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Abstract 

 

Sample recruitment for research consortia, hospitals, biobanks, and personal genomics 

companies span years, necessitating genotyping in batches, using different technologies. As marker 

content on genotyping arrays varies systematically, integrating such datasets is non-trivial and its impact 

on haplotype estimation (phasing) and whole genome imputation, necessary steps for complex trait 

analysis, remains under-evaluated. Using the iPSYCH consortium dataset, comprising 130,438 

individuals, genotyped in two stages, on different arrays, we evaluated phasing and imputation 

performance across multiple phasing methods and data integration protocols. While phasing accuracy 

varied both by choice of method and data integration protocol, imputation accuracy varied mostly 

between data integration protocols. We demonstrate an attenuation in imputation accuracy within 

samples of non-European origin, highlighting challenges to studying complex traits in diverse 

populations. Finally, imputation errors can modestly bias association tests and reduce predictive utility 

of polygenic scores. This is the largest, most comprehensive comparison of data integration approaches 

in the context of a large psychiatric biobank. 
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Introduction 

 

A recent appreciation for the polygenic nature of complex traits, with several small-effect risk 

loci scattered throughout the genome has revealed that genome wide association studies (GWAS)
1,2

 

require hundreds of thousands of participants to identify trait-associated loci.  Due to their cost-

effective nature, genotyping arrays, that ascertain between 200,000 to 2 million single nucleotide 

polymorphisms (SNPs) in the human genome, have become the preferred technology for generating 

genetic data at such sample sizes. A key component of these studies is reference-based whole genome 

imputation (imputation), which expands the number of markers that can be studied
3
, in a two-step 

process. First, a collection of genotyped SNPs are organized into haplotype scaffolds (phased), relying on 

co-inheritance patterns of SNPs (i.e., linkage disequilibrium, LD). Known, untyped variants are then 

probabilistically imputed by matching these sparse scaffolds to more dense haplotypes from whole 

genome sequenced (WGS) reference individuals
4
. This process results in a much larger pool of variants, 

thereby increasing GWAS power
5
. Importantly, it helps build a common set of SNPs for meta-analysis 

across cohorts genotyped on different arrays
6
, and ensures sufficient overlap of SNPs between reference 

and target datasets for polygenic scoring (PGS)
7
. Various computational methods and reference datasets 

have been designed for this purpose. Research cohorts beginning with different marker sets, in diverse 

batches are often combined, even within a single population study. 

 

State of the art phasing methods, such as BEAGLE5
8
, SHAPEIT4

9 
and EAGLE2

10 
use hidden 

Markov model approaches built on the Li and Stephens model
11

.  This model assumes that an 

individual’s genome can be constructed as a mosaic of segments from haplotypes observed in the 

reference data or the study population, while accounting for additional factors such as recombination 

and de novo mutation rates. Current phasing methods differ in their computational approximations and 
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data structures used for selecting the most informative haplotypes. Each phasing method further 

accepts user-defined parameters to choose the number of informative haplotypes, with a trade-off 

between accuracy, run times, and memory usage. While phasing methods have been improved over the 

years to scale computationally with large datasets such as the UK biobank
12

, benchmarking is often 

performed in subsets of the 1000 genomes project
13

, UK biobank, genome in a bottle dataset
14

, or the 

GERA cohort
15

.  To the best of our knowledge, the robustness of these methods has not been tested on 

input datasets with varying SNP density, target sample sizes, and missingness that can arise when 

integrating data generated on different genotyping platforms. It is important to empirically characterize 

the accuracy of phasing and imputation in such scenarios so that researchers can make informed choices 

when designing bioinformatics workflows to construct next generation biobanks. 

 

The predominant approach used by research consortia for analyzing samples genotyped on 

multiple arrays has been to phase and impute them separately, prior to meta-analyzing the results for 

GWAS
16,17

. However, the accuracy of phasing has been demonstrated to increase with increased sample 

sizes of reference and target datasets
18

. Moreover, for samples generated from recent population-scale 

biobanks (e.g., UKbiobank
12

, iPSYCH
19

), the number of study individuals is often much greater than the 

largest available haplotype reference. Haplotype sharing among study individuals and geographical 

variation in haplotype frequency imply these study haplotypes are as informative, if not more than 

published references for phasing
20

. Hence, there is intuitive reasoning to pool together as many samples 

as possible for phasing. In the UK Biobank study, where 500,000 participants were genotyped in 33 

batches using two genotyping arrays, it was possible to phase and impute the entire study population 

together, leveraging the unprecedented sample size because the arrays used, the UK Biobank Axiom 

array and the UK BiLEVE array, were closely matched (95% marker overlap). However, challenges arise in 
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scenarios where genotyping involves different arrays with low marker overlap and there is currently 

insufficient guiding research. 

 

Earlier studies on integrating cohorts genotyped on different arrays were on a much smaller 

scale, used earlier generations of methods, and focused on less diverse cohorts.  Sinnott et. al (2012)
21

 

compared imputed allele frequencies in two groups of healthy European ancestry controls, genotyped 

on different arrays with only ~30% overlap. They observed a substantial type-I error rate, even at 

genome-wide significance, due to associations with the genotyping array. Retaining only the set of SNPs 

imputed at the highest quality reduced, but did not eliminate, these errors. Uh et. al (2012)
22

 combined 

two data sets imputed from arrays with 60,000 overlapping markers into a union data set with high 

levels of missingness. GWAS across all good quality imputed markers showed an inflation in test 

statistics that was higher than when restricting to the markers genotyped on both arrays or only 

including subjects genotyped on one array. The inflation was reduced when an extreme quality control 

was applied (r
2
 quality metric > 0.98). Johnson et. al (2013)

23
 compared two approaches for integrating 

cases and controls genotyped on different arrays. They observed that imputing from the union of SNPs 

across arrays led to 0.2% of SNPs showing associations to genotyping arrays, while imputing from the 

intersection led to lower imputation accuracy, albeit without the same bias. These previous studies 

highlight challenges associated with integrating genotype data, including the important notion of a 

potential accuracy/bias trade-off, but do not provide a consensus path forward. 

 

Pimental et. al
24

 studied the biases introduced by imputation in the context of estimating direct 

genomic values (DGV) in livestock, analogous to PGS in human genetics. They observed a bias in imputed 

genotypes towards the more frequent (major) allele in the reference panel that caused estimated DGVs 

to be shrunk towards the sample mean. This bias was more evident in traits with high heritability and 
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when DGVs were estimated using imputation from less dense haplotypes. More recently, Chen et. al
25

 

studied the impact of different combinations of phasing and imputation methods on PGS and 

demonstrated that while PGS differ at an individual level, when computed using imputed genotypes 

rather than gold standard WGS, the variation at cohort level is low, resulting in a less than 5 percentile 

change in individual PGS rank within the cohort. The impact of imputation on PGS in context of data 

integration across cohorts has otherwise remained underexplored and given the attention PGS have 

recently received
26–29

, exploring these concepts in modern, population-scale, human complex trait 

genetics applications is critical. 

 

This study uses the Lundbeck foundation initiative for integrative psychiatric research (iPSYCH) 

case-cohort dataset with an initial 81,330 subjects genotyped on the Infinium PsychChip v1.0 (Illumina, 

San Diego, CA USA) and an additional 49,108 subjects genotyped on the Illumina Global Screening Array 

v2.0 (Illumina San Diego, CA USA) to evaluate four realistic protocols for data integration. We compare 

the phasing accuracy using SHAPEIT4.1.2, EAGLE2.4.1, BEAGLE5, and a consensus approach in truth sets 

derived from 124 parent-offspring trios that were genotyped on both arrays. To compare the resulting 

imputation quality, we randomly masked 10,000 SNPs prior to phasing and included 10 WGS samples 

from the Personal Genomes Project - UK cohort
30

, down sampled to the SNPs in each cohort. Imputed 

genotypes were then compared to these truth sets to assess the loss of information in imputed data. It 

is known that current haplotype references are skewed towards individuals of European ancestry, hence 

we assessed quality of phasing and imputation in non-European and admixed individuals. Finally, using a 

simulated quantitative trait, we explore the impact of phasing and imputations across data integration 

scenarios on GWAS and PGS. 

