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Abstract

Sample recruitment for research consortia, hospitals, biobanks, and personal genomics
companies span years, necessitating genotyping in batches, using different technologies. As marker
content on genotyping arrays varies systematically, integrating such datasets is non-trivial and its impact
on haplotype estimation (phasing) and whole genome imputation, necessary steps for complex trait
analysis, remains under-evaluated. Using the iPSYCH consortium dataset, comprising 130,438
individuals, genotyped in two stages, on different arrays, we evaluated phasing and imputation
performance across multiple phasing methods and data integration protocols. While phasing accuracy
varied both by choice of method and data integration protocol, imputation accuracy varied mostly
between data integration protocols. We demonstrate an attenuation in imputation accuracy within
samples of non-European origin, highlighting challenges to studying complex traits in diverse
populations. Finally, imputation errors can modestly bias association tests and reduce predictive utility
of polygenic scores. This is the largest, most comprehensive comparison of data integration approaches

in the context of a large psychiatric biobank.
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Introduction

A recent appreciation for the polygenic nature of complex traits, with several small-effect risk
loci scattered throughout the genome has revealed that genome wide association studies (GWAS)*?
require hundreds of thousands of participants to identify trait-associated loci. Due to their cost-
effective nature, genotyping arrays, that ascertain between 200,000 to 2 million single nucleotide
polymorphisms (SNPs) in the human genome, have become the preferred technology for generating
genetic data at such sample sizes. A key component of these studies is reference-based whole genome
imputation (imputation), which expands the number of markers that can be studied®, in a two-step
process. First, a collection of genotyped SNPs are organized into haplotype scaffolds (phased), relying on
co-inheritance patterns of SNPs (i.e., linkage disequilibrium, LD). Known, untyped variants are then
probabilistically imputed by matching these sparse scaffolds to more dense haplotypes from whole
genome sequenced (WGS) reference individuals®. This process results in a much larger pool of variants,
thereby increasing GWAS power’. Importantly, it helps build a common set of SNPs for meta-analysis
across cohorts genotyped on different arrays®, and ensures sufficient overlap of SNPs between reference
and target datasets for polygenic scoring (PGS)’. Various computational methods and reference datasets
have been designed for this purpose. Research cohorts beginning with different marker sets, in diverse

batches are often combined, even within a single population study.

State of the art phasing methods, such as BEAGLES®, SHAPEIT4® and EAGLE2™ use hidden
Markov model approaches built on the Li and Stephens model**. This model assumes that an
individual’s genome can be constructed as a mosaic of segments from haplotypes observed in the
reference data or the study population, while accounting for additional factors such as recombination

and de novo mutation rates. Current phasing methods differ in their computational approximations and
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data structures used for selecting the most informative haplotypes. Each phasing method further
accepts user-defined parameters to choose the number of informative haplotypes, with a trade-off
between accuracy, run times, and memory usage. While phasing methods have been improved over the
years to scale computationally with large datasets such as the UK biobank*?, benchmarking is often
performed in subsets of the 1000 genomes project™, UK biobank, genome in a bottle dataset™, or the
GERA cohort™. To the best of our knowledge, the robustness of these methods has not been tested on
input datasets with varying SNP density, target sample sizes, and missingness that can arise when
integrating data generated on different genotyping platforms. It is important to empirically characterize
the accuracy of phasing and imputation in such scenarios so that researchers can make informed choices

when designing bioinformatics workflows to construct next generation biobanks.

The predominant approach used by research consortia for analyzing samples genotyped on
multiple arrays has been to phase and impute them separately, prior to meta-analyzing the results for
GWAS'®Y" However, the accuracy of phasing has been demonstrated to increase with increased sample
sizes of reference and target datasets™®. Moreover, for samples generated from recent population-scale
biobanks (e.g., UKbiobank'?, iPSYCH™), the number of study individuals is often much greater than the
largest available haplotype reference. Haplotype sharing among study individuals and geographical
variation in haplotype frequency imply these study haplotypes are as informative, if not more than
published references for phasing®®. Hence, there is intuitive reasoning to pool together as many samples
as possible for phasing. In the UK Biobank study, where 500,000 participants were genotyped in 33
batches using two genotyping arrays, it was possible to phase and impute the entire study population
together, leveraging the unprecedented sample size because the arrays used, the UK Biobank Axiom

array and the UK BiLEVE array, were closely matched (95% marker overlap). However, challenges arise in
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scenarios where genotyping involves different arrays with low marker overlap and there is currently

insufficient guiding research.

Earlier studies on integrating cohorts genotyped on different arrays were on a much smaller
scale, used earlier generations of methods, and focused on less diverse cohorts. Sinnott et. al (2012)*
compared imputed allele frequencies in two groups of healthy European ancestry controls, genotyped
on different arrays with only ~30% overlap. They observed a substantial type-l error rate, even at
genome-wide significance, due to associations with the genotyping array. Retaining only the set of SNPs
imputed at the highest quality reduced, but did not eliminate, these errors. Uh et. al (2012)** combined
two data sets imputed from arrays with 60,000 overlapping markers into a union data set with high
levels of missingness. GWAS across all good quality imputed markers showed an inflation in test
statistics that was higher than when restricting to the markers genotyped on both arrays or only
including subjects genotyped on one array. The inflation was reduced when an extreme quality control
was applied (r* quality metric > 0.98). Johnson et. al (2013)** compared two approaches for integrating
cases and controls genotyped on different arrays. They observed that imputing from the union of SNPs
across arrays led to 0.2% of SNPs showing associations to genotyping arrays, while imputing from the
intersection led to lower imputation accuracy, albeit without the same bias. These previous studies
highlight challenges associated with integrating genotype data, including the important notion of a

potential accuracy/bias trade-off, but do not provide a consensus path forward.

