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Abstract

Objectives: Mindfulness meditation is associated with better attention function. Performance
monitoring and error-processing are important aspects of attention. We investigated whether
experienced meditators showed different neural activity related to performance monitoring
and error-processing. Previous research has produced inconsistent results. This study used
more rigorous analyses and a larger sample to resolve the inconsistencies.

Methods: We used electroencephal ography (EEG) to measure the error-related negativity
(ERN) and error positivity (Pe) following correct and incorrect responses to a Go/Nogo task
from 27 experienced meditators and 27 non-meditators.

Results: No differences were found in the ERN (all p > 0.05). Meditators showed larger
global field potentials (GFP) in the Pe after both correct responses and errors, indicating
stronger neural responses (p = 0.0190, FDR-p = 0.152, np® = 0.0951, BFincl = 2.691). This
effect did not pass multiple comparison controls. However, single electrode analysis of the Pe
did pass multiple comparison controls (p = 0.002, FDR-p = 0.016, np® = 0.133, BFincl =
220.659). Meditators also showed asignificantly larger Pe GFP for errors only, which would
have passed multiple comparison controls, but was not a primary analysis (p = 0.0028, np®=
0.1493, BF10 = 9.999).

Conclusions: Meditation may strengthen neural responses related to performance monitoring
(measured by the Pe), but not specifically to error monitoring (although measurements of the
Pe after errors may be more sensitive to group differences). However, only the single
electrode analysis passed multiple comparison controls, while analysisincluding all

electrodes did not, so this conclusion remains tentative.
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Introduction

Mindfulness meditation is associated with both cognitive and mental health benefits (Galante
et al., 2021, Khoury et a., 2013, Gu et al., 2015, Gill et al., 2020, Im et al., 2021). Meta-
analytic evidence suggests that mindfulness enhances attention, self-regulation, and executive
function (Sumantry & Stewart, 2021; Jhaet a., 2007; Tang et a., 2007; Xue et al., 2011, Im
et a., 2021). These effects are perhaps unsurprising since the practice of mindfulness
includes focusing attention on the present experience and redirecting attention back to the
present experience when attention wanders - an activity that requires attention, self-regulation
and executive function (Cardaciotto et al., 2008, Larson et a., 2013; Teper & Inzlicht, 2012).
Functional brain imaging has shown increased activity in areas associated with these
functions, such as the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex
(DLPFC), and insula (Allen et al., 2012; Tang et al., 2010; Tomasino & Fabbro, 2016; Xue et
al., 2011, Falcone & Jerram, 2018). These increases in mindful attention have been found to

underpin the mental health benefits of mindfulness practice (Gu et al., 2015).

Recent theoretical perspectives have attempted to provide a deeper explanation for the link
between mindfulness, attention, and improved mental health by using a predictive coding
theory of brain function (Manjalay et al., 2020, Verdonk & Trousselard, 2021, Lutz et al.,
2019, Laukkonen & Slagter, 2021). The predictive coding theory suggests that because the
brain must interact with the environment but only has access to the environment indirectly
(through its sensory apparatus), the brain constructs a Bayesian model of its environment
(Hohwy, 2012, Friston, 2010). This model is constituted of prior beliefs, predictions about
the environment and an individual’ s place within it, which are based on the individual’s
actions (Hohwy, 2012, Friston, 2010). These priors are constantly updated by incoming

sensory evidence (information from the body and environment), which is conceived of as


https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.07.499152; this version posted July 7, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

prediction error weighted according to its expected precision, so that sensory evidence that is
expected to be more precise attains more neural gain and has a stronger role in belief
updating. The predictive coding theory suggests the main objective of brain function isto
reduce prediction error — the mismatch between the prior beliefs and sensory evidence — over
the long-term average. Prediction error minimization is achieved by both updating prior
beliefs based on sensory evidence and making active inferences (altering the environment to

match prior beliefs) (Hohwy, 2012, Friston, 2010).

Within the predictive coding theory, researchers have theorized that mindfulness practice
might: 1) increase the precision of sensory evidence as aresult of training in attending to
sensations, which enhances synaptic gain of neurons processing prediction errors (Manjalay
et al., 2020, Verdonk & Trousselard, 2021, Lutz et al., 2019, Laukkonen & Slagter, 2021); 2)
increase the control over the selection of sensations for increased precision (Manjalay et al.,
2020, Verdonk & Trousselard, 2021, Lutz et al., 2019, Laukkonen and Slagter, 2021); 3)
loosen the precision with which prior beliefs are held, such that posterior evidence does not
produce as much prediction error because posterior evidence is more commonly within the
expected range of the priors (Manjalay et al., 2020, Laukkonen & Slagter, 2021); or
alternatively, 4) increase the accuracy and precision of prior beliefs as aresult of the long
term increase in signal enhancement of the sensory evidence, such that priors are closer to
posteriors and as such create less prediction error (Verdonk & Trousselard, 2021). Another
four theories about how mindful ness affects the parameters of the predictive coding theory
are described in the supplementary materials. This plethora of theories highlights one of the
issues with explanations within the predictive coding theory: without experimental evidence,
modulation in any of awide array of predictive coding parameters could reflect atheoretical

explanation for the effect of any given intervention. As such, empirical testing of potential
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differences in the parameters within the predictive coding theory is necessary to further our

understanding of the mechanisms of mindfulness meditation.

One important concept for both attentional function and predictive coding accounts of the
brain is performance monitoring. Cognition underlying error processing involves detecting
errors in performance and adjusting cognitive resources to optimise performance. Error
processing isintegral to goal directed behaviour (Maurer et a., 2019), and behavioural errors
are necessarily the result of predictive coding errors (an erroneous commission response on a
response inhibition task reflects a mismatch between the prior expectation of perceiving a
stimulus that is associated with aresponse, and subsequent evidence of a stimulus associated
with withholding aresponse). As such, examining neural activity time locked to the
commission of an error in mindfulness meditators is informative about the effects of

mindful ness meditation on attention, as well as the effects of mindfulness meditation on the
parameters of predictive coding models of the brain. Previous research has indicated that
error processing in these types of tasks relies on the neural activity in the ACC (Larson et al.,
2013). Predictive coding accounts have also suggested the ACC isaprimary hub in
projecting representations of bottom-up prediction errors to the DLPFC, which enables the
modulation of predictions within the DLPFC to enable adaptive behaviour (Alexander &
Brown, 2019). As such, measuring neural responses to errors may provide support for certain
conjectures of how mindfulness affects the brain’s predictive coding function. In particular,
an increase in the amplitude of neural responses to errors would support models suggesting
mindfulness was associated with increased precision of sensory evidence or increased control
over the selection of sensations for increased precision —models 1 and 2 from the list in the

