concentrations, formation of TSPAN domains and their recruitment to the swellings,  
188 dissipation of the swellings in the absence and their stabilization in the presence of TSPAN.

189 Based on the obtained results, it can be concluded that the migrasome formation  
190 proceeds in two sequential steps: formation of local swellings on the tubular retraction fibers,  
191 and stabilization of these swellings by TSPAN-based membrane domains. Our results suggest  
192 that the migrasome biogenesis can be driven by a very limited set of factors: the first step  
193 driven by membrane tension with possible involvement of additional factors in live cell  
194 membranes, and the second step controlled by specific proteins of the TSPAN family. The  
195 particular cellular mechanisms by which membrane tension and TSPAN-based clusters shape  
196 the migrasomes, while being partially addressed in the previous work<sup>1</sup>, await substantial  
197 elaboration. Our results illuminate the mechanism of migrasome biogenesis and demonstrate  
198 the crucial role of TSPAN proteins in membrane shaping processes.

199 **Acknowledgements**

200 RS acknowledges support by the ISRAEL SCIENCE FOUNDATION (grant No. 1289/20). SKC  
201 acknowledges support by the Ratner Center for Single Molecule Science. MMK was supported  
202 by Deutsche Forschungsgemeinschaft (DFG) through SFB 958 “Scaffolding of Membranes”,  
203 and Israel Science Foundation grant 3292/19, and holds Joseph Klafter Chair in Biophysics. YH  
204 acknowledges support by the National Natural Science Foundation of China (32070691).

205 **Materials and methods**

206 **Cell culture**

207 HEK293T and Normal rat kidney cells were cultured at 37°C and 5% CO<sub>2</sub> in DMEM  
208 supplemented with 10% serum and 1% penicillin-streptomycin.

209

210

211 **Cell Imaging**

212 *Cell sample preparation.* NRK Tspan4-GFP cells were seeded into 3.5 cm glass bottom  
213 confocal dish which was pre-coated with 10  $\mu$ g/mL fibronectin and grew for 15h. The cells  
214 were stained with 5  $\mu$ g/mL FM4-64 for 15 minutes.

215 *Confocal microscopy imaging.* Cell imaging were conducted under galvanometer scanning  
216 mode using a NIKON A1 confocal microscope fitted with a 100 $\times$  oil objective. The laser power  
217 was 0.5% for 488 nm and 3% for 561 nm and each field of 1024  $\times$  1024 pixels was imaged. For  
218 time-lapse imaging, the interval was 4 minutes and the duration was  $\sim$ 5 hours.

219 *SIM imaging.* The prepared cells were imaged by structured illumination microscopy (Nikon  
220 N-SIM S) with 4 minutes interval and 1.5 hours duration, and then reconstructed by a standard  
221 stack-reconstruction process.

222 **Quantitative analysis of migrasomes**

223 252 migrasomes from 4 movies were analyzed, each movie 4 hours in length, with 60 frames  
224 in total. Fully formed migrasomes were chosen in the last frames of the movies, and then  
225 tracked back to their initial stage in the earlier frames. Only migrasomes that formed in the  
226 time course of the movie were included in the analysis. For the growing stage, several frames  
227 were included in the analysis in order to validate the presence of fully formed migrasomes  
228 due to possible changes in the focus. An example of initial stage, starting from red puncta,  
229 and growing stage is shown in supplementary figure 1.

230 **TSPAN4 Expression Plasmids, cell transfection and giant plasma membrane vesicles  
231 (GPMVs) isolation.**

232 Complementary DNAs of tetraspanin 4 were cloned into pEGFP-N<sub>1</sub>. HEK293T cells were plated  
233 in 25 cm<sup>2</sup> flask coated with poly-L-lysine (Sigma) to keep the cells attached during the blebbing  
234 process and to minimize cell debris in solution. At 50% confluency, cells were transiently  
235 transfected with 5  $\mu$ g DNA using Lipofectamine 2000 (Invitrogen) according to the  
236 manufacturer's protocols and then grown 24 hours for protein expression. GPMVs were  
237 produced according to a published protocol<sup>17</sup>. Briefly, following TSPAN4-GFP expression, for  
238 most of the experiments the cells were stained with Dil-C12 membrane dye (Invitrogen),  
239 washed with GPMV buffer (10 mM HEPES, 150 mM NaCl, 2 mM CaCl<sub>2</sub>, pH 7.4) twice, and

240 incubated with 1 mL of GPMV buffer containing 1.9 mM DTT (Sigma) and 27.6 mM  
241 formaldehyde (Sigma). Secreted GPMVs were then collected and isolated from the cells and  
242 immediately used for the optical trapping experiments.

