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Abstract 

 

Objectives: Mindfulness meditation is associated with better attention function. Performance 

monitoring and error-processing are important aspects of attention. We investigated whether 

experienced meditators showed different neural activity related to performance monitoring 

and error-processing. Previous research has produced inconsistent results. This study used 

more rigorous analyses and a larger sample to resolve the inconsistencies.  

Methods: We used electroencephalography (EEG) to measure the error-related negativity 

(ERN) and error positivity (Pe) following correct and incorrect responses to a Go/Nogo task 

from 27 experienced meditators and 27 non-meditators.  

Results: No differences were found in the ERN (all p > 0.05). Meditators showed larger 

global field potentials (GFP) in the Pe after both correct responses and errors, indicating 

stronger neural responses (p = 0.0190, FDR-p = 0.152, np2 = 0.0951, BFincl = 2.691). This 

effect did not pass multiple comparison controls. However, single electrode analysis of the Pe 

did pass multiple comparison controls (p = 0.002, FDR-p = 0.016, np2 = 0.133, BFincl = 

220.659). Meditators also showed a significantly larger Pe GFP for errors only, which would 

have passed multiple comparison controls, but was not a primary analysis (p = 0.0028, np2 = 

0.1493, BF10 = 9.999). 

Conclusions: Meditation may strengthen neural responses related to performance monitoring 

(measured by the Pe), but not specifically to error monitoring (although measurements of the 

Pe after errors may be more sensitive to group differences). However, only the single 

electrode analysis passed multiple comparison controls, while analysis including all 

electrodes did not, so this conclusion remains tentative. 
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Introduction 

Mindfulness meditation is associated with both cognitive and mental health benefits (Galante 

et al., 2021, Khoury et al., 2013, Gu et al., 2015, Gill et al., 2020, Im et al., 2021). Meta-

analytic evidence suggests that mindfulness enhances attention, self-regulation, and executive 

function (Sumantry & Stewart, 2021; Jha et al., 2007; Tang et al., 2007; Xue et al., 2011, Im 

et al., 2021). These effects are perhaps unsurprising since the practice of mindfulness 

includes focusing attention on the present experience and redirecting attention back to the 

present experience when attention wanders - an activity that requires attention, self-regulation 

and executive function (Cardaciotto et al., 2008, Larson et al., 2013; Teper & Inzlicht, 2012). 

Functional brain imaging has shown increased activity in areas associated with these 

functions, such as the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex 

(DLPFC), and insula (Allen et al., 2012; Tang et al., 2010; Tomasino & Fabbro, 2016; Xue et 

al., 2011, Falcone & Jerram, 2018). These increases in mindful attention have been found to 

underpin the mental health benefits of mindfulness practice (Gu et al., 2015).  

 

Recent theoretical perspectives have attempted to provide a deeper explanation for the link 

between mindfulness, attention, and improved mental health by using a predictive coding 

theory of brain function (Manjalay et al., 2020, Verdonk & Trousselard, 2021, Lutz et al., 

2019, Laukkonen & Slagter, 2021). The predictive coding theory suggests that because the 

brain must interact with the environment but only has access to the environment indirectly 

(through its sensory apparatus), the brain constructs a Bayesian model of its environment 

(Hohwy, 2012, Friston, 2010). This model is constituted of prior beliefs, predictions about 

the environment and an individual’s place within it, which are based on the individual’s 

actions (Hohwy, 2012, Friston, 2010). These priors are constantly updated by incoming 

sensory evidence (information from the body and environment), which is conceived of as 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499152doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

prediction error weighted according to its expected precision, so that sensory evidence that is 

expected to be more precise attains more neural gain and has a stronger role in belief 

updating. The predictive coding theory suggests the main objective of brain function is to 

reduce prediction error – the mismatch between the prior beliefs and sensory evidence – over 

the long-term average. Prediction error minimization is achieved by both updating prior 

beliefs based on sensory evidence and making active inferences (altering the environment to 

match prior beliefs) (Hohwy, 2012, Friston, 2010).  

 

Within the predictive coding theory, researchers have theorized that mindfulness practice 

might: 1) increase the precision of sensory evidence as a result of training in attending to 

sensations, which enhances synaptic gain of neurons processing prediction errors (Manjalay 

et al., 2020, Verdonk & Trousselard, 2021, Lutz et al., 2019, Laukkonen & Slagter, 2021); 2) 

increase the control over the selection of sensations for increased precision (Manjalay et al., 

2020, Verdonk & Trousselard, 2021, Lutz et al., 2019, Laukkonen and Slagter, 2021); 3) 

loosen the precision with which prior beliefs are held, such that posterior evidence does not 

produce as much prediction error because posterior evidence is more commonly within the 

expected range of the priors (Manjalay et al., 2020, Laukkonen & Slagter, 2021); or 

alternatively, 4) increase the accuracy and precision of prior beliefs as a result of the long 

term increase in signal enhancement of the sensory evidence, such that priors are closer to 

posteriors and as such create less prediction error (Verdonk & Trousselard, 2021). Another 

four theories about how mindfulness affects the parameters of the predictive coding theory 

are described in the supplementary materials. This plethora of theories highlights one of the 

issues with explanations within the predictive coding theory: without experimental evidence, 

modulation in any of a wide array of predictive coding parameters could reflect a theoretical 

explanation for the effect of any given intervention. As such, empirical testing of potential 
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differences in the parameters within the predictive coding theory is necessary to further our 

understanding of the mechanisms of mindfulness meditation. 

 

One important concept for both attentional function and predictive coding accounts of the 

brain is performance monitoring. Cognition underlying error processing involves detecting 

errors in performance and adjusting cognitive resources to optimise performance. Error 

processing is integral to goal directed behaviour (Maurer et al., 2019), and behavioural errors 

are necessarily the result of predictive coding errors (an erroneous commission response on a 

response inhibition task reflects a mismatch between the prior expectation of perceiving a 

stimulus that is associated with a response, and subsequent evidence of a stimulus associated 

with withholding a response). As such, examining neural activity time locked to the 

commission of an error in mindfulness meditators is informative about the effects of 

mindfulness meditation on attention, as well as the effects of mindfulness meditation on the 

parameters of predictive coding models of the brain. Previous research has indicated that 

error processing in these types of tasks relies on the neural activity in the ACC (Larson et al., 

2013). Predictive coding accounts have also suggested the ACC is a primary hub in 

projecting representations of bottom-up prediction errors to the DLPFC, which enables the 

modulation of predictions within the DLPFC to enable adaptive behaviour (Alexander & 

Brown, 2019). As such, measuring neural responses to errors may provide support for certain 

conjectures of how mindfulness affects the brain’s predictive coding function. In particular, 

an increase in the amplitude of neural responses to errors would support models suggesting 

mindfulness was associated with increased precision of sensory evidence or increased control 

over the selection of sensations for increased precision – models 1 and 2 from the list in the 

previous paragraph. 
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Given this background, it is no surprise that mindfulness mediation has been proposed to 

enhance error processing, and that studies have examined how mindfulness affects the neural 

correlates of error-processing using electroencephalography (EEG). Two event-related 

potentials (ERPs) related to error processing have been identified: the error related negativity 

(ERN) and error positivity (Pe) (Dehaene et al., 1994). The ERN is a negative potential 

produced by the ACC, which occurs within 100ms of error commission (Dehaene et al., 

1994; Falkenstein et al., 2000; Larson et al., 2013). The Pe is a positive potential generated 

by the cingulate cortex and insula that occurs approximately 200 to 400ms after error 

commission (Herrmann et al., 2004, O’ Connell et al., 2007, Ullsperger et al., 2010). There is 

some ambiguity about the exact functional significance of the ERN and Pe. One prominent 

theory of ERN generation is the conflict monitoring theory. According to this theory, the 

ERN is generated by neural activity related to the processing of a conflict between the 

commission of an error response and the desired correct response (Larson et al., 2014). In 

tasks that rely on executive function, attention, and working memory, larger ERN amplitudes 

are found in contexts that generate more conflict but are also related to better performance 

(Larson & Clayson, 2011). The Pe is thought to reflect conscious recognition of errors and is 

modulated by level of attention, arousal, motivation, and affective response to an error 

(Falkenstein et al., 2000; Larson et al., 2013; Larson & Clayson, 2011). The Pe has also been 

implicated as a putative neural marker for the accumulated amount of evidence that 

participants have access to in order to decide whether they have committed an error 

(Steinhauser & Yeung, 2010). Larger Pe amplitudes are related to increased motivation and 

conscious processing of errors (Larson & Clayson, 2011). 