previous paragraph.
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Given this background, it is no surprise that mindfulness mediation has been proposed to
enhance error processing, and that studies have examined how mindfulness affects the neural
correlates of error-processing using electroencephal ography (EEG). Two event-related
potentials (ERPS) related to error processing have been identified: the error related negativity
(ERN) and error positivity (Pe) (Dehaene et a., 1994). The ERN is a negative potential
produced by the ACC, which occurs within 100ms of error commission (Dehaene et al.,
1994; Falkenstein et al., 2000; Larson et a., 2013). The Peis a positive potential generated
by the cingulate cortex and insula that occurs approximately 200 to 400ms after error
commission (Herrmann et al., 2004, O’ Connell et a., 2007, Ullsperger et a., 2010). Thereis
some ambiguity about the exact functional significance of the ERN and Pe. One prominent
theory of ERN generation is the conflict monitoring theory. According to this theory, the
ERN is generated by neural activity related to the processing of a conflict between the
commission of an error response and the desired correct response (Larson et al., 2014). In
tasks that rely on executive function, attention, and working memory, larger ERN amplitudes
are found in contexts that generate more conflict but are also related to better performance
(Larson & Clayson, 2011). The Peisthought to reflect conscious recognition of errors and is
modulated by level of attention, arousal, motivation, and affective response to an error
(Falkenstein et al., 2000; Larson et al., 2013; Larson & Clayson, 2011). The Pe has also been
implicated as a putative neural marker for the accumulated amount of evidence that
participants have access to in order to decide whether they have committed an error
(Steinhauser & Yeung, 2010). Larger Pe amplitudes are related to increased motivation and

conscious processing of errors (Larson & Clayson, 2011).

To date, research investigating the impact of a mindfulness meditation intervention on the

ERN and Pe has produced conflicting results, despite eleven published studies on the topic.
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Three studies comparing a mindfulness practice condition to a control condition have shown
increased ERN amplitudes (Fissler et al., 2017, Pozuelos et al., 2019, Saunders et al., 2016),
but four have shown no differences (Eichel et a., 2020, Larson et al., 2013, Lin et al., 2019,
Rodeback et al., 2020), and one further has shown a decreased ERN (Schoenberg et al.,
2014). Smilarly, two studies of the Pe have reported increased amplitudes in the mindfulness
condition (Lin et al., 2019, Rodeback et al., 2020), two studies reported an increase in Pe
amplitude in the mindfulness group, but also an increase in the waitlist or relaxation control
groups (Schoenberg et al., 2014, Eichel & Stahl, 2020), two studies reported no difference
(Bing-Canar et al., 2016, Smart & Segalowitz, 2017), and one study has reported a reduction

in Pe amplitude in the mindfulness group (Larson et a., 2013).

The inconsistent and mixed pattern of results reported across the interventional studies
conducted to date might be related to the small amount of mindfulness experience provided
to the participants in these studies by the interventions. A recent meta-analysis has shown that
neural changes from mindfulness practice relate to the amount of mindfulness experience
(Falcone & Jerram, 2018), so studies of long-term meditators might be more likely to detect
effects for error processing. However, experimental study designs investigating long-term
meditation practice are prohibitively difficult to implement. Noting this as alimitation, three
published studies have examined error processing in long-term meditators in cross-sectional
study designs. However, the results of these studies are also inconsistent. In the first
investigation of experienced meditators, Teper & Inzlicht (2012) observed larger ERN
amplitudes in experienced meditators (with on average 3.19 years of meditation practice)
compared to non-meditators, but no differences in Pe amplitudes. In asimilar study, Andreu
et a., (2017) observed alarger ERN, as well as atrend towards smaller Pe amplitudes (in

both error and correct responses) in a sample of Vipassana meditators with an average of 5.1
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years of experience compared to an athlete control group (with matched practice time).
However, in astudy that examined the ERN and Pe in experienced meditators, with the
meditation group averaging 8.7 years of meditation experience (Bailey et al., 2019) a
Bayesian statistical approach showed evidence against differencesin both the ERN and Pein

these experienced meditators compared to controls.

These inconsistencies could also be related to methodological issues in analysing the ERN
and Pe. Several EEG data processing steps can result in false positive or false negative
results. These include: 1) the selection of electrodes for analysis - because ERPs are dipolar
with negative and positive voltage peaks depending on the generating brain region, analyses
focused on different electrodes has the potential to completely reverse an effect, 2) the
selection of time windows for analysis - brain activity can be differentially modulated
between groups only at specific timepoints, and arbitrary time window selection can increase
false positive results (Kilner, 2013), and 3) the use of a subtraction baseline correction
method. Baseline correction isintended to correct for slow drifts in EEG data, but the
subtraction method has recently been shown to transpose a mirror image of the distribution of
activity during the baseline period onto the active period, while ironically also decreasing the
signal to noiseratio (Alday, 2019). A more detailed explanation of these potential confounds

can be found in the supplementary materials.

Our previous study was the first to examine error processing in meditators using methods that
eliminate the possibility of bias from experimenter selection of electrodes or time windows
from influencing results, addressing issues 1 and 2 listed above [BLINDED FOR REVIEW].
Because our null results conflicted with the previous literature, we here sought to replicate

our previous study with alarger sample size and with the application of a more robust
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regression baseline correction method (Alday, 2019). This regression baseline correction has
been demonstrated to adequately correct for slow driftsin the EEG data without transposing
the mirror image of the baseline activity into the active period, removing this potential
confound, and without decreasing the signal to noise ratio (Alday, 2019), addressing issue 3
listed above. Additionally, while most previous research has focused specifically on error
processing, it is possible that meditation produces a general difference in performance
monitoring, rather than a specific error-processing-related difference (as suggested by
Andreu’s (2017) results). To explore this, we examined neural activity across both error and
correct trial types. Based on initial findings from Teper and Inzlicht (2012) and Andreu et al.,
(2017), our aternative hypothesis was that meditators would have increased ERN amplitudes
to both correct and error responses compared to controls. We also nominated an aternative
hypothesis that meditators would show larger Pe amplitudes to both correct and error
responses than non-meditators, in line with aslight magjority of interventional studies.
However, it should be noted that given our previous null result study and the inconsistency in
the literature, our primary hypothesis was that we would replicate the null result. As such, we
planned to explore potential positive results fully, to provide afair evaluation of our research

question, and so that our conclusions would be protected against potential biases.

