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 2

Abstract:  30 

Background. New therapeutical strategies are urgently needed against multidrug-resistant 31 

(MDR) Enterobacterales. Azithromycin is a widely prescribed antibiotic with additional 32 

immunomodulatory properties, but traditionally underused for the treatment of enterobacterial 33 

infections. We previously identified azithromycin as a potent enhancer of colistin, fosfomycin 34 

and tigecycline against Klebsiella pneumoniae ATCC 13883.  35 

Objectives. The aim of this work was to evaluate the antibacterial in vitro activity of 36 

azithromycin-based combinations with last-line antibiotics against an expanded panel of 37 

MDR/XDR K. pneumoniae isolates.  38 

Methods. Time-kill assays of azithromycin alone and in pair-wise combinations with fosfomycin, 39 

colistin and tigecycline were performed against a collection of 12 MDR/XDR K. pneumoniae 40 

isolates. Synergistic and bactericidal activities of azithromycin-based combinations were 41 

analyzed after 8, 24 and 48 hours of treatment, and compared with antimicrobial combinations 42 

frequently used in the clinic for the treatment of MDR Enterobacterales.  43 

Results. Synergistic interactions were detected in 100% (12/12) for azithromycin/fosfomycin, 44 

58.3% (7/12) for azithromycin/colistin and 75% (9/12) for azithromycin/tigecycline of the strains, 45 

showing potent killing activities. Clinical combinations currently used in the clinic showed 46 

synergy in 41.6% (5/12) for meropenem/ertapenem, 33.33% (4/12) for meropenem/colistin, 75% 47 

(9/12) for fosfomycin/colistin and 66.6% (8/12) for fosfomycin/tigecycline of the strains, with 48 

lower bactericidal efficacy. 49 

Conclusions. Novel azithromycin-based combinations with last-line MDR/XDR K. pneumoniae 50 

antibiotics were identified showing in vitro capacity to eradicate MDR/XDR K. pneumoniae. Our 51 

results provide an in vitro basis supporting azithromycin used in combinatorial treatment for 52 

MDR-related infections. 53 

  54 
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INTRODUCTION  55 

Antimicrobial resistance (AMR) is one of the major threats faced by worldwide healthcare 56 

systems and, specially, in low- and middle-income countries where the proportion of resistant 57 

infections ranges from 40 to 60% compared to 17% for countries belonging to the Organization 58 

for Economic Cooperation and Development (OECD)1. In 2019, the Center for Disease Control 59 

and Prevention (CDC) estimated 210,000 infections and 10,200 deaths in the USA associated 60 

to carbapenem-resistant and extended-spectrum beta-lactamases (ESBL)-producing 61 

enterobacteria2. Among them, carbapenem-resistant K. pneumoniae (CRKP) is one of the most 62 

concerning superbugs, causing nosocomial infections with mortality rates up to 41.6 and 48%3. 63 

CRKP incidence is increasing worldwide with 7.9% carbapenem resistance in Europe4 and 64 

26.8% of meropenem resistance in China3. Moreover, multi-drug resistance is also an 65 

increasing trend in K. pneumoniae, showing 19.3% combined resistance to traditional first-line 66 

antibiotics in the EU4.  67 

Although WHO prioritized CRKP as a critical pathogen for antimicrobial development5, few 68 

new antimicrobial agents are currently in the drug development pipeline; combinatorial therapy 69 

with usual antibiotics remains thus the cornerstone therapy for multi-drug resistant (MDR) 70 

infections6,7. Moreover, the emergence of COVID-19 strongly impacted on AMR; while 71 

investment strategies and research advances focused on fighting the virus, disruption of 72 

antimicrobial stewardship programs in hospitals have led to an increase of antibiotic misuse8, 73 

and a rapid spread of resistant bacteria9. In this context, drug repurposing (identifying new 74 

indications for existing drugs) is an affordable strategy to urgently accelerate the implementation 75 

of novel therapies against MDR pathogens10. 76 

Azithromycin is a broad-spectrum macrolide antibiotic widely prescribed for several 77 

indications such as respiratory, genitourinary and dermal infections11,12. Additionally, 78 

azithromycin exhibits anti-inflammatory and immunomodulatory properties, demonstrating 79 
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clinical benefits in critically ill patients13 and chronic respiratory disorders such as cystic 80 