 

To date, research investigating the impact of a mindfulness meditation intervention on the 

ERN and Pe has produced conflicting results, despite eleven published studies on the topic. 
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Three studies comparing a mindfulness practice condition to a control condition have shown 

increased ERN amplitudes (Fissler et al., 2017, Pozuelos et al., 2019, Saunders et al., 2016), 

but four have shown no differences (Eichel et al., 2020, Larson et al., 2013, Lin et al., 2019, 

Rodeback et al., 2020), and one further has shown a decreased ERN (Schoenberg et al., 

2014). Similarly, two studies of the Pe have reported increased amplitudes in the mindfulness 

condition (Lin et al., 2019, Rodeback et al., 2020), two studies reported an increase in Pe 

amplitude in the mindfulness group, but also an increase in the waitlist or relaxation control 

groups (Schoenberg et al., 2014, Eichel & Stahl, 2020), two studies reported no difference 

(Bing-Canar et al., 2016, Smart & Segalowitz, 2017), and one study has reported a reduction 

in Pe amplitude in the mindfulness group (Larson et al., 2013). 

 

The inconsistent and mixed pattern of results reported across the interventional studies 

conducted to date might be related to the small amount of mindfulness experience provided 

to the participants in these studies by the interventions. A recent meta-analysis has shown that 

neural changes from mindfulness practice relate to the amount of mindfulness experience 

(Falcone & Jerram, 2018), so studies of long-term meditators might be more likely to detect 

effects for error processing. However, experimental study designs investigating long-term 

meditation practice are prohibitively difficult to implement. Noting this as a limitation, three 

published studies have examined error processing in long-term meditators in cross-sectional 

study designs. However, the results of these studies are also inconsistent. In the first 

investigation of experienced meditators, Teper & Inzlicht (2012) observed larger ERN 

amplitudes in experienced meditators (with on average 3.19 years of meditation practice) 

compared to non-meditators, but no differences in Pe amplitudes. In a similar study, Andreu 

et al., (2017) observed a larger ERN, as well as a trend towards smaller Pe amplitudes (in 

both error and correct responses) in a sample of Vipassana meditators with an average of 5.1 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499152doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

years of experience compared to an athlete control group (with matched practice time). 

However, in a study that examined the ERN and Pe in experienced meditators, with the 

meditation group averaging 8.7 years of meditation experience (Bailey et al., 2019) a 

Bayesian statistical approach showed evidence against differences in both the ERN and Pe in 

these experienced meditators compared to controls.  

 

These inconsistencies could also be related to methodological issues in analysing the ERN 

and Pe. Several EEG data processing steps can result in false positive or false negative 

results. These include: 1) the selection of electrodes for analysis - because ERPs are dipolar 

with negative and positive voltage peaks depending on the generating brain region, analyses 

focused on different electrodes has the potential to completely reverse an effect, 2) the 

selection of time windows for analysis - brain activity can be differentially modulated 

between groups only at specific timepoints, and arbitrary time window selection can increase 

false positive results (Kilner, 2013), and 3) the use of a subtraction baseline correction 

method. Baseline correction is intended to correct for slow drifts in EEG data, but the 

subtraction method has recently been shown to transpose a mirror image of the distribution of 

activity during the baseline period onto the active period, while ironically also decreasing the 

signal to noise ratio (Alday, 2019). A more detailed explanation of these potential confounds 

can be found in the supplementary materials. 

 

Our previous study was the first to examine error processing in meditators using methods that 

eliminate the possibility of bias from experimenter selection of electrodes or time windows 

from influencing results, addressing issues 1 and 2 listed above [BLINDED FOR REVIEW]. 

Because our null results conflicted with the previous literature, we here sought to replicate 

our previous study with a larger sample size and with the application of a more robust 
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regression baseline correction method (Alday, 2019). This regression baseline correction has 

been demonstrated to adequately correct for slow drifts in the EEG data without transposing 

the mirror image of the baseline activity into the active period, removing this potential 

confound, and without decreasing the signal to noise ratio (Alday, 2019), addressing issue 3 

listed above. Additionally, while most previous research has focused specifically on error 

processing, it is possible that meditation produces a general difference in performance 

monitoring, rather than a specific error-processing-related difference (as suggested by 

Andreu’s (2017) results). To explore this, we examined neural activity across both error and 

correct trial types. Based on initial findings from Teper and Inzlicht (2012) and Andreu et al., 

(2017), our alternative hypothesis was that meditators would have increased ERN amplitudes 

to both correct and error responses compared to controls. We also nominated an alternative 

hypothesis that meditators would show larger Pe amplitudes to both correct and error 

responses than non-meditators, in line with a slight majority of interventional studies. 

However, it should be noted that given our previous null result study and the inconsistency in 

the literature, our primary hypothesis was that we would replicate the null result. As such, we 

planned to explore potential positive results fully, to provide a fair evaluation of our research 

question, and so that our conclusions would be protected against potential biases. 

 

Method  

Participants  

Thirty-nine meditators and 37 healthy non-meditators were recruited via community 

advertising at universities, meditation organisations, and social media. Of these participants, 

57 participants (30 meditators and 27 controls) provided enough artifact free error response 

EEG epochs for analysis (details below). Data were collected by students trained in EEG data 

recording and supervised by experienced researchers. The study had no direct funding for 
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personnel, so no a priori power analysis was performed. As such, the intended sample size 

was simply “larger than our previous study, and as many as possible” within the resource and 

time restrictions. The final sample for the two groups significantly differed in age, so the 

three oldest meditators were excluded prior to analysis, so that the groups did not 

significantly differ in any demographic variables (all p > 0.10, note that in order to further 

reduce the influence of the potential confound, analyses were performed controlling for age 

and years of education as covariates). The final data set comprised a total of 54 participants 

(27 meditators and 27 controls). To be considered an experienced mediator, participants were 

required to have practiced meditation for a minimum of two years. They also had to practice 

meditation for a minimum of two hours per week over the last three months. The meditation 

sample had an average of 7.57 years’ meditation experience (SD = 7.04), and an average of 

7.98 hours of practice per week (SD = 5.82). To be included in the study, we required that 

meditators reported practicing in a way that is consistent with the following definition of 

mindfulness: “paying attention in a particular way: on purpose, in the present moment, and 

nonjudgmentally” (Kabat-Zinn, 1994), and that the meditator’s practice was focused on 

sensations of the breath or body. Trained meditation researchers screened and interviewed 

participants to ensure that their meditation practices were consistent with the criteria. Non-

meditating control participants were eligible to participate if they had less than two hours 

meditation experience across their lifetime. Any uncertainties in screening were resolved by 

two researchers, including the principal researcher (BLINDED FOR REVIEW). 

 

Participants were ineligible to participate if they had previous or current neurological or 

mental illness. Participants were also ineligible if they were currently taking psychoactive 

medication. All participants were interviewed with the MINI International Neuropsychiatric 

Interview (MINI) DSM-IV (Hergueta et al., 1998). Potential participants who met the criteria 
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for psychiatric illness were excluded. The Beck Anxiety Inventory (BAI) and Beck 

Depression Inventory II (BDI-II) (Beck et al., 1996) were also administered. Any participants 

who scored above the moderate range in the BAI (>25) or greater than the mild range in the 

BDI-II (>19) were excluded. All included participants were aged between 19 and 61 years.  

 

Prior to EEG recording, participants provided their age, gender, years of education, and 

mediation experience (total years of practice, frequency of practice, and amount of time spent 

practicing). In addition to the BAI and BDI-II, participants also completed the Five Facets of 

Mindfulness Questionnaire (FFMQ). These measures are summarised in Table 1. Ethics 

approval was provided by the Ethics Committees of Monash University and Alfred Hospital. 

All participants provided written informed consent prior to participation in the study.  

 

 Meditators,  

M(SD) (n = 27)  

Controls,  

M(SD) (n = 

27) 

Statistics  

Age  34.93 (12.52)  29.96 (11.42)   t(52) = -1.522, p = 0.134 

Gender (M/F)  19/8  16/11 Chi-square = 0.731, p = 

0.393  

Years of education  15.85 (3.18) 17.06 (2.29) t(52) = 1.595, p = 0.117 

Meditation experience 

(years)  

7.57 (7.04) 0  

Current time 

meditation per week (h)  

7.98 (5.82) 0  

BAI score  5.85 (5.58) 5.19 (4.16) t(51) = -0.487, p = 0.629  

BDI score  3.15 (4.12) 4.59 (4.98) t(52) = 1.161, p = 0.251 
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FFMQ score  151.56 (14.79) 132.67 (15.72) t(52) = -4.546, p < .001  

Table 1 Participant demographic data. Note that BAI data was missing for one control 

participant. 