Method

Participants

Thirty-nine meditators and 37 healthy non-meditators were recruited via community
advertising at universities, meditation organisations, and social media. Of these participants,
57 participants (30 meditators and 27 controls) provided enough artifact free error response
EEG epochs for analysis (details below). Data were collected by students trained in EEG data

recording and supervised by experienced researchers. The study had no direct funding for
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personnel, so no apriori power analysis was performed. As such, the intended sample size
was simply “larger than our previous study, and as many as possible” within the resource and
time restrictions. The final sample for the two groups significantly differed in age, so the
three oldest meditators were excluded prior to analysis, so that the groups did not
significantly differ in any demographic variables (all p > 0.10, note that in order to further
reduce the influence of the potential confound, analyses were performed controlling for age
and years of education as covariates). The final data set comprised atotal of 54 participants
(27 meditators and 27 controls). To be considered an experienced mediator, participants were
required to have practiced meditation for a minimum of two years. They also had to practice
meditation for a minimum of two hours per week over the last three months. The meditation
sample had an average of 7.57 years' meditation experience (SD = 7.04), and an average of
7.98 hours of practice per week (SD = 5.82). To be included in the study, we required that
meditators reported practicing in away that is consistent with the following definition of
mindfulness. “ paying attention in a particular way: on purpose, in the present moment, and
nonjudgmentally” (Kabat-Zinn, 1994), and that the meditator’ s practice was focused on
sensations of the breath or body. Trained meditation researchers screened and interviewed
participants to ensure that their meditation practices were consistent with the criteria. Non-
meditating control participants were eligible to participate if they had less than two hours
meditation experience across their lifetime. Any uncertainties in screening were resolved by

two researchers, including the principal researcher (BLINDED FOR REVIEW).

Participants were ineligible to participate if they had previous or current neurological or
mental illness. Participants were also ineligible if they were currently taking psychoactive
medication. All participants were interviewed with the MINI International Neuropsychiatric

Interview (MINI) DSM-IV (Hergueta et al., 1998). Potential participants who met the criteria

10
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for psychiatric illness were excluded. The Beck Anxiety Inventory (BAI) and Beck

Depression Inventory 11 (BDI-I1) (Beck et al., 1996) were also administered. Any participants

who scored above the moderate range in the BAI (>25) or greater than the mild range in the

BDI-II (>19) were excluded. All included participants were aged between 19 and 61 years.

Prior to EEG recording, participants provided their age, gender, years of education, and

mediation experience (total years of practice, frequency of practice, and amount of time spent

practicing). In addition to the BAl and BDI-II, participants also completed the Five Facets of

Mindfulness Questionnaire (FFM Q). These measures are summarised in Table 1. Ethics

approval was provided by the Ethics Committees of Monash University and Alfred Hospital.

All participants provided written informed consent prior to participation in the study.

M editators, Controls, Statistics
M(SD) (n=27) M(SD) (n=
27)
Age 34.93 (12.52) 29.96 (11.42)  t(52)=-1.522,p=0.134
Gender (M/F) 19/8 16/11 Chi-square =0.731, p =
0.393

Y ear s of education 15.85(3.18) 17.06 (2.29) t(52) = 1.595, p=0.117
Meditation experience  7.57 (7.04) 0
(years)
Current time 7.98 (5.82) 0
meditation per week (h)
BAI score 5.85 (5.58) 5.19 (4.16) t(51) = -0.487, p = 0.629
BDI score 3.15(4.12) 4.59 (4.98) t(52) = 1.161, p= 0.251

11
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FFMQ score 151.56 (14.79)  132.67 (15.72) t(52) = -4.546, p < .001

Table 1 Participant demographic data. Note that BAI data was missing for one control

participant.

Procedure

Sixty-four channel EEG was recorded while participants performed a Go/Nogo task
(Neuroscan, Ag/AgCl Quick-Cap through a SynAmps 2 amplifier [Compumedics,
Melbourne, Australial). Electrodes were referenced to an electrode between Cz and CPz,
impedances were kept below 5kQ, and EEG was sampled at 1000Hz with online bandpass
filters from 0.1 to 100Hz. The EEG was recorded while participants performed a Go/Nogo
task with simplified emotional faces (stimuli were identical to BLINDED FOR REVIEW).
The Go/Nogo task is commonly used to elicit ERN and Pe components and has been shown
to have high reliability (alpha = 0.75, the highest out of the Go/Nogo, Flanker and Stroop
tasks tested) (Clayson, 2019). The task included four separate blocks. The first two blocks
were an easy version of the task, each with 50 happy faces and 50 sad faces. One block
required participants to respond (Go) to happy faces and withhold response (Nogo) to sad
faces. Participants who responded to happy faces in the first block responded to sad facesin
the second block, and vice versa. The stimulus-response pairing was counter-balanced across
participants, so half of the participants in each group responded to happy facesin the first
block and sad faces in the second block, and the other half responded to sad faces in the first
block then happy faces in the second block. Following this, two harder blocks were
presented, each with 50 Nogo trials and 150 Go trials (again with the stimulus-response
pairing counterbalanced). Each stimulus was presented for 250ms with an intertrial interval
of 900ms (with a50msjitter). EEG data were pre-processed using the RELAX pipeline,

which has demonstrated optimal cleaning of artifacts and preservation of ERP signals

12
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compared to other cleaning approaches (Bailey et al., 2022a, 2022b). This cleaning pipeline
filtered the data from 0.25 to 80Hz with a notch filter from 47 to 53Hz, applied both Multiple
Wiener Filters (MWF) and wavelet enhanced independent component analysis (wICA) to
identify and remove muscle, eye movement and blink and drift artifacts from the data, and
additionally the wiCA reduced line noise, heartbeat and other artifacts. Data were re-
referenced to the average of all electrodes. Full details of the cleaning method are reported in

the supplementary materials.

Following the cleaning of continuous files, data were epoched around correct and error
responses from -400 to 800ms. Each error response (following a Nogo trial) was matched in
reaction time to a correct response with the closest available reaction time (from a Go trial
that presented a face of the same emotion) so that an equal number of error and correct
responses were epoched for analysis, and these responses were matched for both condition
and reaction time. Epochs with voltages exceeding +/-60 uV at any electrode were rejected,
as were epochs containing improbable voltage distributions or kurtosis values >5SD from the
mean in any single electrode or more than 3SD from the mean over all electrodes. Data were
then baseline corrected by regressing out the average of the -400 to -100ms period from each
epoch (timelocked to the response) using the fieldtrip function *ft_regressconfounds’ for each
electrode and each participant separately, with the condition of each epoch (correct or error
response) included in the regression model (but not rejected) to correct for potential voltage

drift but still preserve any experimental effects (Bailey et a., 20223, 2022b).

