

Repurposing azithromycin in combination with last-line fosfomycin, colistin and tigecycline against Multi-Drug Resistant *Klebsiella pneumoniae*

Marta Gómara-Lomero^{1*}, Ana Isabel López-Calleja², Antonio Rezusta², José A. Aínsa^{1,3},

Santiago Ramón-García^{1, 3, 4*}

¹Department of Microbiology, Pediatrics, Radiology and Public Health. Faculty of Medicine, and BIFI, University of Zaragoza, Spain

²Servicio de Microbiología, Hospital Universitario Miguel Servet, Zaragoza, Spain

³CIBER Respiratory Diseases, Carlos III Health Institute, Madrid, Spain

⁴Research & Development Agency of Aragon (ARAID) Foundation, Spain

*Corresponding authors. Mailing addresses:

22 Department of Microbiology. Faculty of Medicine. University of Zaragoza. C/ Domingo Miral s/n. 50009.
23 Zaragoza, Spain. *Email:* mgomara@unizar.es and santiramon@unizar.es

24

25

26 **Keywords:** antimicrobial resistance, MDR *Klebsiella pneumoniae*, azithromycin, drug
27 repurposing

28 **Running title:** *In vitro* synergy azithromycin combos against *K. pneumoniae*

29

30 **Abstract:**

31 **Background.** New therapeutical strategies are urgently needed against multidrug-resistant
32 (MDR) Enterobacterales. Azithromycin is a widely prescribed antibiotic with additional
33 immunomodulatory properties, but traditionally underused for the treatment of enterobacterial
34 infections. We previously identified azithromycin as a potent enhancer of colistin, fosfomycin
35 and tigecycline against *Klebsiella pneumoniae* ATCC 13883.

36 **Objectives.** The aim of this work was to evaluate the antibacterial *in vitro* activity of
37 azithromycin-based combinations with last-line antibiotics against an expanded panel of
38 MDR/XDR *K. pneumoniae* isolates.

39 **Methods.** Time-kill assays of azithromycin alone and in pair-wise combinations with fosfomycin,
40 colistin and tigecycline were performed against a collection of 12 MDR/XDR *K. pneumoniae*
41 isolates. Synergistic and bactericidal activities of azithromycin-based combinations were
42 analyzed after 8, 24 and 48 hours of treatment, and compared with antimicrobial combinations
43 frequently used in the clinic for the treatment of MDR Enterobacterales.

44 **Results.** Synergistic interactions were detected in 100% (12/12) for azithromycin/fosfomycin,
45 58.3% (7/12) for azithromycin/colistin and 75% (9/12) for azithromycin/tigecycline of the strains,
46 showing potent killing activities. Clinical combinations currently used in the clinic showed
47 synergy in 41.6% (5/12) for meropenem/ertapenem, 33.33% (4/12) for meropenem/colistin, 75%
48 (9/12) for fosfomycin/colistin and 66.6% (8/12) for fosfomycin/tigecycline of the strains, with
49 lower bactericidal efficacy.

50 **Conclusions.** Novel azithromycin-based combinations with last-line MDR/XDR *K. pneumoniae*
51 antibiotics were identified showing *in vitro* capacity to eradicate MDR/XDR *K. pneumoniae*. Our
52 results provide an *in vitro* basis supporting azithromycin used in combinatorial treatment for
53 MDR-related infections.

54

55 INTRODUCTION

56 Antimicrobial resistance (AMR) is one of the major threats faced by worldwide healthcare
57 systems and, specially, in low- and middle-income countries where the proportion of resistant
58 infections ranges from 40 to 60% compared to 17% for countries belonging to the Organization
59 for Economic Cooperation and Development (OECD)¹. In 2019, the Center for Disease Control
60 and Prevention (CDC) estimated 210,000 infections and 10,200 deaths in the USA associated
61 to carbapenem-resistant and extended-spectrum beta-lactamases (ESBL)-producing
62 enterobacteria². Among them, carbapenem-resistant *K. pneumoniae* (CRKP) is one of the most
63 concerning superbugs, causing nosocomial infections with mortality rates up to 41.6 and 48%³.
64 CRKP incidence is increasing worldwide with 7.9% carbapenem resistance in Europe⁴ and
65 26.8% of meropenem resistance in China³. Moreover, multi-drug resistance is also an
66 increasing trend in *K. pneumoniae*, showing 19.3% combined resistance to traditional first-line
67 antibiotics in the EU⁴.

68 Although WHO prioritized CRKP as a critical pathogen for antimicrobial development⁵, few
69 new antimicrobial agents are currently in the drug development pipeline; combinatorial therapy
70 with usual antibiotics remains thus the cornerstone therapy for multi-drug resistant (MDR)
71 infections^{6,7}. Moreover, the emergence of COVID-19 strongly impacted on AMR; while
72 investment strategies and research advances focused on fighting the virus, disruption of
73 antimicrobial stewardship programs in hospitals have led to an increase of antibiotic misuse⁸,
74 and a rapid spread of resistant bacteria⁹. In this context, drug repurposing (identifying new
75 indications for existing drugs) is an affordable strategy to urgently accelerate the implementation
76 of novel therapies against MDR pathogens¹⁰.

77 Azithromycin is a broad-spectrum macrolide antibiotic widely prescribed for several
78 indications such as respiratory, genitourinary and dermal infections^{11,12}. Additionally,
79 azithromycin exhibits anti-inflammatory and immunomodulatory properties, demonstrating

80 clinical benefits in critically ill patients¹³ and chronic respiratory disorders such as cystic
81 fibrosis^{14,15}, asthma¹⁶ and chronic obstructive pulmonary disease¹⁷. This repurposing strategy
82 has been also pursued for azithromycin against parasitic^{18,19} and viral infections²⁰. Indeed,
83 azithromycin was one of the first candidates proposed for the management of COVID-19, firstly
84 associated with hydroxychloroquine, although its efficacy for this indication could not be
85 confirmed in clinical trials^{21,22}.