 

Materials and methods 
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Data 

 

 iPSYCH2012 is a case-cohort design nested within 1,472,762 individuals born in Denmark 

between 01-05-1981 and 31-12-2005, with a known mother, alive and residing in Denmark at the end of 

the first year after birth. Out of 86,189 individuals chosen for genotyping, 57,377 are cases with one or 

more mental disorders among schizophrenia, autism, attention-deficit/hyperactivity disorder (ADHD) 

and affective disorder. The cohort is a random sample of 30,000 individuals representative of the 

national population of Denmark born during the same time period. Genotyping was performed at The 

Broad Institute, Boston MA, USA with the Infinium PsychChip v1.0 (Illumina, San Diego CA, USA), using 

DNA extracted from dried blood spots, obtained from the Danish neonatal screening biobank
31

. Further 

details on the ascertainment and data generation process of iPSYCH2012 has previously been 

described
19

. iPSYCH2015i is an extension of iPSYCH2012, nested within 1,717,316 individuals born in 

Denmark between 01-05-1981 and 31-12-2008, satisfying the same criteria, encompassing 33,345 cases 

and 15,756 cohort individuals, genotyped on the Illumina Global Screening Array v2.0 (Illumina, San 

Diego CA, USA) at Statens Serum Institut, Copenhagen Denmark. 

 

The trio dataset contains 128 parent-offspring trios where the offspring were ascertained for 

diagnoses of autism or ADHD with both parents born in Denmark, on or after 01-05-1981. Samples were 

genotyped using both the Infinium PsychChip v1.0 and the Illumina Global Screening Array v2.0. 

Information on psychiatric diagnoses were obtained from the Danish national psychiatric central 

register
32,33

, demographic information including age, gender and parental birth place were obtained 

from the Danish civil registration system
34,35

. 
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The Personal Genomes Project - UK (PGP-UK) is an open source initiative aimed at facilitating 

access to multi-omics datasets for the purpose of gaining insights into biological and medical processes
30

 

and contains 1,100 citizens or permanent residents of the United Kingdom who provided consent after 

passing a test aimed at educating them on the risks of sharing personal genetic data. DNA was extracted 

from blood and whole genome sequenced using Illumina HiSeq X at an average depth of 15x. The 

resulting BAM files were deposited to the European Nucleotide Archive (Study identifier: PRJEB17529).  

 

Ethical Permissions 

 

Research using iPSYCH and the trio data has been approved by the Danish scientific ethics 

committee, Danish health authority and the Danish neonatal screening biobank committee. PGP-UK has 

been approved by the University College London scientific ethics committee. All analyses were 

performed on a secure server within the Danish national life science supercomputing cluster 

(https://computerome.dtu.dk/) and the Aarhus Genome Data Center (https://genome.au.dk/). 

 

Genotype Quality Control (QC) 

 

Genotype data from iPSYCH2012, iPSYCH2015i, trios and PGP-UK were aligned to HRC v1.1 using 

genotype harmonizer version 1.4.20-SNAPSHOT
36

. SNPs not genotyped in all waves/batches within 

individual iPSYCH cohorts were excluded. Further filtration steps include exclusion of SNPs missing in at 

least 5% of the study subjects, SNPs showing differential missingness between cases and controls, SNPs 

failing tests of Hardy Weinberg equilibrium in controls of a homogenous genetic origin, SNPs 

significantly associated with a genotyping batch or wave, SNPs with minor allele frequencies less than 

0.001. A further 10,000 SNPs were selected at random and masked to serve as a truth set for 
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benchmarking the performance of imputation. Samples were excluded if they had abnormal levels of 

heterozygosity that could not adequately be explained by admixture, or if missing more than 5% of the 

SNPs that passed QC. In case of duplicate samples or monozygotic twins, the sample with lower 

missingness was retained. This resulted in a total of 80,876 individuals genotyped at 251,551 SNPs in 

iPSYCH2012 and 48,974 individuals genotyped at 450,445 SNPs in iPSYCH2015i passing QC. QC detailed 

in depth in supplementary S1. PLINK v1.90b3o 64-bit 20 May 2015
37

 was used for QC. 

 

Pre-phasing Data Integration Protocols 

 

We evaluated four different ways of integrating data as shown in Figure 1. 

 

Separate. In this protocol (Figure 1a), samples from iPSYCH2012 and iPSYCH2015i are phased 

and imputed separately. 124 trio offspring were added to both cohorts. Ten whole genome sequenced 

samples from the PGP-UK cohort were down sampled to both the iPSYCH2012 and iPSYCH2015i SNPs 

that passed QC and merged with both cohorts. This resulted in two cohorts: (1) Cohort2012 (81,022 

samples, 251,551 SNPs, 0.1% missingness) which includes iPSYCH2012, trio offspring genotyped on the 

Infinium PsychChip v1.0 and ten PGP-UK samples, down sampled to the Infinium PsychChip v1.0 variants 

that pass QC. (2) Cohort2015i (49,120 samples, 450,455 SNPs, 0.31% missingness) which includes the 

iPSYCH2015i, trio offspring genotyped on the Illumina Global Screening Array v2.0 and ten PGP-UK 

samples, down sampled to the Illumina global screening array v2.0 variants that pass QC. 

 

Intersection. In this protocol (Figure 1b), samples from iPSYCH2012 and iPSYCH2015i were 

merged at the 116,962 QC’ed SNPs present on both iPSYCH arrays. 62 offspring samples were chosen at 

random from each of the trio datasets genotyped using both iPSYCH arrays and merged to this dataset 
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along with ten PGP-UK samples, down sampled to the 116,962 common loci. This resulted in the 

intersection (129,886 samples, 116,962 SNPs, 0.17% missingness) cohort.  

 

Union. In this protocol (Figure 1c), samples from iPSYCH2012, iPSYCH2015i were merged with 

missingness to the 596,028 QC’ed SNP loci, genotyped on either iPSYCH array. To this, 62 samples each 

from the trio dataset genotyped on both arrays were merged, same as in the intersection. Five PGP-UK 

samples, each down sampled to the SNPs present on either genotyping array, were merged resulting in 

the union cohort (129,886 samples, 596,028 SNPs, 44.54% missingness).  

 

Two-stage. In this protocol (Figure 1d), eight sets of phased haplotypes from the Cohort2012 

and Cohort2015i obtained in the separate protocol were initially imputed using BEAGLE5.1 in batches of 

10,000 samples to the 596,028 QC’ed SNPs genotyped on either iPSYCH array with HRCv1.1 as the 

reference. Then the two cohorts were merged, retaining the same 62 trio samples from each cohort as 

chosen in the intersection and union approaches along with five PGP-UK samples from each cohort, 

forming the twostage cohort (129,886 samples, 596,028 SNPs, 0% missingness). 

 

All datasets were stored and processed in variant call format (VCF) 

(http://samtools.github.io/hts-specs/VCFv4.2.pdf) using bcftools
38

. 

 

Phasing 

 

Cohorts arising from each data integration protocol were phased using three methods and two 

different parameters, BEAGLE5 (phase-states=280, 560), SHAPEIT4.1.2 (pbwt-depth = 4, 8), EAGLE2.4.1 

(Kpbwt = 10000, 20000) with the added aim of benchmarking improvements in accuracy at a higher 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.27.497703doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497703
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 XI

resolution parameter set at the expense of longer run times and memory requirements. A consensus 

haplotype set was generated by taking the majority haplotype estimate across the three tools at both 

the default and higher resolution parameters at each locus within each individual using BEAGLE’s 

consensusvcf module (consensusvcf.jar).  The HRCv1.1 dataset, consisting of 64,976 haplotypes
39

 was 

used as the reference panel. 

 

Imputation 

 

All cohorts were imputed using BEAGLE5.1 with HRCv1.1 as the reference. Due to the cohort 

sizes, imputations were carried out in batches of 10,000 samples. Imputed dosage (DS) for an individual 

at a bi-allelic locus is calculated as DS = p(RA) + 2*p(AA) where p(RA) is the genotype probability 

corresponding to the presence of one alternate allele (A) and one reference allele (R) as per the 

reference panel and p(AA) corresponding to the genotype probability of the presence of two copies of 

the alternate allele. 

 

Phasing accuracy 

 

Phasing accuracy was evaluated by calculating switch error rates (SER) in the trio offspring at the 

QC’ed heterozygous SNPs common to both iPSYCH arrays. A switch error occurs when there arises an 

inconsistency between the computationally assigned phase and the phase observed by mendelian 

transmission with knowledge of parental haplotypes. SER is the number of such switches divided by the 

total possible switches
40

. The code for SER calculation has previously been used
9
 and available on GitHub 

(https://github.com/odelaneau/switchError). 
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Imputation accuracy 

 

Imputation accuracy within iPSYCH was calculated as the squared Pearson correlation 

coefficient (r
2
) between true genotypes and imputed dosages within different minor allele frequency 

(MAF) bins (MAF as measured in HRCv1.1) at each of the 10,000 SNPs masked prior to phasing. 

