

1 **Fecal virome transfer improves proliferation of commensal gut *Akkermansia*
2 *muciniphila* and unexpectedly enhances the fertility rate in laboratory mice**

3 Torben Sølbeck Rasmussen^{1*}, Caroline M. Junker Mentzel², Malene Refslund
4 Danielsen¹, Rasmus Riemer Jakobsen¹, Line Sidsel Fisker Zachariassen², Josue
5 Leonardo Castro Mejia¹, Lars Hestbjerg Hansen³, Axel Kornerup Hansen², Dennis
6 Sandris Nielsen^{1*}

7 *1 Section of Microbiology and Fermentation, Dept. of Food Science, University of Copenhagen,
8 Frederiksberg, Denmark*

9 *2 Section of Experimental Animal Models, Dept. of Veterinary and Animal Sciences, University of
10 Copenhagen, Frederiksberg, Denmark*

11 *3 Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental
12 Sciences, University of Copenhagen, Frederiksberg, Denmark*

13 **Address correspondence to dn@food.ku.dk (+45 35 33 32 87) / torben@food.ku.dk (+45 35 32 80
14 73), Rolighedsvej 26 4th floor, 1958 Frederiksberg C, Denmark.*

15 **Keywords:** Fecal virome transplantation, gut microbiota, fertility, probiotic engraftment,
16 *Lacticaseibacillus rhamnosus*, *Akkermansia muciniphila*

17

18

19

20 **Abstract**

21 Probiotics have been suggested as nutritional supplements to improve gastrointestinal health.
22 However, the probiotics marketed today only colonize the densely populated gut to a limited
23 extent. Bacteriophages comprise the majority of viruses in the human gut virome and there are
24 strong indications that they play important roles in shaping the gut microbiome (GM). Here we
25 investigate the use of fecal virome transplantation (FVT) as a mean to alter GM composition to
26 lead the way for persistent colonization of two types of probiotics: *Lactocaseibacillus*
27 *rhamnosus* GG (LGG) representing a well-established probiotic and *Akkermansia muciniphila*
28 (AKM) representing a putative next-generation probiotic. Male and female C57BL/6NTac mice
29 were cohoused in pairs at 4 weeks of age and received the following treatment by oral gavage
30 at week 5 and 6: AKM+FVT, probiotic sham (Pro-sham)+FVT, LGG+Saline, AKM+Saline,
31 and control (Pro-sham+Saline). The FVT originated from donor mice with high relative
32 abundance of *A. muciniphila*. All animals were terminated at age 9 weeks. The FVT treatment
33 did not increase the relative abundance of the administered LGG or AKM in the recipient mice.
34 Instead FVT significantly ($p<0.05$) increased the abundance of naturally occurring *A.*
35 *muciniphila* compared to the control. This highlights the potential of stimulating the commensal
36 “probiotics” that already are permanent members of the gut. Being co-housed male and female,
37 a fraction of the female mice became pregnant. Unexpectedly, the FVT treated mice were found
38 to have a significantly ($p<0.05$) higher fertility rate independent of probiotic administration.
39 These preliminary observations urge for follow-up studies investigating GM/fertility
40 interactions.

41 **Introduction**

42 During the last decade it has become commonly accepted that gut microbiome (GM) imbalances
43 (dysbiosis) play important roles in the etiology of a number of diseases [1–3]. Probiotics has been
44 suggested as a tool to restore GM balance [4,5] and are defined as live microorganisms that when
45 ingested in adequate amounts confer a health benefit to the host [6]. However, traditional probiotics,
46 mainly lactobacilli and bifidobacteria, in general have no or only modest influence on GM
47 composition [7]. So-called next generation probiotics, like *Akkermansia muciniphila*, have recently
48 been suggested for alleviating GM-associated malfunctions [8,9]. Persistent beneficial effects are
49 challenged by the difficulties of the administered bacteria to become a permanent and adequately
50 abundant member of the densely populated GM [10,11].

51 Mounting evidence suggests that the gut viral community plays a pivotal role in shaping the
52 composition of the GM [12,13]. The gut virome is predominated by prokaryotic viruses [14],
53 including bacteriophages (phages), which are viruses that attack bacteria in a host-specific manner
54 [15]. A transfer of sterile filtered feces (containing phages, but no intact bacterial cells) from a healthy
55 donor have shown to successfully treat recurrent *Clostridioides difficile* infections (rCDI) in human
56 recipients [16]. Other studies using sterile filtered feces have reported to alleviate symptoms of type-
57 2-diabetes (T2D) and obesity in mice [17], and to prevent the development of necrotizing enterocolitis
58 [18] in preterm piglets. These changes in phenotype may be driven by a phage-mediated modulation
59 of the GM [17–21]. In all cases, when transferring the fecal viral components, a significant change in
60 the bacterial diversity and composition was observed, with the bacterial GM-component of the
61 recipients becoming more like the GM of the donors. We will refer to this approach as fecal virome
62 transplantation (FVT).

63 Using co-housed male and female laboratory mice as model, we hypothesized that initial phage-
64 mediated disturbance of the existing bacterial landscape in the GM (using FVT) would improve the
65 enteric engraftment and abundance of the administered probiotic bacteria (*Lactocaseibacillus*
66 *rhamnosus* GG or *A. muciniphila*). We did the following considerations to maximize our chances for
67 evaluating a successful enteric engraftment of *A. muciniphila*: (i) C57BL/6NTac (B6N mice from
68 Taconic) mice were selected since previous experience have shown a low relative abundance of *A.*
69 *muciniphila* in mice from this vendor [22], (ii) the *A. muciniphila* YL-44 strain was used in this study
70 due to its enteric origin from the genetically close related C57BL/6J (B6J) wildtype mouse, and (iii)
71 the FVT virome represented a gut virome from mice donors with relatively high *A. muciniphila*
72 abundance [22].

73 **Results**

74 Here we investigated the potential of transferring an *A. muciniphila* rich GM phenotype via fecal
75 virome transplantation (FVT) from lean mouse donors to lean recipients to improve persistent
76 colonization of two probiotics; *L. rhamnosus* GG (LGG) or *A. muciniphila* (AKM). Fecal samples
77 from three different timepoints were included to investigate the level of probiotic engraftment and
78 GM changes over time: baseline, 6 days after 2nd intervention, and at termination. See Figure 1 for
79 the experimental design of the animal model.

80 ***FVT enhanced the abundance of natural occurring Akkermansia muciniphila strains***

81 Our hypothesis was that initial disruption of the GM landscape driven by the FVT would lead to an
82 increase in the abundance of AKM and/or LGG after probiotic administration. However, we did not
83 observe any significant effect of the FVT on the AKM/LGG abundance after intervention nor at
84 termination (Figure 2). Instead, we observed at termination that FVT had increased ($p < 0.05$) the
85 abundance of, what would be expected to be, naturally occurring (native) *A. muciniphila* strains in
86 mice that were not provided AKM as probiotic compared to mice neither provided FVT nor AKM
87 (Figure 2A & Figure 2C). The abundance of *A. muciniphila* strains at baseline were significantly
88 lower ($p < 0.05$) compared to termination in AKM+FVT and Pro-sham+FVT mice, while tending
89 lower ($p < 0.1$) in the LGG+FVT mice as well (Figure S1).

90 This indicated that the FVT had improved the growth conditions of naturally occurring *A.*
91 *muciniphila* strains due to yet unknown environmental changes. The AKM+Saline mice had similar
92 *A. muciniphila* abundance as the FVT groups. Additional experiments were performed to rule out that
93 the FVT initially contained any *A. muciniphila* strains (Figure S2). The sterile filtered donor feces
94 (used for FVT) were incubated in 96 hours on GAM agar plates from which eight colonies appeared.
95 Cell morphology of these colonies was imaged with phase-contrast microscopy, and subsequently
96 screened with *A. muciniphila* specific primers in both a PCR and qPCR assay. Neither colony
97 morphology, cell morphology, PCR nor qPCR indicated any traces of *A. muciniphila* in the applied
98 donor FVT (Figure S2).

99 ***FVT leads to a reduction in bacterial diversity of the GM component***

100 FVT significantly ($p < 0.05$) decreased the bacterial Shannon diversity index in the LGG+FVT and
101 Pro-sham+FVT mice at termination (9 weeks of age) when compared with the AKM+Saline,
102 LGG+Saline, and the control mice (Figure 3A). Whereas the Shannon diversity index of the

103 AKM+FVT mice remained unchanged compared to the control mice, hence suggesting that AKM
104 may have counteracted the decrease in the Shannon diversity that was associated to the FVT treatment
105 (Figure 3A). The initial bacterial diversity at baseline was similar between all groups (Figure 2A).
106 The most abundant genus in all groups at all time-points were *Lactobacillus* (Figure S3). The FVT-
107 associated differences in the bacterial Shannon diversity index were not reflected in the bacterial
108 composition analysis (Bray-Curtis dissimilarity), since no significant differences were observed
109 between treatments at all three timepoints (Figure 3B). Probably due to the state of pregnancy, the
110 sex of the animals (male vs female) showed significant ($p < 0.001$) differences in their bacterial
111 composition at termination (Figure S4). Differential abundance (DA) analysis showed that
112 *Candidatus Arthromitus* (segmented filamentous bacteria) and *A. muciniphila* amplicon sequence
113 variants (ASVs) were significantly ($p < 0.05$) increased in relative abundance at termination in mice
114 receiving FVT compared to the other groups (Figure 3C). Thus, clearly supporting the FVT-mediated
115 enhancement of *A. muciniphila* abundance measured by the qPCR analysis. The administration of
116 AKM significantly increased ($p < 0.05$) the relative abundance of *Ruminococcus gnavus* (Figure S5)
117 but not *per se* influence *A. muciniphila* relative abundance in the recipients.

118 ***Probiotic and FVT intervention may have changed the viral GM profile***

119 The viral Shannon diversity index at termination (9 weeks of age) was affected by FVT ($p = 0.032$)
120 as well as the administration of the probiotics AKM (tendency, $p = 0.07$) and LGG ($p = 0.006$) when
121 compared to the control mice (Figure 4A and Figure S6). The effects of AKM ($p = 0.025$) and LGG
122 ($p = 0.014$) were also reflected on the viral composition at termination (Figure S7). The sex of the
123 animals appeared to influence ($p < 0.05$) the viral community composition across all time points
124 (Figure S4). The donor FVT virome consisted of more than 90% *Microviridae* viruses and was
125 markedly different in both viral diversity and composition (Figure 4A & Figure 4B) compared to the
126 recipient gut virome (Figure S8). DA analysis was performed using both the predicted bacterial hosts
127 and raw viral taxonomy at termination (9 weeks of age). These analyzes showed a significant increase
128 in the relative abundance of predicted hosts belonging of the taxa *Lachnospiraceae*, *Parabacteroides*,
129 and *Bacteroides* in FVT treated mice (Figure S9), and an increase in the relative abundance of
130 *Petitvirales* (likely *Microviridae*) when comparing with mice not receiving FVT (Figure 4C). It could
131 be speculated that the elevated level of *Petitvirales* in the FVT treated mice was driven by the highly
132 *Microviridae* abundant (> 90% of relative abundance) donor virome.