86 Traditionally, monotherapy use of macrolides have been disregarded in the treatment of
87 severe infections caused by Gram-negative bacteria due to different existing mechanisms of
88 resistance to azithromycin in enterobacteria and the low permeability of their outer membrane²³.
89 However, the enhanced basicity of azithromycin favors the intracellular uptake in Gram-negative
90 bacteria increasing its efficacy and it is currently used for the treatment of enteric infections such
91 as typhoid¹². In addition, azithromycin's ability to inhibit bacterial quorum-sensing and reducing
92 biofilm formation and mucus production have been demonstrated against intrinsically resistant
93 pathogens (i.e. *Pseudomonas aeruginosa* and *Stenotrophomonas maltophilia*)^{24,25}. Moreover,
94 azithromycin therapy seems to exert positive therapeutic effects in murine MDR Gram-negative
95 infection models^{26,27}.

96 In a previous synergy screening, we identified azithromycin as a potent enhancer of last-line
97 antibiotics against MDR enterobacteria²⁸. Despite the limitations of azithromycin in monotherapy,
98 its reintroduction into the clinical arsenal to treat high-priority pathogens might be possible in co-
99 administration combination therapy. Here, we evaluated *in vitro* the synergistic and bactericidal
100 activities of azithromycin in combination with fosfomycin, colistin and tigecycline against
101 antibiotic-resistant *K. pneumoniae* isolates and compared them with the activity of combinations
102 typically used in the clinic for the treatment of MDR enterobacteria.

103
104

105 **MATERIALS AND METHODS**

106 **Bacterial strains and growth conditions.**

107 A well-characterized set of 12 MDR and Extensively-Drug Resistant (XDR)²⁹ *K. pneumoniae*
108 isolates (eight from clinical samples and four from quality assessment exercises) including
109 representative resistance mechanisms was available at the Miguel Servet University Hospital
110 (Zaragoza, Spain) (**Table 1** and **Table S1**). MDR/XDR were defined as: MDR, non-susceptible
111 to ≥ 1 agent in ≥ 3 antimicrobial categories; XDR non-susceptible to ≥ 1 agent in all but ≤ 2
112 categories²⁹. Bacterial identification was performed by MALDI-TOF mass spectrometry (Bruker
113 Daltonik GmbH, Germany) and antimicrobial susceptibility by an automated broth microdilution
114 method (Microscan Walkaway®, Beckman Coulter, Spain). Phenotypic detection of ESBL,
115 AmpC, carbapenemases and colistin resistance was done according to EUCAST guidelines³⁰.
116 Genotypic characterization of resistance mechanisms was performed in clinical samples at the
117 National Microbiology Centre (Majadahonda, Spain). Bacterial LB stocks (15% glycerol) were
118 preserved at -20°C. Freeze stocks were thawed and sub-cultured on Mueller Hinton broth for 24
119 hours at 36°C before each assay.

120 **Drugs susceptibility testing and media conditions.**

121 Azithromycin, fosfomycin disodium salt, glucose-6-phosphate, colistin sulfate, (Sigma-Aldrich,
122 Darmstadt, Germany), tigecycline (European Pharmacopoeia, Strasbourg, France), meropenem
123 (Fresenius Kabi) and ertapenem (MSD) were reconstituted in DMSO or water according to their
124 solubilities. Stock solutions were prepared fresh on the same day of plate inoculation.

125 Drug susceptibility testing and time-kill assays (TKA) were performed in cation adjusted Mueller
126 Hinton Broth (CAMHB). Minimum Inhibitory Concentration (MIC) determinations were performed
127 by broth microdilution in CAMHB following CLSI guidelines³¹ by the MTT [3-(4,5-dimethylthiazol-
128 2-yl)-2,5-diphenyl tetrazolium bromide] assay^{32,33}. Briefly, two-fold serial dilutions of drugs were
129 inoculated with a bacterial suspension of 5×10^5 CFU/mL in 96-well plates ($V_F = 150 \mu\text{L}$) and

130 incubated at 36°C for 18-20 hours. For fosfomycin susceptibility tests, CAMHB was
131 supplemented with 25 mg/L of glucose-6-phosphate, according to EUCAST guidelines³⁴. After
132 incubation, 30 µL/well of a solution mix (MTT/Tween 80; 5 mg/mL/20%) were added and plates
133 further incubated for 3 hours at 36°C. MIC values were defined as the lowest concentration of
134 drug that inhibited 90% of the OD₅₈₀ MTT colour conversion (IC₉₀) compared to growth control
135 wells with no drug added.

136 Minimum Bactericidal Concentration (MBC) was also determined in order to discern
137 bacteriostatic or bactericidal activities. Before MTT addition, 10 µL/well were transferred to 96-
138 well plates containing LB agar and further incubated at 36°C for 24 hours before addition of 30
139 µL/well of resazurin; a change from blue to pink indicated bacterial growth. The MBC was
140 defined as the lowest concentration of drug that prevented this colour change. A compound was
141 considered bactericidal when MBC/MIC ≤ 4³².

142 **Time-kill assays**

143 Exponentially growing cultures of *K. pneumoniae* strains were diluted in CAMHB and inoculated
144 in duplicates in 96-well plates (V_F= 280 µL/well; 5x10⁵ CFU/mL) containing increasing
145 concentrations (0.1x, 0.25x, 1x, 4x, 10x MIC values) of compounds alone, and incubated at
146 36°C. Drug-free wells were used as growth controls and MIC of single drugs were performed in
147 parallel with the same inoculum to ensure compound activity. Samples were taken at 0, 2, 5, 8,
148 24 and 48 hours, and bacterial population was quantified by spot-platting 10-fold serial dilutions
149 onto Mueller Hinton agar (MHA) plates. Plates were incubated overnight at 36°C and CFU/mL
150 calculated. The lower limit of detection was 50 CFU/mL.

151 The activity of the three-novel azithromycin-based combinations (fosfomycin/azithromycin,
152 colistin/azithromycin and tigecycline/azithromycin) was compared with that of four usual MDR
153 clinical treatments (meropenem/ertapenem, meropenem/colistin, fosfomycin/colistin and
154 fosfomycin/tigecycline).

155 To assess the activity of the combinations, dose-response curves of compounds alone were first
156 analyzed to select appropriate concentrations for combinatorial testing. Then, selected
157 concentrations were used in TKA, as described above.

158 A synergistic combination was defined as a ≥ 2 \log_{10} CFU/mL decrease in bacterial count
159 compared to the most active single agent in the combination at any 8, 24 and 48 hours.