 

Procedure  

Sixty-four channel EEG was recorded while participants performed a Go/Nogo task 

(Neuroscan, Ag/AgCl Quick-Cap through a SynAmps 2 amplifier [Compumedics, 

Melbourne, Australia]). Electrodes were referenced to an electrode between Cz and CPz, 

impedances were kept below 5kΩ, and EEG was sampled at 1000Hz with online bandpass 

filters from 0.1 to 100Hz. The EEG was recorded while participants performed a Go/Nogo 

task with simplified emotional faces (stimuli were identical to BLINDED FOR REVIEW). 

The Go/Nogo task is commonly used to elicit ERN and Pe components and has been shown 

to have high reliability (alpha = 0.75, the highest out of the Go/Nogo, Flanker and Stroop 

tasks tested) (Clayson, 2019). The task included four separate blocks. The first two blocks 

were an easy version of the task, each with 50 happy faces and 50 sad faces. One block 

required participants to respond (Go) to happy faces and withhold response (Nogo) to sad 

faces. Participants who responded to happy faces in the first block responded to sad faces in 

the second block, and vice versa. The stimulus-response pairing was counter-balanced across 

participants, so half of the participants in each group responded to happy faces in the first 

block and sad faces in the second block, and the other half responded to sad faces in the first 

block then happy faces in the second block. Following this, two harder blocks were 

presented, each with 50 Nogo trials and 150 Go trials (again with the stimulus-response 

pairing counterbalanced). Each stimulus was presented for 250ms with an intertrial interval 

of 900ms (with a 50ms jitter). EEG data were pre-processed using the RELAX pipeline, 

which has demonstrated optimal cleaning of artifacts and preservation of ERP signals 
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compared to other cleaning approaches (Bailey et al., 2022a, 2022b). This cleaning pipeline 

filtered the data from 0.25 to 80Hz with a notch filter from 47 to 53Hz, applied both Multiple 

Wiener Filters (MWF) and wavelet enhanced independent component analysis (wICA) to 

identify and remove muscle, eye movement and blink and drift artifacts from the data, and 

additionally the wICA reduced line noise, heartbeat and other artifacts. Data were re-

referenced to the average of all electrodes. Full details of the cleaning method are reported in 

the supplementary materials.  

 

Following the cleaning of continuous files, data were epoched around correct and error 

responses from -400 to 800ms. Each error response (following a Nogo trial) was matched in 

reaction time to a correct response with the closest available reaction time (from a Go trial 

that presented a face of the same emotion) so that an equal number of error and correct 

responses were epoched for analysis, and these responses were matched for both condition 

and reaction time. Epochs with voltages exceeding +/-60 μV at any electrode were rejected, 

as were epochs containing improbable voltage distributions or kurtosis values >5SD from the 

mean in any single electrode or more than 3SD from the mean over all electrodes. Data were 

then baseline corrected by regressing out the average of the -400 to -100ms period from each 

epoch (timelocked to the response) using the fieldtrip function ‘ft_regressconfounds’ for each 

electrode and each participant separately, with the condition of each epoch (correct or error 

response) included in the regression model (but not rejected) to correct for potential voltage 

drift but still preserve any experimental effects (Bailey et al., 2022a, 2022b).  

 

Participants who had less than six error related epochs remaining for analysis were excluded 

at this stage. We ensured our data provided reliable analysis by using the ERA Reliability 

Analysis Toolbox v0.5.3 (Clayson & Miller, 2017a, 2017b). The ERA Toolbox showed our 
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dataset provided >0.90 dependability for both correct and error trials within both the 

averaged ERN and Pe windows. Further dependability details can be found in the 

supplementary materials.  

 

Data Analysis  

Primary comparisons  

Primary EEG data statistical comparisons were conducted using the Randomisation 

Graphical User Interface (RAGU) toolbox (Koenig et al., 2011). Unlike approaches that 

focus on specific electrodes and time windows for analyses, RAGU is a reference free 

approach that compares scalp field differences across all electrodes and time points with 

permutation statistics that are robust to the assumptions of traditional parametric statistics. As 

such, RAGU minimises need for a priori choices of time windows or electrodes, which can 

bias analyses. RAGU is also robust against the violation of the assumptions of traditional 

parametric statistics (Koenig et al., 2011). 

 

RAGU also allows for separate comparisons of the overall neural response strength (using the 

global field power [GFP] test) and the distribution of neural activity across electrodes (with 

the Topographic Analysis of Variance [TANOVA]). We used the TANOVA to assess 

whether the distribution of neural activity differed between groups or conditions without the 

influence of overall neural response strength by normalising the overall amplitude of the 

neural response, so that all participants and conditions have a GFP = 1 prior to the TANOVA 

(using the recommended L2 normalisation). Additionally, prior to the TANOVA, a 

topographical consistency test (TCT) was conducted to ensure consistent distribution of scalp 

activity within each group/condition. The TCT is analogous to a single sample t-test, and 

assessed whether the signal within a condition or group significantly differed from 0 (in 
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which case the group/condition demonstrated a consistent distribution of neural activity 

following a response).  

 

The GFP and TANOVA tests were applied in a repeated measures ANOVA design, 

comparing 2 group (meditators vs controls) × 2 condition (corrects vs errors) in data from -

400 to 700ms around correct/error responses. Tests were conducted with 5000 permutations 

and an alpha of p = 0.05. To control for multiple comparisons across time, the global duration 

control was used, which ensures any significant effects last longer than 95% of the 

‘significant effects’ within the randomly shuffled data. When significant effects were 

detected, we averaged data within the significant period, and report p-values, effect sizes, and 

Bayesian statistical evidence for the alternative hypothesis for these comparisons (this 

approach maximises effect size estimation by focusing only on the significant period). We 

also analysed data averaged across windows from typical ERN and Pe windows (50 to 150ms 

following the response and 200 to 400ms following the response respectively, this approach 

reduces effect size estimation by including potentially non-significant time periods). We 

extracted the average GFP for significant periods and windows of interest for Bayesian 

statistical analysis using JASP (Love et al., 2019) (however, note that Bayesian approaches 

are currently not available to replicate the TANOVA test of differences in the distribution of 

activity). Lastly, we performed experiment-wise multiple comparison controls using the 

Benjamini-Hochberg (1995) false discovery rate (FDR-p) for the traditional ERN and Pe time 

window of interest analyses, including all group main effects and interactions involving 

group in the multiple comparison controls for both the ERN and Pe across both the GFP and 

TANOVA tests (8 tests). 

Replication Comparisons – Single Electrode Analysis 
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In addition to the whole scalp analyses conducted to test our primary hypotheses, we 

performed a traditional electrodes-of-interest analysis of the average ERN and Pe periods 

using five midline electrodes. We implemented a repeated measures ANOVA with the 

following design: group (meditator/control) x condition (correct/error) x electrode (Fz, FCz, 

Cz, CPz and Pz). Full details of this analysis are reported in the supplementary materials. 

Because these analyses overlap with the primary analyses performed in RAGU, we 

performed experiment-wise multiple comparison controls using FDR-p separately for these 

analyses, including all group main effects and interactions involving group in the controls for 

both the ERN and Pe (8 tests).  

 

Lastly, because our results differed from our previous study, we performed a re-analysis of 

the data from that study focused on error trials (which provide the largest signal), using the 

same methods as in the current study. We report this analysis, and an analysis of the 

combined data from the current study and our previous study in our supplementary materials. 

No analyses were performed on behavioural data, as the behavioural comparisons from the 

full dataset are planned for a study in preparation which will examine stimulus locked EEG 

activity from the Go Nogo task. 

 

Results 

Demographic and Behavioural Data  

Meditators and controls did not significantly differ in age, BDI, or BAI (all p > 0.10). 

However, as expected, meditators reported higher FFMQ scores than controls (meditators = 

151.56 (14.79), controls = 132.67 (15.72)), t(52) = -4.546, p < .001. Means suggested the 

behavioural performance was similar across groups (Table 2). 
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 Meditators  

M (SD) 

Controls  

M (SD)  

Number of accepted correct 

epochs 

28.74 (16.05) 

 

33.86 (19.31) 

 

Number of accepted error 

epochs  

27.59 (16.02)  

 

33.44 (20.33)  

 

Percent correct equal Go 

trials 

95.23 (12.52) 96.00 (9.28) 

Percent correct equal Nogo 

trials 

92.08 (12.90) 91.11 (12.00) 

Percent correct frequent 

Go trials 

95.85 (9.60) 97.47 (2.74) 

Percent correct infrequent 

Nogo trials 

70.43 (16.92) 67.74 (17.71) 

Overall Correct Go RT   374.01 (42.72)  

 

366.45 (39.26)  

 

Overall Correct Hard Go 

RT 

336.97 (52.83)  

 

320.85 (39.39)  

 

Error Nogo RT  299.22 (65.36)  

 

282.18 (59.29) 

 

Hard Error Nogo RT  259.13 (30.41)  255.59 (36.92) 

Matched correct equal Go 

RT 

314.38 (71.44) 286.85 (53.85) 

Matched correct frequent 

Go RT 

262.63 (33.68) 257.71 (37.58) 
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Table 2 Participant Behavioural Data and number of accepted epochs. 