Imputation accuracy within PGP-UK was calculated as the r
2
 between true genotypes obtained from 

multisampling variant calling using samtools
38

 and imputed dosages in eight MAF bins at 6,517,513 loci 

that were genotyped on neither iPSYCH array. The code is available on GITHUB 

(https://github.com/vaqm2/impute_paper/blob/main/truth_vs_impute_2021_02_24.pl). To evaluate 

variations in imputation accuracy by ancestral origin, r
2
 was calculated within iPSYCH samples, grouped 

according to the country of birth of both parents according to the Danish civil register
34,35

.  

 

Phenotype simulations 

 

 To evaluate the impact of whole genome imputation on polygenic scores, a quantitative trait for 

129,850 iPSYCH individuals was simulated using GCTA
41

 version 1.92.1beta6, with a heritability of 0.5 

and the 10,000 masked SNPs as causal loci with effect sizes drawn from a standard normal distribution. 

 

Association Tests 

 

To evaluate the presence of batch artifacts in each protocol we conducted multiple GWAS with 

iPSYCH cohort membership (iPSYCH2012 vs iPSYCH2015i) as the outcome using the glm module of 

PLINKv2.00a2LM 64-bit Intel (10 Nov. 2019)
42

. As a baseline, we performed the GWAS using true values 

of 10,000 masked genotypes as explanatory variables.  Subsequently, GWAS were performed comparing 
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allele frequencies from true genotypes in one cohort to imputed dosages in the other and imputed 

dosages in both, across all four data integration protocols (separate, union, intersection, twostage). 

Tests were restricted to iPSYCH individuals without mental disorders (i.e., a random sample of 

psychiatric controls), of a homogenous genetic origin based on principal component analysis 

(Supplementary S1.1) using Eigenstrat
43

, and pruned for relatedness beyond the third degree using 

kinship coefficients estimated by KING
44

. The overall inflation of test statistics above the null was 

evaluated using the genomic inflation factor which compares the median of the chi-square test statistic 

obtained from each GWAS to the expected median of a chi-square distribution with 1 degree of 

freedom. 

 

Polygenic Scores 

 

Polygenic scores (PGS) for each individual, j, were constructed using simulated per-allele effects 

as follows: 

PGSj = Σ i = 1..mβiXij 

where m is the total number of SNPs (10,000 masked SNPs), �
 

 is simulated effect for SNP i, Xij is the 

imputed dosage or best guess genotype count of effect alleles for individual j at SNP i. Variance 

explained by PGS was calculated by fitting two linear models using the function, lm in R. The simulated 

trait value is the outcome, individual PGS is the sole explanatory variable in one model, while individual 

PGS, age, gender and first 10 principal components of genetic ancestry are explanatory variables in the 

second model. Variance in the simulated trait value explained by PGS is the difference between the 

correlation coefficients (R
2
) between the two models. We restrict the analysis to 67,587 individuals from 

iPSYCH2012 and 41,069 individuals from iPSYCH2015i with parents and both sets of grandparents born 

in Denmark and clustering with the CEU (Utah residents with Northern and Western European ancestry) 
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and GBR (British in England and Scotland) populations of the 1000 genomes phase 3 dataset in principal 

component analysis (Supplementary S1.1). 

 

Results 

 

Phasing Accuracy: 

 

Phasing accuracy was measured using SER (Methods) with three methods, two parameter 

settings each, and a consensus set across four data integration protocols (Figure 2a, Supplementary S3, 

Supplementary Table 9). Our results show that phasing accuracy depends on the data integration 

protocol, phasing methods and associated parameters, target sample size, genotyped SNP density in the 

target, rate, and structure of genotype missingness. In general, the two-stage protocol, which leverages 

the largest possible sample size and density of SNPs, with no missingness, shows consistently high 

accuracy across all phasing methods (SER = 0.17 - 0.55%). The intersection protocol, which also leverages 

the largest sample size, albeit with lowest SNP density, proves the least accurate (SER = 0.38 - 1.04%). 

The ranking of the protocols was generally consistent across methods, except for the union, which 

achieved the lowest overall SER with BEAGLE5 at parameter value, phase-states=560. The union was 

also the worst performing protocol when taking consensus haplotypes across all three methods (SER = 

0.61% at default parameters), suggesting the genotype missingness introduced by this protocol causes 

systematic phasing errors that are reproduced across tools. 

 

In protocols involving little to no genotype missingness (i.e., not Union), BEAGLE5 and 

SHAPEIT4.1.2 show similar accuracy, outperforming EAGLE2.4.1 across integration methods and 

parameters. The union was again a point of departure from the trends, with BEAGLE5 performing better 
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(SER = 0.17%) on the union and SHAPEIT4.1.2 performing better on the twostage (SER = 0.17%). This 

implicates genotype missingness for phasing performance, suggesting that BEAGLE5 handles this more 

robustly than SHAPEIT4.1.2. When considering the twostage protocol, which we hypothesized could 

mitigate initial missing genotypes, SHAPEIT4.1.2 performed like BEAGLE5 on the union (and better than 

on the twostage), suggesting, modulo initial missingness, SHAPEIT4.1.2 may have at least as good a 

phasing algorithm as BEAGLE5. 

 

Comparing the phasing accuracy across chromosomes within each method and data integration 

protocol reveals that phasing accuracy follows the number of SNPs per centimorgan in the target 

dataset, with denser chromosomes showing lower SER (Supplementary figure 1).  We also observe that 

EAGLE2.4.1 and BEAGLE5 produce more accurate estimates in the Cohort2012 where the sample size is 

higher and SNP density is sparser whereas SHAPEIT4.1.2 produces more accurate estimates in the 

Cohort2015i where the SNP density is higher and target sample size is comparatively smaller. As 

mentioned above, the worse performance of SHAPEIT4.1.2 and EAGLE2.4.1 on the union as opposed to 

the twostage highlight the sensitivity to initial missing genotypes. These results show the necessity for 

benchmarking the robustness of phasing methods in less-than-ideal conditions, specific to study cohorts, 

prior to deploying them in such untested scenarios. 

 

Imputation Accuracy: 

 

The accuracy of imputations derived from each set of haplotype scaffolds (i.e., from each tool, 

parameters and data integration protocol set) are presented in figures 2b, c and Supplementary Table 7. 

Variability in imputation accuracy stems more from the choice of data integration protocol, rather than 

the choice of phasing method or parameters. Since all methods process data in variant call format (VCF), 
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this renders the choice of phasing method less relevant if the end goal is to attain the most accurate 

missing data imputation. The highest imputation accuracy is obtained when the cohorts are phased 

separately, with the r
2
 between true masked genotypes and imputed dosages varying between 0.43 at 

rare (MAF < 0.005) and 0.95 at more common (0.2 < MAF <= 0.5) SNPs.  This trend is consistent across 

haplotypes generated by all methods. The added bioinformatics effort aimed at enhancing sample size 

without missingness with the twostage protocol did not yield a higher imputation accuracy than the 

separate protocol. At the minor allele frequency bin, 0.01 < MAF <= 0.05, using haplotypes phased by 

BEAGLE5, both approaches show identical accuracy (r
2
=0.88) (Supplementary Table 7). The imputation 

accuracy is degraded when using the intersection protocol with an attenuation between 8.4-13.6% at 

common and 13.9-18.6% at rare SNPs as compared to the separate protocol, highlighting the drop in 

phasing accuracy at low target SNP density carrying over to imputation performance.  

Haplotypes estimated by SHAPEIT4.1.2 in the union protocol are an outlier and resulting 

imputations are of noticeably poorer quality compared to haplotypes obtained from other methods. 

Phasing in the presence of missingness is itself a two-step process, where each phasing method makes a 

rough imputation of missing data prior to constructing haplotypes. If this data is not overwritten during 

imputation, the prephasing imputation algorithm implemented by SHAPEIT4.1.2 could be the reason for 

problems with the union protocol. This becomes more credible when considering the imputation 

accuracy obtained from the twostage protocol using SHAPEIT4.1.2, where the attenuation is mitigated. 

The pattern of results described above is replicated in the PGP-UK samples (Supplementary Figure 2).  