Participants who had less than six error related epochs remaining for analysis were excluded
at this stage. We ensured our data provided reliable analysis by using the ERA Reliability

Analysis Toolbox v0.5.3 (Clayson & Miller, 2017a, 2017b). The ERA Toolbox showed our

13
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dataset provided >0.90 dependability for both correct and error trials within both the
averaged ERN and Pe windows. Further dependability details can be found in the

supplementary materials.

Data Analysis

Primary comparisons

Primary EEG data statistical comparisons were conducted using the Randomisation

Graphical User Interface (RAGU) toolbox (Koenig et al., 2011). Unlike approaches that
focus on specific electrodes and time windows for analyses, RAGU is areference free
approach that compares scalp field differences across al electrodes and time points with
permutation statistics that are robust to the assumptions of traditional parametric statistics. As
such, RAGU minimises need for a priori choices of time windows or electrodes, which can
bias analyses. RAGU is also robust against the violation of the assumptions of traditional

parametric statistics (Koenig et al., 2011).

RAGU also allows for separate comparisons of the overall neural response strength (using the
global field power [GFP] test) and the distribution of neural activity across electrodes (with
the Topographic Analysis of Variance[TANOVA]). We used the TANOVA to assess
whether the distribution of neural activity differed between groups or conditions without the
influence of overall neural response strength by normalising the overall amplitude of the
neural response, so that all participants and conditions have a GFP = 1 prior to the TANOVA
(using the recommended L2 normalisation). Additionally, prior to the TANOVA, a
topographical consistency test (TCT) was conducted to ensure consistent distribution of scalp
activity within each group/condition. The TCT is analogous to a single sample t-test, and

assessed whether the signal within a condition or group significantly differed from O (in
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which case the group/condition demonstrated a consistent distribution of neural activity

following a response).

The GFP and TANOVA tests were applied in a repeated measures ANOV A design,
comparing 2 group (meditators vs controls) x 2 condition (corrects vs errors) in data from -
400 to 700ms around correct/error responses. Tests were conducted with 5000 permutations
and an alphaof p = 0.05. To control for multiple comparisons across time, the global duration
control was used, which ensures any significant effects last longer than 95% of the
‘significant effects’ within the randomly shuffled data. When significant effects were
detected, we averaged data within the significant period, and report p-values, effect sizes, and
Bayesian statistical evidence for the alternative hypothesis for these comparisons (this
approach maximises effect size estimation by focusing only on the significant period). We
also analysed data averaged across windows from typical ERN and Pe windows (50 to 150ms
following the response and 200 to 400ms following the response respectively, this approach
reduces effect size estimation by including potentially non-significant time periods). We
extracted the average GFP for significant periods and windows of interest for Bayesian
statistical analysis using JASP (Love et al., 2019) (however, note that Bayesian approaches
are currently not available to replicate the TANOVA test of differences in the distribution of
activity). Lastly, we performed experiment-wise multiple comparison controls using the
Benjamini-Hochberg (1995) false discovery rate (FDR-p) for the traditional ERN and Petime
window of interest analyses, including all group main effects and interactions involving
group in the multiple comparison controls for both the ERN and Pe across both the GFP and
TANOVA tests (8 tests).

Replication Comparisons — Sngle Electrode Analysis

15
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In addition to the whole scalp analyses conducted to test our primary hypotheses, we
performed atraditional electrodes-of-interest analysis of the average ERN and Pe periods
using five midline electrodes. We implemented a repeated measures ANOV A with the
following design: group (meditator/control) x condition (correct/error) x electrode (Fz, FCz,
Cz, CPz and Pz). Full details of this analysis are reported in the supplementary materials.
Because these analyses overlap with the primary analyses performed in RAGU, we
performed experiment-wise multiple comparison controls using FDR-p separately for these
analyses, including all group main effects and interactions involving group in the controls for

both the ERN and Pe (8 tests).

Lastly, because our results differed from our previous study, we performed a re-analysis of
the data from that study focused on error trials (which provide the largest signal), using the
same methods as in the current study. We report this analysis, and an analysis of the
combined data from the current study and our previous study in our supplementary materials.
No analyses were performed on behavioural data, as the behavioural comparisons from the
full dataset are planned for a study in preparation which will examine stimulus locked EEG

activity from the Go Nogo task.

Results

Demographic and Behavioural Data

Meditators and controls did not significantly differ in age, BDI, or BAI (all p > 0.10).
However, as expected, meditators reported higher FFMQ scores than controls (meditators =
151.56 (14.79), controls = 132.67 (15.72)), t(52) = -4.546, p < .001. Means suggested the

behavioura performance was similar across groups (Table 2).
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Meditators Controls

M (SD) M (SD)
Number of accepted correct 28.74 (16.05) 33.86 (19.31)
epochs
Number of accepted error  27.59 (16.02) 33.44 (20.33)
epochs
Percent correct equal Go 95.23 (12.52) 96.00 (9.28)
trials
Percent correct equal Nogo 92.08 (12.90) 91.11 (12.00)
trials
Percent correct frequent 95.85 (9.60) 97.47 (2.74)
Gotrials
Percent correct infrequent  70.43 (16.92) 67.74 (17.71)
Nogo trials
Overall Correct Go RT 374.01 (42.72) 366.45 (39.26)
Overall Correct Hard Go 336.97 (52.83) 320.85 (39.39)
RT
Error Nogo RT 299.22 (65.36) 282.18 (59.29)
Hard Error Nogo RT 259.13 (30.41) 255.59 (36.92)
Matched correct equal Go  314.38 (71.44) 286.85 (53.85)
RT
Matched correct frequent 262.63 (33.68) 257.71 (37.58)

GoRT

17


https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.07.499152; this version posted July 7, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 2 Participant Behavioural Data and number of accepted epochs.

Primary Comparisons

ERN and Pe Global Field Potential Tests

The GFP test showed no significant main effect of group or interaction between group and
response that lasted longer than global duration controls (67ms for the main effect of group,
39ms for the interaction between group and response). However, the meditator group showed
intermittent periods with larger Pe amplitudes across multiple time periods spanning 235 to
373ms, none of which individually passed the global duration statistic, but the entire period
would have passed global duration controlsif it were not intermittent. Additionally, this
period was in the Pe window of interest (Figure 1A). To protect against the possibility of
accepting anull result (in line with the null results of our previous study, BLINDED FOR
REVIEW) where there was suggestive evidence of a positive result, we explored this effect
further. When averaging across this 235 to 373ms period, the main effect of group was
significant, with the meditator group showing a higher amplitude GFP than controls across
both conditions (p = 0.0186, np?= 0.1066, BFincl = 2.697, see Figure 1D). Additionally,
when averaged across the typically analysed Pe period (200 to 400ms), the main effect of
group was significant with the meditator group showing a significantly higher amplitude GFP
than controls across both conditions (p = 0.019, FDR-p = 0.1520, np? = 0.0951, BFincl =
2.691) (however note that the difference did not pass our experiment-wise multiple
comparison control). This may indicate that meditators have larger neural response amplitude
(independent of the distribution of activity) than controls to both error and correct response
trials during the Pe window. There was a trend towards an interaction between group and
response When data was averaged within the 235 to 373ms period (p = 0.0738, np®= 0.0622,