fibrosis14,15, asthma16 and chronic obstructive pulmonary disease17. This repurposing strategy 81 

has been also pursued for azithromycin against parasitic18,19 and viral infections20. Indeed, 82 

azithromycin was one of the first candidates proposed for the management of COVID-19, firstly 83 

associated with hydroxychloroquine, although its efficacy for this indication could not be 84 

confirmed in clinical trials21,22.  85 

Traditionally, monotherapy use of macrolides have been disregarded in the treatment of 86 

severe infections caused by Gram-negative bacteria due to different existing mechanisms of 87 

resistance to azithromycin in enterobacteria and the low permeability of their outer membrane23. 88 

However, the enhanced basicity of azithromycin favors the intracellular uptake in Gram-negative 89 

bacteria increasing its efficacy and it is currently used for the treatment of enteric infections such 90 

as typhoid12. In addition, azithromycin´s ability to inhibit bacterial quorum-sensing and reducing 91 

biofilm formation and mucus production have been demonstrated against intrinsically resistant 92 

pathogens (i.e. Pseudomonas aeruginosa and Stenotrophomonas maltophilia)24,25. Moreover, 93 

azithromycin therapy seems to exert positive therapeutic effects in murine MDR Gram-negative 94 

infection models26,27.  95 

In a previous synergy screening, we identified azithromycin as a potent enhancer of last-line 96 

antibiotics against MDR enterobacteria28. Despite the limitations of azithromycin in monotherapy, 97 

its reintroduction into the clinical arsenal to treat high-priority pathogens might be possible in co-98 

administration combination therapy. Here, we evaluated in vitro the synergistic and bactericidal 99 

activities of azithromycin in combination with fosfomycin, colistin and tigecycline against 100 

antibiotic-resistant K. pneumoniae isolates and compared them with the activity of combinations 101 

typically used in the clinic for the treatment of MDR enterobacteria. 102 

 103 
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MATERIALS AND METHODS 105 

Bacterial strains and growth conditions. 106 

A well-characterized set of 12 MDR and Extensively-Drug Resistant (XDR)29 K. pneumoniae 107 

isolates (eight from clinical samples and four from quality assessment exercises) including 108 

representative resistance mechanisms was available at the Miguel Servet University Hospital 109 

(Zaragoza, Spain) (Table 1 and Table S1). MDR/XDR were defined as: MDR, non-susceptible 110 

to ≥1 agent in ≥3 antimicrobial categories; XDR non-susceptible to ≥1 agent in all but ≤2 111 

categories29. Bacterial identification was performed by MALDI-TOF mass spectrometry (Bruker 112 

Daltonik GmbH, Germany) and antimicrobial susceptibility by an automated broth microdilution 113 

method (Microscan Walkaway®, Beckman Coulter, Spain). Phenotypic detection of ESBL, 114 

AmpC, carbapenemases and colistin resistance was done according to EUCAST guidelines30. 115 

Genotypic characterization of resistance mechanisms was performed in clinical samples at the 116 

National Microbiology Centre (Majadahonda, Spain). Bacterial LB stocks (15% glycerol) were 117 

preserved at -20ºC. Freeze stocks were thawed and sub-cultured on Mueller Hinton broth for 24 118 

hours at 36°C before each assay. 119 

Drugs susceptibility testing and media conditions.  120 

Azithromycin, fosfomycin disodium salt, glucose-6-phosphate, colistin sulfate, (Sigma–Aldrich, 121 

Darmstadt, Germany), tigecycline (European Pharmacopoeia, Strasbourg, France), meropenem 122 

(Fresenius Kabi) and ertapenem (MSD) were reconstituted in DMSO or water according to their 123 

solubilities. Stock solutions were prepared fresh on the same day of plate inoculation.  124 

Drug susceptibility testing and time-kill assays (TKA) were performed in cation adjusted Mueller 125 

Hinton Broth (CAMHB). Minimum Inhibitory Concentration (MIC) determinations were performed 126 

by broth microdilution in CAMHB following CLSI guidelines31 by the MTT [3-(4,5-dimethylthiazol-127 