 

A comparison of imputation accuracies between Cohort2012 and Cohort2015i within the 

separate protocol using the PGP-UK samples (Supplementary Figure 2c, Supplementary Table 9) shows 

higher imputation accuracy in Cohort2015i, imputed from a higher SNP density as compared to 

Cohort2012 with a larger sample size with a difference as high as 6.7% at     �  �0.1, 0.05�. This finding is 
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important because it emphasizes a trade-off between sample size and SNP density and, with modern 

samples, perhaps SNP density should be emphasized. Enhanced parameters that showed higher phasing 

accuracy do not seem to substantially increase imputation accuracy (Supplementary figures 2a, b). 

Taken together, these results show that imputation performance suffers when merging cohorts 

genotyped on different arrays prior to phasing and choice of phasing method is less relevant than data 

integration protocol. 

 

Imputation accuracy in non-European and admixed samples 

 

It is known that GWAS results and subsequent PGS constructed from them do not generalize 

well across populations
45

.  This is typically attributed to inaccuracies in the estimation of SNP effect sizes 

(i.e., per SNP beta) due, e.g., to variable LD across populations
46

. However, if non-European haplotypes 

are underrepresented in either reference or target data sets, imputed genotypes in these individuals 

may be of lower quality and errors in the genotypes themselves could be contributing to the 

generalization problems of GWAS. Imputation accuracy was estimated in non-European and admixed 

iPSYCH samples, grouped according to the birthplace of the proband’s parents (Figure 3a, b; 

Supplementary Figure 4, Supplementary Table 8). Individuals born to non-Scandinavian European 

parents had lower imputation accuracy (7.07-12.58%) than those with both parents born in Denmark. 

These effects were larger for individuals with both parents born in Asia (11.1-11.2%), Africa (17.37-

17.48%), or Middle East (11.2-17.7%).  The attenuation in imputation accuracy within admixed 

individuals is comparatively lower, varying between 4.47-8.56% as compared to individuals with both 

parents born in Denmark. These results, as expected, suggest that imputation accuracy varies by 

ancestry and introduces a systematic loss of information in the genotypes of non-Europeans. 
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Impact on PGS: 

 

PGS calculated using true genotypes in iPSYCH2012 and 2015i respectively explained 45.4 and 

45.6% of the variance in the simulated continuous trait (Figure 4a, Supplementary S7). An attenuation in 

variance explained was observed when PGS were instead calculated using imputed dosages, which was 

lowest when using the separate protocol for iPSYCH2012 (2.52%) and twostage protocol for 

iPSYCH2015i (1.83%) and highest when using the intersection protocol (iPSYCH2012: 5.89%; 

iPSYCH2015i: 5.72%). There appears to be a minor gain in variance explained, when using imputed 

dosages, rather than best guess genotypes for PGS, which is most pronounced when using the 

intersection protocol (iPSYCH2012: 1.54%; iPSYCH2015i: 1.88%). Our results are in line with findings 

from animal breeding studies
24

 demonstrating reduced genetic prediction accuracy introduced by 

imputations. 

  

Another application of PGS is to prioritize individuals in top quantiles of a PGS distribution for 

monitoring and intervention. To investigate the effect of imputation accuracy on such applications, 

individuals in iPSYCH2012 and 2015i were grouped into percentiles of PGS risk for the simulated trait 

based on PGS calculated using genotypes or imputed dosages from the four data integration protocols. 

The results (Figure 4b) are consistent with prior work
25

 showing a discrepancy in individual rank that is 

higher in the middle percentiles and lower in the more actionable top percentiles of the PGS 

distribution. The discordance in individuals in the top percentiles between PGS constructed by true 

genotypes and imputed dosages is, however, much higher than the 5% previously reported. The overlap 

in the proportion of individuals ranked in the top 5 percentiles of PGS using true genotypes and imputed 

dosages is highest in both cohorts when employing either the separate or twostage protocol 

(iPSYCH2012: 80%, iPSYCH2015i: 84%) and lowest when using the intersection protocol (iPSYCH2012: 
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71%, iPSYCH2015i: 73%). This overlap in the top 5 percentiles is also greater within iPSYCH2015i, as 

compared to iPSYCH2012, continuing the trend that higher phasing and imputation accuracies in target 

samples attributable to higher array density carries through to PGS performance. 

 

Batch effects 

 

Association studies were performed comparing genotypes and imputed dosages at the masked 

SNPs from all four data integration protocols in unrelated controls of iPSYCH2012 and 2015i of a 

homogenous genetic origin with the genotyping array as the outcome (see Methods). The resulting 

genomic inflation factor in test statistics across different thresholds for imputation quality is shown in 

figure 5a, supplementary S8. The number of SNPs used in the association tests at each imputation 

quality threshold is shown in figure 5b. 

 

The baseline for the inflation observed by comparing the genotyped SNPs in controls is Rgc = 

1.05. No inflation is observed when comparing SNPs imputed in both iPSYCH2012 and iPSYCH2015i using 

the intersection protocol, while test statistics are most inflated when using the union protocol. Using the 

separate and twostage protocols, inflation is reduced at high thresholds of BEAGLE imputation r
2
, but 

not eliminated. For example, in the Separate protocol, with SNP imputation quality filter, DR2 >= 0.9, the 

Rgc = 1.13 when comparing SNPs genotyped in iPSYCH2012 to SNPs imputed in iPSYCH2015i, and Rgc = 

1.18 when comparing SNPs imputed in iPSYCH2012 to SNPs genotyped in iPSYCH2015i and  Rgc = 1.1 

when comparing SNPs imputed in both. At this threshold, 22% of the imputed SNPs are excluded. This 

analysis suggests that imputations performed from different genotyped backbones, which result in 

genotyped SNPs being compared to imputed SNPs, will contain batch artifacts that can be difficult to 

remove by standard SNP exclusion, which might also be complicated, due to a lack of robustness of 
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imputation quality metrics under different data integration protocols (Supplementary S5, 

Supplementary Figure S3). 

 

Discussion 

 

As the cost of genotyping drops, the burden of complex trait analysis is moving away from 

genotyping requisite participants and towards storage, computational requirements, and the 

bioinformatics expertise to integrate and analyze such datasets
47

. Phasing and imputation have 

somewhat remained a black box in bioinformatics pipelines with researchers having the opportunity to 

avail themselves of services like the Michigan imputation server
.48

 to reduce the computational burden 

of data preparation. However, privacy stipulations governing datasets generated through national 

biobanks might prohibit use of such services. The benchmarking work presented in this study stresses 

the importance of making an educated choice of data integration protocols that could introduce a 

tradeoff among peculiarities such as a sparse marker set, small sample size, high missingness in the 

input dataset, or the potential of batch artifacts. 

 

The benchmarking of imputation accuracy presented in this study replicates previous findings
23

, 

suggesting imputation from the intersection of markers when incorporating samples genotyped on 

multiple arrays leads to a loss of accuracy while imputation from the union of the markers leads to 

spurious associations with genotyping arrays
23

. Consistent with our hypothesis that the phasing accuracy 

could be improved by increasing the target sample size by jointly analyzing the two cohorts (by either 

the union or two-stage protocol) we did observe a drop in SER. However, these improvements did not 

result in improvements in imputation accuracy, likely reflecting that the phasing tools were not 

developed with this type of systematic missingness in mind. Until software that can leverage this 
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apparent potential for improvement in phasing accuracy are available, our results suggest that phasing 

and imputing separately results in equivalent or better imputation accuracy. The higher phasing and 

imputation accuracies, PGS performance in the sub-cohort of iPSYCH individuals genotyped using the 

Illumina Global Screening Array, enriched with more common markers as compared to the sub-cohort 

imputed using the Infinium Psych Array, enriched for rare markers with prior associations to psychiatric 

phenotypes, suggests that when faced with a choice, it might be more beneficial to prioritize genotyping 

arrays with more common markers that overlap more with the content of haplotype reference panels. 

Analysis pipelines and methods focusing on common disease research, rely on established high quality 

SNP sets, such as HapMap3 and use thresholds to exclude rare markers during QC, effectively rendering 

them useless for such applications. 