BFincl = 1.257), however, this effect was not present when averaging across the typical Pe
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window (200 to 400ms, p = 0.12, FDR-p = 0.2496, np?= 0.0535, BFincl = 1.300), and no
interaction between group and response was present that passed duration controls. This
suggests the potential difference in Pe amplitude was not specific to error responses (that the
main effect of group was larger than the effect for a specific condition). In contrast, when
data was averaged within the ERN window of interest (50 to 150ms), there was no significant
difference between groups (p = 0.1248, FDR-p = 0.2496, np® = 0.0453, BFexcl = 0.962) nor
interaction between group and condition (p = 0.7028, FDR-p = 0.9371, np®= 0.0030, BFexcl

= 3.736).

Next, while the groups did not significantly differ in age or years of education, they were not
directly matched. To ensure these potential confounds were not influencing our results, we
performed the comparison in RAGU averaged across the Pe window of interest, with age and
years of education regressed out of the analysis. Again, this comparison showed asignificant
main effect of group with meditators showing larger amplitudes (p = 0.034, np®= 0.0840).
We also performed a repeated measures ANCOV A comparison of the averaged Pe window
using JASP, covarying for age and years of education. These results showed the main effect
of group was reduced to a trend F(1,50) = 3.072, p = 0.086, np?= 0.058, BFincl = 1.125, but
that the interaction between group and response (correct/error) was significant F(1,50) =
7.849, p = 0.007, np®= 0.136, BFincl = 3.914. Separate ANCOVA analyses for the error and
correct trials indicated that this was due to a significant effect of group in the error response
condition F(1,50) = 10.352, p = 0.002, np>=0.172, BFincl = 15.757, but not the correct

response condition F(1,50) = 0.026, p = 0.873, np?= 5.151e-4, BFexcl = 3.205.

It is worth noting that age was non-significantly negatively correlated with the error Pe GFP

(r=-0.099, p = 0.478), so if age had affected our results, the difference between meditators
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and controls would have been reduced, making a null result more likely (as older participants
showed smaller Pe GFP and the meditation group was older on average). Y ears of education
was also not significantly correlated with Pe GFP (r = -0.178, p = 0.198). Additionally, age
and years of education were not significant predictorsin the ANCOVA, Age: F(1,50) =
0.243, p = 0.624, BFexcl = 3.183, Years of education: F(1,50) = 0.789, p = 0.379, BFexcl =

2.127.

Although the interaction between group and response was not significant in our primary
analysis, it was significant when covarying for age. Additionally, error processing studies
often focus only on the error related responses, and error ERPs typically generate more signal
than correct ERPs. Given this information, and the significant interaction when covarying for
age, as well as our aim to protect against potential biases towards a null result, we performed
an exploratory analysis focused only on the error trials. This analysis showed a group main
effect from 230 to 376ms, which lasted longer than the global duration control (57ms).
Averaged across this interval, the effect was significant with alarge effect size (p = 0.0022,
np®= 0.1553, BF10 = 11.813). Averaged across the typical Pe window of interest (200 to
400ms), the effect remained significant (p = 0.0028, np®= 0.1493, BF10 = 9.999). We also
note here that if we had planned our analysisto focus on error trials only and included this
result in our multiple comparison controls, the difference in error related Pe GFP would have
passed our multiple comparison controls (FDR-p = 0.0176). It is also worth noting that while
this effect was not significant in the data from our previous study (after re-processing using
the current study’ s methods), the pattern wasin the same direction (p = 0.176, np? = 0.0576,
BF10 = 0.658, Figure S5). Additionally, the combined analysis across both the current and
our previous dataset was significant (p = 0.019, np® = 0.0576, BF10 = 2.607, or BF10 = 5.147

for a one-sided test, given the samplein our current study suggested this would be the
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pattern, Figure S7). However, it is also worth noting that the group by condition interactionin

our primary analysis was not significant, so traditionally we would not have explored the
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Figure 1. Significance p-graphs and violin plots for the GFP comparisons in the novel
dataset. A: the p-map for the main effect of group. B: the p-map for the main effect of
response condition. C: The p-map for the interaction between group and condition. For A-C,
the black line reflects the p value, grey periods reflect no significant differences between
groups, white periods reflect significant differences that did not survive duration multiple

comparison controls. D: Averaged GFP values during the typical Pe window of interest 200
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to 400ms for both responses averaged together. E: Averaged GFP values during the typical
Pe window of interest 200 to 400ms for correct responses. F: Averaged GFP values during
the typical Pe window of interest 200 to 400ms for error responses. Note that the significant
main effect of group indicated that the groups differed in GFP when averaged across the two

response conditions.
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Figure 2. Significance p-graph for the GFP comparisons between groups when including

error responses only.

ERN and Pe TANOVA

The TCT indicated mostly consistent distributions of neural activity within each condition for
each group, including during the ERN and Pe windows of interest, suggesting it was valid to
perform comparisons using the TANOVA (with the exception of a brief period around 120ms
in the meditation error condition, and around 200ms for the correct condition for both groups,
Figure S2). The TANOVA showed a significant main effect of condition across the entire
epoch starting in the baseline period (-86ms), suggesting error and correct responses
generated different distributions of neural activity across the entire period. Both the ERN and

Pe showed the typical scalp distribution pattern (Figure S3). However, no significant main
22
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effect of group lasting longer than the global duration controls (51ms) was found in the
TANOVA (very brief effects were present at 288 to 304ms and 449 to 461ms, see Figure $4).
There was also no significant interaction between group and response (correct/error) that
lasted longer than the global duration controls (39ms, all p > 0.05, global count p = 0.710).
This result suggests that the two groups did not differ in the distribution of brain activity time
locked to responses, nor did the distribution of brain activity interact between the groups and
type of correct or error response. Averaged within the ERN window of interest, there was no
significant main effect of group (p = 0.9508, FDR-p = 0.9646, np® = 0.0052), nor an
interaction between group and response (correct/error) (p = 0.6554, FDR-p = 0.9371, np®=
0.0174). Averaged within the Pe window of interest, there was no significant main effect of
group (p = 0.0826, FDR-p = 0.2496, np® = 0.0367), nor an interaction between group and

response (correct/error) (p = 0.9646, FDR-p = 0.9646, np®= 0.0060).
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Comparison Meditators Controls Statistics g%
M (SD) M (SD) Eﬁi