133 The viral Shannon diversity at baseline of the AKM+FVT and Pro-sham+FVT mice were
134 significantly lower ($p < 0.05$) compared to control (Figure 4A), while the diversity of the remaining
135 treatment groups was similar to the control mice. This initial variance also tended to be reflected (p
136 < 0.084) on the viral composition at baseline, but these differences were diminished at termination
137 (Figure 4B). The extent to which the above-mentioned inter-group differences were associated with
138 the baseline variance of viral diversity and composition was not clear.

139 ***A. muciniphila affects expression of a gene involved in mucin-production and limits an***
140 ***inflammatory response associated to FVT***

141 The ileum tissue was investigated for changes in the expression levels of genes associated to
142 inflammatory responses. Interestingly, mice with the highest abundance at termination of the mucin-
143 degrading *A. muciniphila* (Figure 2A) had either significantly ($p < 0.05$, AKM+Saline and
144 AKM+FVT) or tended towards ($p < 0.1$, LGG+FVT) lowered gene expression of genes related to
145 inflammatory responses compared to control mice (Figure 5A). The *Muc1* gene is involved in mucin
146 production [23]. Whether this affected the mouse phenotype was not clear. The expression of nine
147 genes that are involved in inflammation and as a response on infection (*Clc2*, *Ccr10*, *Ctla4*, *Cxcl1*,
148 *Il1b*, *Il4*, *Il6*, *Retnlb*, *Timp1*), were significantly ($p < 0.05$) elevated in Pro-sham+FVT compared to
149 control mice (Figure 5A - 5J). Additionally, two genes (*Ffar2* and *Ffar3*) involved in both energy
150 homeostasis and intestinal immunity were respectively increased (tendency, $p = 0.06$) or decreased
151 ($p = 0.01$) in the Pro-sham+FVT compared to control mice (Figure 5K & 5L). Excluding the Pro-
152 sham+FVT mice, the *nod2* gene was lowered in expression in all treatment groups compared to
153 control (Figure 5M).

154 Altogether, these changes in gene expression indicate that the FVT of the Pro-sham+FVT mice
155 had initiated an inflammatory response, possibly mediated by the presence of eukaryotic and/or
156 prokaryotic viruses that were transferred with the FVT. The administration of AKM along with FVT
157 seemed to counteract this inflammatory response, since the expression of none of the above-
158 mentioned 11 genes were changed in the AKM+Saline or AKM+FVT compared to control mice
159 (Figure 5A – 5L).

160 Fluorescence-activated cell sorting (FACS) was performed to evaluate the presence of selected
161 immune cells in the mesenteric lymph node (MLN) at termination. The FVT treated male and female
162 mice expressed a significant ($p = 0.043$) decrease in the total number of T cells (CD3⁺ lymphocytes)
163 (Figure 5N), while mice provided only LGG had a significant decrease ($p = 0.01$) in the level of

164 cytotoxic T cells (CD8⁺/CD3⁺) (Figure 5O). The level of cytotoxic T cells in the MLN was not
165 affected by the FVT treatment, suggesting that the increased expression of inflammatory genes in the
166 ileum tissue, isolated from the Pro-sham+FVT mice, was not a systemic response. The levels of the
167 remaining measured immune cells (CD11c, CD86⁺CD11c, CD11b⁺CD11c, CD103⁺CD11c) were not
168 significantly affected by the sex of the animals, probiotics (AKM/LGG) or FVT.

169 ***Increased fertility rate following FVT***

170 The pregnancy status and fertility rate (number of fetuses or born pups) were evaluated for each
171 female mouse (Figure 6 and Figure S10) due to the natural consequences of pairing male and female
172 mice in cages. Surprisingly, the FVT treated female mice (Pro-sham+FVT, AKM+FVT, and
173 LGG+FVT) exhibited a significant increase in both fertility rate ($p = 0.014$, Figure 6A) and pregnancy
174 status ($p = 0.025$, Figure 6B) compared to controls. These observations were independent of the
175 administered probiotics LGG/AKM. It was also observed that none of the female AKM+Saline mice
176 ($n = 4$) were pregnant (Figure S10).

177 **Discussion**

178 Here we investigated the potential of using phage-mediated “GM disturbance” to improve the
179 engraftment of two different probiotics (*A. muciniphila*; AKM and *L. rhamnosus GG*; LGG) in lean
180 mouse recipients over a time span of 5 weeks. The hypothesis was that fecal virome transplantation
181 (FVT) followed by probiotic administration would increase the chance of persistent enteric
182 colonization of the probiotic bacteria. However, the results did not support the hypothesis. Instead,
183 specie specific qPCR analysis showed that the FVT treatment at termination (9 weeks of age) had
184 significantly ($p < 0.05$) increased the abundance of naturally occurring *A. muciniphila* strains,
185 compared to non-FVT treated mice (Figure 2A & 2C). We ruled out that other *A. muciniphila* strains
186 were present in the applied FVT virome (Figure S2). The control (Pro-sham+Saline) and LGG+Saline
187 mice also increased their *A. muciniphila* abundance over time which likely can be explained by
188 regular GM maturation [24,25]. However, *A. muciniphila* abundance remained 1-2 log higher ($p =$
189 0.065) in the FVT/AKM groups at termination compared with the mice receiving neither AKM nor
190 FVT (Figure S1). The applied FVT originated from a GM community that allowed a relative
191 abundance of *A. muciniphila* > 6% [22]. Hence, the FVT-mediated enhancement of the abundance of
192 naturally occurring *A. muciniphila* strains emphasize the potential of transferring a phenotype along

193 with the FVT. A concept which has been reported in other studies as well [16–19]. The administered
194 LGG did not persistently colonize regardless of FVT treatment (Figure 2).

195 The bacteriome analysis showed that FVT significantly ($p < 0.05$) decreased the bacterial
196 Shannon diversity in the LGG+FVT and Pro-sham+FVT mice at termination compared to the control
197 and the other treatment groups (Figure 3A). However, AKM may have counteracted this tendency
198 since the bacterial diversity of the AKM+FVT was unaffected. The mechanism behind this
199 observation is unknown. However, assuming that a phenotype can be transferred along with the FVT,
200 the decrease in bacterial diversity may be associated to the very low viral diversity and markedly
201 different viral composition in the transferred FVT donor virome (Figure 4A & 4B). It could therefore
202 be hypothesized that a low viral diversity may also favor a low bacterial diversity, due to the inherit
203 link between phages and their bacterial hosts. This may fit with a previous study where the viral
204 diversity of the fecal donor virome was higher than the recipient virome and FVT resulted in increased
205 bacterial diversity in the recipient mice compared to non-FVT treated mice [17]. More than 90% of
206 the relative abundance of the FVT donor virome represented *Microviridae* viruses which was in
207 accordance to the relative abundance of genetically identical B6N mice in a previous study [22].
208 Furthermore, PhiX (a *Microviridae* used to spike the metavirome sequencing) sequences were
209 excluded from the analysis, thus the high relative abundance of *Microviridae* was not a technical
210 artefact.

211 It should be noted that the initial viral diversity and composition at baseline appeared to vary
212 within the treatment groups. The interpretation of changes in the viral diversity and composition were
213 therefore challenged, although the analysis indicated that the FVT, AKM, and/or LGG may have
214 affected ($p < 0.05$) both the viral Shannon diversity and composition irrespectively of initial group
215 differences.

216 Both immune cell counting and the expression levels of genes involved inflammatory responses
217 were measured to evaluate potential safety issues associated to the FVT from lean donors to lean
218 recipients. Here especially the Pro-sham+FVT appeared with significantly ($p < 0.05$) increased gene
219 expression levels compared to control mice (Figure 5) in the following pro- and/or anti-inflammatory
220 related genes; *Ccl2* [26], *Ccr10* [27], *Ctla4* [28], *Cxcl1* [29], *Il1b* [30], *Il4* [31], *Il6* [32], *Retnlb* [33],
221 *Timp1* [34], *Ffar2* [35,36], whereas *Ffar3* [35] and *Nod2* [37] decreased. Interestingly, the
222 combination of AKM+FVT counteracted the elevated expression of these genes (Figure 5), which
223 may be explained by previously suggested synergistic effects of combining probiotics and phages
224 [38]. These indications of inflammatory response in the ileum tissue were not supported by immune

225 cell counts in the mesenteric lymph node (MLN). The T cell counts were significantly lower ($p <$
226 0.05) in FVT treated mice compared to the control while the cytotoxic T cell and dendritic cell counts
227 were similar when compared to control mice (Figure 5N & 5O). This suggest that the FVT did not
228 activate a systemic immune response, but rather a more a local response due to the presence of foreign
229 viral particles [39,40].

230 The administration of AKM in the AKM+Saline and AKM+FVT mice significantly decreased
231 ($p < 0.05$) the expression of the *Muc1* gene that is a membrane-tethered mucin expressed on surfaces
232 of epithelial cells – also in the intestine [23]. Both overexpression and knockout of the *Muc1* gene
233 has been associated with the development of different cancer diseases [41–43], but have also been
234 reported to be associated with anti-inflammatory effects by regulating toll-like receptor (TLR)
235 expressions [44,45]. *A. muciniphila* is a mucin-degrading bacteria and have been suggested to have
236 beneficial impact on human health, of which is linked to the regulation of the mucus thickness and
237 gut barrier integrity [46]. Hence, it could be speculated that additional degradation of mucin by the
238 administered AKM strain regulated the expression of *Muc1* to a neither over-expressive nor over-
239 suppressive level.

240 The FVT treated mice were unexpectedly associated with a significantly ($p < 0.05$) increased
241 fertility rate (Figure 6A) and pregnancy status (Figure 6B). The study was not designed to investigate
242 fertility rates which also are reflected by the group sizes. Both the male and female mice were treated
243 with FVT; thus, the basic premises of the experimental setup make it challenging to evaluate if the
244 increased fertility rate and pregnancy status were due to improved sperm quality of the males and/or
245 improved conditions for fertility in the female mice. Emerging evidence suggest that infertility should
246 be added to the list of GM associated diseases [47–49], and the importance of validating this link to
247 the GM is emphasized by infertility being estimated to affect up to 15% of couples world-wide
248 [50,51]. Our observations are in line with other studies suggesting a link between fertility and the
249 GM, e.g. the demonstrated improvement of spermatogenesis with FMT from healthy donors [52], as
250 well as, impairment of spermatogenesis with FMT from donors with a dysbiotic GM [47]. In regard
251 to females, links have been suggested between maternal obesity, gut dysbiosis, and inflammation
252 [49]. New results have discovered a markedly increase in the abundance of *Bacteroides vulgatus* in
253 the gut of polycystic ovary syndrome (PCOS) individuals, that through deconjugations of bile acids
254 in the liver affects the interleukin-22 (IL-22) levels and ultimately the fertility [48]. Although
255 additional experiments need to be conducted, it cannot be ruled out, that the transfer of AKM in the

256 AKM+Saline mice led to similar cascading events that might have decreased the fertility of the male
257 and/or female mice (Figure 6).
258 Conclusively, we here demonstrate that FVT increases the abundance of, what is expected to be,
259 naturally occurring *A. muciniphila* strains in the recipient mice. The bulk and undefined nature of
260 fecal viromes prevents any direct use as a commercial product. However, our results highlight the
261 potential of using phage-mediated changes of the GM as a supplement to probiotics to enhance the
262 growth of healthy commensals that outside the body are defined as probiotics. Furthermore, an
263 unexpected event of increased fertility rate and pregnancy status was associated to the FVT treatment,
264 which urge for additional studies specifically designed to clarify our observations.