243 **Proteolysis and Mass Spectrometry Analysis**

244 In order to confirm TSPAN4 overexpression in the GPMVs, we conducted mass spectrometry  
245 measurements which showed that TSPAN4 abundance in GPMVs generated by TSPAN4-  
246 transfected cells increased 1562-fold compared to control GPMVs (GPMVs that were generated  
247 from normal HEK293 cells as described above). The samples were brought to 10mM DTT, 100  
248 mM Tris and 5% SDS, boiled in 95 °C for 10 minutes and sonicated twice for 10 minutes (5', 10-  
249 10, 90%). The samples were precipitated in 80% acetone overnight and washed 3 times with 80%  
250 acetone. The protein pellets were dissolved in 8.5 M Urea and 400 mM ammonium bicarbonate.  
251 Protein amount was estimated using Bradford readings. Proteins reduced with 10 mM DTT (60  
252 °C for 30 min), modified with 40 mM iodoacetamide in 100 mM ammonium bicarbonate (room  
253 temperature for 30 minutes in the dark) and digested in 1.5 M Urea, 66 mM ammonium  
254 bicarbonate with modified trypsin (Promega), overnight at 37 °C in a 1:50 (M/M) enzyme-to-  
255 substrate ratio. An additional trypsin digestion was performed for 4 hours at 37 °C in a 1:100  
256 (M/M) enzyme-to-substrate ratio. The resulting tryptic peptides were desalted using C18 stage  
257 tips (homemade, 3M company, USA) dried and resuspended in 0.1% Formic acid. The peptides  
258 were resolved by reverse-phase chromatography on 0.075 X 300-mm fused silica capillaries  
259 (J&W) packed with Reprosil reversed phase material (Dr Maisch GmbH, Germany). The peptides  
260 were eluted with linear 60 minutes gradient of 5 to 28% 15 minutes gradient of 28 to 95% and  
261 15 minutes at 95% acetonitrile with 0.1% formic acid in water at flow rates of 0.15 µl/min. Mass  
262 spectrometry was performed by Q Exactive Plus mass spectrometer (Thermo) in a positive  
263 mode using repetitively full MS scan followed by high collision dissociation (HCD) of the 10 most  
264 dominant ions selected from the first MS scan. The mass spectrometry data was analyzed using  
265 Proteome Discoverer 2.4 software with Sequest (Thermo) search algorithm against Human  
266 Uniprot database with 1% FDR. Semi quantitation was done by calculating the peak area of each  
267 peptide based its extracted ion currents (XICs), and the area of the protein is the average of the  
268 three most intense peptides from each protein.

269

270

271 **Tube pulling from aspirated GPMVs**

272 The experiments were performed using a C-trap<sup>®</sup> confocal fluorescence optical tweezers  
273 setup (LUMICKS) made of an inverted microscope based on a water-immersion objective  
274 (NA 1.2) together with a condenser top lens placed above the flow cell. The optical traps are  
275 generated by splitting a 10W 1064-nm laser into two orthogonally polarized, independently  
276 steerable optical traps. To steer the two traps, one coarse-positioning piezo stepper mirror  
277 and one accurate piezo mirror were used. Optical traps were used to capture polystyrene  
278 microbeads. The displacement of the trapped beads from the center of the trap was  
279 measured and converted into a force signal by back-focal plane interferometry of the  
280 condenser lens using two position-sensitive detectors. The samples were illuminated by a  
281 bright field 850-nm LED and imaged in transmission onto a metal-oxide semiconductor  
282 (CMOS) camera. **Confocal fluorescence microscopy:** The C-Trap uses a 3 color, fiber-coupled  
283 laser with wavelengths 488, 561 and 638 nm for fluorescence excitation. Scanning was done  
284 using a fast tip/tilt piezo mirror. For confocal detection, the emitted fluorescence was  
285 descanned, separated from the excitation by a dichroic mirror, and filtered using an emission  
286 filters (Blue: 500-550 nm, Green: 575-625 nm and Red: 650-750 nm). Photons were counted  
287 using fiber-coupled single-photon counting modules. The multimode fibers serve as pinholes  
288 providing background rejection.

289 Experimental chamber: PDMS walls were placed on the bottom cover slip (Bar Naor) and  
290 mounted onto an automated XY-stage. The GPMVs sample was added to the chamber and  
291 after about 15 minutes, a few drops of oil were put on the sample surface to prevent  
292 evaporation. A micropipette aspiration setup including micromanipulator (Sensapex) holding  
293 a micropipette with diameter of 5  $\mu\text{m}$  (Biological industries) connected to a Fluigent EZ-25  
294 pump was integrated to our optical tweezers instrument. Before each experiment, the zero-  
295 suction pressure was found by aspirating a 3.43  $\mu\text{m}$  polystyrene bead (Spherotech) into the  
296 pipette and reducing the suction pressure until the bead stopped moving. A membrane tube  
297 was pulled from aspirated GPMVs using beads trapped by the optical tweezers. First, a  
298 membrane tube was pulled at relatively low suction pressure (0.05-0.1 mbar, correspond to  
299  $1.2-2\times 10^{-5}$  N/m membrane tension), then the suction pressure was reduced to the zero  
300 (corresponds to zero applied membrane tension) for about 15 seconds. Then, we increased  
301 instantaneously the suction pressure to values in the range of 0.2-0.7 mbar (correspond to 4-

302 10X10<sup>-5</sup> N/m membrane tension). For confocal imaging the 488 nm and 532 nm lasers were  
303 used for GFP and Dil-C12 excitation with emission detected in three channels (Blue, Green,  
304 Red). To induce shear forces on the GPMVs, the GPMVs were injected into a 5-channel  
305 laminar flow cell (LUMICKS, Amsterdam, the Netherlands).