2-yl)-2,5-diphenyl tetrazolium bromide] assay32,33. Briefly, two-fold serial dilutions of drugs were 128 

inoculated with a bacterial suspension of 5x105 CFU/mL in 96-well plates (VF= 150 µL) and 129 
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incubated at 36°C for 18-20 hours. For fosfomycin susceptibility tests, CAMHB was 130 

supplemented with 25 mg/L of glucose-6-phosphate, according to EUCAST guidelines34. After 131 

incubation, 30 μL/well of a solution mix (MTT/Tween 80; 5 mg/mL/20%) were added and plates 132 

further incubated for 3 hours at 36ºC. MIC values were defined as the lowest concentration of 133 

drug that inhibited 90% of the OD580 MTT colour conversion (IC90) compared to growth control 134 

wells with no drug added. 135 

Minimum Bactericidal Concentration (MBC) was also determined in order to discern 136 

bacteriostatic or bactericidal activities. Before MTT addition, 10 μL/well were transferred to 96-137 

well plates containing LB agar and further incubated at 36ºC for 24 hours before addition of 30 138 

μL/well of resazurin; a change from blue to pink indicated bacterial growth. The MBC was 139 

defined as the lowest concentration of drug that prevented this colour change. A compound was 140 

considered bactericidal when MBC/MIC ≤ 432. 141 

Time-kill assays  142 

Exponentially growing cultures of K. pneumoniae strains were diluted in CAMHB and inoculated 143 

in duplicates in 96-well plates (VF= 280 µL/well; 5x105 CFU/mL) containing increasing 144 

concentrations (0.1x, 0.25x, 1x, 4x, 10x MIC values) of compounds alone, and incubated at 145 

36ºC. Drug-free wells were used as growth controls and MIC of single drugs were performed in 146 

parallel with the same inoculum to ensure compound activity. Samples were taken at 0, 2, 5, 8, 147 

24 and 48 hours, and bacterial population was quantified by spot-platting 10-fold serial dilutions 148 

onto Mueller Hinton agar (MHA) plates. Plates were incubated overnight at 36°C and CFU/mL 149 

calculated. The lower limit of detection was 50 CFU/mL.  150 

The activity of the three-novel azithromycin-based combinations (fosfomycin/azithromycin, 151 

colistin/azithromycin and tigecycline/azithromycin) was compared with that of four usual MDR 152 

clinical treatments (meropenem/ertapenem, meropenem/colistin, fosfomycin/colistin and 153 

fosfomycin/tigecycline). 154 
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To assess the activity of the combinations, dose-response curves of compounds alone were first 155 

analyzed to select appropriate concentrations for combinatorial testing. Then, selected 156 

concentrations were used in TKA, as described above.  157 

A synergistic combination was defined as a ≥2 log10 CFU/mL decrease in bacterial count 158 

compared to the most active single agent in the combination at any 8, 24 and 48 hours. 159 

Antagonism was defined as a ≥2 log10 increase in CFU/mL between the combination and the 160 

most active single agent. All other degrees of interaction were characterized as indifferent. 161 

Bactericidal activity was defined when no bacteria could be recovered in the TKA with a limit of 162 

detection of 50 CFU/mL35. 163 
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RESULTS 164 

Activity of azithromycin against MDR/XDR K. pneumoniae isolates. 165 

There are no CLSI or EUCAST guidelines describing azithromycin clinical breakpoints for 166 

enterobacteria, except for Salmonella Typhi and Shigella spp.34; thus, there is no clinical basis 167 

to classify K. pneumoniae isolates as susceptible or resistant strains. We thus performed MIC 168 

determinations of azithromycin against our panel of MDR/XDR K. pneumoniae isolates and 169 

compared them with the activity of other well-established drugs in the treatment of infections 170 

caused by MDR K. pneumoniae, for which clinical breakpoints do exist. In our experiments, 171 

azithromycin exhibited MIC values ranging from 4 to ≥64 mg/L, which were in the same range of 172 

values as those epidemiological cut-offs (ECOFFs) stablished by EUCAST for azithromycin in 173 

other enterobacteria; for these, confidence intervals range between 4 to 16 mg/L against 174 