160 Antagonism was defined as a ≥ 2 \log_{10} increase in CFU/mL between the combination and the
161 most active single agent. All other degrees of interaction were characterized as indifferent.

162 Bactericidal activity was defined when no bacteria could be recovered in the TKA with a limit of
163 detection of 50 CFU/mL³⁵.

164 **RESULTS**

165 **Activity of azithromycin against MDR/XDR *K. pneumoniae* isolates.**

166 There are no CLSI or EUCAST guidelines describing azithromycin clinical breakpoints for
167 enterobacteria, except for *Salmonella* Typhi and *Shigella* spp.³⁴; thus, there is no clinical basis
168 to classify *K. pneumoniae* isolates as susceptible or resistant strains. We thus performed MIC
169 determinations of azithromycin against our panel of MDR/XDR *K. pneumoniae* isolates and
170 compared them with the activity of other well-established drugs in the treatment of infections
171 caused by MDR *K. pneumoniae*, for which clinical breakpoints do exist. In our experiments,
172 azithromycin exhibited MIC values ranging from 4 to ≥ 64 mg/L, which were in the same range of
173 values as those epidemiological cut-offs (ECOFFs) established by EUCAST for azithromycin in
174 other enterobacteria; for these, confidence intervals range between 4 to 16 mg/L against
175 *Escherichia coli* and between 4 to 64 mg/L against *S. Typhi*³⁶. Thus, the number and nature of
176 antibiotic resistance determinants in any of our twelve isolates appeared not to be related with
177 the susceptibility profiles against azithromycin (**Table 1**).

178 **Azithromycin-based combinations are more potent *in vitro* than those combinations
179 currently used in the clinic to treat MDR *K. pneumoniae* infections.**

180 We previously identified azithromycin as a potent enhancer of colistin, fosfomycin and
181 tigecycline against *K. pneumoniae* ATCC 13883²⁸. All three paired combinations displayed a
182 high synergistic and bactericidal profile against the reference strain (see Figure 3 of Gómara-
183 Lomero *et al*)²⁸. In order to further characterize the potential antimicrobial activity of
184 azithromycin-based combinations against MDR *K. pneumoniae*, we extended the TKA validation
185 against a panel of twelve MDR/XDR *K. pneumoniae* isolates with representative mechanisms of
186 resistance (**Figure 1**). At any time-point (8, 24 and 48 hours), synergy rates among currently
187 used combinations for MDR treatment were observed in 41.6% (5/12) for
188 meropenem/ertapenem, 33.33% (4/12) for meropenem/colistin, 75% (9/12) for
189 fosfomycin/colistin, and 66.6% (8/12) for fosfomycin/tigecycline of the isolates tested (**Figure 1**

190 and **Figure S1**). In stark contrast, a high number of synergistic interactions were obtained with
191 azithromycin-based combinations among all isolates (**Figure 1** and **Figure S2**). Notably, this
192 synergistic bactericidal positive interactions in azithromycin-based combinations were observed
193 even when strains displayed a resistant profile to the drugs alone, as in strain CEE-11 ($\text{MIC}_{\text{AZT}} \geq$
194 64 mg/L; $\text{MIC}_{\text{FOF}} \geq 64 \text{ mg/L}$) (**Figure 2**).

195 The combination azithromycin/colistin (**Figure S2b**) was synergistic in 7 out of 12 strains
196 (58.3%) and bactericidal in 10 out of 12 strains (83.3%). The positive interaction of azithromycin
197 in combination with colistin was evident when analysing the bactericidal activity at the 48-hour
198 time point in which eight strains (E-1, E-2, A-6, C-7, CSE-9, CE-10, CEE-11, CSEE-12),
199 including two colistin-resistant strains, had viable counts below the limit of detection (50
200 CFU/mL) (**Figure 1**).

201 The combination azithromycin/tigecycline (**Figure S2c**) showed synergistic interactions against
202 9 out the 12 (75%) strains with a strain-dependent activity. The combination was bactericidal to
203 the limit of detection in three strains (E-2, A-6 and CEE-11) and showed a bacteriostatic profile
204 in the rest of the strains (from <1 to $1.6 \log_{10}$ decrease in CFU/ml), except for CE-10 and CSEE-
205 12 ($> 2 \log_{10}$ decrease in CFU/mL at 48 hours) (**Figure S2c**).

206 The combination of azithromycin plus fosfomycin was the most potent. This combination was
207 synergistic against all isolates and bactericidal in 11 out of the 12 (91.66%) strains. The potency
208 of the azithromycin/fosfomycin combination was evident when compared to the activity of the
209 drugs alone; neither showed long-lasting bactericidal activity, with a static effect or no activity
210 (azithromycin), and rapid bactericidal activity followed by bacterial regrowth from the 8-hour
211 time-point (fosfomycin). In addition, in most strains combined bactericidal effects were already
212 detected at early time points (4-8 hours) (**Figure S2a**).

213

214

215 **DISCUSSION**

216 In the present study we evaluated the *in vitro* efficacy of azithromycin in combination
217 with colistin, fosfomycin and tigecycline (currently used last-line antibiotics in the treatment of
218 infections caused by MDR enterobacteria) against a panel of 12 MDR/XDR *K. pneumoniae*
219 isolates with representative resistance patterns. We used TKA as a reference method with
220 activity readouts obtained after up to 48 hours of incubation, a procedure not typically performed
221 when evaluating the activity of compounds against enterobacteria.

222 We characterized the activity alone of azithromycin, and its three synergistic partners
223 colistin, fosfomycin and tigecycline, in a dose-response manner against our collection of twelve
224 *K. pneumoniae* isolates. Then, we tested them in combination assays selecting matching
225 subinhibitory concentrations of each individual drug to allow for a wider dynamic range and
226 detection of drug interactions. This implies that even if absolute MIC values for every *K.*
227 *pneumoniae* strain in our collection might be different (**Table 1**), the effect of their subinhibitory
228 activities would be similar in combination, since they are based on individual MIC values for
229 each strain and compound. The use of subinhibitory concentrations of the antibiotics alone is a
230 key factor to detect drug interactions since higher effective concentrations might masked the
231 effect of their potential interactions. In addition, extending the readout to 48 hours provides
232 information in both the increased bactericidal activity of the azithromycin-based combinations
233 compared to the drugs alone, and also the ability of the combination to completely eradicate
234 bacteria (below the limit of detection of the assay, which is a proxy for culture sterilization).
235 Based on these criteria, we tested three azithromycin-based combinations (**Figure 1** and **Figure**
236 **S2**) and compared them with four representative combinations currently used in the clinic to
237 treat MDR/XDR *K. pneumoniae* infections (**Figure 1** and **Figure S1**). Our TKA data showed
238 high rates of favourable interactions for the azithromycin-containing combinations, even against
239 strains with concurrent resistance mechanisms; thus, suggesting a potential role of azithromycin
240 in combinatorial therapy (**Figure 1** and **Figure S2**), as evidence by the examples below:

241 (i) *Azithromycin plus fosfomycin*. First prescribed for urinary tract infections,
242 fosfomycin was identified as synergistic partner of several antibiotics. Fosfomycin is an old
243 bactericidal antibiotic that inhibits peptidoglycan synthesis³⁷, thus it could be enhancing
244 antibiotic entrance by increasing cell permeability. As such, fosfomycin has been reintroduced in
245 combinatorial therapy for the clinical management of MDR enterobacterial infections over the
246 last years³⁸. This combination was previously assessed in two other *in vitro* studies. Presterl et
247 al. described negligible bactericidal activity against biofilm-producer *Staphylococcus*
248 *epidermidis*³⁹, and the combination also showed killing activity at 24 hours by TKA against
249 *Neisseria gonorrhoeae*, including azithromycin resistant strains, with no regrowth until the end of
250 the assay⁴⁰. The latter study is in agreement with our results in *K. pneumoniae*, supporting the
251 potential use of azithromycin/fosfomycin against Gram-negative bacteria. We observed rapid
252 bactericidal activities maintained up to the end of the assays against all tested strains (**Figure 1**
253 and **Figure S2a**), including those strains with high fosfomycin MIC values (**Figure 2**).
254 Interestingly, effective fosfomycin concentrations in our *in vitro* assays were below fosfomycin
255 peak plasma concentration after intravenous administration in adults (606 mg/L)³⁷. To the best
256 of our knowledge, this is the first study analyzing the antimicrobial activities of the combination
257 azithromycin/fosfomycin against a large set of MDR *K. pneumoniae* strains. Our results,
258 together with other evidence, suggest that the combination of azithromycin plus fosfomycin
259 could play an important role in clinical settings and merits further pre-clinical and clinical
260 development. Both drugs display good safety profiles, they are recommended for combinatorial
261 therapy to minimize resistance emergence derived from monotherapy, and are administered at
262 a single dose administration (0.5 to 2 g single dose oral or intravenously for azithromycin¹² and
263 3 g single dose orally or up to 8 g /8 hours intravenously for fosfomycin⁴¹). Similar to
264 azithromycin, fosfomycin displays immunomodulatory mechanisms³⁷, which have been shown
265 beneficial to overcome severe Gram-negative infections.

266 (ii) *Azithromycin plus colistin*. This combination was reported in some studies
267 including MDR *K. pneumoniae*^{26,27,42}, where the increase in the Gram-negative outer membrane
268 permeability facilitates azithromycin access to the 50S ribosomal subunit^{26,27}. In agreement with
269 our results, we obtained sterilizing activities in 2 out of 3 of the colistin resistant strains (CSE-9,
270 MIC_{CST}= 16 mg/L and CSEE-12, MIC_{CST}= 4 mg/L). In these strains, the limiting factor for activity
271 was the concentration of azithromycin; similar killing profiles were obtained at two colistin
272 concentrations (2 mg/L and 8 mg/L) (**Figure S2b**). These findings support the possibility to
273 decrease colistin concentrations below its nephrotoxic threshold (2.42 mg/L)⁴³, if administered in
274 synergistic combination with azithromycin.

(iii) *Azithromycin plus tigecycline*. This is the first report of this combination being active against *K. pneumoniae*. Previous studies described biofilm eradication against *S. maltophilia*²⁵ and the *in vitro* and *in vivo* activity of azithromycin in combination with minocycline (another tetracycline antibiotic) against MDR pathogens including *K. pneumoniae*⁴⁴. Although we observed variable activity from one strain to another (**Figure S2c**), the combination showed sterilizing activity against three strains, which had different susceptibility profile to both drugs (e.g., CEE-11 exhibited resistant profile with $\text{MIC}_{\text{TGC}} = 4 \text{ mg/L}$ and $\text{MIC}_{\text{AZM}} \geq 64 \text{ mg/L}$, **Figure 2**). Azithromycin and tigecycline are both bacteriostatic drugs targeting the 50S and 30S ribosomal subunits, respectively, which could explain their synergy by enhancing protein inhibition that leads to disruption of the bacterial gene translation.

Azithromycin safety profile is well described, showing uncommon side-effects associated to long-term therapy⁴⁵, and well tolerated when administered to children and pregnant women⁴⁶. It poses advantageous pharmacokinetic and pharmacodynamic (PK/PD) properties respect to other macrolides: no interaction with CYP3A4 cytochrome, an increased tissue penetration and bioavailability due to a higher basic character, and a long half-life (50-70 hours)^{11,12}. Peak plasma concentrations of 1.46 mg/L and up to 3.4 mg/L are attained after 1,500 mg-oral and 500 mg-intravenous administrations, respectively¹¹. In our study, we observed effective

292 sterilizing activities of azithromycin-based combinations at azithromycin concentrations ranging
293 from 2 up to 64 mg/L (**Figure S2**). Although for some strains the azithromycin sterilizing
294 concentrations observed were over those achievable in plasma, azithromycin displays a rapid
295 blood-tissue distribution, so despite such low serum concentrations it is expected that its
296 accumulation in tissue will be higher (e.g. accumulation in macrophages is 5- to 200-fold higher
297 than in plasma¹²). In addition, the long post-antibiotic effect and significant subinhibitory
298 concentration effect demonstrated both *in vitro* and *in vivo* against respiratory pathogens^{47,48}
299 indicate a prolonged antimicrobial activity.

300 The azithromycin PK/PD properties make it an optimal candidate for combination
301 therapy in MDR Gram-negative infections. Standard dosing of the last-line antibiotics used in
302 this study (that included loading doses for colistin and tigecycline)⁷ yielded a rapid bacterial
303 killing effect that could be seconded by the slower but longer lasting action of azithromycin,
304 maintaining bacterial eradication during the course of treatment. Moreover, combinatorial
305 therapy with azithromycin might minimize resistance emergence and toxicity issues (specially
306 with colistin) using longer dosing intervals.