306 **Data Analysis**

307 Data acquisition was carried out using Bluelake, a commercial software from Lumicks. This  
308 software stores experimental data acquired during experiments with the C-trap in HDF5 files,  
309 which can be processed using Lumicks' Pylake python package. Images of the confocal scans  
310 were reconstituted from photon count per pixel data in the HDF5 files using Pylake. All data  
311 analysis was performed with custom-written Python scripts. Fluorescence intensity profiles  
312 were obtained from the images by averaging the photon count of the relevant fluorescent  
313 channel (Blue or Green) in the region of interest.

314 **References**

- 315 1. Huang, Y. *et al.* Migrasome formation is mediated by assembly of micron-scale  
316 tetraspanin macrodomains. *Nature Cell Biology* vol. 21 991–1002 (2019).
- 317 2. Ma, L. *et al.* Discovery of the migrasome, an organelle mediating release of  
318 cytoplasmic contents during cell migration. *Cell Res.* **25**, 24–38 (2015).
- 319 3. Zhu, M. *et al.* Lateral transfer of mRNA and protein by migrasomes modifies the  
320 recipient cells. *Cell Res.* **31**, 237–240 (2021).
- 321 4. Jiang, D. *et al.* Migrasomes provide regional cues for organ morphogenesis during  
322 zebrafish gastrulation. *Nat. Cell Biol.* **21**, 966–977 (2019).
- 323 5. Jiao, H. *et al.* Mitocytosis, a migrasome-mediated mitochondrial quality-control  
324 process. *Cell* **184**, 2896-2910.e13 (2021).
- 325 6. Sorre, B. *et al.* Curvature-driven lipid sorting needs proximity to a demixing point and  
326 is aided by proteins. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 5622–5626 (2009).
- 327 7. Ambroggio, E. *et al.* ArfGAP1 generates an Arf1 gradient on continuous lipid  
328 membranes displaying flat and curved regions. *EMBO J.* **29**, 292–303 (2010).

329 8. Sezgin, E. & Schwille, P. Model membrane platforms to study protein-membrane  
330 interactions. *Mol. Membr. Biol.* **29**, 144–154 (2012).

331 9. Bar-ziv, R. & Moses, E. Instability and ‘Pearling’ States Produced in Tubular  
332 Membranes by Competition of Curvature and Tension Roy. *Phys. Rev. Lett.* **73**, (1994).

333 10. Evans, E. & Rawicz, W. Entropy-driven tension and bending elasticity in condensed-  
334 fluid membranes. *Phys. Rev. Lett.* **64**, 2094–2097 (1990).

335 11. Baumgart, T., Hunt, G., Farkas, E. R., Webb, W. W. & Feigenson, G. W. Fluorescence  
336 probe partitioning between L<sub>o</sub> /L<sub>d</sub> phases in lipid membranes.  
337 doi:10.1016/j.bbamem.2007.05.012.

338 12. Rubinstein, E. Lateral organization of membrane proteins : tetraspanins spin their  
339 web. **154**, 133–154 (2009).

340 13. Bailey, R. L. *et al.* The emerging role of tetraspanin microdomains on endothelial cells.  
341 *Biochem. Soc. Trans.* **39**, 1667–1673 (2011).

342 14. Le Naour, F., André, M., Boucheix, C. & Rubinstein, E. Membrane microdomains and  
343 proteomics: Lessons from tetraspanin microdomains and comparison with lipid rafts.  
344 *Proteomics* **6**, 6447–6454 (2006).

345 15. Espadas, J. *et al.* Dynamic constriction and fission of endoplasmic Reticulum  
346 Membranes By Reticulon. *Nat. Commun.* 1–11 (2019).

347 16. Umeda, R. *et al.* Structural insights into tetraspanin CD9 function. *Nat. Commun.* **11**,  
348 1–7 (2020).

349 17. Gerstle, Z., Desai, R. & Veatch, S. L. *Giant Plasma Membrane Vesicles: An  
350 Experimental Tool for Probing the Effects of Drugs and Other Conditions on  
351 Membrane Domain Stability. Methods in Enzymology* vol. 603 (Elsevier Inc., 2018).

352

353

354

355