GFP Error 235to 373ms 1.968 (0.709)  1.446 (0.525) Group main effect: p = 0.0186, np® = 0.1066, BFincl = 2.697 % %
GFP Correct 235to 373ms 1531 (0.695)  1.401 (0.510) Response x Group: p = 0.0738, np® = 0.0622, BFincl = 1.257 %{é
GFP Error 200 to 300ms 1.993(0.622)  1.533(0.491) Group main effect: p = 0.0190, FDR-p = 0.152, np” = 0.0951, BFincl = 2?25
GFP Correct 200 to 300ms 1513 (0.688)  1.382(0.499) Response x Group: p = 0.12, FDR-p = 0.2496, np®= 0.0535, BFincl = 13%%2
ERN Error Fz -0.80 (2.39) -0.90 (1.48) Group main effect: ;%é
FCz -1.56 (2.56) -1.26 (1.94) F(1,52) = 0.095, p = 0.760, FDR-p = 0.869, np* = 3.513e-4, BFexcl = 537§§§
Cz -1.33 (1.98) -0.90 (1.96) Response x Group: % % %
CPz -0.49 (1.33) -0.45 (1.51) F(1,52) = 0.025, p = 0.875, FDR-p = 0.875, np” = 4.808e-4, BFexcl = 7.4@3%?;,
Pz 0.21 (1.54) -0.21 (1.09) Group x Electrode: g’ %%
ERN Correct Fz -0.59 (2.03) 0.20 (1.43) F(1,52) = 0.702, p = 0.458, FDR-p = 0.734, np® = 0.013, BFexcl = 18.189 gé%
FCz 0.45 (1.81) 0.80 (1.50) Response x Electrode x Group: ’ :g g
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Cz 1.95(1.32) 1.56 (1.02) Response x Group: % %
CPz 0.95 (0.97) 1.04 (0.84) F(1,52) = 0.886, p = 0.351, FDR-p = 0.734, np? = 0.017, BFexcl = 2.354 %%
Pz 0.08 (1.00) 0.42 (0.83) Group x Electrode: ggé
Pe Correct Fz 1.27 (0.91) 0.81(1.02) F(1,52) = 7.969, p = 0.002, FDR-p = 0.016, np® = 0.133, BFincl = 220.659%%2
FCz 1.00 (1.05) 0.58 (1.06) Response x Electrode x Group: i; é
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Table 3. Means, standard deviations, and full statistics for the Pe GFP and the electrode of

interest analysis.

Replication Comparisons— Single Electrode Analysis

There was no significant main effect for the ERN group comparison, nor interactions
between group and response (error/correct) or interactions between electrode, group and
response (error/correct) (all p > 0.45, BFexcl for the main effect of group = 5.378, BFexcl for
response * group = 7.465, and for the interaction between group * electrode and group *
electrode * response type, BFexcl > 18). Averaged activity across the ERN windows at each

electrode can be viewed in Figure S1 (and full statistics can be viewed in Table 3).

For the Pe component, asignificant interaction between group and electrode was present,
with clear evidence for the alternative hypothesis F(1,52) = 7.969, p = 0.002, np? = 0.133,
BFincl = 220.659. This aligned with the GFP results, which indicated the meditation group
showed larger overall neural response strength, so post-hoc exploration of the cause of the
effect was undertaken. The post-hoc exploration indicated that the two groups differed at Fz
(p-Holm = 0.006) and FCz (p-Holm = 0.012) but not at other electrodes (all p-Holm > 0.50).
Additionally, within the control group, Fz, FCz and Cz showed more positive voltages than
CPz and Pz (all p-Holm < 0.011) while showing no other differences (all p-Holm > 0.08). In
contrast, the meditation group showed a larger differentiation of voltage for each electrode
than the control group, with all electrodes differing from al other electrodes, except Fz and
FCz (all p-Holm > 0.002 except for Fz compared to FCz, for which p-Holm = 1.0). The
results for the single trial analysis of the Pe can be visualised in Figure 3. While our re-
analysis of our previous data did not show this significant interaction, the pattern was in the

same direction (F(1,40) = 0.951, p = 0.378, np? = 0.023, Figure S6). Additionally, our
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analysis of the combined dataset still showed strong support for the interaction between

group and electrode (F(1,94) = 4.291, p = 0.025, np® = 0.044, BFincl = 11.115, Figure S8).

When viewed in conjunction with the GFP results, this result suggests that the meditation
group showed a pattern of stronger neural activation following both correct and error
responses during the Pe window, while still showing the same distribution of neural
activation (the meditation group was not activating different brain regions to the control
group, just activating the same brain regions more strongly, which, given the dipolar nature
of brain activity, resulted in stronger differentiation in voltage between frontal and posterior
voltages). No other main effect of group or interaction involving group was significant (all p

> 0.33, al BFexcl > 2.2, seetable 3).
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Figure 3. Activity during the Pe window for correct and error responses in meditators and

controls from the novel dataset. Error bars reflect 95% confidence intervals.

Discussion

Previous research has provided inconsistent evidence for differencesin EEG markers of error
processing in experienced mindfulness meditators. We hypothesised that the experienced
meditation group would show larger ERN and Pe responses. Our current results provide weak
Bayesian and positive frequentist evidence supportive of larger Pe neural response strength in
meditators for both correct and error responses, but no differencesin the ERN. However, we
note that the differencesin overall Pe amplitude did not pass the test-specific multiple
comparison controls in our primary analysis of the novel data. If we had focused our analysis
restricted to errors (which show alarger neural response than correct responses), the
differences in the Pe would have passed multiple comparison controls. Additionally, our
single electrode analysis of the Pe did pass multiple comparison controls. Bayesian analyses
of the single electrode comparisons and error only comparisons showed strong to extreme
evidencein support of differences in the Pe between the groups, and the results were
consistent when data were combined across both our current and previous datasets (N = 96,

reported in the supplementary materials).