265 **Methods**

266 ***Bacterial strains***

267 The commercially available probiotic bacterium *Lacticaseibacillus rhamnosus* GG (LMG 18243,
268 former *Lactobacillus rhamnosus* [53]) was included along with *Akkermansia muciniphila* YL-44
269 (DSM 26127), as a representative of next-generation probiotics [54].

270 ***Preparation of inocula of L. rhamnosus (LGG) and A. muciniphila (AKM) for transfer to***
271 ***mice***

272 *L. rhamnosus* GG (LGG) and *A. muciniphila* YL-44 (AKM) were both handled and incubated
273 anaerobically as described previously [55]. AKM was incubated in Gifu Anaerobic Medium (GAM,
274 HyServe, cat. no. 5422) and LGG in de Man Rogosa Sharpe broth (MRS, Merck, cat. no. 69966) in
275 broth or agar plates containing 1.5% agar. In brief, GAM or MRS broth were boiled prior to
276 distribution in Hungate tubes (SciQuip, cat. no. 2047-16125), and subsequently flushed with 100%
277 N₂ with an anaerobic gassing unit (QCAL Messtechnik GmbH, Munich, Germany) for at least 3 min
278 per 10 mL. Both liquid and solid media contained 0.02% (w/v) 1,4-dithiothreitol (Merck, cat. No.
279 DTT-RO) and 0.05% (w/v) L-cysteine (Merck, cat. no. 168149) as reducing agents and 1 mg/L
280 resazurin as oxygen indicator. All media were autoclaved (121°C for 20 min). Anaerobic handling of
281 cultures was performed in an anaerobic chamber (Model AALC, Coy Laboratory Products, Grass
282 Lake, Michigan, USA) containing ~93% (v/v) N₂, ~2% H₂, ~5% CO₂ at room temperature (RT), and
283 agar plates were incubated in an anaerobic jar (Thermo Scientific, cat. no. HP0011A,) along with an
284 anaerobic sachet (Thermo Scientific, AnaeroGen™ cat. no. AN0035A). Incubation of tubes as well

285 as plates was performed at 37°C. For preparing the probiotic solutions, a single bacterial colony was
286 inoculated to the growth medium and incubated until the stationary phase was reached after 24 hours
287 for LGG or 72 hours for AKM. This was followed by a 2% (v/v) culture incubation until the
288 exponential phase was reached after 12 hours for LGG or 48 hours for AKM. The bacterial
289 concentrations were measured with an optical density at 600 nm (OD₆₀₀) with Genesys™ 30 Visible
290 spectrophotometer (Thermo Scientific, cat. no. 840-277000, Waltham, Massachusetts, USA)
291 mounted with a test-tube holder (VWR, cat. no. 634-0911). To ensure high bacterial loads in the
292 probiotic inocula, the bacterial cultures were upconcentrated 40x by centrifugation at 4450 x g for 30
293 min at RT under anaerobic conditions and resuspended in anaerobic Intralipid®. Intralipid® was used
294 to protect the viable bacterial cells against the acidic environment in the mouse upper gastrointestinal
295 tract [56] and an oil-water emulsion solution was made by mixing the resuspended bacterial cultures
296 with a 3-way stopcock (Braun, Discofix® cat. no. 409511). Pure Intralipid® was used as the probiotic
297 sham (Pro-sham). Small single-use vials of the probiotic solutions were prepared for each mouse to
298 minimize the introduction of oxygen when administering the probiotics. The probiotic solutions were
299 freshly prepared for both the 1st and 2nd inoculation which explain the variances in the bacterial colony
300 forming units (CFU)/mL. Phase contrast microscopy images were taken to check for contamination
301 on the cell morphology level (Figure S11). The total CFU transferred to each mouse at 1st inoculation
302 was LGG: 2.8 x 10⁸ CFU and AKM: 3.8 x 10⁸ CFU and at 2nd inoculation LGG: 5.5 x 10⁹ CFU and
303 AKM: 2.0 x 10⁹ CFU.

304 ***Preparation of donor virome***

305 Fecal viromes were extracted from intestinal content from mice (low-fat diet fed male C57BL/6NCrl
306 and C57BL/6NRj mice) that previously [22] was found with a relative abundance of *A. muciniphila*
307 above 6% and to exhibit inter-vendor variance in their GM profiles [22,57]. The titer of the applied
308 FVT virome was approximately 5.4 x 10⁹ virus-like particles (VLP)/mL (Figure S12 and Table S1)
309 for both 1st and 2nd inoculation and was evaluated by epifluorescence microscopy stained by SYBR™
310 Gold (Thermo Scientific, cat. no. S11494) as previously described
311 (dx.doi.org/10.17504/protocols.io.bx6cpraw). The total VLPs transferred to each mouse per
312 inoculation was 8.0 x 10⁸ VLPs. SM buffer (NaCl 200 mM, MgSO₄·7H₂O 16 mM, Tris-HCl 100
313 mM, pH 7.5) was used as viral sham (Saline).

314 **Animal study design**

315 In total 48 C57BL/6NTac mice at 4 weeks old (Taconic, Lille Skensved, Denmark) were included in
316 the study (representing 24 males and 24 females). They were ear tagged upon arrival and divided into
317 six groups: LGG+FVT, AKM+FVT, Pro-sham+FVT, LGG+Saline, AKM+Saline, and control (Pro-
318 sham+Saline) (Figure 1). The Saline consisted of SM buffer and Pro-sham consisted of Intralipid®
319 (Fresenius Kabi, Intralipid® 200 mg/mL) that were used to suspend the probiotic bacteria. The mice
320 were housed in open transparent cages with a wire lid (1290D Eurostandard Type III, Scanbur A/S,
321 Karlslunde, Denmark) with access to bottled tap water *ad libitum*, and the cages were enriched with
322 bedding, cardboard housing, tunnel, nesting material, felt pad, and biting stem
323 (respectively, Cat. no. 30983, 31000, 31003, 31008, 31007, 30968 Brogaarden). The mice were fed
324 *ad libitum* chow diet (Altromin 1324, Brogaarden) during the entire 6 weeks of the study. Health
325 monitoring of animals was performed without revealing any pathogens according to FELASA
326 guidelines [58]. Cages were changed weekly. The mice were housed in male-female pairs (in total 24
327 cages) to evaluate the effect of sex of the animals on the interventions, increase animal welfare by
328 eliminating aggression between co-housed males, and by consequence also allowed natural mating
329 behavior. After a week of acclimatization, the mice were inoculated orally using a pipette with 50 µl
330 1M bicarbonate solution (Merck, cat. no. S5761) that 5 min later was followed by oral gavage with
331 0.15 mL FVT/Saline solutions (FVT/Saline, n = 24). The following day the mice were inoculated
332 orally by gently using a pipette with 100 µL probiotic solution of AKM/LGG/Pro-sham (AKM/Pro-
333 sham, n=16 and LGG/Pro-sham, n=16), which constituted the 1st inoculation. The same procedures
334 were repeated in the 2nd inoculation a week after. The mice were weighted, and fecal samples were
335 taken at several timepoints during the study, amongst other at baseline, 6 days after 2nd intervention,
336 and at termination. The fecal samples were stored at -80°C. One female mouse (representing the
337 AKM+FVT group) was sacrificed following the first probiotic inoculation due to suffering. At
338 termination (9 weeks of age), the remaining 47 mice were anesthetized with a hypnorm/midazolam
339 mixture. Both hypnorm (Hypnorm BN: P736/005, VetaPharma Ltd, Leeds, UK) and midazolam were
340 mixed with sterile water in a ratio of 1:1 (BN: 353 0418, Braun, Melsungen, Germany). The animals
341 were euthanized by cervical dislocation. The mesenteric lymph node (MLN) was sampled in ice cold
342 PBS and 2 cm of the distal ileum was sampled in two pieces and snap frozen in liquid nitrogen and
343 stored in -80°C. Surgical equipment used for tissue and fecal sampling during terminal procedures
344 was sterilized between each animal. Pups, both born and *in utero* were counted and euthanized by
345 decapitation. The study was approved by the Danish Competent Authority, The Animal

346 Experimentation Inspectorate, under the Ministry of Environment and Food of Denmark, and
347 performed under license No. 2017-15-0201-01262 C1-3. Procedures were carried out in accordance
348 with the Directive 2010/63/EU and to the Danish law LBK Nr 726 af 09/091993, and housing
349 conditions as earlier described [22].

350 ***Gene expression assay***

351 Ileum (1 cm) pieces were transferred to tubes (Mpbio, cat. no. FastPrep® 50-76-200) including 0.6g
352 glass beads (Sigma-Aldrich, cat. no. G4649), 600 μ l lysis binding solution concentrate (Invitrogen™,
353 cat. no. AM1830) and 0.7% β -mercaptoethanol (Sigma-Aldrich, cat. no. M6250) and homogenized
354 on the FastPrep-24™ Classic Instrument (Mpbio, Irvine, California, USA) with 4 x (45 sec at speed
355 6.5 m/s) runs. The homogenate was centrifuged at 16,000 x g and the supernatant was frozen at -20°C
356 for at least 24 hours before purification of RNA using the MagMax™ Express Magnetic Particle
357 Processor (Applied Biosystems™, Waltham, Massachusetts, USA) using manufacturer's instructions
358 (Invitrogen™, cat. no. AM1830). RNA purity and concentration were assessed using DeNovix DS11
359 Fx+ Spectrophotometer (DeNovix, Wilmington, USA) and intact 18S rRNA and 28S rRNA bands was
360 visually inspected on a 1.4% agarose gel. cDNA was synthesized from 500 ng total RNA with the
361 High-capacity cDNA reverse Transcription Kit (Applied Biosystems™, Waltham, Massachusetts,
362 USA) in a reaction volume of 20 μ l following manufacturers recommendations. 2 -RT controls were
363 prepared without the Reverse transcriptase enzyme and cDNA samples was diluted 8x after synthesis.
364 High throughput qPCR was run on duplicates on the Biomark HD system (Fluidigm Corporation,
365 South San Francisco, California, USA) on 2x 96.96 IFC chips on pre-amplified cDNA duplicates
366 using manufacturer's instructions with minor adjustments as previously described [59]. The majority
367 of the primers in the Ileum primer panel was previously published [17]. 81 primer assays (74
368 candidate genes, 7 reference genes, 1 gDNA control assay) (see Supplementary file 1 for the full list)
369 were present with one product and had a sufficient efficiency between 75-110%. In addition, the
370 MVP1 gene assay was included to control for gDNA contamination [60]. qPCR data was analyzed
371 as previously described and normalized to the four most stable reference genes: Sdha, Tuba, Pgk1,
372 Ppia [17,59]. A log2 fold change threshold was set to 0.5 and the FDR p-value to 0.05 for gene
373 expressions to be included in the analysis.