 

Imputed data will contain non-random errors, especially in presence of systemic missingness, as 

can be the case when genotyping of samples is performed in batches and over time. Therefore, it is 

critical to consider the sensitivity of any analysis performed on these datasets. Technical artifacts in the 

genotype generation process are one of the sources of poor performance of PGS across cohorts
27

. While 

the attenuation introduced in PGS performance and the discordance of individual rank in different 

percentiles of the risk distribution when PGS are calculated using imputed data as compared to 

genotyped SNPs has received attention in animal breeding studies, this remains under-researched in 

human populations. As one of the clinically informative uses of PGS lies in selecting a subset of 

individuals in the actionable risk percentiles of a PGS distribution
26,27

, errors introduced during phasing 

and imputation could have a sizable impact on genetic risk profiling - especially when data is acquired 

over time and according to different protocols. The presence of spurious associations with genotyping 

arrays when comparing allele frequencies of genotypes and imputed dosages between cohorts as 

demonstrated in this study shows the need to pick stringent quality control thresholds for GWAS. As 
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stringent filtering might reduce the power due to exclusion of many imputed SNPs, other approaches 

such as including the genotyping array as a covariate in regression models or as a fixed effect in linear 

mixed models need to be further investigated. 

 

Haplotype reference panels employed for phasing and imputation are skewed towards 

Europeans and the evaluation of imputation accuracy within iPSYCH individuals, grouped by parental 

birthplace shows differentially worse accuracy in non-Europeans, stressing the need for reference 

panels with a more genetically diverse catalog of haplotypes, if genotyping arrays and imputation are to 

be used in precision medicine initiatives in a fair and equitable manner
45,46

. While considerable attention 

has been paid to the lack of PGS portability between populations due to less informative SNP effects, 

less attention has been paid to imputation quality in non-European populations, which introduces an 

additional source of error, not only in PGS but also in GWAS within these populations. While our 

comparisons held the reference population constant to the largest set of haplotypes that are currently 

publicly available, testing the imputation performance with varying references would also be 

informative. There has been demonstrable improvement in imputation accuracy for individuals of 

Hispanic/latin and African descent using the NHLBI Trans-Omics for Precision Medicine whole genome 

sequenced reference panel
49

, but it is currently only available through an imputation server, rendering 

its usage prohibitive for studies with data privacy stipulations. 

 

In conclusion, this study demonstrates four different ways of integrating data genotyped on 

multiple arrays with sparse marker overlap.  Care should be applied when integrating data sets and 

building biobanks for precision medicine initiatives, as improper treatment can hurt PGS performance, 

introduce batch artifacts, and produce systematically lower quality data in non-European samples. 
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Figure 1. Four pre-phasing data integration protocols.  

[a] shows the separate protocol where the cohorts genotyped on each array are phased and imputed 

separately. [b] shows the intersection protocol where the two cohorts are merged to include only SNPs 

in common to both genotyping arrays prior to phasing and imputation. [c] shows the union protocol 

where the two cohorts are merged to include SNPs genotyped on either array and the resulting dataset 

with missingness is phased and imputed. [d] Shows the twostage protocol where the haplotypes 

obtained from the separate protocol are initially imputed to the markers in the union protocol, prior to a

second stage of phasing before the cohorts are split back to the original sets of genotyped SNPs after 

which imputation to the full reference panel is performed. 

III 
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Figure 2. Phasing and imputation accuracy vary across state-of-the-art tools and data integration 

approaches.  

[a] Shows the accuracy in switch error rate percentage of phasing across the three tools at two 

parameter sets each and a consensus approach taking the majority haplotype at each locus from the 

three tools at both parameter sets across all four data integration protocols. Default parameters are 

SHAPEIT4.1.2 pbwt-depth=4, BEAGLE5 phase-states=280, EAGLE2.4.1 Kpbwt=10000. High Resolution 

parameters are SHAPEIT4.1.2 pbwt-depth=8, BEAGLE5 phase-states=560, EAGLE2.4.1 Kpbwt=20000. The

switch error rates were computed within 124 trio offspring by comparing the computationally assigned 

phase to the mendelian transmission from known parental genotypes at the heterozygous loci common 

to both genotyping arrays. [b] Shows the imputation accuracy (r
2
) within each data integration protocol, 

grouped by choice of phasing tool at different minor allele frequency bins at the 10,000 SNPs common 

to both genotyping arrays that were masked prior to phasing. [c] shows the accuracy (r2) of imputation 

from haplotypes estimated using the three different tools and the consensus approach grouped by 

IV
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choice of data integration protocol at different minor allele frequency bins. All imputations were 

performed using BEAGLE5.1 with the HRCv1.1 as the haplotype reference panel. 

 

Figure 3. The accuracy of imputation varies extensively by genetic ancestry.  

[a] shows the imputation accuracy (r
2
) in iPSYCH samples grouped by parental birthplace as ascertained 

from the Danish civil registers at different minor allele frequency bins within the 10,000 SNPs common 

to both genotyping arrays, masked prior to phasing. [b] shows the imputation accuracy (r
2
) in admixed 

samples where at least one parent was born in Denmark. All imputations were performed using the 

separate protocol, haplotype estimation was performed using BEAGLE5 phase-states=560, imputations 

were performed using BEAGLE5.1 with the HRCv1.1 as the reference. 

 

V
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Figure 4. The effects of polygenic scores are attenuated when using imputed data.  

[a] shows the variance explained (r
2
) in a simulated continuous phenotype with a SNP heritability of 0.5 

and the 10,000 SNPs common to both genotyping arrays, masked prior to phasing as causal loci. 

Variance explained was calculated using the true genotypes, along with imputed dosages and best guess 

genotypes from the four different data integration protocols. Haplotypes were phased using BEAGLE5 

phase-states=560, imputed using BEAGLE5.1 with the HRCv1.1 as the reference. [b] Shows the 

proportion of individuals in common within each 5-percentile bin when ranked using PGS calculated 

using true genotypes and imputed dosages. 
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Figure 5. Inflation of test-statistics shows type-I errors associated with imputation.  

[a] Shows the inflation in test statistics represented using lambda genomic control, when performing an 

association test at each of the 10,000 SNPs common to both genotyping arrays masked prior to phasing. 

Controls of a homogeneous genetic origin were compared between the iPSYCH2012 and iPSYCH2015i 

cohorts with the genotyping array as the outcome at different thresholds of post-imputation quality 

control across the four different data integration protocols. The dotted horizontal line indicates the 

baseline <gc when the association test was performed using true genotypes from both arrays. 

Haplotypes were phased using BEAGLE5 phase-states=560, imputations were done using BEAGLE5.1 

with the HRCv1.1 as the reference. [b] Shows the number of SNPs left after each threshold of post 

imputation quality control across the four data integration protocols. 
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SUPPLEMENTARY INFORMATION 

 

S1. QUALITY CONTROL OF GENOTYPING DATA 

 

The quality control steps prior to phasing are divided into two stages. An initial SNP level QC and a 

second sample level QC performed on a subset of individuals of a relatively homogenous genetic origin, 

as determined through the Danish birth registers and principal components analysis, within the iPSYCH 

sample.  

 

S1.1. Identifying a genetically homogenous sample subset for QC: 

 

Certain steps in the quality control process such as tests of Hardy Weinberg equilibrium, identification of 

samples with abnormal heterozygosity etc. could be biased by genetic diversity in the dataset. To 

perform these quality control steps in an unbiased manner; we identify a set of samples of a 

homogenous genetic origin. To do this, the variant calls from the 1000 genomes phase 3 project
1
 were 

downloaded in VCF format.  

 

Within each sub-population of the 1000 genomes dataset, we excluded variants for the following 

reasons: 

 

R Less than 5% minor allele frequency 

R Hardy Weinberg p < 10-6  

R Pairwise r2 > 0.1 in a 1kB region  
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R No overlap with the marker set in the Infinium Psych Chip v1.0 and the Global Screening array 

v2.0. 

R Insertions/Deletions 

R Regions with extended linkage disequilibrium
2
. 

 

The resulting data was merged with iPSYCH2012 and iPSYCH2015i using PLINK
3
. We performed a 

principal component analysis using the smartpca module of the eigensoft software package
4
, the 

principal components were computed using the 1000 genomes samples and the iPSYCH2012, 

iPSYCH2015i samples were projected into the resulting principal component space. 

 

We further utilized the Danish national birth records to identify a set of 47,586 individuals whose 

parents and both sets of grandparents were born in Denmark. For each sample in our dataset, we 

calculate the mahalanobis distance of the sample from the multivariate mean of the joint distribution of 

the first ten principal components obtained from the 47,586 individuals previously identified. We 

exclude a sample as an outlier if the distance has a probability less than 5.73x10
-7 

under a chi-square 

distribution with 10 degrees of freedom. This resulted in 120,890 samples classified as inliers to be used 

for quality control. 