 

Primary Comparisons 

ERN and Pe Global Field Potential Tests 

The GFP test showed no significant main effect of group or interaction between group and 

response that lasted longer than global duration controls (67ms for the main effect of group, 

39ms for the interaction between group and response). However, the meditator group showed 

intermittent periods with larger Pe amplitudes across multiple time periods spanning 235 to 

373ms, none of which individually passed the global duration statistic, but the entire period 

would have passed global duration controls if it were not intermittent. Additionally, this 

period was in the Pe window of interest (Figure 1A). To protect against the possibility of 

accepting a null result (in line with the null results of our previous study, BLINDED FOR 

REVIEW) where there was suggestive evidence of a positive result, we explored this effect 

further. When averaging across this 235 to 373ms period, the main effect of group was 

significant, with the meditator group showing a higher amplitude GFP than controls across 

both conditions (p = 0.0186, np2 = 0.1066, BFincl = 2.697, see Figure 1D). Additionally, 

when averaged across the typically analysed Pe period (200 to 400ms), the main effect of 

group was significant with the meditator group showing a significantly higher amplitude GFP 

than controls across both conditions (p = 0.019, FDR-p = 0.1520, np2 = 0.0951, BFincl = 

2.691) (however note that the difference did not pass our experiment-wise multiple 

comparison control). This may indicate that meditators have larger neural response amplitude 

(independent of the distribution of activity) than controls to both error and correct response 

trials during the Pe window. There was a trend towards an interaction between group and 

response when data was averaged within the 235 to 373ms period (p = 0.0738, np2 = 0.0622, 

BFincl = 1.257), however, this effect was not present when averaging across the typical Pe 
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window (200 to 400ms, p = 0.12, FDR-p = 0.2496, np2 = 0.0535, BFincl = 1.300), and no 

interaction between group and response was present that passed duration controls. This 

suggests the potential difference in Pe amplitude was not specific to error responses (that the 

main effect of group was larger than the effect for a specific condition). In contrast, when 

data was averaged within the ERN window of interest (50 to 150ms), there was no significant 

difference between groups (p = 0.1248, FDR-p = 0.2496, np2 = 0.0453, BFexcl = 0.962) nor 

interaction between group and condition (p = 0.7028, FDR-p = 0.9371, np2 = 0.0030, BFexcl 

= 3.736). 

 

Next, while the groups did not significantly differ in age or years of education, they were not 

directly matched. To ensure these potential confounds were not influencing our results, we 

performed the comparison in RAGU averaged across the Pe window of interest, with age and 

years of education regressed out of the analysis. Again, this comparison showed a significant 

main effect of group with meditators showing larger amplitudes (p = 0.034, np2 = 0.0840). 

We also performed a repeated measures ANCOVA comparison of the averaged Pe window 

using JASP, covarying for age and years of education. These results showed the main effect 

of group was reduced to a trend F(1,50) = 3.072, p = 0.086, np2 = 0.058, BFincl = 1.125, but 

that the interaction between group and response (correct/error) was significant F(1,50) = 

7.849, p = 0.007, np2 = 0.136, BFincl = 3.914. Separate ANCOVA analyses for the error and 

correct trials indicated that this was due to a significant effect of group in the error response 

condition F(1,50) = 10.352, p = 0.002, np2 = 0.172, BFincl = 15.757, but not the correct 

response condition F(1,50) = 0.026, p = 0.873, np2 = 5.151e-4, BFexcl = 3.205. 

 

It is worth noting that age was non-significantly negatively correlated with the error Pe GFP 

(r = -0.099, p = 0.478), so if age had affected our results, the difference between meditators 
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and controls would have been reduced, making a null result more likely (as older participants 

showed smaller Pe GFP and the meditation group was older on average). Years of education 

was also not significantly correlated with Pe GFP (r = -0.178, p = 0.198). Additionally, age 

and years of education were not significant predictors in the ANCOVA, Age: F(1,50) = 

0.243, p = 0.624, BFexcl = 3.183, Years of education: F(1,50) = 0.789, p = 0.379, BFexcl = 

2.127. 

 

Although the interaction between group and response was not significant in our primary 

analysis, it was significant when covarying for age. Additionally, error processing studies 

often focus only on the error related responses, and error ERPs typically generate more signal 

than correct ERPs. Given this information, and the significant interaction when covarying for 

age, as well as our aim to protect against potential biases towards a null result, we performed 

an exploratory analysis focused only on the error trials. This analysis showed a group main 

effect from 230 to 376ms, which lasted longer than the global duration control (57ms). 

Averaged across this interval, the effect was significant with a large effect size (p = 0.0022, 

np2 = 0.1553, BF10 = 11.813). Averaged across the typical Pe window of interest (200 to 

400ms), the effect remained significant (p = 0.0028, np2 = 0.1493, BF10 = 9.999). We also 

note here that if we had planned our analysis to focus on error trials only and included this 

result in our multiple comparison controls, the difference in error related Pe GFP would have 

passed our multiple comparison controls (FDR-p = 0.0176). It is also worth noting that while 

this effect was not significant in the data from our previous study (after re-processing using 

the current study’s methods), the pattern was in the same direction (p = 0.176, np2 = 0.0576, 

BF10 = 0.658, Figure S5). Additionally, the combined analysis across both the current and 

our previous dataset was significant (p = 0.019, np2 = 0.0576, BF10 = 2.607, or BF10 = 5.147 

for a one-sided test, given the sample in our current study suggested this would be the 
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pattern, Figure S7). However, it is also worth noting that the group by condition interaction in 

our primary analysis was not significant, so traditionally we would not have explored the 

error-related Pe in isolation. 

 

Figure 1. Significance p-graphs and violin plots for the GFP comparisons in the novel 

dataset. A: the p-map for the main effect of group. B: the p-map for the main effect of 

response condition. C: The p-map for the interaction between group and condition. For A-C, 

the black line reflects the p value, grey periods reflect no significant differences between 

groups, white periods reflect significant differences that did not survive duration multiple 

comparison controls. D: Averaged GFP values during the typical Pe window of interest 200 
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to 400ms for both responses averaged together. E: Averaged GFP values during the typical 

Pe window of interest 200 to 400ms for correct responses. F: Averaged GFP values during 

the typical Pe window of interest 200 to 400ms for error responses. Note that the significant 

main effect of group indicated that the groups differed in GFP when averaged across the two 

response conditions. 

 

 

Figure 2. Significance p-graph for the GFP comparisons between groups when including 

error responses only. 

 

ERN and Pe TANOVA  

The TCT indicated mostly consistent distributions of neural activity within each condition for 

each group, including during the ERN and Pe windows of interest, suggesting it was valid to 

perform comparisons using the TANOVA (with the exception of a brief period around 120ms 

in the meditation error condition, and around 200ms for the correct condition for both groups, 

Figure S2). The TANOVA showed a significant main effect of condition across the entire 

epoch starting in the baseline period (-86ms), suggesting error and correct responses 

generated different distributions of neural activity across the entire period. Both the ERN and 

Pe showed the typical scalp distribution pattern (Figure S3). However, no significant main 
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effect of group lasting longer than the global duration controls (51ms) was found in the 

TANOVA (very brief effects were present at 288 to 304ms and 449 to 461ms, see Figure S4). 

There was also no significant interaction between group and response (correct/error) that 

lasted longer than the global duration controls (39ms, all p > 0.05, global count p = 0.710). 