307 The use of macrolides (specially azithromycin) is currently recommended in critically ill
308 patients with pneumonia as empirical treatment in combination with β -lactams or
309 fluroquinolones⁴⁹, supported by previous preclinical assays showing synergy⁵⁰⁻⁵². Anticipatory
310 immunotherapy with azithromycin has been also used in critically ill patients with infections other
311 than pneumonia, demonstrating clinical benefit with reduced mortality rates and intensive-care
312 unit (ICU) stay¹³. The early addition of azithromycin to last-line antibiotics for MDR treatment in
313 severe infections (i.e., sepsis, ventilator-associated pneumonia, immunocompromised patients)
314 could not only improve the efficacy of the therapy in combination, but also improve the clinical
315 outcome due to immunomodulatory properties of azithromycin in ICU patients.

316 In conclusion, we have demonstrated using *in vitro* TKA models that azithromycin
317 combined with existing antibiotics might increase the efficacy in the eradication of MDR/XDR *K.*

318 *pneumoniae*. Based on our *in vitro* studies, we propose the following priority list of pairwise
319 combinations: azithromycin/fosfomycin > azithromycin/colistin > fosfomycin/colistin >
320 meropenem/ertapenem > azithromycin/tigecycline > meropenem/colistin >
321 fosfomycin/tigecycline. Additional pre-clinical and clinical studies would be needed to fully
322 understand the clinical potential of azithromycin as synergistic partner in antimicrobial therapies
323 against MDR enterobacteria

324

325 **Conflicts of interest**

326 Authors declare no conflicts of interest.

327 **Data availability statement**

328 All data pertaining to this work is within the main manuscript or supplementary information.

329 **Funding.** This research was funded by a fellowship from the Government of Aragon (Gobierno
330 de Aragón y Fondos FEDER de la Unión Europea “Construyendo Europa desde Aragón”) to
331 M.G-L., and a grant from the Government of Aragon, Spain (Ref. LMP132_18) (Gobierno de
332 Aragón y Fondos Feder de la Unión Europea “Construyendo Europa desde Aragón”) to S.R.-G.

333 **Author Contribution statement**

334 CRediT (Contributor Roles Taxonomy) has been applied for author contribution.
335 Conceptualization, M.G-L. and S.R-G.; Methodology, M.G-L., S.R-G. and A.I.L-C.; Formal
336 analysis, M.G-L.; Investigation, M.G-L. and A.I.L-C.; Resources, A.I.L-C. and A.R.; Data
337 Curation, M.G-L.; Writing - Original Draft, M.G-L., J.A.A. and S.R-G.; Writing - Review & Editing,
338 M.G-L., J.A.A., S.R-G., A.I.L-C. and A.R.; Visualization, M.G-L. and S.R-G.; Supervision, J.A.A.
339 and S.R-G.; Project Administration, S.R-G.; Funding Acquisition, J.A.A. and S.R-G.

340 **Transparency declarations**

341 None to declare.

342 **REFERENCES**

343 1. World Health Organization (WHO). Home AWaRe. (2020). Available at:
344 <https://adoptaware.org/>. (Accessed: 22nd December 2021)

345 2. CDC. *Antibiotic resistance threats in the United States, 2019*. (2019).
346 doi:10.15620/cdc:82532

347 3. Lan, P., Jiang, Y., Zhou, J. & Yu, Y. A global perspective on the convergence of
348 hypervirulence and carbapenem resistance in *Klebsiella pneumoniae*. *J. Glob. Antimicrob.*
349 *Resist.* **25**, 26–34 (2021).

350 4. European Centre for Disease Prevention and Control. *Antimicrobial resistance in the*
351 *EU/EEA (EARS-Net), Annual Epidemiological Report for 2019*. (2020).

352 5. Tacconelli, E. *et al.* Discovery, research, and development of new antibiotics: the WHO
353 priority list of antibiotic-resistant bacteria and tuberculosis. *Lancet Infect. Dis.* **18**, 318–
354 327 (2018).

355 6. Karaïkos, I., Antoniadou, A. & Giamarellou, H. Combination therapy for extensively-drug
356 resistant gram-negative bacteria. *Expert Rev. Anti. Infect. Ther.* **15**, 1123–1140 (2017).

357 7. Rodríguez-Baño, J., Gutiérrez-Gutiérrez, B., Machuca, I. & Pascual, A. Treatment of
358 infections caused by Extended-Spectrum-Beta-lactamase-, AmpC-, and carbapenemase-
359 producing enterobacteriaceae. *Clin. Microbiol. Rev.* **31**, e00079-17 (2018).

360 8. Huttner, B. D., Catho, G., Pano-Pardo, J. R., Pulcini, C. & Schouten, J. COVID-19: don't
361 neglect antimicrobial stewardship principles! *Clin. Microbiol. Infect.* **26**, 808–810 (2020).

362 9. Adebisi, Y. A. *et al.* COVID-19 and Antimicrobial Resistance: A Review. *Infect. Dis. Res.*
363 *Treat.* **14**, 11786337211033870 (2021).

364 10. Pushpakom, S. *et al.* Drug repurposing: progress, challenges and recommendations. *Nat.*
365 *Rev. Drug Discov.* **18**, 41–58 (2019).

366 11. Parnham, M. J. *et al.* Azithromycin: Mechanisms of action and their relevance for clinical
367 applications. *Pharmacol. Ther.* **143**, 225–245 (2014).

368 12. Firth, A. & Prathapan, P. Azithromycin: The First Broad-spectrum Therapeutic. *Eur. J.
369 Med. Chem.* **207**, 112739 (2020).

370 13. Afshar, M., Foster, C. L., Layden, J. E. & Burnham, E. L. Azithromycin use and outcomes
371 in severe sepsis patients with and without pneumonia. *J. Crit. Care* **32**, 120–125 (2016).

372 14. Nichols, D. P. *et al.* Pulmonary Outcomes Associated with Long-Term Azithromycin
373 Therapy in Cystic Fibrosis. *Am. J. Respir. Crit. Care Med.* **201**, 430–437 (2020).