 

 

 

S1.2. SNP QC 

 

S1.2.1 Aligning to the reference: 
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All 26 waves of iPSYCH2012, 78 waves of iPSYCH2015i, Trios2012, Trios2015 and the PGP-UK samples 

were aligned to Haplotype Reference Consortium v1.1 (hereafter referred to as HRC) using 

GenotypeHarmonizer v1.4.20-SNAPSHOT
5
. SNP IDs in the target datasets were harmonized to the SNP 

IDs in the HRC where a match was found, A/T and G/C SNPs were rescued where possible using linkage 

disequilibrium information, variants absent in the reference, multi-allelic SNPs and indels were 

excluded. 

 

S1.2.2 SNP Missingness: 

 

Per SNP and sample missingness were calculated using PLINK 2.0. Genotyping for iPSYCH2012 was 

performed in 26 waves. We initially excluded variants missing in > 5% of samples in each individual 

wave. The samples were further merged and variants that were either not genotyped in all 26 waves or 

were found to be missing in >= 5% of samples in the merged dataset were further excluded. 344,498 

SNPs pass this QC.  

 

The genotyping for iPSYCH2015i was performed in 78 waves. We excluded SNPs missing in more than 

5% of the samples in each genotyping wave. Samples were merged across batches and SNPs missing in 

more than 5% of samples across the entire cohort were removed. A total of 558,013 SNPs pass 

missingness filters. 

 

S1.2.3 Differential Missingness between Cases and Controls: 

 

We test for SNPs showing differential missingness between cases and controls of a homogenous genetic 

origin as described in section 1 using the --test-missing option in PLINK. We excluded SNPs that show 
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evidence for differential missingness with an FDR adjusted p-value <= 0.2. 342,837 SNPs in iPSYCH2012 

and 555,131 SNPs in iPSYCH2015i pass this filter. 

 

S1.2.4 Test of Hardy Weinberg Equilibrium in Controls: 

 

The individuals of a homogenous genetic origin as derived in section 1 were further subset to include 

individuals without any disease diagnosis as ascertained from the Danish national patient registers and a 

test for Hardy Weinberg equilibrium was performed using the --hardy option in PLINK. We exclude SNPs 

that fail this test with an FDR adjusted p <= 0.2. 338,104 SNPs in iPSYCH2012 and 544,308 SNPs in 

iPSYCH2015i pass this QC. 

 

S1.2.5 SNPs significantly associated with a genotyping wave or batch: 

 

Due to the large sample size of iPSYCH, the genotyping for iPSYCH2012 was performed in 26 waves and 

the genotyping for iPSYCH2015i was performed in 78 waves. To identify markers showing significant 

batch effects, we performed 26 and 78 logistic regressions in iPSYCH2012 and iPSYCH2015i respectively 

where samples of a homogenous genetic origin in a particular wave are cases and samples in other 

waves are controls. For each SNP, we take the minimum of p-values from all association tests. 

 

The p-values thus selected do not follow a uniform distribution and the cumulative distribution function 

of drawing minimums from n independent distributions Y = min(p1, p2, .. pn) is given by 

 

CDF(Y) = p(Y <= y) = 1 - 1(1 - y)
n 
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If pi is the i
th

 element in a set of m sorted p-values, the CDF of pi is given by i/m. The i
th

 element in a set 

of m sorted minimum p-values is given by 

  

pi = 1- (1 – 1/m)
1/n 

  

The qq-plot of observed vs expected p-values using the above theoretical distribution suggests some 

inflation. 

 

FDR adjustment using the above CDF is given by 

  

pfdr = m – (1 - pi)
n
/sum(p < pi) 

  

We chose an FDR adjusted p-value cut-off of 0.1 to exclude SNPs, which corresponded to a p-value of 

6.31x10
-5 

in iPSYCH2012 and 2.38x10
-6

 in iPSYCH 2016. SNPs passing QC filters, iPSYCH 2012 = 333,308, 

iPSYCH2015i = 543,422. 

 

S1.2.6 Minor Allele Frequency: 

 

A subset of 34,545 individuals in iPSYCH2012 were exome sequenced using the Illumina capture kit on 

HiSeq machines. Quality control was performed using HAIL and variant calling was performed in 

accordance with the GATK best practices. More details on the data processing have previously been 

described
6
. 
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For these individuals, we calculated genotype concordance between the exome sequencing data and 

genotypes from the iPSYCH2012 array data using bcftools
7
 as shown in supplementary table 1. We 

observe that the concordance between genotyped and next generation sequencing datasets drops 

sharply at minor allele frequencies below 0.001. So, we chose this as a sensible threshold for censoring 

SNPs. SNPs passing QC filters: iPSYCH2012: 261,551, iPSYCH2015i: 460,445. 

 

 

Allele Frequency Bin Concordance between genotyping array 

and Exome Sequencing Data 

Number of SNPs 

0.00001 - 0.0001 0.4085 20701 

0.0001 - 0.001 0.7976 30367 

0.001 - 0.01 0.9676 14145 

0.01 - 0.1 0.9966 6795 

0.1 - 0.5 0.999 5081 

0.5 - 1 0.9991 28 

 

Supplementary Table 1. Concordance between genotypes from Infinium Psych Chip v1.0 and whole 

exome sequencing data in a subset of 34,545 individuals in iPSYCH2012. 

 

S1.2.7 SNP Masking: 
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To evaluate the performance of missing data imputation, we randomly selected 10,000 SNPs that were 

genotyped on both the Illumina PsychArray v1.0 and the Illumina Global Screening Array v2.0 using the 

sample function in R. These were excluded prior to haplotype estimation. SNPs used for haplotype 

estimation and imputation, iPSYCH2012: 251,551, iPSYCH2015i: 450,445. 

 

S1.3. SAMPLE QC 

 

S1.3.1 Abnormal Heterozygosity: 

 

Abnormal levels of heterozygosity that cannot adequately be explained by admixture, population 

structure or runs of homozygosity could indicate sample contamination. To identify individuals with 

heterozygosity that cannot be accounted for by population phenomena, we use an approach described 

by the UK biobank (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/genotyping_qc.pdf). Per sample 

heterozygosity, homozygosity and missingness were calculated using PLINK --het, --homozyg and --

missing options respectively. Ancestry adjusted heterozygosity is computed as the residuals from the 

model shown below: 

 

H(x) ~ H0 + PC1 + PC2 + PC3 + PC4 + PC1
2
 + PC2

2
 + PC3

2
 + PC4

2
 + PC1*PC2 + PC2*PC3 + PC3*PC4 + PC4*PC1 + 

PC1*PC3 + PC2*PC4 + E 

 

Where H(x) = Observed heterozygosity 

H0 = Mean heterozygosity/Intercept 

PC1, PC2, PC3, PC4 = First four principal components of genetic ancestry 

E = Residual/Ancestry adjusted heterozygosity 
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We further fit two linear models predicting the observed and ancestry adjusted heterozygosities from 

runs of homozygosity calculated using PLINK. Samples are flagged as outliers if the observed and 

ancestry adjusted heterozygosity as well as the residuals from the models fit against runs of 

homozygosity are four standard deviations away from the mean. 166 samples from iPSYCH2012 and 98 

samples from iPSYCH2015i failed this quality check and were excluded. 

 

S1.3.2 Sample Duplication 

 

A total of 121 samples were found to be genotyped more than once across the 26 waves in iPSYCH2012. 

Further, mapping sample identifiers to unique identifiers from the registers yielded 159 sample 

identifiers in iPSYCH2012 and 25 sample identifiers in iPSYCH2015i mapping to a non-unique identifier in 

the registry. Two samples from iPSYCH2012 were found to be genotyped again in iPSYCH2015i due to 

the randomness of ascertainment. In each case, the sample with lower missingness was retained. 6 

samples in iPSYCH2012 and 1 sample in iPSYCH2015i were genotyped as part of the trios and were 

excluded. 

 

Kinship analysis performed using KING
8
 revealed three monozygotic twins in iPSYCH2012 and ten 

monozygotic twins in iPSYCH2015i. In each case, the case was retained and if both samples were cases, 

the sample with higher missingness was excluded. 

 

S1.3.3 Sample Missingness: 

 

Two samples from the iPSYCH2012 cohort were excluded for excessive missingness (> 5%). 
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This left us with 80,876 samples in iPSYCH2012, genotyped at 251,551 loci and 48,974 individuals in 

iPSYCH2015i, genotyped at 450,445 loci to be used as a backbone for haplotype estimation and missing 

data imputation. 