This result suggests that the two groups did not differ in the distribution of brain activity time 

locked to responses, nor did the distribution of brain activity interact between the groups and 

type of correct or error response. Averaged within the ERN window of interest, there was no 

significant main effect of group (p = 0.9508, FDR-p = 0.9646, np2 = 0.0052), nor an 

interaction between group and response (correct/error) (p = 0.6554, FDR-p = 0.9371, np2 = 

0.0174). Averaged within the Pe window of interest, there was no significant main effect of 

group (p = 0.0826, FDR-p = 0.2496, np2 = 0.0367), nor an interaction between group and 

response (correct/error) (p = 0.9646, FDR-p = 0.9646, np2 = 0.0060). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499152doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

Comparison Meditators  

M (SD) 

Controls 

M (SD) 

Statistics 

GFP Error 235 to 373ms 1.968 (0.709) 1.446 (0.525) Group main effect: p = 0.0186, np2 = 0.1066, BFincl = 2.697 

GFP Correct 235 to 373ms 1.531 (0.695) 1.401 (0.510) Response x Group: p = 0.0738, np2 = 0.0622, BFincl = 1.257 

GFP Error 200 to 300ms 1.993 (0.622) 1.533 (0.491) Group main effect: p = 0.0190, FDR-p = 0.152, np2 = 0.0951, BFincl = 2.691 

GFP Correct 200 to 300ms 1.513 (0.688) 1.382 (0.499) Response x Group: p = 0.12, FDR-p = 0.2496, np2 = 0.0535, BFincl = 1.300 

ERN Error Fz -0.80 (2.39) -0.90 (1.48) Group main effect: 

FCz -1.56 (2.56)  -1.26 (1.94) F(1,52) = 0.095, p = 0.760, FDR-p = 0.869, np2 = 3.513e-4, BFexcl = 5.378 

Cz -1.33 (1.98)  -0.90 (1.96) Response x Group: 

CPz -0.49 (1.33)  -0.45 (1.51)  F(1,52) = 0.025, p = 0.875, FDR-p = 0.875, np2 = 4.808e-4, BFexcl = 7.465 

Pz 0.21 (1.54) -0.21 (1.09) Group x Electrode: 

ERN Correct Fz -0.59 (2.03) 0.20 (1.43) F(1,52) = 0.702, p = 0.458, FDR-p = 0.734, np2 = 0.013, BFexcl = 18.189 

FCz 0.45 (1.81)  0.80 (1.50) Response x Electrode x Group: 

Cz 1.22 (1.11) 1.39 (1.23)  F(1,52) = 0.752, p = 0.459, FDR-p = 0.734, np2 = 0.014, BFexcl = 27.562 

CPz 1.27 (1.01) 1.19 (0.89)  

Pz 0.90 (1.28) 0.52 (0.93)  
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Pe Error Fz 2.19 (1.94)  1.29 (1.29) Group main effect: 

FCz 2.67 (1.86) 1.75 (1.22) F(1,52) = 2.848, p = 0.097, FDR-p = 0.388, np2 = 0.052, BFexcl = 2.250 

Cz 1.95 (1.32)  1.56 (1.02) Response x Group: 

CPz 0.95 (0.97) 1.04 (0.84) F(1,52) = 0.886, p = 0.351, FDR-p = 0.734, np2 = 0.017, BFexcl = 2.354 

Pz 0.08 (1.00) 0.42 (0.83) Group x Electrode:  

Pe Correct Fz 1.27 (0.91) 0.81 (1.02)  F(1,52) = 7.969, p = 0.002, FDR-p = 0.016, np2 = 0.133, BFincl = 220.659*  

FCz 1.00 (1.05) 0.58 (1.06) Response x Electrode x Group: 

Cz 0.11 (0.81) 0.02 (0.89) F(1,52) = 0.344, p = 0.619, FDR-p = 0.825, np2 = 0.007, BFexcl = 24.373 

CPz -0.74 (0.67) -0.56 (0.71)  

Pz -1.22 (0.76) -0.84 (0.72)   

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
w

as not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade 
T

he copyright holder for this preprint (w
hich

this version posted July 7, 2022. 
; 

https://doi.org/10.1101/2022.07.07.499152
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

Table 3. Means, standard deviations, and full statistics for the Pe GFP and the electrode of 

interest analysis. 

 

Replication Comparisons – Single Electrode Analysis 

There was no significant main effect for the ERN group comparison, nor interactions 

between group and response (error/correct) or interactions between electrode, group and 

response (error/correct) (all p > 0.45, BFexcl for the main effect of group = 5.378, BFexcl for 

response * group = 7.465, and for the interaction between group * electrode and group * 

electrode * response type, BFexcl > 18). Averaged activity across the ERN windows at each 

electrode can be viewed in Figure S1 (and full statistics can be viewed in Table 3).  

 

For the Pe component, a significant interaction between group and electrode was present, 

with clear evidence for the alternative hypothesis F(1,52) = 7.969, p = 0.002, np2 = 0.133, 

BFincl = 220.659. This aligned with the GFP results, which indicated the meditation group 

showed larger overall neural response strength, so post-hoc exploration of the cause of the 

effect was undertaken. The post-hoc exploration indicated that the two groups differed at Fz 

(p-Holm = 0.006) and FCz (p-Holm = 0.012) but not at other electrodes (all p-Holm > 0.50). 

Additionally, within the control group, Fz, FCz and Cz showed more positive voltages than 

CPz and Pz (all p-Holm < 0.011) while showing no other differences (all p-Holm > 0.08). In 

contrast, the meditation group showed a larger differentiation of voltage for each electrode 

than the control group, with all electrodes differing from all other electrodes, except Fz and 

FCz (all p-Holm > 0.002 except for Fz compared to FCz, for which p-Holm = 1.0). The 

results for the single trial analysis of the Pe can be visualised in Figure 3. While our re-

analysis of our previous data did not show this significant interaction, the pattern was in the 

same direction (F(1,40) = 0.951, p = 0.378, np2 = 0.023, Figure S6). Additionally, our 
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analysis of the combined dataset still showed strong support for the interaction between 

group and electrode (F(1,94) = 4.291, p = 0.025, np2 = 0.044, BFincl = 11.115, Figure S8). 

 

When viewed in conjunction with the GFP results, this result suggests that the meditation 

group showed a pattern of stronger neural activation following both correct and error 

responses during the Pe window, while still showing the same distribution of neural 

activation (the meditation group was not activating different brain regions to the control 

group, just activating the same brain regions more strongly, which, given the dipolar nature 

of brain activity, resulted in stronger differentiation in voltage between frontal and posterior 

voltages). No other main effect of group or interaction involving group was significant (all p 

> 0.33, all BFexcl > 2.2, see table 3). 
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Figure 3. Activity during the Pe window for correct and error responses in meditators and 

controls from the novel dataset. Error bars reflect 95% confidence intervals.  

 

Discussion 

Previous research has provided inconsistent evidence for differences in EEG markers of error 

processing in experienced mindfulness meditators. We hypothesised that the experienced 

meditation group would show larger ERN and Pe responses. Our current results provide weak 

Bayesian and positive frequentist evidence supportive of larger Pe neural response strength in 

meditators for both correct and error responses, but no differences in the ERN. However, we 

note that the differences in overall Pe amplitude did not pass the test-specific multiple 

comparison controls in our primary analysis of the novel data. If we had focused our analysis 

restricted to errors (which show a larger neural response than correct responses), the 

differences in the Pe would have passed multiple comparison controls. Additionally, our 

single electrode analysis of the Pe did pass multiple comparison controls. Bayesian analyses 

of the single electrode comparisons and error only comparisons showed strong to extreme 

evidence in support of differences in the Pe between the groups, and the results were 

consistent when data were combined across both our current and previous datasets (N = 96, 

reported in the supplementary materials).  

The difference in Pe is not specific to errors 

Although previous research has commonly focused on the error Pe, there was no significant 

interaction between group and response type. This suggests the difference between groups in 

the Pe was present following both correct and error responses. As such, a potential difference 

between meditators and controls in the Pe may reflect generic performance monitoring and 

awareness rather than error processing specifically. Previous research has suggested that the 

ERN to errors and correct responses might be a combination of both an error sensitive 
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process, and another process related to response monitoring that is independent of whether a 

response is correct or not (Endrass et al., 2012). Research has also demonstrated that the Pe 

following correct trials is modulated by the speed of responses when participants are 

instructed to respond quickly, and that correct Pe amplitudes are related to confidence in the 

accuracy of a response, suggesting correct Pe amplitudes are still related to response 

monitoring (Boldt & Yeung, 2015, Valt & Stürmer). As such, it may be that our tentative 

difference in Pe amplitudes across both correct and error responses in the mindfulness group 

indicates that the outcome independent component of the Pe is modulated by mindfulness, or 

that both the outcome independent component and the error sensitive process are modulated 

(but that the effect on the error sensitive process is not large enough for us to detect a 

significant interaction). This perhaps makes more sense than an effect of meditation that is 

specific to having made an error of commission, as there is no suggestion from mindfulness 

practice or the effects of mindfulness on attention, self-awareness, and executive function 

that the effects of mindfulness on performance monitoring would be specific to having made 

an error of commission, rather than performance monitoring in general. Indeed, within the 

predictive coding theory, the sensory input processed following a correct trial is still 

“expected prediction error” (Alexander & Brown, 2019). 

What does the difference in Pe amplitude mean? 