The differencein Peis not specific to errors

Although previous research has commonly focused on the error Pe, there was no significant
interaction between group and response type. This suggests the difference between groupsin
the Pe was present following both correct and error responses. As such, a potential difference
between meditators and controls in the Pe may reflect generic performance monitoring and
awareness rather than error processing specifically. Previous research has suggested that the

ERN to errors and correct responses might be a combination of both an error sensitive
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process, and another process related to response monitoring that is independent of whether a
responseis correct or not (Endrass et a., 2012). Research has also demonstrated that the Pe
following correct trials is modulated by the speed of responses when participants are
instructed to respond quickly, and that correct Pe amplitudes are related to confidence in the
accuracy of aresponse, suggesting correct Pe amplitudes are still related to response
monitoring (Boldt & Yeung, 2015, Valt & Stirmer). As such, it may be that our tentative
difference in Pe amplitudes across both correct and error responses in the mindfulness group
indicates that the outcome independent component of the Pe is modulated by mindfulness, or
that both the outcome independent component and the error sensitive process are modulated
(but that the effect on the error sensitive process is not large enough for usto detect a
significant interaction). This perhaps makes more sense than an effect of meditation that is
specific to having made an error of commission, as there is no suggestion from mindfulness
practice or the effects of mindfulness on attention, self-awareness, and executive function
that the effects of mindfulness on performance monitoring would be specific to having made
an error of commission, rather than performance monitoring in general. Indeed, within the
predictive coding theory, the sensory input processed following a correct trial is still
“expected prediction error” (Alexander & Brown, 2019).

What does the differencein Pe amplitude mean?

Any interpretation of the potential difference in the Pein meditators must be predicated on a
functional interpretation of the Pe. It is likely that the processes underlying potential
differences in the Pe are common across other neural activities, and as such, explanations for
the current results should consider mechanisms that are in common across other neural
changes from meditation. In this context, we note that perhaps the most powerful explanatory
model of neural functions available is the predictive coding theory (Huang & Rao, 2011). As

described in the introduction, this model views the brain as a Bayesian prediction generator,
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which processes information by updating its prior model of the sensorium based on new
sensory evidence. While research has not yet applied the predictive coding theory to interpret
the Pe, the Pe has been suggested to indicate a neural marker for the accumulated evidence
participants have access to in deciding whether they have committed an error (Steinhauser &
Yeung, 2010). In that context, a Pe of larger amplitude is compatible with a predictive coding
explanation of the effect of meditation that suggests meditators show increased synaptic gain
for the processing of prediction errors, facilitated by increased expected precision (in the
form of neural gain) to sensory evidence (Lutz et a., 2019, Lakonen & Sagter, 2021,
Manjalay et al., 2020, Verdonk et al., 2021). Thisis also consistent with predictive coding
models that suggest mindfulness increases processing related to the “experiencing self”
(which may be reflected by increased gain on bottom-up prediction error processing), and
reduces processing related to the “ conceptual self”, found higher in the cortical hierarchy,
within regions like the DLPFC (Laukonnen & Slagter, 2021). Note also that our results did
not indicate the effect was specific to errors, suggesting that meditators may show constantly
enhanced processing of prediction error. It is also worth noting that our results neither
support, nor provide evidence against hypotheses that mindfulness meditation reduces the
formation of or precision of priors, or hypotheses that suggest mindfulness reduces the

amplitude of prediction error processing.

An enhanced Peis also aligned with functional magnetic resonance imaging research into the
effects of meditation, as the Pe is thought to be generated by the cingulate cortex and insula,
both of which show increased activity as aresult of meditation practice (Tomasino et al.,
2013, Bocciaet a., 2015, Fox et al., 2016). It is also worth noting that the difference in the
Pe might overlap with our previous research using different tasks. This research demonstrated

that meditators have enhanced frontal P3 amplitudesin a Go/Nogo task (BLINDED FOR

31


https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.07.499152; this version posted July 7, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

REVIEW), and enhanced frontal positive activity during the same time window following
probe stimuli in the Sternberg working memory task (BLINDED FOR REVIEW) and
following correctly encoded stimuli in the Nback task (BLINDED FOR REVIEW). The Pe
and P3 have been suggested to reflect similar underlying processes (aneural reaction to a
stimulusin the case of the Go/Nogo and working memory tasks, and a neural reaction to
participant response in the case of the Pe, regardless of whether it is correct or incorrect)
(Ridderinkhof et al., 2009). These neural activity differences might indicate a common
difference in neural responses to the environment, which may be characterised by stronger
frontal positive voltages and more negative posterior voltages from approximately 280 to
380ms (similar to a P3a, or frontally distributed P3 activation), and may all reflect updating
of prior beliefs by posterior evidence viathe processing of prediction errors.

Comparisons with previous research — the Pe

The aforementioned interpretations of the functional significance of a differenceinthe Pein
experienced meditators hinge on the current result being robustly replicated. The larger Pe
amplitude in the meditation group is an effect in the opposite direction to Andreu et al.,
(2017), and conflicts with the null results of Teper and Inzlicht (2012) (studies which
examined meditators with years of experience). It is aso worth noting that our previous error
processing study provided Bayesian statistical evidence for the null hypothesis of no
difference between the groups. However, when the two datasets were combined, the analysis
still provided strong evidence for the interaction between group and electrode (BFincl =
11.115). This suggests to us that the conflict between the results of our current study
(showing alarger Pe amplitude) and previous studies (showing a smaller Pe amplitude or a

null result for the Pe) might be of methodological origin.
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One potential methodological explanation for the difference between the current study and
our previous study may be the task used to measure error processing. The current study
restricted analyses to EEG activity during the Go/Nogo task only (which has been shown to
produce the most dependable error processing effects; Clayson et a., 2020), whereas the
previous study included errors from the Go/Nogo task, the colour Stroop and the emotional
Stroop task. However, we think this explanation is unlikely, as the Stroop task has been
shown to still produce reasonably dependable error processing measures (Clayson et al.,
2020). Another possibility is the data processing methods used. Our previous study used data
pre-processing methods that we have since demonstrated to be less effective at cleaning
artifacts compared to the method used in the current study (BLINDED FOR REVIEW).
However, different EEG data cleaning approaches have been shown to produce only minor
differencesin study outcomes (Robbins et al., 2020), and these differences are still aligned in
direction (Robbins et al., 2020, Bailey et al., 20223, 2022b). As such, it seems unlikely that
these explanations would produce such strong evidence for the null hypothesis if the results
from our current study reflect the true result (we would expect more inconclusive results).
Following research from Alday (2021), we also think it is likely that the traditional
subtraction baseline correction methods used in our previous study have a negative effect on
error processing studies compared to a regression baseline correction. Indeed, when data
from our previous study were cleaned in the same way as the current study, the previous
study’ s pattern was in the same direction as the current study (although the pattern was still

not significant).

It should also be noted that the difference in Pe between groups was limited to the overall
neural response strength, and we did not find differences in the distribution of neural activity.