 

S2. ANCESTRY COMPOSITION OF iPSYCH 

 

Parental Birthplace iPSYCH2012 iPSYCH2015i 

Denmark 67044 41673 

Denmark_Europe 2416 1591 

Denmark_Scandinavia 1476 913 

Europe 1169 785 

Denmark_Unknown 829 543 

MiddleEast 775 563 

Asia 594 384 

Asia_Denmark 581 292 

Africa 473 277 

Denmark_Greenland 435 284 
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Africa_Denmark 431 292 

Denmark_NorthAmerica 363 234 

Denmark_MiddleEast 354 216 

Denmark_SouthAmerica 235 184 

Scandinavia 109 67 

 

Supplementary Table 2. Ancestry composition of iPSYCH by parental birthplace as obtained from the 

Danish Civil Registers
9
. Underscore delimited combinations indicate parents born in different regions. 

 

S3. SWITCH ERROR RATES: 

 

 

PROTOCOL METHOD PARAMETERS SER% 

COHORT2012 BEAGLE5 PhaseStates560 0.2991 

COHORT2015i BEAGLE5 PhaseStates560 0.3077 

COHORT2012 BEAGLE5 PhaseStates280 0.308 

COHORT2015i BEAGLE5 PhaseStates280 0.3147 

COHORT2012 SHAPEIT4.1.2 PbwtDepth8 0.294 

COHORT2015i SHAPEIT4.1.2 PbwtDepth8 0.2745 
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COHORT2012 SHAPEIT4.1.2 PbwtDepth4 0.3317 

COHORT2015i SHAPEIT4.1.2 PbwtDepth4 0.3133 

COHORT2012 EAGLE2.4.1 Kpbwt20000 0.5504 

COHORT2015i EAGLE2.4.1 Kpbwt20000 0.7651 

COHORT2012 EAGLE2.4.1 Kpbwt10000 0.6331 

COHORT2015i EAGLE2.4.1 Kpbwt10000 0.9454 

COHORT2012 CONSENSUS High Resolution 0.2534 

COHORT2015i CONSENSUS High Resolution 0.2593 

COHORT2012 CONSENSUS Default 0.2624 

COHORT2015i CONSENSUS Default 0.2689 

INTERSECTION BEAGLE5 PhaseStates560 0.4554 

INTERSECTION BEAGLE5 PhaseStates280 0.4995 

INTERSECTION SHAPEIT4.1.2 PbwtDepth8 0.4715 

INTERSECTION SHAPEIT4.1.2 PbwtDepth4 0.632 

INTERSECTION EAGLE2.4.1 Kpbwt20000 0.9204 

INTERSECTION EAGLE2.4.1 Kpbwt10000 1.0372 

INTERSECTION CONSENSUS High Resolution 0.3773 

INTERSECTION CONSENSUS Default 0.435 

UNION BEAGLE5 PhaseStates560 0.1743 
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UNION BEAGLE5 PhaseStates280 0.1918 

UNION SHAPEIT4.1.2 PbwtDepth8 0.2192 

UNION SHAPEIT4.1.2 PbwtDepth4 0.2444 

UNION EAGLE2.4.1 Kpbwt20000 0.5831 

UNION EAGLE2.4.1 Kpbwt10000 0.7692 

UNION CONSENSUS High Resolution 0.5513 

UNION CONSENSUS Default 0.6137 

TWOSTAGE BEAGLE5 PhaseStates560 0.2323 

TWOSTAGE BEAGLE5 PhaseStates280 0.2373 

TWOSTAGE SHAPEIT4.1.2 PbwtDepth8 0.1737 

TWOSTAGE SHAPEIT4.1.2 PbwtDepth4 0.1904 

TWOSTAGE EAGLE2.4.1 Kpbwt20000 0.4706 

TWOSTAGE EAGLE2.4.1 Kpbwt10000 0.5497 

TWOSTAGE CONSENSUS High Resolution 0.189 

TWOSTAGE CONSENSUS Default 0.1912 

 

Supplementary Table 3. Phasing accuracy as indicated by switch error rates obtained by comparing the 

mendelian transmission of phase to computationally estimated phase within 124 trio offspring for 

whom parental genotypes are known at heterozygous loci genotyped on both iPSYCH arrays. 
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The marker coverage from the iPSYCH genotyping arrays is not uniform across all chromosomes. As 

shown in supplementary figure 1, this leads to a variability in the accuracy of haplotype estimation by 

chromosome number. 

 

Supplementary figure 1. [a] Haplotype estimation accuracy as shown by switch error rates obtained 

from comparing computationally assigned phase to mendelian transmission in 124 trio offspring whose 

parental genotypes are known. [b] SNP density across chromosomes within each data integration 

protocol.  

 

S4. IMPUTATION ACCURACY WITHIN PERSONAL GENOMES PROJECT - UK SAMPLES 

 

BAM files corresponding to 10 samples from the personal genomes project - UK
10

 were downloaded 

from the European Genome-Phenome Archive (EGA, study accession: PRJEB17529), sample accessions 

VI 
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(SAMEA4545245, SAMEA4545246, SAMEA4545247, SAMEA4545248, SAMEA4545249, SAMEA4545250, 

SAMEA4545251, SAMEA4545252, SAMEA4545253, SAMEA4545254). Variant calling was performed 

using samtools mpileup and the samples were further downsampled to each of the two iPSYCH 

genotyping arrays and added to cohorts arising from each data integration protocol prior to phasing and 

imputation. The accuracy of the imputation was calculated as the squared Pearson correlation 

coefficient between the imputed dosages and variant calls at 6.5 million loci not genotyped on either 

iPSYCH array. The results as shown in supplementary figures 2a, b across minor allele frequency bins as 

ascertained from the HRCv1.1 haplotype reference panel show similar results to the results obtained by 

gauging the accuracy at the 10,000 SNPs masked prior to phasing. The accuracy of imputation appears 

to rely more on choice of data integration protocol than haplotype estimation tool. The haplotypes 

obtained from SHAPEIT4.1.2 in presence of high missingness introduced by the union protocol led to 

inaccurate imputations. 

 

A comparison of imputation accuracy between the two iPSYCH genotyping arrays as shown in 

supplementary figure 2c reveals that all tools yield more accurate imputations in the cohort generated 

using the denser Illumina global screening array v2.0, despite a relatively lesser sample size for 

haplotype estimation as compared to the cohort generated using the Infinium PsychChip v1.0 with less 

dense SNP information but a higher sample size. 
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Supplementary Figure 2. Accuracy of imputation within the personal genomes project - UK whole 

genome sequenced samples, calculated as the squared Pearson correlation coefficient between imputed

dosages and true genotypes at loci absent from either iPSYCH genotyping array. [a] Grouped by choice 

of haplotype estimation tool. [b] Grouped by choice of data integration protocol. [c] Comparison 

between imputation accuracy obtained by using each iPSYCH genotyping array. 

 

 

 

 

 

 

 

III 

 

d 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.27.497703doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497703
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 XLIX 

S5. RELIABILITY OF IMPUTATION QUALITY METRICS 

 

Imputation software, such as BEAGLE5.1 provides an estimated quality score for imputed 

dosages (BEAGLE-r
2
) at each SNP, which is a predicted correlation between the true and estimated 

genotypes at a given variant. The r
2
 at an imputed locus is an important quantity, as it can be used to 

estimate the reduction in effective sample size for an association test
11

 and as a filtering threshold to 

ensure only high quality markers are used for association tests and polygenic scoring
12

.  We sought to 

evaluate the robustness of this metric across data integration protocols by comparing it to the empirical 

imputation accuracy (Empirical-r
2
) calculated from the 10,000 masked SNPs (Supplementary Figure 3). 

The squared Pearson correlation coefficient of BEAGLE-r
2
 and EMPIRICAL-r

2
is highest for intersection 

protocol (r
2

BEAGLE-r2, EMPIRICAL-r2 = 0.98) protocol and lowest for the union (r
2

BEAGLE-r2, EMPIRICAL-r2 = 0.77) 

(Supplementary Figure 3). Hence, uncertainties introduced by high genotype missingness in the target 

dataset, prior to phasing travels through the whole genome imputation pipeline, leading to a potential 

inclusion of genotype dosages, estimated at less than the recommended thresholds and impacting the 

accuracy of estimates and replicability of complex trait analyses. 
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Supplementary Figure 3. The relationship between empirical imputation accuracy, as measured by the 

squared Pearson correlation coefficient of true genotypes and imputed dosages at 10,000 masked SNPs, 

and BEAGLE r
2
 within each data integration protocol. The plot shows the BEAGLE r

2
 is best calibrated for 

the imputations from the intersection protocol whereas it overestimates the accuracy, in presence of 

high genotype missingness, as present in the union protocol. 
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S6. IMPUTATION ACCURACY IN NON-EUROPEAN AND ADMIXED SAMPLES ACROSS DATA 

INTEGRATION PROTOCOLS 

Supplementary Figure 4. Accuracy of imputation varies by parental origin. The attenuation in 

imputation accuracy within samples of non-European origin is further magnified by choice of data 

integration protocol. [a] Shows the accuracy of imputation within the 10,000 masked SNPs at different 

minor allele frequency bins within samples grouped by the birthplace of their parents according to the 

Danish civil registers across all four data integration protocols. [b] Shows the accuracy of imputation 

within the 10,000 masked SNPs within samples where at least one parent was born in Denmark. 