Any interpretation of the potential difference in the Pe in meditators must be predicated on a 

functional interpretation of the Pe. It is likely that the processes underlying potential 

differences in the Pe are common across other neural activities, and as such, explanations for 

the current results should consider mechanisms that are in common across other neural 

changes from meditation. In this context, we note that perhaps the most powerful explanatory 

model of neural functions available is the predictive coding theory (Huang & Rao, 2011). As 

described in the introduction, this model views the brain as a Bayesian prediction generator, 
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which processes information by updating its prior model of the sensorium based on new 

sensory evidence. While research has not yet applied the predictive coding theory to interpret 

the Pe, the Pe has been suggested to indicate a neural marker for the accumulated evidence 

participants have access to in deciding whether they have committed an error (Steinhauser & 

Yeung, 2010). In that context, a Pe of larger amplitude is compatible with a predictive coding 

explanation of the effect of meditation that suggests meditators show increased synaptic gain 

for the processing of prediction errors, facilitated by increased expected precision (in the 

form of neural gain) to sensory evidence (Lutz et al., 2019, Lakonen & Slagter, 2021, 

Manjalay et al., 2020, Verdonk et al., 2021). This is also consistent with predictive coding 

models that suggest mindfulness increases processing related to the “experiencing self” 

(which may be reflected by increased gain on bottom-up prediction error processing), and 

reduces processing related to the “conceptual self”, found higher in the cortical hierarchy, 

within regions like the DLPFC (Laukonnen & Slagter, 2021). Note also that our results did 

not indicate the effect was specific to errors, suggesting that meditators may show constantly 

enhanced processing of prediction error. It is also worth noting that our results neither 

support, nor provide evidence against hypotheses that mindfulness meditation reduces the 

formation of or precision of priors, or hypotheses that suggest mindfulness reduces the 

amplitude of prediction error processing.  

 

An enhanced Pe is also aligned with functional magnetic resonance imaging research into the 

effects of meditation, as the Pe is thought to be generated by the cingulate cortex and insula, 

both of which show increased activity as a result of meditation practice (Tomasino et al., 

2013, Boccia et al., 2015, Fox et al., 2016). It is also worth noting that the difference in the 

Pe might overlap with our previous research using different tasks. This research demonstrated 

that meditators have enhanced frontal P3 amplitudes in a Go/Nogo task (BLINDED FOR 
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REVIEW), and enhanced frontal positive activity during the same time window following 

probe stimuli in the Sternberg working memory task (BLINDED FOR REVIEW) and 

following correctly encoded stimuli in the Nback task (BLINDED FOR REVIEW). The Pe 

and P3 have been suggested to reflect similar underlying processes (a neural reaction to a 

stimulus in the case of the Go/Nogo and working memory tasks, and a neural reaction to 

participant response in the case of the Pe, regardless of whether it is correct or incorrect) 

(Ridderinkhof et al., 2009). These neural activity differences might indicate a common 

difference in neural responses to the environment, which may be characterised by stronger 

frontal positive voltages and more negative posterior voltages from approximately 280 to 

380ms (similar to a P3a, or frontally distributed P3 activation), and may all reflect updating 

of prior beliefs by posterior evidence via the processing of prediction errors.  

Comparisons with previous research – the Pe 

The aforementioned interpretations of the functional significance of a difference in the Pe in 

experienced meditators hinge on the current result being robustly replicated. The larger Pe 

amplitude in the meditation group is an effect in the opposite direction to Andreu et al., 

(2017), and conflicts with the null results of Teper and Inzlicht (2012) (studies which 

examined meditators with years of experience). It is also worth noting that our previous error 

processing study provided Bayesian statistical evidence for the null hypothesis of no 

difference between the groups. However, when the two datasets were combined, the analysis 

still provided strong evidence for the interaction between group and electrode (BFincl = 

11.115). This suggests to us that the conflict between the results of our current study 

(showing a larger Pe amplitude) and previous studies (showing a smaller Pe amplitude or a 

null result for the Pe) might be of methodological origin. 
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One potential methodological explanation for the difference between the current study and 

our previous study may be the task used to measure error processing. The current study 

restricted analyses to EEG activity during the Go/Nogo task only (which has been shown to 

produce the most dependable error processing effects; Clayson et al., 2020), whereas the 

previous study included errors from the Go/Nogo task, the colour Stroop and the emotional 

Stroop task. However, we think this explanation is unlikely, as the Stroop task has been 

shown to still produce reasonably dependable error processing measures (Clayson et al., 

2020). Another possibility is the data processing methods used. Our previous study used data 

pre-processing methods that we have since demonstrated to be less effective at cleaning 

artifacts compared to the method used in the current study (BLINDED FOR REVIEW). 

However, different EEG data cleaning approaches have been shown to produce only minor 

differences in study outcomes (Robbins et al., 2020), and these differences are still aligned in 

direction (Robbins et al., 2020, Bailey et al., 2022a, 2022b). As such, it seems unlikely that 

these explanations would produce such strong evidence for the null hypothesis if the results 

from our current study reflect the true result (we would expect more inconclusive results). 

Following research from Alday (2021), we also think it is likely that the traditional 

subtraction baseline correction methods used in our previous study have a negative effect on 

error processing studies compared to a regression baseline correction. Indeed, when data 

from our previous study were cleaned in the same way as the current study, the previous 

study’s pattern was in the same direction as the current study (although the pattern was still 

not significant). 

 

It should also be noted that the difference in Pe between groups was limited to the overall 

neural response strength, and we did not find differences in the distribution of neural activity. 

While our results on the surface may seem to align with previous research suggesting a larger 
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Pe amplitude can be found after short mindfulness interventions (Lin et al., 2019, Smart and 

Segalowitz 2017), it is worth noting that post-hoc exploration of the difference in the 

electrodes of interest analysis indicated that the groups only differed at Fz and FCz, but the 

larger effect size was from a different pattern across the electrodes between the groups (with 

meditators showing a larger voltage differentiation between frontal and posterior electrodes). 

This contrasts with previous research, which has typically shown a group main effect 

difference between meditators and controls in an analysis of a single electrode or activity 

averaged across a small group of electrodes (Andreu et al., 2017, Lin et al., 2019, Smart & 

Segalowitz 2017). If we had restricted our analysis to more posterior electrodes (as some 

studies have), we would have concluded there was no difference in error processing in 

meditators. This is an advantage of the GFP and TANOVA analysis methods applied in the 

current study - they were able to reveal that the potential difference in the Pe is due to 

stronger activation of typically activated brain regions, rather than a different pattern of brain 

regions being activated in meditators (Koenig et al., 2011, Habermann et al., 2018). 

 

In addition to these potential methodological explanations, we suspect there may be 

considerable variability in the effect of meditation on the Pe. Large samples of very 

experienced meditators may be the most likely to detect reliable effects. If future research is 

interested in resolving the conflict, we provide suggestions for a study designed for a robust 

resolution of the issue in the supplementary materials. Considering that experienced 

meditators are difficult to recruit in large numbers, the probable small effects of mindfulness 

on the Pe even after long-term practice, the lack of ability to draw conclusions around 

causation from cross-sectional research, and the low potential for clinical applicability from 

EEG research, our view is that determining whether there are differences between meditators 

and non-meditators in EEG measures of error processing should not be a high priority for 
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future research. Instead, we think research using an experimental approach to determine 

whether more meditation leads to larger effect sizes for improved mental health would be 

more beneficial. 

Comparisons with previous research – the ERN 

In contrast to the positive results for the Pe our results suggested there was no difference 

between meditators and controls in the ERN. When viewed in combination moderate 

Bayesian evidence against a difference between groups in our previous study (Bailey et al., 

2019), the results indicate that long-term mindfulness meditation experience does not alter 

the ERN.  

Given this seems to be the case, it is confusing to us that several studies have detected 

changes in the ERN after mindfulness practice using smaller sample sizes and less 

experienced meditators (Pozuelos et al., 2019, Fissler et al., 2017, Smart & Segolowitz 2017, 

Andreu et al., 2017, Teper & Inzlicht, 2012), sometimes after only a single session of 

meditation (Saunders et al., 2016). We would expect that changes resulting from mindfulness 

are likely to be detected following more extensive practice rather than less (Falcone & 

Jerram, 2018, Tomasino et al., 2013). It may be that brief mindfulness practice does affect 

ERN amplitudes, but that this change reverts to baseline after long periods of practice. 

However, this explanation requires an additional assumption to explain the pattern of results 

across the study, and as such lacks parsimony and should be viewed with scepticism. A third 

potential explanation is that the wide range of potential analysis parameters available in EEG 

research could have provided analysis parameter selection biases towards positive results in 

previous research. These include the cleaning of muscle and blink artifacts from the raw EEG 

data, the choice of reference montage (Klawohn et al., 2020), the choice of baseline 

correction periods, the number of epochs for inclusion in the analysis, and the choice of 

electrodes and windows for analysis can all be varied by the experimenter and influence 
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results. In particular, the choice of windows for analysis can be selected after inspection of 

group means, which has been demonstrated by simulations to inflate false positive rates 

(Kilner 2013), and a similar issue applies for the selection of electrodes for analysis. While 

we proposed that random variation in effect size across studies is a possible explanation for 

the inconsistency in results relating to the Pe, we think it is unlikely that this could explain 

two null results in independent datasets for the ERN. As such, given null results across two 

separate studies (both in highly experienced meditators and with reasonable sample sizes), we 

suggest that meditation is unlikely to affect the ERN.  