374 15. Saiman, L. & Schechter, M. S. Evaluating long-term benefits of chronic azithromycin
375 furthering our quest for precision medicine. *Am. J. Respir. Crit. Care Med.* **201**, 398–400
376 (2020).

377 16. Wang, X., Luo, J., Wang, D., Liu, B. & Liu, C. The efficacy and safety of long-term add-on
378 treatment of azithromycin in asthma. *Medicine (Baltimore)*. **98**, e17190 (2019).

379 17. Cui, Y., Luo, L., Li, C., Chen, P. & Chen, Y. Long-term macrolide treatment for the
380 prevention of acute exacerbations in COPD: a systematic review and meta-analysis. *Int. J.
381 Chron. Obstruct. Pulmon. Dis.* **Volume 13**, 3813–3829 (2018).

382 18. Rosenthal, P. J. Azithromycin for Malaria? *Am. J. Trop. Med. Hyg.* **95**, 2–4 (2016).

383 19. Krause, P. J. *et al.* Atovaquone and azithromycin for the treatment of babesiosis. *N. Engl.
384 J. Med.* **343**, 1454–1458 (2000).

385 20. Oliver, M. E. & Hinks, T. S. C. Azithromycin in viral infections. *Rev. Med. Virol.* **31**, e2163
386 (2021).

387 21. Hinks, T. S. C. *et al.* Azithromycin versus standard care in patients with mild-to-moderate
388 COVID-19 (ATOMIC2): an open-label, randomised trial. *Lancet Respir. Med.* **9**, 1130–
389 1140 (2021).

390 22. Cavalcanti, A. B. *et al.* Hydroxychloroquine with or without Azithromycin in Mild-to-
391 Moderate Covid-19. *N. Engl. J. Med.* **383**, 2041–2052 (2020).

392 23. Gomes, C. *et al.* Macrolide resistance mechanisms in Enterobacteriaceae: Focus on
393 azithromycin. *Crit. Rev. Microbiol.* **43**, 1–30 (2017).

394 24. Imperi, F., Leoni, L. & Visca, P. Antivirulence activity of azithromycin in *Pseudomonas*
395 *aeruginosa*. *Front. Microbiol.* **5**, 178 (2014).

396 25. Yue, C. *et al.* Effects of tigecycline combined with azithromycin against biofilms of
397 multidrug-resistant *Stenotrophomonas maltophilia* isolates from a patient in China. *Infect.*
398 *Drug Resist.* **14**, 775–786 (2021).

399 26. Kumaraswamy, M. *et al.* Standard susceptibility testing overlooks potent azithromycin
400 activity and cationic peptide synergy against MDR *Stenotrophomonas maltophilia*. *J.*
401 *Antimicrob. Chemother.* **71**, 1264–1269 (2016).

402 27. Lin, L. *et al.* Azithromycin Synergizes with Cationic Antimicrobial Peptides to Exert
403 Bactericidal and Therapeutic Activity Against Highly Multidrug-Resistant Gram-Negative
404 Bacterial Pathogens. *EBioMedicine* **2**, 690–698 (2015).

405 28. Gómara-Lomero, M., Aínsa, J. A. & Ramón-García, S. Novel synergistic combinations of
406 last-line antibiotics and FDA-approved drugs against *Klebsiella pneumoniae* revealed by
407 in vitro synergy screenings. *bioRxiv* (2022). doi:10.1101/2022.05.16.491802

408 29. Magiorakos, A.-P. *et al.* Multidrug-resistant, extensively drug-resistant and pandrug-
409 resistant bacteria: an international expert proposal for interim standard definitions for
410 acquired resistance. *Clin. Microbiol. Infect.* **18**, 268–281 (2012).

411 30. EUCAST. *The European Committee on Antimicrobial Susceptibility Testing. EUCAST*
412 *guidelines for detection of resistance mechanisms and specific resistances of clinical and*
413 */ or epidemiological importance. Version 2.0.* (2017).

414 31. CLSI. *Performance Standards for Antimicrobial Susceptibility Testing: 27th edition. CLSI*
415 *supplement M100.* (Clinical and Laboratory Standards Institute, 2017).

416 32. Ramón-García, S. *et al.* Synergistic drug combinations for tuberculosis therapy identified
417 by a novel high-throughput screen. *Antimicrob. Agents Chemother.* **55**, 3861–3869
418 (2011).

419 33. Montoro, E. *et al.* Comparative evaluation of the nitrate reduction assay, the MTT test,
420 and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of
421 *Mycobacterium tuberculosis*. *J. Antimicrob. Chemother.* **55**, 500–5 (2005).

422 34. EUCAST. European Committee on Antimicrobial Susceptibility Testing. *Breakpoint tables*
423 *for interpretation of MICs and zone diameters. Version 12.0.* (2022).

424 35. Eliopoulos, G. M. & Moellering, R. C. Antimicrobial combinations. in *Antibiotics in*
425 *laboratory medicine* (ed. Lorian V) 330–396 (The Williams & Wilkins Co., 1996).

426 36. EUCAST. European Committee on Antimicrobial Susceptibility Testing. Data from the
427 EUCAST MIC distribution website. (2018). Available at: <https://mic.eucast.org/>.
428 (Accessed: 14th January 2022)

429 37. Falagas, M. E., Vouloumanou, E. K., Samonis, G. & Vardakasa, K. Z. Fosfomycin. *Clin.*
430 *Microbiol. Rev.* **29**, 321–347 (2016).

431 38. Antonello, R. M. *et al.* Fosfomycin as partner drug for systemic infection management. A
432 systematic review of its synergistic properties from in vitro and in vivo studies. *Antibiotics*
433 **9**, 500 (2020).

434 39. Presterl, E. *et al.* Effects of azithromycin in combination with vancomycin, daptomycin,
435 fosfomycin, tigecycline, and ceftriaxone on *Staphylococcus epidermidis* biofilms.
436 *Antimicrob. Agents Chemother.* **53**, 3205–3210 (2009).

437 40. Hauser, C., Hirzberger, L., Unemo, M., Furrer, H. & Endimiani, A. In vitro activity of

438 fosfomycin alone and in combination with ceftriaxone or azithromycin against clinical
439 *Neisseria gonorrhoeae* isolates. *Antimicrob. Agents Chemother.* **59**, 1605–1611 (2015).