374 ***Cell isolation and flow cytometry (FACS)***

375 Directly after euthanasia of the mice, the mesenteric lymph node (MLN) was placed in ice cold PBS.
376 Single cell suspensions were prepared by disrupting the lymph node between two microscope glasses
377 and passing it through a 70 µm nylon mesh. After washing and resuspension, 1x10⁶ cells were surface
378 stained for 30 min with antibodies for Percp-Cy5.5 conjugated CD11c, PE-conjugated CD86, APC-
379 conjugated CD11b, and FITC-conjugated CD103 (all antibodies were purchased from eBiosciences,
380 San Diego, CA USA) for the detection of tolerogenic dendritic cells (DCs). For the detection of T
381 cell subsets, 1x10⁶ cells were initially surface stained for 30 min with FITC-conjugated CD3, PercP-
382 Cy5.5-conjugated CD4, and APC-conjugated CD8a (ebiosciences), then fixate and permeabilized
383 with the FoxP3/Transcription Facter Staining Buffer Set (ebiosciences), and finally stained for 30
384 min with PE-conjugated intracellular forkhead box P3 (FOXP3) (ebioscience). Analysis was
385 performed using an Accuri C6 flow cytometer (Accuri Cytometers, Ann Arbor, MI, USA).

386 ***Pre-processing of fecal samples***

387 Fecal samples from three different timepoints were included to investigate GM changes over time:
388 baseline, after intervention, and at termination. This represented in total 142 fecal samples from the
389 C57BL/6NTac mice. Separation of the viruses and bacteria from the fecal samples generated a fecal
390 pellet and fecal supernatant as earlier described [22].

391 ***Quantitative real-time PCR for measuring probiotic density***

392 The bacterial density of AKM and LGG in the fecal samples was estimated using quantitative real-
393 time polymerase chain reaction (qPCR) with species specific primers (AKM_Fwd: 5'-CCT TGC
394 GGT TGG CTT CAG AT-3' and AKM_Rev: 5'-CAG CAC GTG AAG GTG GGG AC-3' [61] and
395 LGG_Fwd: 5'-GCC GAT CGT TGA CGT TAG TTG G-3' and LGG_Rev: 5'-CAG CGG TTA TGC
396 GAT GCG AAT-3' [62]) purchased from Integrated DNA Technologies (IDT, Iowa, USA). Standard
397 curves (Table S2) were based on a dilution series of total DNA extracted from monocultures of AKM
398 and LGG. The qPCR results were obtained using the CFX96 Touch Real-Time PCR Detection
399 System (Bio-Rad Laboratories, Hercules, California, USA) and the reagent SsoFast™ EvaGreen®
400 Supermix with Low ROX (Bio-Rad Laboratories, cat. no. 1725211), and run as previously described
401 [63].

402 ***Bacterial DNA extraction, sequencing and pre-processing of raw data***

403 The Bead-Beat Micro AX Gravity kit (A&A Biotechnology, cat. no. 106-100 mod.1) was used to
404 extract bacterial DNA from the fecal pellet by following the instructions of the manufacturer. The
405 final purified DNA was stored at -80°C and the DNA concentration was determined using Qubit HS
406 Assay Kit on the Qubit 4 Fluorometric Quantification device (Invitrogen, Carlsbad, California, USA).
407 The bacterial community composition was determined by Illumina NextSeq-based high-throughput
408 sequencing (HTS) of the 16S rRNA gene V3-region, as previously described [22]. Quality-control of
409 reads, de-replicating, purging from chimeric reads and constructing zOTU was conducted with the
410 UNOISE pipeline [64] and taxonomically assigned with Sintax [65] (not yet peer reviewed).
411 Taxonomical assignments were obtained using the EZtaxon for 16S rRNA gene database [66]. Code
412 describing this pipeline can be accessed in github.com/jcame/Fastq_2_zOTUtable. The average
413 sequencing depth after quality control (Accession: PRJEB52388, available at ENA) for the fecal 16S
414 rRNA gene amplicons was 47,526 reads (min. 6,588 reads and max. 123,389 reads).

415 ***Viral DNA extraction, sequencing and pre-processing of raw data***

416 The sterile filtered fecal supernatant was concentrated using Centriprep® filter units (Merck, cat. no.
417 4311 and cat. no. 4307). This constituted the concentrated virome. Due to a permanent stop in the
418 production of Centriprep® filter units at the manufacturer, we were forced to use residual stocks of
419 filter size 30 kDa (cat. no. 4307) for 42% of the samples (Table S3). The samples were all centrifuged
420 at 1500 x g at 15°C until approx. 500 µL concentrated virome sample was left, the filter was removed
421 with a sterile scalpel and stored along with the concentrated virome at 4°C. Viral DNA was extracted,
422 multiple displacement amplification (MDA, to include ssDNA viruses), and Illumina NextSeq
423 sequencing data generated as previously described [22]. The average sequencing depth after quality
424 control (Accession: PRJEB52388, available at ENA) for the fecal viral metagenome was 209,641
425 reads (min. 21,580 reads and max. 510,332 reads. The raw reads were trimmed from adaptors and the
426 high quality sequences (>95% quality) using Trimmomatic v0.35 [67] with a minimum size of 50nt
427 were retained for further analysis. High quality reads were de-replicated and checked for the presence
428 of PhiX control using BBMap (bbduk.sh) (<https://www.osti.gov/servlets/purl/1241166>). Virus-like
429 particle-derived DNA sequences were subjected to within-sample de-novo assembly-only using
430 Spades v3.13.1 [68] and the contigs with a minimum length of 2,200 nt, were retained. Contigs
431 generated from all samples were pooled and de-replicated at 90% identity using BBMap (dedupe.sh).
432 Prediction of viral contigs/genomes was carried out using VirSorter2 [69] ("full" categories |

433 dsDNAphage, ssDNA, RNA, Lavidaviridae, NCLDV | viralquality ≥ 0.66), vibrant [70] (High-
434 quality | Complete), and checkv [71] (High-quality | Complete). Taxonomy was inferred by blasting
435 viral ORF against viral orthologous groups (<https://vogdb.org>) and the Lowest Common Ancestor
436 (LCA) for every contig was estimated based on a minimum e-value of $10e^{-5}$. Phage-host prediction
437 was determined by blasting (85% identity) CRISPR spacers and tRNAs predicted from >150,000 gut
438 species-level genome bins (SGBs) [72,73] ([73], not yet peer reviewed). Following assembly, quality
439 control, and annotations, reads from all samples were mapped against the viral (high-quality) contigs
440 (vOTUs) using the bowtie2 [74] and a contingency-table of reads per Kbp of contig sequence per
441 million reads sample (RPKM) was generated, here defined as vOTU-table (viral contigs). Code
442 describing this pipeline can be accessed in github.com/jcame/virome_analysis-FOOD.

443 ***Bioinformatic analysis of bacterial and viral DNA sequences***

444 Initially the RPKM normalized dataset was purged for viral contigs which were detected in less than
445 5% of the samples, but the resulting dataset still maintained 99.5% of the total reads. Cumulative sum
446 scaling (CSS) [75] was applied for the analysis of β -diversity to counteract that a few viral contigs
447 represented a majority of count values, since CSS have been benchmarked with a high accuracy for
448 the applied metrics [76]. CSS normalization was performed using the R software using the
449 metagenomeSeq package [77]. A-diversity analysis was based on raw read counts and statistics were
450 based on ANOVA. R version 4.01 [78] was used for subsequent analysis and presentation of data.
451 The data are uploaded as supplementary data (www.osf.io/tm2a5). The main packages used were
452 phyloseq [79], vegan [80], deseq2 [81], ampvis2 [82] (not yet peer reviewed), ggpubr [83], mctoolsr
453 (<https://github.com/leffj/mctoolsr/>), and ggplot2 [84]. B-diversity was represented by Bray
454 Curtis dissimilarity and statistics were based on PERMANOVA. A linear model
455 (y~FVT+probiotics+sex), similar to ANOVA, was applied to assess the statistically differences
456 between the treatment groups of gene expression, bacterial abundance, immune cell counts, and
457 fertility rate. Two treatment groups were applied in the model; a FVT group (levels: control and FVT)
458 and a probiotic group (levels: control, AKM and LGG). The sex of the animal was added as an
459 additional factor, except for fertility outcome analysis where only females were included. For binary
460 outcomes a generalized logistic regression model was applied.

461 **Acknowledgements**

462 We thank the animal caretakers Helene Farlov and Mette Nelander at Section of Experimental Animal
463 Models (University of Copenhagen, Denmark) for taking care of the animals during the study and
464 assisting with the animal handling.

465 **Funding**

466 Funding was provided by the Danish Council for Independent Research with grant ID: DFF-6111-
467 00316 “PhageGut” (www.phagegut.ku.dk).

468 **Author contributions**

469 TSR, CMJM, AKH, and DSN conceived the research idea and designed the study; TSR, CMJM,
470 MRD, LSFZ, performed the experiments TSR, CMJM, MRD, RRJ, LSFZ, JLCM, LHH, AKH, and
471 DSN performed laboratory and data analysis; TSR wrote the first draft of the manuscript. All authors
472 critically revised and approved the final version of the manuscript.

473 **Competing interests**

474 All authors declare no conflicts of interest.

475 **Data availability statement**

476 Supplementary materials and raw data used for the analysis can be accessed through doi:
477 10.17605/OSF.IO/TM2A5 (www.osf.oi/tm2a5). Raw sequencing data can be accessed at ENA with
478 project ID: PRJEB52388 (<https://www.ebi.ac.uk/ena/browser/>).