Escherichia coli and between 4 to 64 mg/L against S. Typhi36. Thus, the number and nature of 175 

antibiotic resistance determinants in any of our twelve isolates appeared not to be related with 176 

the susceptibility profiles against azithromycin (Table 1).  177 

Azithromycin-based combinations are more potent in vitro than those combinations 178 

currently used in the clinic to treat MDR K. pneumoniae infections. 179 

We previously identified azithromycin as a potent enhancer of colistin, fosfomycin and 180 

tigecycline against K. pneumoniae ATCC 1388328. All three paired combinations displayed a 181 

high synergistic and bactericidal profile against the reference strain (see Figure 3 of Gómara-182 

Lomero et al)28. In order to further characterize the potential antimicrobial activity of 183 

azithromycin-based combinations against MDR K. pneumoniae, we extended the TKA validation 184 

against a panel of twelve MDR/XDR K. pneumoniae isolates with representative mechanisms of 185 

resistance (Figure 1). At any time-point (8, 24 and 48 hours), synergy rates among currently 186 

used combinations for MDR treatment were observed in 41.6% (5/12) for 187 

meropenem/ertapenem, 33.33% (4/12) for meropenem/colistin, 75% (9/12) for 188 

fosfomycin/colistin, and 66.6% (8/12) for fosfomycin/tigecycline of the isolates tested (Figure 1 189 
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and Figure S1). In stark contrast, a high number of synergistic interactions were obtained with 190 

azithromycin-based combinations among all isolates (Figure 1 and Figure S2). Notably, this 191 

synergistic bactericidal positive interactions in azithromycin-based combinations were observed 192 

even when strains displayed a resistant profile to the drugs alone, as in strain CEE-11 (MICAZT ≥ 193 

64 mg/L; MICFOF ≥ 64 mg/L) (Figure 2).  194 

The combination azithromycin/colistin (Figure S2b) was synergistic in 7 out of 12 strains 195 

(58.3%) and bactericidal in 10 out of 12 strains (83.3%). The positive interaction of azithromycin 196 

in combination with colistin was evident when analysing the bactericidal activity at the 48-hour 197 

time point in which eight strains (E-1, E-2, A-6, C-7, CSE-9, CE-10, CEE-11, CSEE-12), 198 

including two colistin-resistant strains, had viable counts below the limit of detection (50 199 

CFU/mL) (Figure 1). 200 

The combination azithromycin/tigecycline (Figure S2c) showed synergistic interactions against 201 

9 out the 12 (75%) strains with a strain-dependent activity. The combination was bactericidal to 202 

the limit of detection in three strains (E-2, A-6 and CEE-11) and showed a bacteriostatic profile 203 

in the rest of the strains (from <1 to 1.6 log10 decrease in CFU/ml), except for CE-10 and CSEE-204 

12 (> 2 log10 decrease in CFU/mL at 48 hours) (Figure S2c). 205 

The combination of azithromycin plus fosfomycin was the most potent. This combination was 206 

synergistic against all isolates and bactericidal in 11 out of the 12 (91.66%) strains. The potency 207 

of the azithromycin/fosfomycin combination was evident when compared to the activity of the 208 

drugs alone; neither showed long-lasting bactericidal activity, with a static effect or no activity 209 

(azithromycin), and rapid bactericidal activity followed by bacterial regrowth from the 8-hour 210 

time-point (fosfomycin). In addition, in most strains combined bactericidal effects were already 211 

detected at early time points (4-8 hours) (Figure S2a). 212 

 213 

  214 
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DISCUSSION 215 

In the present study we evaluated the in vitro efficacy of azithromycin in combination 216 

with colistin, fosfomycin and tigecycline (currently used last-line antibiotics in the treatment of 217 

infections caused by MDR enterobacteria) against a panel of 12 MDR/XDR K. pneumoniae 218 

isolates with representative resistance patterns. We used TKA as a reference method with 219 

activity readouts obtained after up to 48 hours of incubation, a procedure not typically performed 220 

when evaluating the activity of compounds against enterobacteria.  221 

We characterized the activity alone of azithromycin, and its three synergistic partners 222 

colistin, fosfomycin and tigecycline, in a dose-response manner against our collection of twelve 223 