 

S7. PGS ANALYSIS 

 

PROTOCOL COHORT Variance Explained  INSTRUMENT 

LI
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(Squared Pearson's Correlation 

Coefficient) 

TRUTH iPSYCH2012 0.4541 TRUE GENOTYPES 

TRUTH iPSYCH2015I 0.4564 TRUE GENOTYPES 

SEPARATE iPSYCH2012 0.4289 IMPUTED DOSAGES 

INTERSECTION iPSYCH2012 0.3952 IMPUTED DOSAGES 

UNION iPSYCH2012 0.416 IMPUTED DOSAGES 

TWOSTAGE iPSYCH2012 0.4285 IMPUTED DOSAGES 

SEPARATE iPSYCH2015i 0.4379 IMPUTED DOSAGES 

INTERSECTION iPSYCH2015i 0.3992 IMPUTED DOSAGES 

UNION iPSYCH2015i 0.4186 IMPUTED DOSAGES 

TWOSTAGE iPSYCH2015i 0.4381 IMPUTED DOSAGES 

SEPARATE iPSYCH2012 0.423 BEST GUESS GENOTYPES 

INTERSECTION iPSYCH2012 0.3798 BEST GUESS GENOTYPES 

UNION iPSYCH2012 0.4099 BEST GUESS GENOTYPES 

TWOSTAGE iPSYCH2012 0.4228 BEST GUESS GENOTYPES 

SEPARATE iPSYCH2015i 0.4337 BEST GUESS GENOTYPES 

INTERSECTION iPSYCH2015i 0.3804 BEST GUESS GENOTYPES 

UNION iPSYCH2015i 0.4186 BEST GUESS GENOTYPES 
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TWOSTAGE iPSYCH2015i 0.4339 BEST GUESS GENOTYPES 

 

Supplementary Table 4. Variance explained in a simulated continuous phenotype with a SNP heritability 

of 0.5 and the 10,000 masked SNPs as causal loci by true genotypes and imputed dosages, best guess 

genotypes across the four data integration protocols. 

 

S8. BATCH EFFECTS 

 

PROTOCOL iPSYCH2012 iPSYCH2015i R2 MAF N LAMBDA_GC 

TWOSTAGE Imputed Imputed 0 0.01 9566 1.23 

TWOSTAGE Imputed Imputed 0.3 0.01 9564 1.23 

TWOSTAGE Imputed Imputed 0.6 0.01 9430 1.22 

TWOSTAGE Imputed Imputed 0.8 0.01 8871 1.18 

TWOSTAGE Imputed Imputed 0.9 0.01 7964 1.13 

TWOSTAGE Imputed Imputed 0.95 0.01 6410 1.1 

TWOSTAGE Imputed Imputed 1 0.01 1845 1.01 

TWOSTAGE Genotyped Imputed 0 0.01 9543 1.18 

TWOSTAGE Genotyped Imputed 0.3 0.01 9541 1.18 

TWOSTAGE Genotyped Imputed 0.6 0.01 9407 1.17 

TWOSTAGE Genotyped Imputed 0.8 0.01 8849 1.15 
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TWOSTAGE Genotyped Imputed 0.9 0.01 7945 1.11 

TWOSTAGE Genotyped Imputed 0.95 0.01 6397 1.09 

TWOSTAGE Genotyped Imputed 1 0.01 1841 1.01 

TWOSTAGE Imputed Genotyped 0 0.01 9543 1.28 

TWOSTAGE Imputed Genotyped 0.3 0.01 9541 1.28 

TWOSTAGE Imputed Genotyped 0.6 0.01 9407 1.25 

TWOSTAGE Imputed Genotyped 0.8 0.01 8849 1.21 

TWOSTAGE Imputed Genotyped 0.9 0.01 7945 1.16 

TWOSTAGE Imputed Genotyped 0.95 0.01 6397 1.09 

TWOSTAGE Imputed Genotyped 1 0.01 1841 1 

SEPARATE Imputed Imputed 0 0.01 9569 1.25 

SEPARATE Imputed Imputed 0.3 0.01 9566 1.25 

SEPARATE Imputed Imputed 0.6 0.01 9431 1.23 

SEPARATE Imputed Imputed 0.8 0.01 8869 1.19 

SEPARATE Imputed Imputed 0.9 0.01 7957 1.13 

SEPARATE Imputed Imputed 0.95 0.01 6404 1.1 

SEPARATE Imputed Imputed 1 0.01 1822 1 

SEPARATE Genotyped Imputed 0 0.01 9546 1.18 

SEPARATE Genotyped Imputed 0.3 0.01 9544 1.18 
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SEPARATE Genotyped Imputed 0.6 0.01 9497 1.17 

SEPARATE Genotyped Imputed 0.8 0.01 9220 1.14 

SEPARATE Genotyped Imputed 0.9 0.01 8565 1.1 

SEPARATE Genotyped Imputed 0.95 0.01 7105 1.07 

SEPARATE Genotyped Imputed 1 0.01 1747 1 

SEPARATE Imputed Genotyped 0 0.01 9561 1.28 

SEPARATE Imputed Genotyped 0.3 0.01 9559 1.28 

SEPARATE Imputed Genotyped 0.6 0.01 9423 1.26 

SEPARATE Imputed Genotyped 0.8 0.01 8858 1.21 

SEPARATE Imputed Genotyped 0.9 0.01 7939 1.16 

SEPARATE Imputed Genotyped 0.95 0.01 6384 1.09 

SEPARATE Imputed Genotyped 1 0.01 1792 0.98 

UNION Imputed Imputed 0 0.01 9571 2.81 

UNION Imputed Imputed 0.3 0.01 9571 2.81 

UNION Imputed Imputed 0.6 0.01 9536 2.8 

UNION Imputed Imputed 0.8 0.01 9326 2.74 

UNION Imputed Imputed 0.9 0.01 8799 2.62 

UNION Imputed Imputed 0.95 0.01 7628 2.43 

UNION Imputed Imputed 1 0.01 1478 1.93 
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UNION Genotyped Imputed 0 0.01 9548 1.77 

UNION Genotyped Imputed 0.3 0.01 9548 1.77 

UNION Genotyped Imputed 0.6 0.01 9513 1.76 

UNION Genotyped Imputed 0.8 0.01 9304 1.74 

UNION Genotyped Imputed 0.9 0.01 8779 1.7 

UNION Genotyped Imputed 0.95 0.01 7612 1.68 

UNION Genotyped Imputed 1 0.01 1476 1.59 

UNION Imputed Genotyped 0 0.01 9548 2.13 

UNION Imputed Genotyped 0.3 0.01 9548 2.13 

UNION Imputed Genotyped 0.6 0.01 9513 2.11 

UNION Imputed Genotyped 0.8 0.01 9304 2.04 

UNION Imputed Genotyped 0.9 0.01 8779 1.94 

UNION Imputed Genotyped 0.95 0.01 7612 1.75 

UNION Imputed Genotyped 1 0.01 1476 1.23 

INTERSECTION Imputed Imputed 0 0.01 9570 1 

INTERSECTION Imputed Imputed 0.3 0.01 9499 1 

INTERSECTION Imputed Imputed 0.6 0.01 8802 1 

INTERSECTION Imputed Imputed 0.8 0.01 7183 1.01 

INTERSECTION Imputed Imputed 0.9 0.01 5226 1 
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INTERSECTION Imputed Imputed 0.95 0.01 3096 0.97 

INTERSECTION Imputed Imputed 1 0.01 421 0.89 

 

Supplementary Table 5. Batch effects, as demonstrated by the inflation in test statistics when 

performing GWAS with genotyped and imputed dosages from the two iPSYCH cohorts at the 10,000 

masked SNPs in controls of European origin with the genotyping array as the outcome.  

 

* Supplementary tables 6 - 9 in appendix. 
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