479

480 **References**

- 481 1 Ley RE, Turnbaugh PJ, Klein S, *et al.* Microbial ecology: human gut microbes associated
482 with obesity. *Nature* 2006;444:1022–3. doi:10.1038/4441022a
- 483 2 Kang D-W, Adams JB, Coleman DM, *et al.* Long-term benefit of microbiota transfer therapy
484 on autism symptoms and gut microbiota. *Sci Rep* 2019;9:5821. doi:10.1038/s41598-019-
485 42183-0

486 3 Nakatsu G, Zhou H, Wu WKK, *et al.* Alterations in enteric virome are associated with
487 colorectal cancer and survival outcomes. *Gastroenterology* 2018;155:529-541.e5.
488 doi:10.1053/j.gastro.2018.04.018

489 4 Reid JNS, Bisanz JE, Monachese M, *et al.* The rationale for probiotics improving
490 reproductive health and pregnancy outcome. *Am J Reprod Immunol* 2013;69:n/a-n/a.
491 doi:10.1111/aji.12086

492 5 Valcarce DG, Genovés S, Riesco MF, *et al.* Probiotic administration improves sperm quality
493 in asthenozoospermic human donors. *Benef Microbes* 2017;8:193–206.
494 doi:10.3920/BM2016.0122

495 6 Martín R, Langella P. Emerging health concepts in the probiotics field: Streamlining the
496 definitions. *Front Microbiol* 2019;10. doi:10.3389/fmicb.2019.01047

497 7 Katan MB. Why the European Food Safety Authority was right to reject health claims for
498 probiotics. *Benef Microbes* 2012;3:85–9. doi:10.3920/BM2012.0008

499 8 Zhao S, Liu W, Wang J, *et al.* *Akkermansia muciniphila* improves metabolic profiles by
500 reducing inflammation in chow diet-fed mice. *J Mol Endocrinol* 2017;58:1–14.
501 doi:10.1530/JME-16-0054

502 9 Everard A, Belzer C, Geurts L, *et al.* Cross-talk between *Akkermansia muciniphila* and
503 intestinal epithelium controls diet-induced obesity. *Proc Natl Acad Sci U S A*
504 2013;110:9066–71. doi:10.1073/pnas.1219451110

505 10 Scott CJ, Kardon RH, Lee AG, *et al.* Diagnosis and grading of papilledema in patients with
506 raised intracranial pressure using optical coherence tomography vs clinical expert assessment
507 using a clinical staging scale. *Arch Ophthalmol (Chicago, Ill 1960)* 2010;128:705–11.
508 doi:10.1001/archophthalmol.2010.94

509 11 Kristensen NB, Bryrup T, Allin KH, *et al.* Alterations in fecal microbiota composition by
510 probiotic supplementation in healthy adults: a systematic review of randomized controlled
511 trials. *Genome Med* 2016;8:52. doi:10.1186/s13073-016-0300-5

512 12 Howe A, Ringus DL, Williams RJ, *et al.* Divergent responses of viral and bacterial
513 communities in the gut microbiome to dietary disturbances in mice. *ISME J* 2016;10:1217–
514 27. doi:10.1038/ismej.2015.183

515 13 Scarpellini E, Ianiro G, Attili F, *et al.* The human gut microbiota and virome: Potential
516 therapeutic implications. *Dig Liver Dis* 2015;47:1007–12. doi:10.1016/j.dld.2015.07.008

517 14 Reyes A, Haynes M, Hanson N, *et al.* Viruses in the faecal microbiota of monozygotic twins
518 and their mothers. *Nature* 2010;466:334–8. doi:10.1038/nature09199

519 15 Barrangou R, Yoon S-S, Breidt F, *et al.* Characterization of six *Leuconostoc fallax*
520 bacteriophages isolated from an industrial sauerkraut fermentation. *Appl Environ Microbiol*
521 2002;68:5452–8. doi:10.1128/AEM.68.11.5452-5458.2002

522 16 Ott SJ, Waetzig GH, Rehman A, *et al.* Efficacy of sterile fecal filtrate transfer for treating
523 patients with *Clostridium difficile* infection. *Gastroenterology* 2017;152:799-811.e7.
524 doi:10.1053/j.gastro.2016.11.010

525 17 Rasmussen TS, Mentzel CMJ, Kot W, *et al.* Faecal virome transplantation decreases
526 symptoms of type 2 diabetes and obesity in a murine model. *Gut* 2020;69:2122–30.
527 doi:10.1136/gutjnl-2019-320005

528 18 Brunse A, Deng L, Pan X, *et al.* Fecal filtrate transplantation protects against necrotizing
529 enterocolitis. *ISME J* 2022;16:686–94. doi:10.1038/s41396-021-01107-5

530 19 Zuo T, Wong SH, Lam K, *et al.* Bacteriophage transfer during faecal microbiota
531 transplantation in *Clostridium difficile* infection is associated with treatment outcome. *Gut*
532 2018;67:634–43. doi:10.1136/gutjnl-2017-313952

533 20 Rasmussen TS, Koefoed AK, Jakobsen RR, *et al.* Bacteriophage-mediated manipulation of
534 the gut microbiome - promises and presents limitations. *FEMS Microbiol Rev* 2020;44:507–
535 21. doi:10.1093/femsre/fuaa020

536 21 Draper LA, Ryan FJ, Dalmasso M, *et al.* Autochthonous faecal viral transfer (FVT) impacts
537 the murine microbiome after antibiotic perturbation. *BMC Biol* 2020;18:173.
538 doi:10.1186/s12915-020-00906-0

539 22 Rasmussen TS, de Vries L, Kot W, *et al.* Mouse vendor influence on the bacterial and viral
540 gut composition exceeds the effect of diet. *Viruses* 2019;11:435. doi:10.3390/v11050435

541 23 Dhar P, McAuley J. The role of the cell surface mucin MUC1 as a barrier to infection and
542 regulator of inflammation. *Front Cell Infect Microbiol* 2019;9:117.
543 doi:10.3389/fcimb.2019.00117

544 24 Lynn MA, Eden G, Ryan FJ, *et al.* The composition of the gut microbiota following early-
545 life antibiotic exposure affects host health and longevity in later life. *Cell Rep*
546 2021;36:109564. doi:10.1016/j.celrep.2021.109564

547 25 Wang J, Lang T, Shen J, *et al.* Core gut bacteria analysis of healthy mice. *Front Microbiol*
548 2019;10:887. doi:10.3389/fmicb.2019.00887

549 26 Daly C, Rollins BJ. Monocyte chemoattractant protein-1 (CCL2) in inflammatory disease
550 and adaptive immunity: therapeutic opportunities and controversies. *Microcirculation*
551 2003;10:247–57. doi:10.1038/sj.mn.7800190

552 27 Wu Q, Chen J-X, Chen Y, *et al.* The chemokine receptor CCR10 promotes inflammation-
553 driven hepatocarcinogenesis via PI3K/Akt pathway activation. *Cell Death Dis* 2018;9:232.
554 doi:10.1038/s41419-018-0267-9

555 28 Verhagen J, Sabatos CA, Wraith DC. The role of CTLA-4 in immune regulation. *Immunol
556 Lett* 2008;115:73–4. doi:10.1016/j.imlet.2007.10.010

557 29 Łukaszewicz-Zajac M, Pączek S, Mroczko P, *et al.* The significance of CXCL1 and CXCL8
558 as well as their specific receptors in colorectal cancer. *Cancer Manag Res* 2020;Volume
559 12:8435–43. doi:10.2147/CMAR.S267176

560 30 Ren K, Torres R. Role of interleukin-1beta during pain and inflammation. *Brain Res Rev*
561 2009;60:57–64. doi:10.1016/j.brainresrev.2008.12.020

562 31 Brown MA, Hural J. Functions of IL-4 and control of its expression. *Crit Rev Immunol*
563 1997;17:1–32. doi:10.1615/critrevimmunol.v17.i1.10

564 32 Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. *Cold
565 Spring Harb Perspect Biol* 2014;6:a016295. doi:10.1101/cshperspect.a016295

566 33 Pine GM, Batugedara HM, Nair MG. Here, there and everywhere: Resistin-like molecules in
567 infection, inflammation, and metabolic disorders. *Cytokine* 2018;110:442–51.
568 doi:10.1016/j.cyto.2018.05.014

569 34 Knight BE, Kozlowski N, Havelin J, *et al.* TIMP-1 attenuates the development of
570 inflammatory pain through MMP-dependent and receptor-mediated cell signaling
571 mechanisms. *Front Mol Neurosci* 2019;12:1–16. doi:10.3389/fnmol.2019.00220

572 35 Bartoszek A, Moo E Von, Binienda A, *et al.* Free Fatty Acid Receptors as new potential

573 therapeutic target in inflammatory bowel diseases. *Pharmacol Res* 2020;152:104604.
574 doi:10.1016/j.phrs.2019.104604

575 36 Sivaprakasam S, Gurav A, Paschall A V, *et al.* An essential role of Ffar2 (Gpr43) in dietary
576 fibre-mediated promotion of healthy composition of gut microbiota and suppression of
577 intestinal carcinogenesis. *Oncogenesis* 2016;5:e238. doi:10.1038/oncsis.2016.38

578 37 Rodriguez-Nunez I, Caluag T, Kirby K, *et al.* Nod2 and Nod2-regulated microbiota protect
579 BALB/c mice from diet-induced obesity and metabolic dysfunction. *Sci Rep* 2017;7:548.
580 doi:10.1038/s41598-017-00484-2

581 38 Grubb DS, Wrigley SD, Freedman KE, *et al.* PHAGE-2 Study: Supplemental bacteriophages
582 extend *Bifidobacterium animalis* subsp. *lactis* BL04 benefits on gut health and microbiota in
583 healthy adults. *Nutrients* 2020;12. doi:10.3390/nu12082474

584 39 Chen L, Deng H, Cui H, *et al.* Inflammatory responses and inflammation-associated diseases
585 in organs. *Oncotarget* 2018;9:7204–18. doi:10.18632/oncotarget.23208

586 40 Moro-García MA, Mayo JC, Sainz RM, *et al.* Influence of inflammation in the process of T
587 lymphocyte differentiation: proliferative, metabolic, and oxidative changes. *Front Immunol*
588 2018;9:339. doi:10.3389/fimmu.2018.00339

589 41 Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer
590 progression. *Trends Mol Med* 2014;20:332–42. doi:10.1016/j.molmed.2014.02.007

591 42 Xu X, Chen W, Leng S, *et al.* Muc1 knockout potentiates murine lung carcinogenesis
592 involving an epiregulin-mediated EGFR activation feedback loop. *Carcinogenesis*
593 2017;38:604–14. doi:10.1093/carcin/bgx039

594 43 Sahraei M, Bose M, Sanders JA, *et al.* Repression of MUC1 promotes expansion and
595 suppressive function of myeloid-derived suppressor cells in pancreatic and breast cancer
596 murine models. *Int J Mol Sci* 2021;22:1–15. doi:10.3390/ijms22115587

597 44 Kyo Y, Kato K, Park YS, *et al.* Antiinflammatory role of MUC1 mucin during infection with
598 nontypeable *Haemophilus influenzae*. *Am J Respir Cell Mol Biol* 2012;46:149–56.
599 doi:10.1165/rcmb.2011-0142OC

600 45 Lindén SK, Florin THJ, McGuckin MA. Mucin dynamics in intestinal bacterial infection.
601 *PLoS One* 2008;3:e3952. doi:10.1371/journal.pone.0003952

602 46 Trastoy B, Naegeli A, Anso I, *et al.* Structural basis of mammalian mucin processing by the
603 human gut O-glycopeptidase OgpA from *Akkermansia muciniphila*. *Nat Commun*
604 2020;11:4844. doi:10.1038/s41467-020-18696-y

605 47 Ding N, Zhang X, Zhang X Di, *et al.* Impairment of spermatogenesis and sperm motility by
606 the high-fat diet-induced dysbiosis of gut microbes. *Gut* 2020;69:1608–19.
607 doi:10.1136/gutjnl-2019-319127

608 48 Qi X, Yun C, Sun L, *et al.* Gut microbiota-bile acid-interleukin-22 axis orchestrates
609 polycystic ovary syndrome. *Nat Med* 2019;25:1225–33. doi:10.1038/s41591-019-0509-0