440 41. Ruiz Ramos, J. & Salavert Lletí, M. Fosfomycin in infections caused by multidrug-
441 resistant Gram-negative pathogens. *Rev. Esp. Quimioter.* **32 Suppl 1**, 45–54 (2019).

442 42. Baker, K. R. *et al.* Repurposing azithromycin and rifampicin against Gram-negative
443 pathogens by combination with peptide potentiators. *Int. J. Antimicrob. Agents* **53**, 868–
444 872 (2019).

445 43. Sorlí, L. *et al.* Trough colistin plasma level is an independent risk factor for nephrotoxicity:
446 A prospective observational cohort study. *BMC Infect. Dis.* **13**, 380 (2013).

447 44. Dillon, N. *et al.* Surprising synergy of dual translation inhibition vs. *Acinetobacter*
448 *baumannii* and other multidrug-resistant bacterial pathogens. *EBioMedicine* **46**, 193–201
449 (2019).

450 45. Li, H. *et al.* Meta-analysis of the adverse effects of long-term azithromycin use in patients
451 with chronic lung diseases. *Antimicrob. Agents Chemother.* **58**, 511–517 (2014).

452 46. Smith, C. *et al.* Use and safety of azithromycin in neonates: a systematic review. *BMJ*
453 *Open* **5**, e008194 (2015).

454 47. Fuentes, F., Izquierdo, J., Martín, M. M., Gomez-Lus, M. L. & Prieto, J. Postantibiotic and
455 sub-MIC effects of azithromycin and isepamicin against *Staphylococcus aureus* and
456 *Escherichia coli*. *Antimicrob. Agents Chemother.* **42**, 414–418 (1998).

457 48. Odenholt-Tornqvist, I., Lowdin, E. & Cars, O. Postantibiotic effects and postantibiotic sub-
458 MIC effects of roxithromycin, clarithromycin, and azithromycin on respiratory tract
459 pathogens. *Antimicrob. Agents Chemother.* **39**, 221–226 (1995).

460 49. Metlay, J. P. *et al.* Diagnosis and treatment of adults with community-acquired
461 pneumonia. *Am. J. Respir. Crit. Care Med.* **200**, e45–e67 (2019).

462 50. Patil, S. V., Hajare, A. L., Patankar, M. & Krishnaprasad, K. In vitro fractional inhibitory
463 concentration (FIC) study of cefixime and azithromycin fixed dose combination (FDC)
464 against respiratory clinical isolates. *J. Clin. Diagnostic Res.* **9**, DC13–DC15 (2015).

465 51. Yoshioka, D. *et al.* Efficacy of β -lactam-plus-macrolide combination therapy in a mouse
466 model of lethal pneumococcal pneumonia. *Antimicrob. Agents Chemother.* **60**, 6146–
467 6154 (2016).

468 52. Wang, A., Wang, Q., Kudinha, T., Xiao, S. & Zhuo, C. Effects of Fluoroquinolones and
469 Azithromycin on Biofilm Formation of *Stenotrophomonas maltophilia*. *Sci. Rep.* **6**, 29701
470 (2016).

471

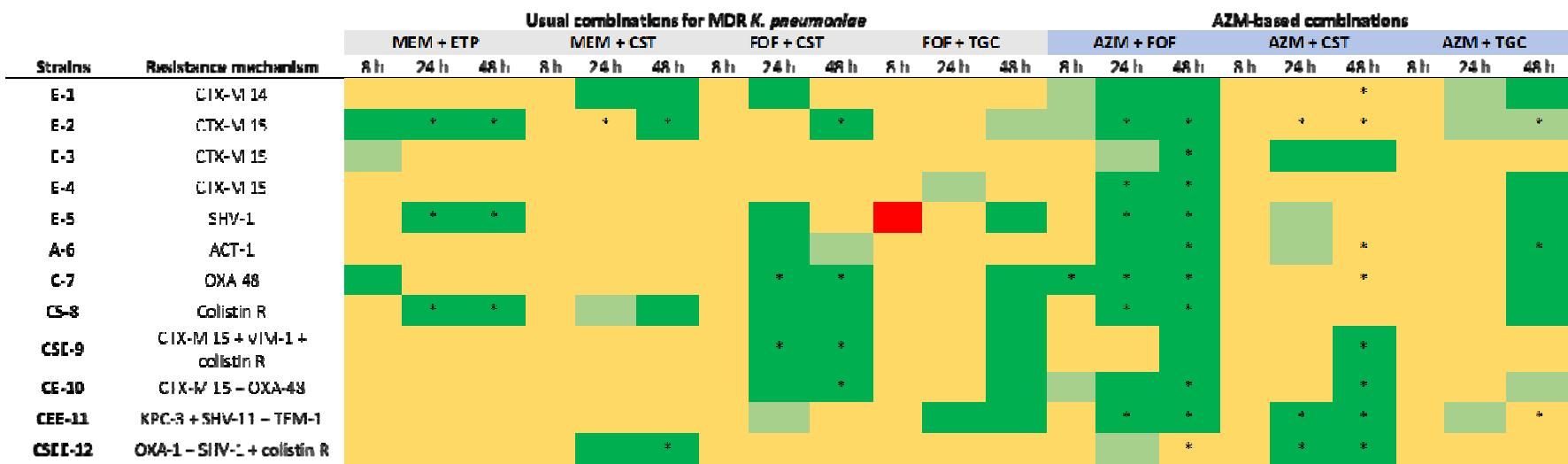
472 FIGURES & TABLES

473 **Table 1. Strain characterization of *K. pneumoniae* isolates and susceptibility profile to**
474 **drugs used in this study.** Clinical categorization according to current EUCAST breakpoints
475 (34) are displayed in brackets.

476 ¹MIC values were obtained by broth microdilution method in CAMHB.

477 ²MDR: non-susceptible to ≥ 1 agent in ≥ 3 antimicrobial categories; XDR: non-susceptible to ≥ 1
478 agent in all but ≤ 2 categories (29) (categorization according to susceptibility results provided in
479 Table S1); CST, colistin; FOF, fosfomycin; TGC, tigecycline; ETP, ertapenem; MEM,
480 meropenem; AZM, azithromycin.