K. pneumoniae isolates. Then, we tested them in combination assays selecting matching 224 

subinhibitory concentrations of each individual drug to allow for a wider dynamic range and 225 

detection of drug interactions. This implies that even if absolute MIC values for every K. 226 

pneumoniae strain in our collection might be different (Table 1), the effect of their subinhibitory 227 

activities would be similar in combination, since they are based on individual MIC values for 228 

each strain and compound. The use of subinhibitory concentrations of the antibiotics alone is a 229 

key factor to detect drug interactions since higher effective concentrations might masked the 230 

effect of their potential interactions. In addition, extending the readout to 48 hours provides 231 

information in both the increased bactericidal activity of the azithromycin-based combinations 232 

compared to the drugs alone, and also the ability of the combination to completely eradicate 233 

bacteria (below the limit of detection of the assay, which is a proxy for culture sterilization). 234 

Based on these criteria, we tested three azithromycin-based combinations (Figure 1 and Figure 235 

S2) and compared them with four representative combinations currently used in the clinic to 236 

treat MDR/XDR K. pneumoniae infections (Figure 1 and Figure S1). Our TKA data showed 237 

high rates of favourable interactions for the azithromycin-containing combinations, even against 238 

strains with concurrent resistance mechanisms; thus, suggesting a potential role of azithromycin 239 

in combinatorial therapy (Figure 1 and Figure S2), as evidence by the examples below: 240 
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(i) Azithromycin plus fosfomycin. First prescribed for urinary tract infections, 241 

fosfomycin was identified as synergistic partner of several antibiotics. Fosfomycin is an old 242 

bactericidal antibiotic that inhibits peptidoglycan synthesis37, thus it could be enhancing 243 

antibiotic entrance by increasing cell permeability. As such, fosfomycin has been reintroduced in 244 

combinatorial therapy for the clinical management of MDR enterobacterial infections over the 245 

last years38. This combination was previously assessed in two other in vitro studies. Presterl et 246 

al. described negligible bactericidal activity against biofilm-producer Staphylococcus 247 

epidermidis39, and the combination also showed killing activity at 24 hours by TKA against 248 

Neisseria gonorrhoeae, including azithromycin resistant strains, with no regrowth until the end of 249 

the assay40. The latter study is in agreement with our results in K. pneumoniae, supporting the 250 

potential use of azithromycin/fosfomycin against Gram-negative bacteria. We observed rapid 251 

bactericidal activities maintained up to the end of the assays against all tested strains (Figure 1 252 

and Figure S2a), including those strains with high fosfomycin MIC values (Figure 2). 253 

Interestingly, effective fosfomycin concentrations in our in vitro assays were below fosfomycin 254 

peak plasma concentration after intravenous administration in adults (606 mg/L)37. To the best 255 

of our knowledge, this is the first study analyzing the antimicrobial activities of the combination 256 

azithromycin/fosfomycin against a large set of MDR K. pneumoniae strains.  Our results, 257 

together with other evidence, suggest that the combination of azithromycin plus fosfomycin 258 

could play an important role in clinical settings and merits further pre-clinical and clinical 259 

development. Both drugs display good safety profiles, they are recommended for combinatorial 260 

therapy to minimize resistance emergence derived from monotherapy, and are administered at 261 

a single dose administration (0.5 to 2 g single dose oral or intravenously for azithromycin12 and 262 

3 g single dose orally or up to 8 g /8 hours intravenously for fosfomycin41). Similar to 263 

azithromycin, fosfomycin displays immunomodulatory mechanisms37, which have been shown 264 

beneficial to overcome severe Gram-negative infections.  265 
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(ii) Azithromycin plus colistin. This combination was reported in some studies 266 

including MDR K. pneumoniae26,27,42, where the increase in the Gram-negative outer membrane 267 

permeability facilitates azithromycin access to the 50S ribosomal subunit26,27. In agreement with 268 

our results, we obtained sterilizing activities in 2 out of 3 of the colistin resistant strains (CSE-9, 269 

MICCST= 16 mg/L and CSEE-12, MICCST= 4 mg/L). In these strains, the limiting factor for activity 270 

was the concentration of azithromycin; similar killing profiles were obtained at two colistin 271 

concentrations (2 mg/L and 8 mg/L) (Figure S2b). These findings support the possibility to 272 

decrease colistin concentrations below its nephrotoxic threshold (2.42 mg/L)43, if administered in 273 

synergistic combination with azithromycin.  274 

(iii) Azithromycin plus tigecycline. This is the first report of this combination being 275 

active against K. pneumoniae. Previous studies described biofilm eradication against S. 276 

maltophilia25 and the in vitro and in vivo activity of azithromycin in combination with minocycline 277 