610 49 Davis JS. Connecting female infertility to obesity, inflammation, and maternal gut dysbiosis.
611 *Endocrinology* 2016;157:1725–7. doi:10.1210/en.2016-1198

612 50 Agarwal A, Mulgund A, Hamada A, *et al.* A unique view on male infertility around the
613 globe. *Reprod Biol Endocrinol* 2015;13:37. doi:10.1186/s12958-015-0032-1

614 51 Elhussein OG, Ahmed MA, Suliman SO, *et al.* Epidemiology of infertility and characteristics
615 of infertile couples requesting assisted reproduction in a low-resource setting in Africa,
616 Sudan. *Fertil Res Pract* 2019;5:7. doi:10.1186/s40738-019-0060-1

617 52 Zhang P, Feng Y, Li L, *et al.* Improvement in sperm quality and spermatogenesis following
618 faecal microbiota transplantation from alginate oligosaccharide dosed mice. *Gut*
619 2021;70:222–5. doi:10.1136/gutjnl-2020-320992

620 53 Zheng J, Wittouck S, Salvetti E, *et al.* A taxonomic note on the genus *Lactobacillus*:
621 Description of 23 novel genera, emended description of the genus *Lactobacillus Beijerinck*
622 1901, and union of *Lactobacillaceae* and *Leuconostocaceae*. *Int J Syst Evol Microbiol*
623 2020;70:2782–858. doi:10.1099/ijsem.0.004107

624 54 Cani PD, de Vos WM. Next-generation beneficial microbes: the case of *Akkermansia*
625 *muciniphila*. *Front Microbiol* 2017;8:1765. doi:10.3389/fmicb.2017.01765

626 55 Rasmussen TS, Streidl T, Hitch TCAA, *et al.* *Sporofaciens musculi* gen. nov., sp. nov., a
627 novel bacterium isolated from the caecum of an obese mouse. *Int J Syst Evol Microbiol*
628 2021;71:004673. doi:10.1099/ijsem.0.004673

629 56 Nguyen TLA, Vieira-Silva S, Liston A, *et al.* How informative is the mouse for human gut
630 microbiota research? *Dis Model Mech* 2015;8:1–16. doi:10.1242/dmm.017400

631 57 Rasmussen TS, Jakobsen RR, Castro-Mejía JL, *et al.* Inter-vendor variance of enteric
632 eukaryotic DNA viruses in specific pathogen free C57BL/6N mice. *Res Vet Sci* 2021;**136**:1–
633 5. doi:10.1016/j.rvsc.2021.01.022

634 58 Mähler (Convenor) M, Berard M, Feinstein R, *et al.* FELASA recommendations for the
635 health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and
636 experimental units. *Lab Anim* 2014;**48**:178–92. doi:10.1177/0023677213516312

637 59 Mentzel CMJ, Cardoso TF, Pipper CB, *et al.* Deregulation of obesity-relevant genes is
638 associated with progression in BMI and the amount of adipose tissue in pigs. *Mol Genet*
639 *Genomics* 2018;**293**:129–36. doi:10.1007/s00438-017-1369-2

640 60 Laurell H, Iacovoni JS, Abot A, *et al.* Correction of RT-qPCR data for genomic DNA-
641 derived signals with ValidPrime. *Nucleic Acids Res* 2012;**40**:e51. doi:10.1093/nar/gkr1259

642 61 Greer RL, Dong X, Moraes ACF, *et al.* *Akkermansia muciniphila* mediates negative effects
643 of IFN γ on glucose metabolism. *Nat Commun* 2016;**7**:13329. doi:10.1038/ncomms13329

644 62 Kim E, Yang S-M, Lim B, *et al.* Design of PCR assays to specifically detect and identify 37
645 *Lactobacillus* species in a single 96 well plate. *BMC Microbiol* 2020;**20**:96.
646 doi:10.1186/s12866-020-01781-z

647 63 Ellekilde M, Krych L, Hansen CHF, *et al.* Characterization of the gut microbiota in leptin
648 deficient obese mice - Correlation to inflammatory and diabetic parameters. *Res Vet Sci*
649 2014;**96**:241–50. doi:10.1016/j.rvsc.2014.01.007

650 64 Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs.
651 *Bioinformatics* 2018;**34**:2371–5. doi:10.1093/bioinformatics/bty113

652 65 Edgar R. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences.
653 *bioRxiv* 2016;:074161. doi:10.1101/074161

654 66 Kim O-S, Cho Y-J, Lee K, *et al.* Introducing EzTaxon-e: a prokaryotic 16S rRNA gene
655 sequence database with phylotypes that represent uncultured species. *Int J Syst Evol*
656 *Microbiol* 2012;**62**:716–21. doi:10.1099/ij.s.0.038075-0

657 67 Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence
658 data. *Bioinformatics* 2014;**30**:2114–20. doi:10.1093/bioinformatics/btu170

659 68 Bankevich A, Nurk S, Antipov D, *et al.* SPAdes: a new genome assembly algorithm and its

660 applications to single-cell sequencing. *J Comput Biol* 2012;19:455–77.
661 doi:10.1089/cmb.2012.0021

662 69 Guo J, Bolduc B, Zayed AA, *et al.* VirSorter2: a multi-classifier, expert-guided approach to
663 detect diverse DNA and RNA viruses. *Microbiome* 2021;9:37. doi:10.1186/s40168-020-
664 00990-y

665 70 Kieft K, Zhou Z, Anantharaman K. VIBRANT: automated recovery, annotation and curation
666 of microbial viruses, and evaluation of viral community function from genomic sequences.
667 *Microbiome* 2020;8:90. doi:10.1186/s40168-020-00867-0

668 71 Nayfach S, Camargo AP, Schulz F, *et al.* CheckV assesses the quality and completeness of
669 metagenome-assembled viral genomes. *Nat Biotechnol* 2021;39:578–85.
670 doi:10.1038/s41587-020-00774-7

671 72 Pasolli E, Asnicar F, Manara S, *et al.* Extensive unexplored human microbiome diversity
672 revealed by over 150,000 genomes from metagenomes spanning age, geography, and
673 lifestyle. *Cell* 2019;176:649–662.e20. doi:10.1016/j.cell.2019.01.001

674 73 Castro-Mejía JL, Khakimov B, Lind M V, *et al.* Gut microbiome and its cofactors are linked
675 to lipoprotein distribution profiles. *bioRxiv* 2021;:2021.09.01.458531.
676 doi:10.1101/2021.09.01.458531

677 74 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods*
678 2012;9:357–9. doi:10.1038/nmeth.1923

679 75 Paulson JN, Stine OC, Bravo HC, *et al.* Differential abundance analysis for microbial
680 marker-gene surveys. *Nat Methods* 2013;10:1200–2. doi:10.1038/nmeth.2658

681 76 Weiss S, Xu ZZ, Peddada S, *et al.* Normalization and microbial differential abundance
682 strategies depend upon data characteristics. *Microbiome* 2017;5:27. doi:10.1186/s40168-017-
683 0237-y

684 77 Paulson J. metagenomeSeq: Statistical analysis for sparse high-throughput sequencing.
685 *BioconductorJp* 2014;:1–20.

686 78 Team RC. R: A language and environment for statistical title.

687 79 McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and
688 graphics of microbiome census data. *PLoS One* 2013;8:e61217.

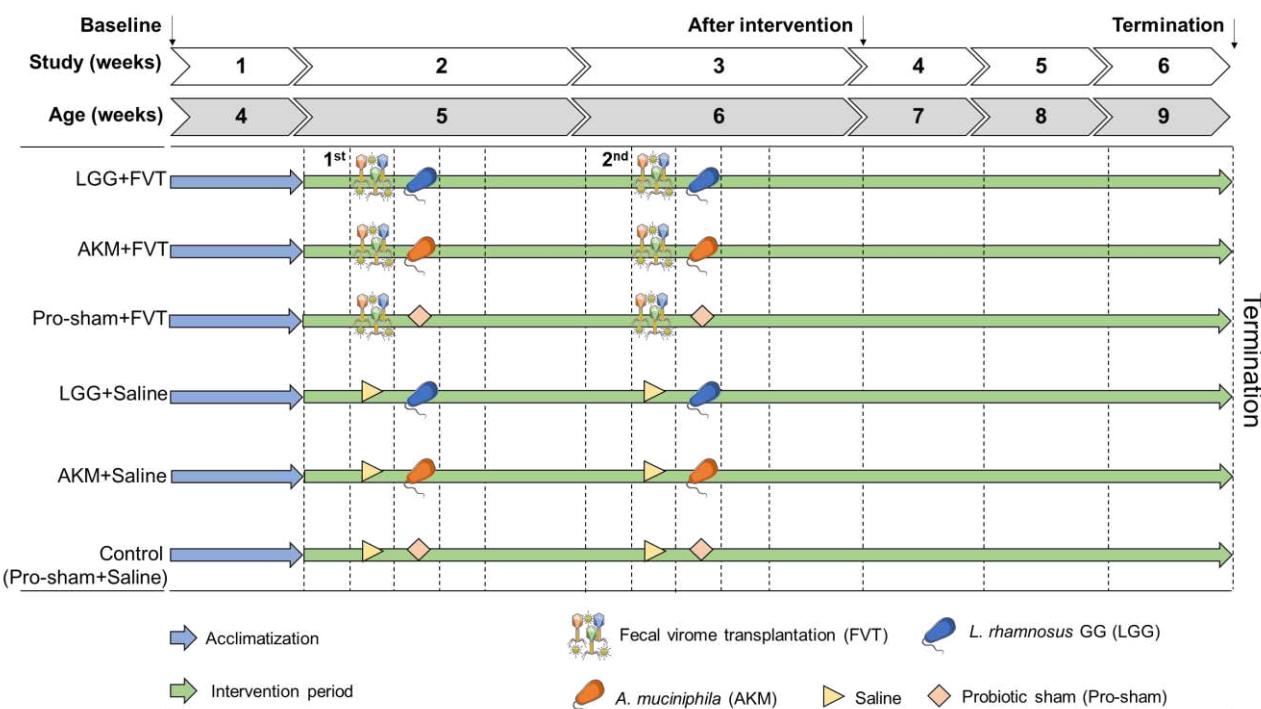
689 doi:10.1371/journal.pone.0061217

690 80 Dixon P. VEGAN, a package of R functions for community ecology. *J Veg Sci* 2003;14:927–
691 30. doi:10.1111/j.1654-1103.2003.tb02228.x

692 81 Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-
693 seq data with DESeq2. *Genome Biol* 2014;15:550. doi:10.1186/s13059-014-0550-8