 

Lastly, while we think it is likely that meditation does not affect the ERN, and think further 

research is needed before we can be confident in differences in the Pe, we note that null 

results do not mean that meditation does not affect neural activity. There is now robust 

evidence from meta-analyses that meditation does affect neural activity, particularly neural 

activity related to attention, self-regulation and interoception (Tomasino et al., 2013, Boccia 

et al., 2015, Fox et al., 2016). As such, the current findings provide subtlety to these findings, 

suggesting that while previous research has indicated meditation is likely to affect neural 

activity related to specific processes, it is unlikely that the processes underlying the ERN are 

altered by meditation. 

Limitations and Future Directions 

While our study reflects the largest sample of experienced meditators collected to date, our 

primary comparisons were unfortunately underpowered to provide a conclusive answer 

regarding the Pe, so our exploratory analyses were the only analyses able to provide support 

for a larger Pe in meditators. Additionally, the meditation group in our study was compared 

against healthy control non-meditators (in contrast to a group who had also undergone a 

practice of some kind with equivalent intensity and duration to meditation training, for 
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example athletes in the case of Andreu et al., 2017). The inclusion of an active control group 

would have been beneficial for controlling for non-specific factors that might have influenced 

our findings related to the Pe. However, the lack of control for these factors does not affect 

our conclusion of a null result with regards to the ERN (our results indicate that neither the 

meditation practice nor the other uncontrolled factors affected the ERN). Similarly, the cross-

sectional design is a limiting factor when considering causation. However, it is worth 

recognizing how difficult it would be to provide good evidence with a longitudinal study – 

considering that despite the amount of meditation practice undertaken by our participants, our 

study did not even provide conclusive evidence for a cross-sectional difference in the Pe, and 

a longitudinal study with equivalent meditation experience and sample size would be almost 

impossible to practically implement.  

 

Another potential limitation is that our decision to obtain a larger dataset by combining our 

previous data with the current data was not planned – and was implemented in order to 

explore why our results conflicted. However, to prevent any potential experimenter bias in 

this process from implementing our results, our inclusion of participants was based only on 

selection of individuals who provided enough error response epochs for analysis from the 

Go/Nogo task in our previous dataset, and all participants providing enough epochs from the 

earlier study were included. Additionally, because our previous study showed no differences 

between meditators and controls, an a priori assumption would be that combining the two 

datasets would have biased our results towards the null result rather than to strengthen the 

difference we found in the Pe in our novel dataset. As such, we believe the combined dataset 

is valuable in providing evidence that the Pe difference might reflect a real result. 
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Lastly, it is also worth noting that the study aim was to resolve the conflict between the null 

result from our previous study (BLINDED FOR REVIEW) and the research from a number 

of other groups. As such, we performed several exploratory analyses to ensure the lead 

author’s expectation for a null result did not bias our conclusions. This means that it is 

possible that the difference in the Pe is simply a false positive produced by repeated statistical 

tests. To address this, we did implement experiment-wise multiple comparison controls. 

However, it is also possible that the number of multiple comparison controls implemented 

reduced our power to detect a significant effect in our primary analysis. We recommend that 

future research focus specifically on a single independent samples t-test comparing the GFP 

of the Pe between a group of long term meditators and a control group in order to maximise 

the chance of detecting a significant effect, while not inflating potential false positive results 

due to multiple comparisons. 

 

References 

Alday, P. M. (2019). How much baseline correction do we need in ERP research? Extended 

GLM model can replace baseline correction while lifting its 

limits. Psychophysiology, 56(12), e13451. 

Alexander, W. H., & Brown, J. W. (2019). The role of the anterior cingulate cortex in 

prediction error and signaling surprise. Topics in Cognitive Science, 11(1), 119-135. 

Allen, M., Dietz, M., Blair, K. S., van Beek, M., Rees, G., Vestergaard- Poulsen, P., et al., 

(2012). Cognitive-affective neural plasticity following active-controlled mindfulness 

intervention. Journal of Neuroscience, 32(44), 15601–15610.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499152doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 

 

Andreu, C. I., Moe�nne-Loccoz, C., López, V., Slagter, H. A., Franken, I. H., & Cosmelli, 

D. (2017). Behavioral and electrophysiological evidence of enhanced performance 

monitoring in meditators. Mindfulness, 8(6), 1603–1614.  

Bailey, N., Biabani, M., Hill, A. T., Miljevic, A., Rogasch, N. C., McQueen, B., ... & 

Fitzgerald, P. (2022a). Introducing RELAX (the Reduction of Electroencephalographic 

Artifacts): A fully automated pre-processing pipeline for cleaning EEG data-Part 1: 

Algorithm and Application to Oscillations. bioRxiv, 

https://doi.org/10.1101/2022.03.08.483548. 

Bailey, N., Hill, A. T., Biabani, M., Murphy,O.M., Rogasch, N. C., McQueen, B., ... & 

Fitzgerald, P. (2022b). Introducing RELAX (the Reduction of Electroencephalographic 

Artifacts): A fully automated pre-processing pipeline for cleaning EEG data – Part 2: 

Application to Event-Related Potentials. bioRxiv, 

https://doi.org/10.1101/2022.03.08.483554. 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and 

powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 

(Methodological), 57(1), 289-300. 

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K. M., & Robbins, K. A. (2015). The PREP 

pipeline: standardized preprocessing for large-scale EEG analysis. Frontiers in 

Neuroinformatics, 9, 16. 

Boccia, M., Piccardi, L., & Guariglia, P. (2015). The meditative mind: a comprehensive 

meta-analysis of MRI studies. BioMed Research International, 2015, 

419808, https://doi.org/10.1155/2015/419808. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499152doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 

 

Boldt, A., & Yeung, N. (2015). Shared neural markers of decision confidence and error 

detection. Journal of Neuroscience, 35(8), 3478-3484. 

Cardaciotto, L., Herbert, J. D., Forman, Evan. M., Moitra, E., & Farrow, V. (2008). The 

Assessmnet of Present-Moment Awareness and Acceptance: The Philadelphia 

Mindfulness Scale. Assessment, 15(2), 204-223. 

https://doi.org/10.1177/1073191107311467 

Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error 

detection and compensation. Psychological Science, 5(5), 303–305.  

Eichel, K., & Stahl, J. (2020). Error processing and mindfulness and meditation in female 

students. International Journal of Psychophysiology, 147, 35-43. 

https://doi.org/10.1016/j.ijpsycho.2019.11.001 

Endrass, T., Klawohn, J., Gruetzmann, R., Ischebeck, M., & Kathmann, N. (2012). 

Response�related negativities following correct and incorrect responses: Evidence from 

a temporospatial principal component analysis. Psychophysiology, 49(6), 733-743. 

Falcone, G., & Jerram, M. (2018). Brain activity in mindfulness depends on experience: a 

meta-analysis of fMRI studies. Mindfulness, 9(5), 1319-1329. 

Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on 

reaction errors and their functional significance: a tutorial. Biological Psychology, 51(2–

3), 87–107.  

Fox, K. C., Dixon, M. L., Nijeboer, S., Girn, M., Floman, J. L., Lifshitz, M., ... & Christoff, 

K. (2016). Functional neuroanatomy of meditation: A review and meta-analysis of 78 

functional neuroimaging investigations. Neuroscience & Biobehavioral Reviews, 65, 

208-228. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499152doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 

 

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews 

Neuroscience, 11(2), 127-138. 

Galante, J., Friedrich, C., Dawson, A. F., Modrego-Alarcón, M., Gebbing, P., Delgado-

Suárez, I., ... & Jones, P. B. (2021). Mindfulness-based programmes for mental health 

promotion in adults in nonclinical settings: A systematic review and meta-analysis of 

randomised controlled trials. PLoS Medicine, 18(1), e1003481. 

Gill, L. N., Renault, R., Campbell, E., Rainville, P., & Khoury, B. (2020). Mindfulness 

induction and cognition: A systematic review and meta-analysis. Consciousness and 

Cognition, 84, 102991. 

Gu, J., Strauss, C., Bond, R., & Cavanagh, K. (2015). How do mindfulness-based cognitive 

therapy and mindfulness-based stress reduction improve mental health and wellbeing? A 

systematic review and meta-analysis of mediation studies. Clinical Psychology 

Review, 37, 1-12. 