(another tetracycline antibiotic) against MDR pathogens including K. pneumoniae44. Although 278 

we observed variable activity from one strain to another (Figure S2c), the combination showed 279 

sterilizing activity against three strains, which had different susceptibility profile to both drugs 280 

(e.g., CEE-11 exhibited resistant profile with MICTGC= 4 mg/L and MICAZM ≥ 64 mg/L, Figure 2). 281 

Azithromycin and tigecycline are both bacteriostatic drugs targeting the 50S and 30S ribosomal 282 

subunits, respectively, which could explain their synergy by enhancing protein inhibition that 283 

leads to disruption of the bacterial gene translation.  284 

Azithromycin safety profile is well described, showing uncommon side-effects associated 285 

to long-term therapy45, and well tolerated when administered to children and pregnant women46. 286 

It poses advantageous pharmacokinetic and pharmacodynamic (PK/PD) properties respect to 287 

other macrolides: no interaction with CYP3A4 cytochrome, an increased tissue penetration and 288 

bioavailability due to a higher basic character, and a long half-life (50-70 hours)11,12. Peak 289 

plasma concentrations of 1.46 mg/L and up to 3.4 mg/L are attained after 1,500 mg-oral and 290 

500 mg-intravenous administrations, respectively11. In our study, we observed effective 291 
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sterilizing activities of azithromycin-based combinations at azithromycin concentrations ranging 292 

from 2 up to 64 mg/L (Figure S2). Although for some strains the azithromycin sterilizing 293 

concentrations observed were over those achievable in plasma, azithromycin displays a rapid 294 

blood-tissue distribution, so despite such low serum concentrations it is expected that its 295 

accumulation in tissue will be higher (e.g. accumulation in macrophages is 5- to 200-fold higher 296 

than in plasma12). In addition, the long post-antibiotic effect and significant subinhibitory 297 

concentration effect demonstrated both in vitro and in vivo against respiratory pathogens47,48 298 

indicate a prolonged antimicrobial activity.  299 

The azithromycin PK/PD properties make it an optimal candidate for combination 300 

therapy in MDR Gram-negative infections. Standard dosing of the last-line antibiotics used in 301 

this study (that included loading doses for colistin and tigecycline)7 yielded a rapid bacterial 302 

killing effect that could be seconded by the slower but longer lasting action of azithromycin, 303 

maintaining bacterial eradication during the course of treatment. Moreover, combinatorial 304 

therapy with azithromycin might minimize resistance emergence and toxicity issues (specially 305 

with colistin) using longer dosing intervals.  306 

The use of macrolides (specially azithromycin) is currently recommended in critically ill 307 

patients with pneumonia as empirical treatment in combination with β-lactams or 308 

fluroquinolones49, supported by previous preclinical assays showing synergy50–52. Anticipatory 309 

immunotherapy with azithromycin has been also used in critically ill patients with infections other 310 

than pneumonia, demonstrating clinical benefit with reduced mortality rates and intensive-care 311 

unit (ICU) stay13. The early addition of azithromycin to last-line antibiotics for MDR treatment in 312 

severe infections (i.e., sepsis, ventilator-associated pneumonia, immunocompromised patients) 313 

could not only improve the efficacy of the therapy in combination, but also improve the clinical 314 

outcome due to immunomodulatory properties of azithromycin in ICU patients.  315 

In conclusion, we have demonstrated using in vitro TKA models that azithromycin 316 

combined with existing antibiotics might increase the efficacy in the eradication of MDR/XDR K. 317 
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pneumoniae. Based on our in vitro studies, we propose the following priority list of pairwise 318 

combinations: azithromycin/fosfomycin > azithromycin/colistin > fosfomycin/colistin > 319 

meropenem/ertapenem > azithromycin/tigecycline > meropenem/colistin > 320 

fosfomycin/tigecycline. Additional pre-clinical and clinical studies would be needed to fully 321 

understand the clinical potential of azithromycin as synergistic partner in antimicrobial therapies 322 

against MDR enterobacteria  323 
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FIGURES & TABLES 472 