481 ³The medium was supplemented with 25 mg/L of glucose-6-phosphate for FOF MIC
482 determination

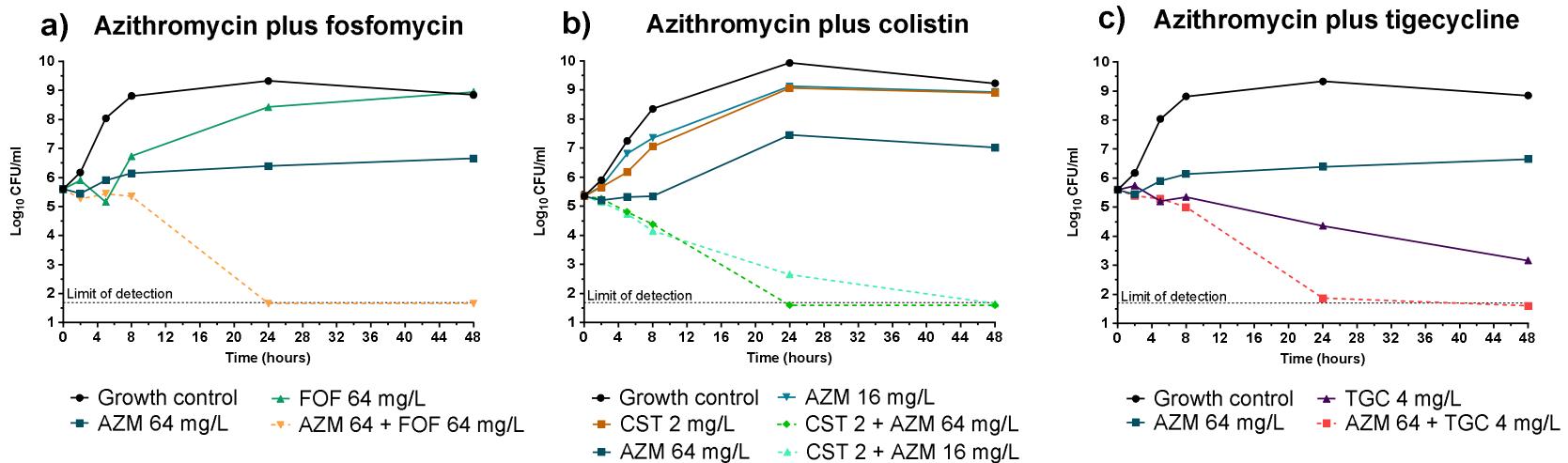

483 ⁴EUCAST clinical breakpoints for tigecycline are only applied to *Escherichia coli* and *Citrobacter*
484 *koseri*

485 EARS QC, European Antimicrobial Resistance Surveillance Quality Control; R, resistant; S,
486 susceptible; S*: susceptible, increased exposure; SEIMC: Spanish Society of Infectious
487 Diseases and Clinical Microbiology

Isolate	Resistance mechanism	Source	² MDR/XDR	¹ MIC (mg/L)					
				CST	³ FOF	⁴ TGC	ETP	MEM	AZM
E-1	CTX-M 14	Rectal swab	XDR	0.5 (S)	>64 (R)	4	>32 (R)	8 (S*)	8
E-2	CTX-M 15	Blood	MDR	0.5 (S)	>64 (R)	0.5	64 (R)	4-8 (S*)	8
E-3	CTX-M 15	Abscess	MDR	1-2 (S)	>64 (R)	4	16 (R)	2-4 (S*)	8
E-4	CTX-M 15	Blood	MDR	0.5 (S)	>64 (R)	4	1 (R)	0.03 (S)	8
E-5	SHV-1 + porin loss	Blood	MDR	0.5 (S)	8 (S)	0.5-1	0.25 (S)	0.03 (S)	8-16
A-6	AmpC ACT-1	SEIMC CCS07	MDR	≤ 0.5 (S)	>64 (R)	1-2	4-8 (R)	0.5 (S)	8
C-7	OXA-48	Blood	MDR	1 (S)	>64 (R)	2	8-16 (R)	4 (S*)	4-8
CS-8	Colistin R	Urine	MDR	16 (R)	>64 (R)	1	0.5 (S)	0.5-1 (S)	8
CSE-9	VIM-1 + CTX-M 15 + colistin R	SEIMC CCS04	XDR	16 (R)	>64 (R)	1-2	8-16 (R)	16-32 (R)	64
CE-10	CTX-M 15 + OXA-48	Blood	MDR	1-2 (S)	>64 (R)	1-2	8 (R)	4 (S*)	4
CEE-11	KPC-3 + SHV-11 + TEM-1	SEIMC CCS05	XDR	2 (S)	>64 (R)	4	>64 (R)	>64 (R)	≥ 64
CSEE-12	OXA-1 + SHV-1 + colistin R	EARS QC	MDR	4 (R)	64 (R)	1	8-16 (R)	1-2 (S)	8

488

489 **Figure 1. Heat map representation of synergy and bactericidal activities at different time points obtained by time-kill assays**
 490 **against *K. pneumoniae* isolates.** Data supporting this summary figure are displayed in Figure S1 and Figure S2. AZM,
 491 azithromycin; CST, colistin; ETP, ertapenem; FOF, fosfomycin; MEM, meropenem; TGC, tigecycline.



Synergy: $\geq 2 \log_{10}$ reduction between the combination and the most active agent
Synergy: $\geq 3 \log_{10}$ reduction between the combination and the most active agent
Indifference: $< 2 \log_{10}$ reduction between the combination and the most active agent
Antagonism: $\geq 2 \log_{10}$ increment between the combination and the most active agent
* Indetectability under the limit of detection (50 CFU/mL)

492
 493
 494

495

496 **Figure 2. Time-kill curves showing azithromycin combinations with existing antibiotics (a-c) against the *K. pneumoniae***
 497 **XDR strain CEE-11 (*bla*_{KPC-3} + *bla*_{SHV-1} + *bla*_{TEM-1}) in CAMHB.** Azithromycin enhanced the activities of fosfomycin, colistin and
 498 tigecycline even at subinhibitory concentration (0.25 to 1 x MIC), showing potent synergistic and bactericidal effects.
 499 MIC_{AZM} ≥ 64 mg/L, MIC_{CST} = 2 mg/L, MIC_{FOF} > 64 mg/L, MIC_{TGC} = 4 mg/L.

500
 501
 502