Habermann, M., Weusmann, D., Stein, M., & Koenig, T. (2018). A student's guide to 

randomization statistics for multichannel event-related potentials using ragu. Frontiers 

in Neuroscience, 12, 355. 

Herrmann, M. J., Römmler, J., Ehlis, A. C., Heidrich, A., & Fallgatter, A. J. (2004). Source 

localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity 

(Pe). Cognitive Brain Research, 20(2), 294-299. 

Hohwy, J. (2012). Attention and conscious perception in the hypothesis testing 

brain. Frontiers in Psychology, 3, 96. 

Huang, Y., & Rao, R. P. (2011). Predictive coding. Wiley Interdisciplinary Reviews: 

Cognitive Science, 2(5), 580-593. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499152doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

 

Im, S., Stavas, J., Lee, J., Mir, Z., Hazlett-Stevens, H., & Caplovitz, G. (2021). Does 

mindfulness-based intervention improve cognitive function?: A meta-analysis of 

controlled studies. Clinical Psychology Review, 101972. 

Jha, A. P., Krompinger, J., & Baime, M. J. (2007). Mindfulness training modifies subsystems 

of attention. Cognitive, Affective, & Behavioural Neuroscience, 7(2), 109-119. 

https://doi.org/10.3758/CABN.7.2.109 

Khoury, B., Lecomte, T., Fortin, G., Masse, M., Therien, P., Bouchard, V., ... & Hofmann, S. 

G. (2013). Mindfulness-based therapy: a comprehensive meta-analysis. Clinical 

Psychology Review, 33(6), 763-771. 

Kilner, J. (2013). Bias in a common EEG and MEG statistical analysis and how to avoid it. 

Clinical Neurophysiology, 124(10), 2062–2063.  

Koenig, T., Kottlow, M., Stein, M., & Melie-García, L. (2011). Ragu: a free tool for the 

analysis of EEG and MEG event-related scalp field data using global randomization 

statistics. Computational Intelligence and Neuroscience, 2011, 

938925, https://doi.org/10.1155/2011/938925. 

Larson, M. J., & Clayson, P. E. (2011). The relationship between cogni- tive performance 

and electrophysiological indices of performance monitoring. Cognitive, Affective, & 

Behavioral Neuroscience, 11(2), 159–171. 

Larson, M. J., Steffen, P. R., & Primosch, M. (2013). The impact of a brief mindfulness 

intervention on cognitive control and error-related performance monitoring. Frontiers in 

Human Neuroscience, 7, 308.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499152doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 

 

Larson, M. J., Steffen, P. R., & Primosch, M. (2013). The impact of a brief mindfulness 

meditation intervention on cognitive control and error- related performance monitoring. 

Frontiers in Human Neuroscience, 7, 308.  

Laukkonen, R. E., & Slagter, H. A. (2021). From many to (n) one: Meditation and the 

plasticity of the predictive mind. Neuroscience & Biobehavioral Reviews 128, 199-217. 

Lin, Y., Eckerle, W. D., Peng, L. W., & Moser, J. S. (2019). On Variation in Mindfulness 

Training: A Multimodal Study of Brief Open Monitoring Meditation on Error 

Monitoring, Brain Sciences, 9(9), 226.  

Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, J., ... & 

Wagenmakers, E. J. (2019). JASP: Graphical statistical software for common statistical 

designs. Journal of Statistical Software, 88(1), 1-17. 

Lutz, A., Mattout, J., & Pagnoni, G. (2019). The epistemic and pragmatic value of non-

action: a predictive coding perspective on meditation. Current Opinion in 

Psychology, 28, 166-171. 

Lydiard, J., & Nemeroff, C. B. (2019). Biomarker-guided tailored therapy. In Frontiers in 

Psychiatry (pp. 199-224). Springer, Singapore. 

Manjaly, Z. M., & Iglesias, S. (2020). A computational theory of mindfulness based 

cognitive therapy from the “bayesian brain” perspective. Frontiers in Psychiatry, 11, 

404. 

Maurer, L. K., Joch, M., Hegele, M., Maurer, H., & Muller, H. (2019). Predictive error 

processing distinguishes between relevant and irrelevant errors after visuomotor 

learning. Journal of Vision, 19(4), 18.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499152doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 

 

O'Connell, R. G., Dockree, P. M., Bellgrove, M. A., Kelly, S. P., Hester, R., Garavan, H., ... 

& Foxe, J. J. (2007). The role of cingulate cortex in the detection of errors with and 

without awareness: a high�density electrical mapping study. European Journal of 

Neuroscience, 25(8), 2571-2579. 

Olvet DM, Hajcak G (2009) The stability of error-related brain activity with increasing trials. 

Psychophysiology 46, 957–961. 

Perera, M. P. N., Bailey, N. W., Herring, S. E., & Fitzgerald, P. B. (2019). Electrophysiology 

of obsessive compulsive disorder: a systematic review of the electroencephalographic 

literature. Journal of Anxiety Disorders, 62, 1-14.  

Perlis, R. H. (2011). Translating biomarkers to clinical practice. Molecular 

Psychiatry, 16(11), 1076-1087. 

Pozuelos, J. P., Mead, B. R., Reuda, M. R., & Malinowski, P. (2019). Short-term mindful 

breath awareness training improves inhibitory control and response monitoring. 

Progress in Brain Research, 244, 137-163.  

Ridderinkhof, K. R., Ramautar, J. R., & Wijnen, J. G. (2009). To PE or not to PE: A P3�like 

ERP component reflecting the processing of response errors. Psychophysiology, 46(3), 

531-538. 

Robbins, K. A., Touryan, J., Mullen, T., Kothe, C., & Bigdely-Shamlo, N. (2020). How 

sensitive are EEG results to preprocessing methods: a benchmarking study. IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, 28(5), 1081-1090. 

Schoenberg, P. L. (2014). The error processing system in major depressive disorder: Cortical 

phenotypal marker hypothesis. Biological Psychology, 99, 100-114.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499152doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 

 

Schoenberg, P. L., Hepark, S., Kan, C. C., Barendregt, H. P., Buitelaar, J. K., & Speckens, A. 

E. (2014). Effects of mindfulness-based cognitive therapy on neurophysiological 

correlates of performance monitoring in adult attention-deficit/hyperactivity 

disorder. Clinical Neurophysiology, 125(7), 1407-1416. 

Steinhauser, M., & Yeung, N. (2010). Decision processes in human performance 

monitoring. Journal of Neuroscience, 30(46), 15643-15653. 

Sumantry, D., & Stewart, K. E. (2021). Meditation, mindfulness, and attention: A meta-

analysis. Mindfulness, 12(6), 1332-1349.  

Tang, Y. Y., Ma, Y., Wang, J., Fan, Y., Feng, S., Lu, Q., et al., (2007). Short-term meditation 

training improves attention and self-regulation. Proceedings of the National Academy of 

Sciences, 104(43), 17152-17156.  

Tang, Y.-Y., Lu, Q., Geng, X., Stein, E. A., Yang, Y., & Posner, M. I. (2010). Short-term 

meditation induces white matter changes in the anterior cingulate. Proceedings of the 

National Academy of Sciences, 107(35), 15649–15652. 

Teper, R., & Inzlicht, M. (2012). Meditation, mindfulness and executive control: the 

importance of emotional acceptance and brain-based performance monitoring. Social 

Cognitive and Affective Neuroscience, 8(1), 85-92.  

Tomasino, B., & Franco, F. (2016). Increases in the right dorsolateral prefrontal cortex and 

decreases the rostral prefrontal cortex activation after-8 weeks of focused attention-

based mindfulness meditation. Brain and Cognition 102, 46-54.  

Tomasino, B., Fregona, S., Skrap, M., & Fabbro, F. (2013). Meditation-related activations are 

modulated by the practices needed to obtain it and by the expertise: an ALE meta-

analysis study. Frontiers in human neuroscience, 6, 346. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499152doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 

 

Ullsperger, M., Harsay, H. A., Wessel, J. R., & Ridderinkhof, K. R. (2010). Conscious 

perception of errors and its relation to the anterior insula. Brain Structure and 

Function, 214(5), 629-643. 

Valt, C., & Stürmer, B. (2017). On the correct side of performance: Processing of internal 

and external signals in response speed evaluation. International Journal of 

Psychophysiology, 117, 26-36. 

Verdonk, C., & Trousselard, M. (2021). Commentary: A Computational Theory of 

Mindfulness Based Cognitive Therapy from the “Bayesian Brain” Perspective. Frontiers 

in Psychiatry, 12, 42. 

Xue, S., Yi-Yuan, T., & Posner, M. I. (2011). Short-term meditation increases network 

efficiency of the anterior cingulate cortex. Neuroreport, 22(12), 570-574.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499152doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499152
http://creativecommons.org/licenses/by-nc-nd/4.0/