While our results on the surface may seem to align with previous research suggesting a larger
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Pe amplitude can be found after short mindfulness interventions (Lin et a., 2019, Smart and
Segalowitz 2017), it is worth noting that post-hoc exploration of the difference in the
electrodes of interest analysis indicated that the groups only differed at Fz and FCz, but the
larger effect size was from a different pattern across the electrodes between the groups (with
meditators showing a larger voltage differentiation between frontal and posterior electrodes).
This contrasts with previous research, which has typically shown a group main effect
difference between meditators and controlsin an analysis of asingle electrode or activity
averaged across a small group of electrodes (Andreu et al., 2017, Lin et al., 2019, Smart &
Segalowitz 2017). If we had restricted our analysis to more posterior electrodes (as some
studies have), we would have concluded there was no difference in error processing in
meditators. Thisis an advantage of the GFP and TANOVA analysis methods applied in the
current study - they were able to reveal that the potential differencein the Peis dueto
stronger activation of typically activated brain regions, rather than a different pattern of brain

regions being activated in meditators (Koenig et al., 2011, Habermann et al., 2018).

In addition to these potential methodological explanations, we suspect there may be
considerable variability in the effect of meditation on the Pe. Large samples of very
experienced meditators may be the most likely to detect reliable effects. If future research is
interested in resolving the conflict, we provide suggestions for a study designed for a robust
resolution of the issue in the supplementary materials. Considering that experienced
meditators are difficult to recruit in large numbers, the probable small effects of mindfulness
on the Pe even after long-term practice, the lack of ability to draw conclusions around
causation from cross-sectional research, and the low potential for clinical applicability from
EEG research, our view isthat determining whether there are differences between meditators

and non-meditators in EEG measures of error processing should not be a high priority for
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future research. Instead, we think research using an experimental approach to determine
whether more meditation leads to larger effect sizes for improved mental health would be
more beneficial.

Comparisons with previous research —the ERN

In contrast to the positive results for the Pe our results suggested there was no difference
between meditators and controls in the ERN. When viewed in combination moderate
Bayesian evidence against a difference between groups in our previous study (Bailey et al.,
2019), the results indicate that long-term mindfulness meditation experience does not alter

the ERN.

Given this seems to be the casg, it is confusing to us that several studies have detected
changesin the ERN after mindfulness practice using smaller sample sizes and less
experienced meditators (Pozuelos et d., 2019, Fissler et al., 2017, Smart & Segolowitz 2017,
Andreu et al., 2017, Teper & Inzlicht, 2012), sometimes after only a single session of
meditation (Saunders et a., 2016). We would expect that changes resulting from mindfulness
are likely to be detected following more extensive practice rather than less (Falcone &
Jerram, 2018, Tomasino et al., 2013). It may be that brief mindfulness practice does affect
ERN amplitudes, but that this change reverts to baseline after long periods of practice.
However, this explanation requires an additiona assumption to explain the pattern of results
across the study, and as such lacks parsimony and should be viewed with scepticism. A third
potential explanation is that the wide range of potential analysis parameters available in EEG
research could have provided analysis parameter selection biases towards positive resultsin
previous research. These include the cleaning of muscle and blink artifacts from the raw EEG
data, the choice of reference montage (Klawohn et al., 2020), the choice of baseline
correction periods, the number of epochs for inclusion in the analysis, and the choice of

electrodes and windows for analysis can all be varied by the experimenter and influence
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results. In particular, the choice of windows for analysis can be selected after inspection of
group means, which has been demonstrated by simulations to inflate false positive rates
(Kilner 2013), and a similar issue applies for the selection of electrodes for analysis. While
we proposed that random variation in effect size across studies is a possible explanation for
the inconsistency in results relating to the Pe, we think it is unlikely that this could explain
two null resultsin independent datasets for the ERN. As such, given null results across two
separate studies (both in highly experienced meditators and with reasonable sample sizes), we

suggest that meditation is unlikely to affect the ERN.

Lastly, while we think it is likely that meditation does not affect the ERN, and think further
research is needed before we can be confident in differences in the Pe, we note that null
results do not mean that meditation does not affect neural activity. Thereis now robust
evidence from meta-analyses that meditation does affect neural activity, particularly neural
activity related to attention, self-regulation and interoception (Tomasino et al., 2013, Boccia
et a., 2015, Fox et al., 2016). As such, the current findings provide subtlety to these findings,
suggesting that while previous research has indicated meditation is likely to affect neural
activity related to specific processes, it is unlikely that the processes underlying the ERN are
altered by meditation.

Limitations and Future Directions

While our study reflects the largest sample of experienced meditators collected to date, our
primary comparisons were unfortunately underpowered to provide a conclusive answer
regarding the Pe, so our exploratory analyses were the only analyses able to provide support
for alarger Pe in meditators. Additionally, the meditation group in our study was compared
against healthy control non-meditators (in contrast to a group who had also undergone a

practice of some kind with equivalent intensity and duration to meditation training, for
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example athletes in the case of Andreu et al., 2017). The inclusion of an active control group
would have been beneficial for controlling for non-specific factors that might have influenced
our findings related to the Pe. However, the lack of control for these factors does not affect
our conclusion of anull result with regards to the ERN (our results indicate that neither the
meditation practice nor the other uncontrolled factors affected the ERN). Similarly, the cross-
sectional design is alimiting factor when considering causation. However, it is worth
recognizing how difficult it would be to provide good evidence with alongitudinal study —
considering that despite the amount of meditation practi ce undertaken by our participants, our
study did not even provide conclusive evidence for a cross-sectional difference in the Pe, and
alongitudinal study with equivalent meditation experience and sample size would be almost

impossible to practically implement.

Another potential limitation is that our decision to obtain alarger dataset by combining our
previous data with the current data was not planned — and was implemented in order to
explore why our results conflicted. However, to prevent any potential experimenter biasin
this process from implementing our results, our inclusion of participants was based only on
selection of individuals who provided enough error response epochs for analysis from the
Go/Nogo task in our previous dataset, and all participants providing enough epochs from the
earlier study were included. Additionally, because our previous study showed no differences
between meditators and controls, an a priori assumption would be that combining the two
datasets would have biased our results towards the null result rather than to strengthen the
difference we found in the Pe in our novel dataset. As such, we believe the combined dataset

is valuable in providing evidence that the Pe difference might reflect areal result.
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Lastly, it isaso worth noting that the study aim was to resolve the conflict between the null
result from our previous study (BLINDED FOR REVIEW) and the research from a number
of other groups. As such, we performed several exploratory analyses to ensure the lead
author’s expectation for anull result did not bias our conclusions. Thismeansthat itis
possible that the difference in the Peis simply a false positive produced by repeated statistical
tests. To address this, we did implement experiment-wise multiple comparison controls.
However, it is also possible that the number of multiple comparison controls implemented
reduced our power to detect a significant effect in our primary analysis. We recommend that
future research focus specifically on a single independent samples t-test comparing the GFP
of the Pe between a group of long term meditators and a control group in order to maximise
the chance of detecting a significant effect, while not inflating potential false positive results

due to multiple comparisons.
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