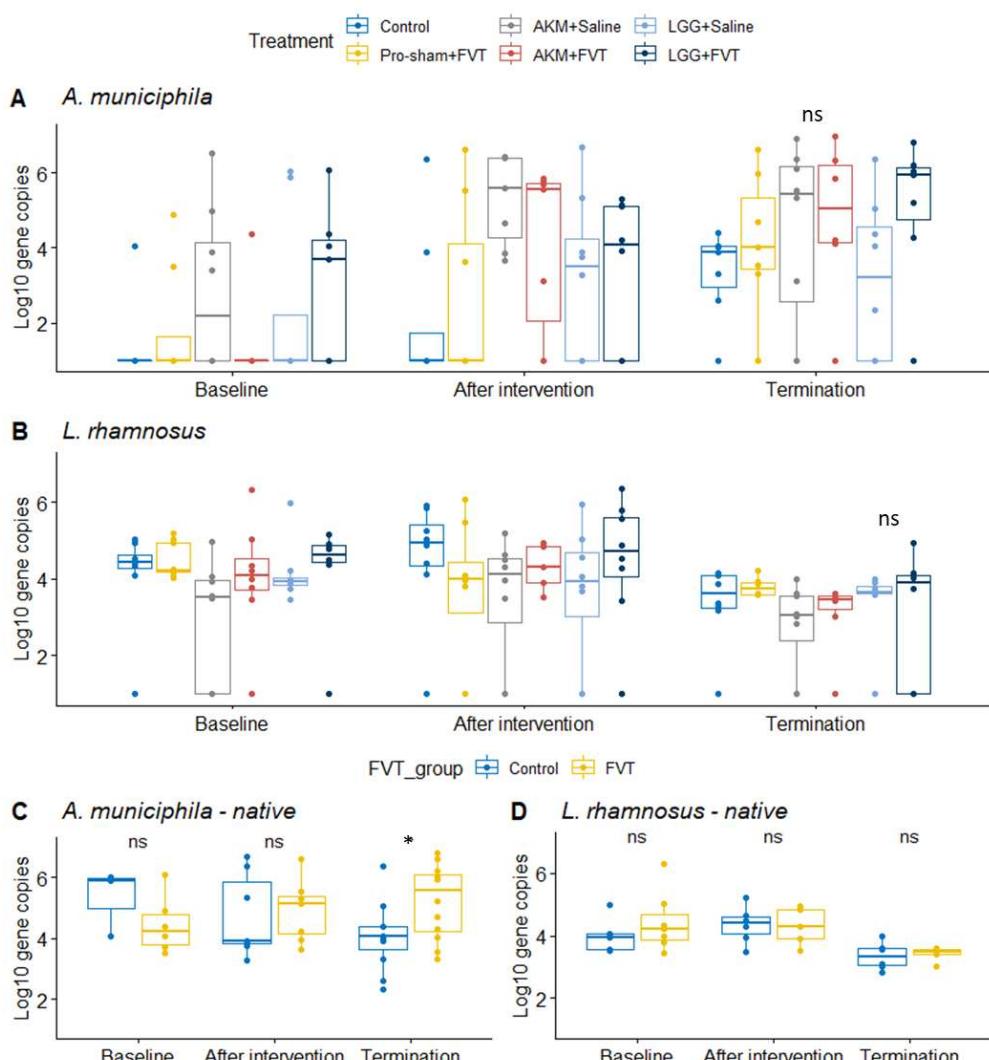
694 82 Andersen KS, Kirkegaard RH, Karst SM, *et al.* ampvis2: an R package to analyse and
695 visualise 16S rRNA amplicon data. *bioRxiv* April 2018. doi:10.1101/299537

696 83 Kassambara A. *ggpubr*: ‘ggplot2’ based publication ready plots.
697 2020. <https://rpkgs.datanovia.com/ggpubr/> (accessed 30 Jun 2022).


698 84 Wickham H. *ggplot2*. Wiley Interdiscip Rev Comput Stat 2011;3

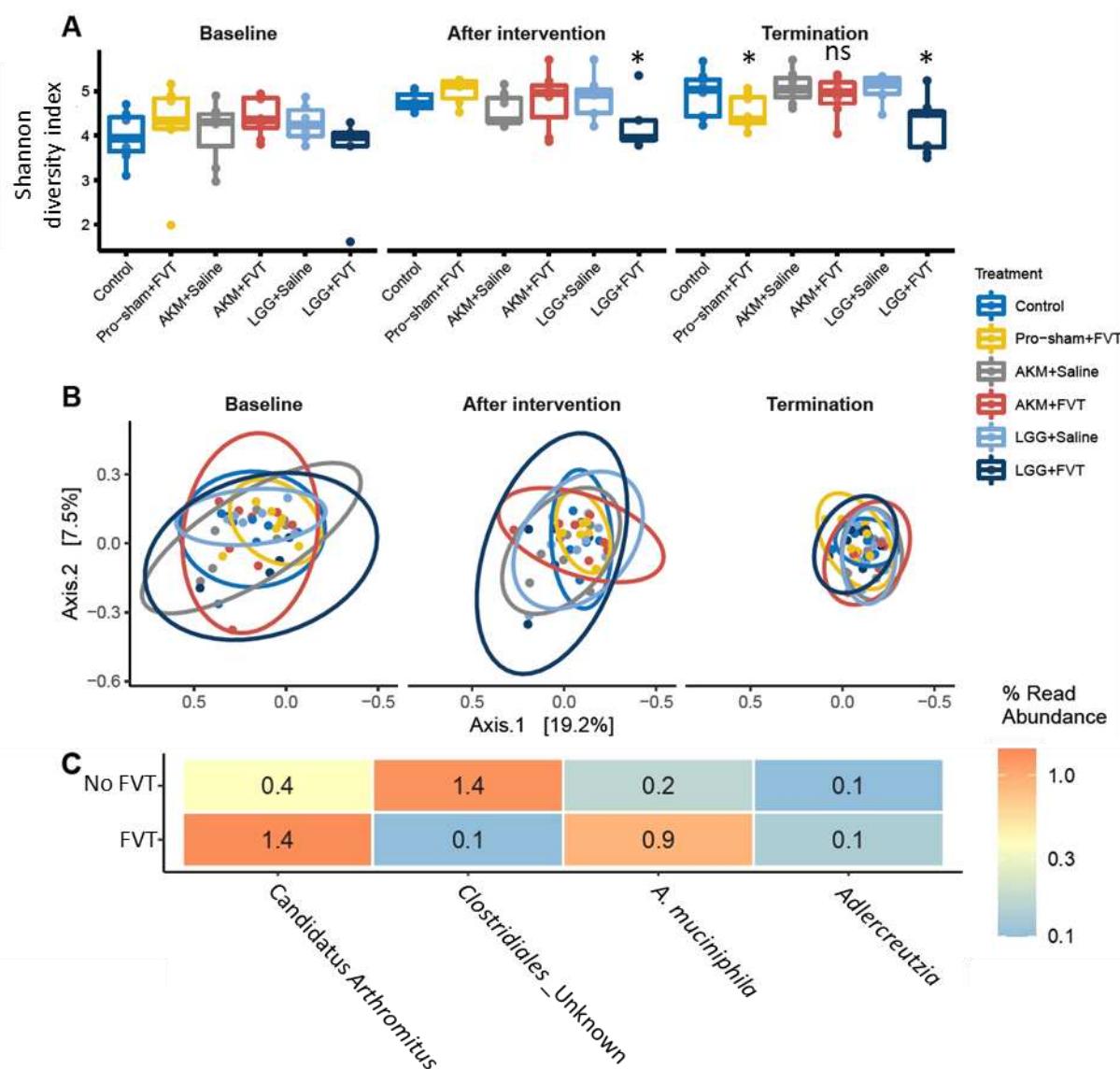
699 doi:10.1002/wics 147

698 84 Wickham H. *ggplot2*. *Wiley Interdiscip Rev Comput Stat* 2011;3:180–5.


700

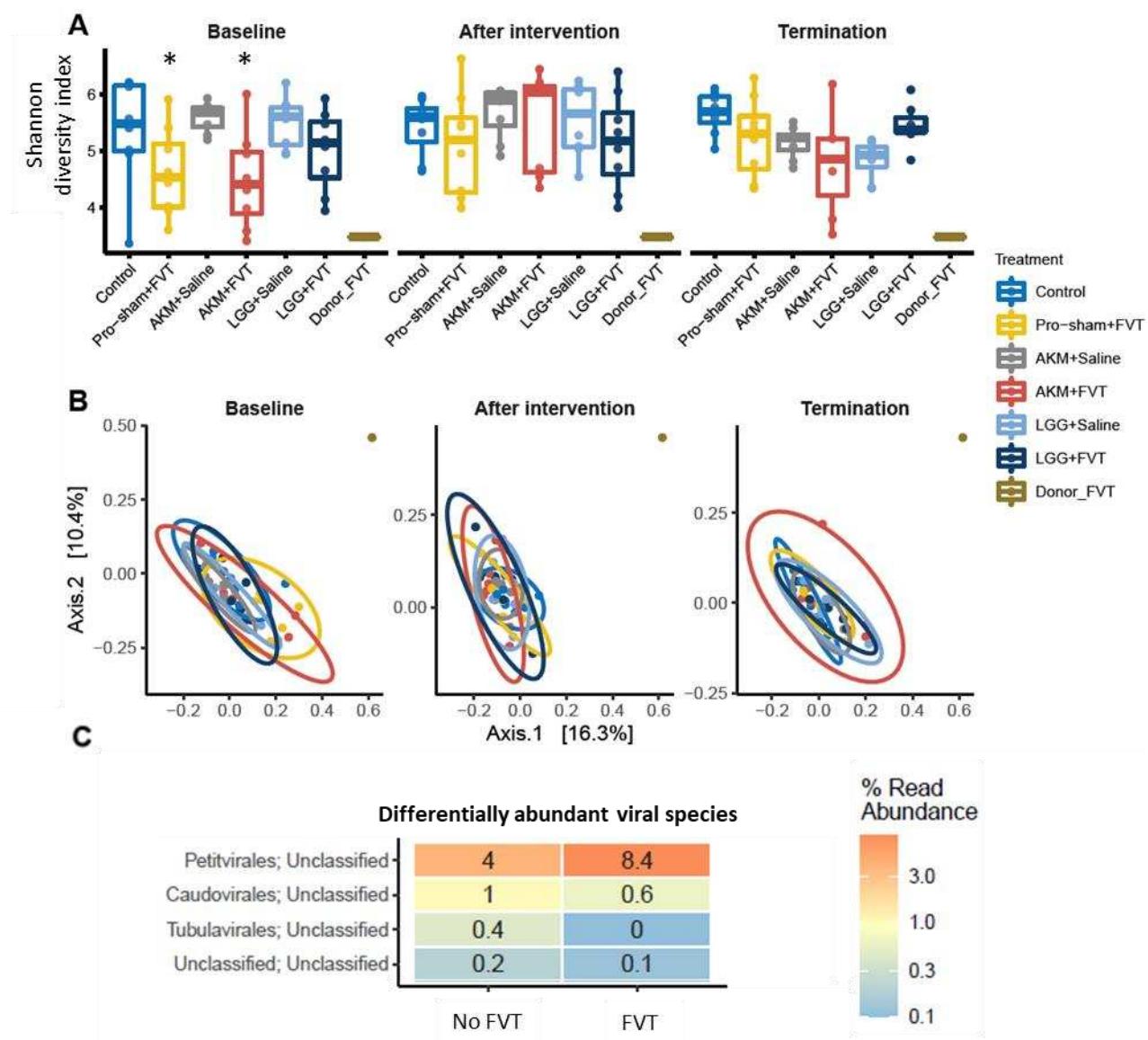
701

702


703 Figure 1: Experimental setup of the animal model. 24 male and 24 female C57BL/6NTac mice (4
704 weeks old) were divided into six groups: LGG+FVT, AKM+FVT, Pro-sham+FVT, LGG+Saline, and
705 AKM+Saline, control (Pro-sham+Saline). The Saline consisted of SM buffer and Pro-Sham of
706 Intralipid®. The mice were administered 1 M sodium bicarbonate prior oral gavage of FVT/Saline to
707 protect the viral community against the acidic environment in the stomach. The day after, the mice
708 were inoculated with probiotic solutions of LGG/AKM/Pro-sham suspended in Intralipid® which
709 constituted the 1st inoculation. The same procedure was repeated as the 2nd inoculation one week after.
710 The mice were fed *ad libitum* low-fat diet (LFD) for the entire study (6 weeks) until termination at
711 age 9 weeks. Fecal samples from baseline, after intervention, and termination were analyzed in this
712 study. Abbreviations: *Lacticaseibacillus rhamnosus* GG = LGG, *Akkermansia muciniphila* = AKM,
713 fecal virome transplantation = FVT, Pro-sham = probiotic sham.
714