Table 1. Strain characterization of K. pneumoniae isolates and susceptibility profile to 473 

drugs used in this study. Clinical categorization according to current EUCAST breakpoints 474 

(34) are displayed in brackets. 475 
1MIC values were obtained by broth microdilution method in CAMHB.  476 
2MDR: non-susceptible to ≥1 agent in ≥3 antimicrobial categories; XDR: non-susceptible to ≥1 477 

agent in all but ≤2 categories (29) (categorization according to susceptibility results provided in 478 

Table S1); CST, colistin; FOF, fosfomycin; TGC, tigecycline; ETP, ertapenem; MEM, 479 

meropenem; AZM, azithromycin. 480 
3The medium was supplemented with 25 mg/L of glucose-6-phosphate for FOF MIC 481 

determination 482 
4EUCAST clinical breakpoints for tigecycline are only applied to Escherichia coli and Citrobacter 483 

koseri  484 

EARS QC, European Antimicrobial Resistance Surveillance Quality Control; R, resistant; S, 485 

susceptible; S*: susceptible, increased exposure; SEIMC: Spanish Society of Infectious 486 

Diseases and Clinical Microbiology 487 

 488 

    
1
MIC (mg/L) 

Isolate Resistance mechanism Source 
2
MDR/XDR CST 

3
FOF 

4
TGC ETP MEM AZM 

E-1 CTX-M 14 Rectal swab XDR 0.5 (S) >64 (R) 4  >32 (R) 8 (S*) 8 

E-2 CTX-M 15 Blood MDR 0.5 (S) >64 (R) 0.5  64 (R) 4-8 (S*) 8 

E-3 CTX-M 15 Abscess MDR 1-2 (S) >64 (R) 4  16 (R) 2-4 (S*) 8 

E-4 CTX-M 15 Blood MDR 0.5 (S) >64 (R) 4  1 (R) 0.03 (S) 8 

E-5 SHV-1 + porin loss Blood MDR 0.5 (S) 8 (S) 0.5-1 0.25 (S) 0.03 (S) 8-16 

A-6 AmpC ACT-1 SEIMC CCS07 MDR ≤0.5 (S) >64 (R) 1-2 4-8 (R) 0.5 (S) 8 

C-7 OXA-48 Blood MDR 1 (S) >64 (R) 2 8-16 (R) 4 (S*) 4-8 

CS-8 Colistin R Urine MDR 16 (R) >64 (R) 1 0.5 (S) 0.5-1 (S) 8 

CSE-9 VIM-1 + CTX-M 15 + colistin R SEIMC CCS04 XDR 16 (R) >64(R) 1-2 8-16 (R) 16-32 (R) 64 

CE-10 CTX-M 15 + OXA-48 Blood MDR 1-2 (S) >64 (R) 1-2 8 (R) 4 (S*) 4 

CEE-11 KPC-3 + SHV-11 + TEM-1 SEIMC CCS05 XDR 2 (S) >64 (R) 4 >64 (R) >64 (R) ≥64 

CSEE-12 OXA-1 + SHV-1 + colistin R EARS QC MDR 4 (R) 64 (R) 1 8-16 (R) 1-2 (S) 8 
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Figure 1. Heat map representation of synergy and bactericidal activities at different time points obtained by time-kill assays489 

against K. pneumoniae isolates. Data supporting this summary figure are displayed in Figure S1 and Figure S2. AZM490 

azithromycin; CST, colistin; ETP, ertapenem; FOF, fosfomycin; MEM, meropenem; TGC, tigecycline. 491 

492 
 493 
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Figure 2. Time–kill curves showing azithromycin combinations with existing antibiotics (a-c) against the K. pneumoniae 496 

XDR strain CEE-11 (blaKPC-3 + blaSHV-1 + blaTEM-1) in CAMHB. Azithromycin enhanced the activities of fosfomycin, colistin and 497 

tigecycline even at subinhibitory concentration (0.25 to 1 x MIC), showing potent synergistic and bactericidal effects.  498 

MICAZM ≥ 64 mg/L, MICCST= 2 mg/L, MICFOF> 64 mg/L, MICTGC= 4 mg/L. 499 
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