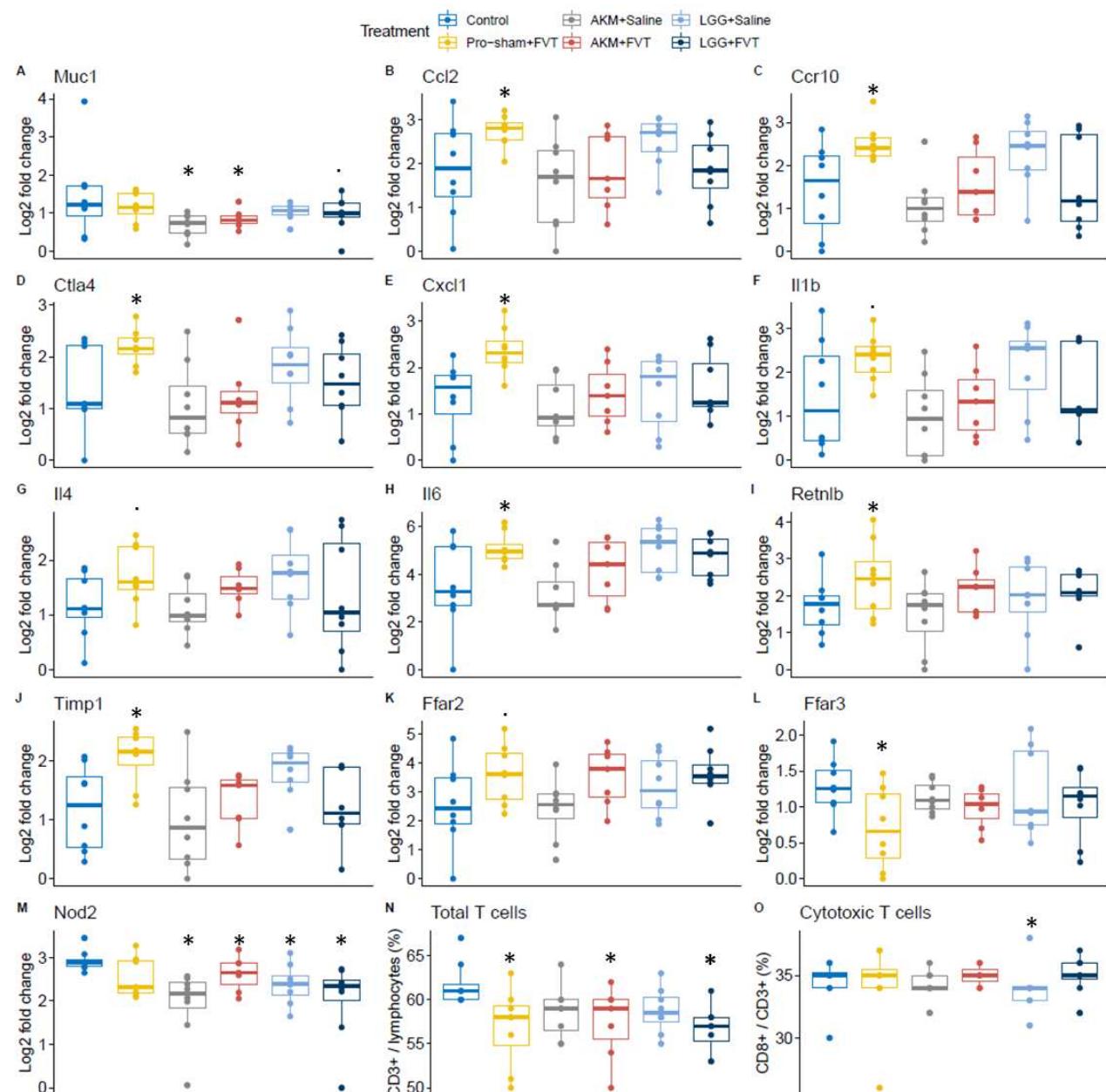
715

716 Figure 2: qPCR with *L. rhamnosus* and *A. muciniphila* specific primers were used to assess the
717 abundance of gene copies per gram feces over the time span of baseline, after intervention, and
718 termination. A) The development of the *A. muciniphila* abundance, B) *L. rhamnosus* abundance. C)
719 The abundance development of native *A. muciniphila* strains for mice receiving FVT and no AKM
720 (Pro-sham+FVT and LGG+FVT) compared to not receiving FVT or AKM (LGG+Saline and
721 control). D) The abundance development of native *L. rhamnosus* strains for mice receiving FVT and
722 no LGG (Pro-sham+FVT and AKM+FVT) compared to not receiving FVT or LGG (AKM+Saline
723 and control). Abbreviations: *Lactocaseibacillus rhamnosus* GG = LGG, *Akkermansia muciniphila* =
724 AKM, fecal virome transplantation = FVT, Pro-sham = probiotic sham.

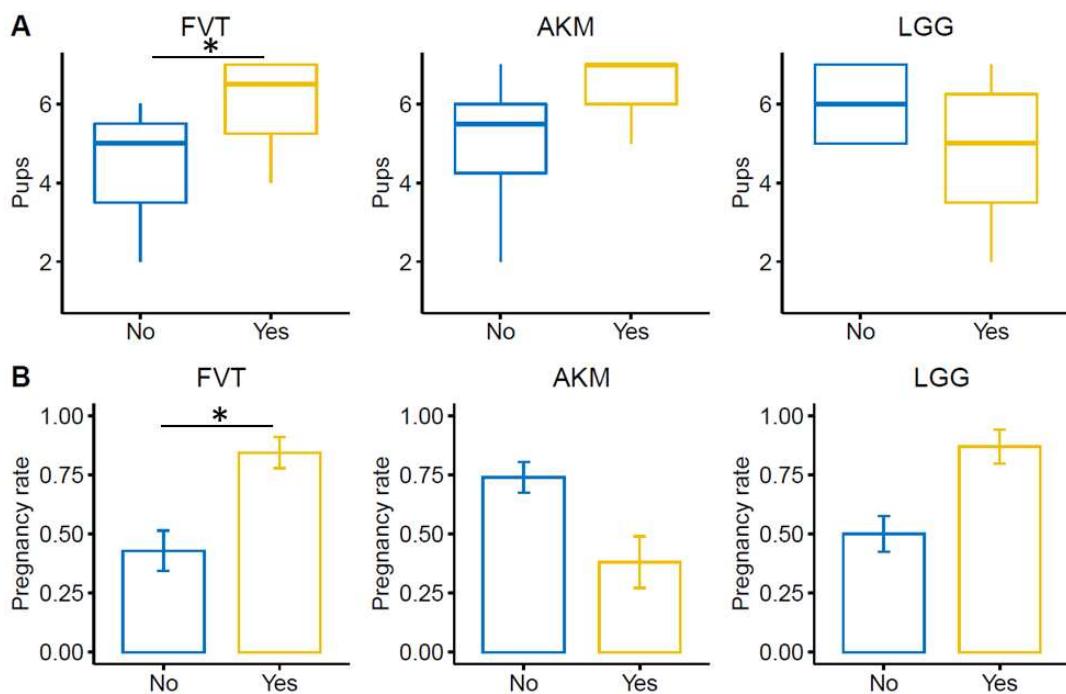

725

726

727 Figure 3: Gut bacteriome analysis of A) the bacterial diversity (Shannon diversity index) and B)
728 PCoA plots of the bacterial composition (Bray Curtis dissimilarity) at baseline, after intervention, and
729 termination. C) Differential abundance analysis of ASVs with significant ($p < 0.05$) different relative
730 abundance between FVT treated mice and mice not receiving FVT. Abbreviations: *Lacticaseibacillus*
731 *rhamnosus* GG = LGG, *Akkermansia muciniphila* = AKM, fecal virome transplantation = FVT, Pro-
732 sham = probiotic sham, ASV = amplicon sequence variant.


733

734


735 Figure 4: Gut virome analysis of A) the viral diversity (Shannon diversity index) and B) PCoA plots
736 of the viral composition (Bray Curtis dissimilarity) at baseline, after intervention, and termination.
737 C) Differential abundance analysis of viral contigs with significant ($p < 0.05$) different relative
738 abundance between FVT treated mice and mice not receiving FVT. Abbreviations: *Lactocaseibacillus*
739 *rhamnosus* GG = LGG, *Akkermansia muciniphila* = AKM, fecal virome transplantation = FVT, Pro-
740 sham = probiotic sham.

741

742

743 Figure 5: The ileum tissue was investigated for changes in the expression levels of genes associated
744 to inflammatory responses at termination. In A) to M) the expression levels of these selected genes
745 are shown, and the different treatment groups are compared with the control mice. The relative
746 abundance of total number of T cells N) and cytotoxic T cells (CD8+ T cells) P) were measured.
747 Abbreviations: “*” = (p < 0.05), “.” = (p < 0.1), *Lacticaseibacillus rhamnosus* GG = LGG,
748 *Akkermansia muciniphila* = AKM, fecal virome transplantation = FVT, Pro-sham = probiotic sham.
749

750

751 Figure 6: Bar plots of the fertility rate (number of pups) and pregnancy rate. A) The observed number
752 of pups (born or as fetuses) based on a linear model ($y \sim FVT + \text{probiotics}$). B) The mean distribution
753 of the of the binary event of pregnancy. Only the 23 female mice that received either FVT/Saline
754 along with probiotic solutions of AKM/LGG/Pro-sham was included in the statistical analysis that
755 was based on a generalized logistic regression model (Figure S10). Abbreviations: *Lactobacillus*
756 *rhamnosus* GG = LGG, *Akkermansia muciniphila* = AKM, fecal virome transplantation = FVT, Pro-
757 sham = probiotic sham, “*” = ($p < 0.05$).