Pimental et. al** studied the biases introduced by imputation in the context of estimating direct
genomic values (DGV) in livestock, analogous to PGS in human genetics. They observed a bias in imputed
genotypes towards the more frequent (major) allele in the reference panel that caused estimated DGVs

to be shrunk towards the sample mean. This bias was more evident in traits with high heritability and
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when DGVs were estimated using imputation from less dense haplotypes. More recently, Chen et. al*®
studied the impact of different combinations of phasing and imputation methods on PGS and
demonstrated that while PGS differ at an individual level, when computed using imputed genotypes
rather than gold standard WGS, the variation at cohort level is low, resulting in a less than 5 percentile
change in individual PGS rank within the cohort. The impact of imputation on PGS in context of data
integration across cohorts has otherwise remained underexplored and given the attention PGS have
recently received®®?°, exploring these concepts in modern, population-scale, human complex trait

genetics applications is critical.

This study uses the Lundbeck foundation initiative for integrative psychiatric research (iPSYCH)
case-cohort dataset with an initial 81,330 subjects genotyped on the Infinium PsychChip v1.0 (lllumina,
San Diego, CA USA) and an additional 49,108 subjects genotyped on the Illumina Global Screening Array
v2.0 (lllumina San Diego, CA USA) to evaluate four realistic protocols for data integration. We compare
the phasing accuracy using SHAPEIT4.1.2, EAGLE2.4.1, BEAGLES5, and a consensus approach in truth sets
derived from 124 parent-offspring trios that were genotyped on both arrays. To compare the resulting
imputation quality, we randomly masked 10,000 SNPs prior to phasing and included 10 WGS samples
from the Personal Genomes Project - UK cohort®®, down sampled to the SNPs in each cohort. Imputed
genotypes were then compared to these truth sets to assess the loss of information in imputed data. It
is known that current haplotype references are skewed towards individuals of European ancestry, hence
we assessed quality of phasing and imputation in non-European and admixed individuals. Finally, using a
simulated quantitative trait, we explore the impact of phasing and imputations across data integration

scenarios on GWAS and PGS.

Materials and methods

\
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Data

iPSYCH2012 is a case-cohort design nested within 1,472,762 individuals born in Denmark
between 01-05-1981 and 31-12-2005, with a known mother, alive and residing in Denmark at the end of
the first year after birth. Out of 86,189 individuals chosen for genotyping, 57,377 are cases with one or
more mental disorders among schizophrenia, autism, attention-deficit/hyperactivity disorder (ADHD)
and affective disorder. The cohort is a random sample of 30,000 individuals representative of the
national population of Denmark born during the same time period. Genotyping was performed at The
Broad Institute, Boston MA, USA with the Infinium PsychChip v1.0 (Illumina, San Diego CA, USA), using
DNA extracted from dried blood spots, obtained from the Danish neonatal screening biobank>. Further
details on the ascertainment and data generation process of iPSYCH2012 has previously been
described™. iPSYCH2015i is an extension of iPSYCH2012, nested within 1,717,316 individuals born in
Denmark between 01-05-1981 and 31-12-2008, satisfying the same criteria, encompassing 33,345 cases
and 15,756 cohort individuals, genotyped on the Illlumina Global Screening Array v2.0 (lllumina, San

Diego CA, USA) at Statens Serum Institut, Copenhagen Denmark.

The trio dataset contains 128 parent-offspring trios where the offspring were ascertained for
diagnoses of autism or ADHD with both parents born in Denmark, on or after 01-05-1981. Samples were
genotyped using both the Infinium PsychChip v1.0 and the lllumina Global Screening Array v2.0.
Information on psychiatric diagnoses were obtained from the Danish national psychiatric central
register’>**, demographic information including age, gender and parental birth place were obtained

from the Danish civil registration system>**>.
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The Personal Genomes Project - UK (PGP-UK) is an open source initiative aimed at facilitating
access to multi-omics datasets for the purpose of gaining insights into biological and medical processes®
and contains 1,100 citizens or permanent residents of the United Kingdom who provided consent after
passing a test aimed at educating them on the risks of sharing personal genetic data. DNA was extracted
from blood and whole genome sequenced using lllumina HiSeq X at an average depth of 15x. The

resulting BAM files were deposited to the European Nucleotide Archive (Study identifier: PRIEB17529).

Ethical Permissions

Research using iPSYCH and the trio data has been approved by the Danish scientific ethics
committee, Danish health authority and the Danish neonatal screening biobank committee. PGP-UK has
been approved by the University College London scientific ethics committee. All analyses were
performed on a secure server within the Danish national life science supercomputing cluster

(https://computerome.dtu.dk/) and the Aarhus Genome Data Center (https://genome.au.dk/).

Genotype Quality Control (QC)

Genotype data from iPSYCH2012, iPSYCH2015i, trios and PGP-UK were aligned to HRC v1.1 using
genotype harmonizer version 1.4.20-SNAPSHOT®. SNPs not genotyped in all waves/batches within
individual iPSYCH cohorts were excluded. Further filtration steps include exclusion of SNPs missing in at
least 5% of the study subjects, SNPs showing differential missingness between cases and controls, SNPs
failing tests of Hardy Weinberg equilibrium in controls of a homogenous genetic origin, SNPs
significantly associated with a genotyping batch or wave, SNPs with minor allele frequencies less than

0.001. A further 10,000 SNPs were selected at random and masked to serve as a truth set for
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benchmarking the performance of imputation. Samples were excluded if they had abnormal levels of
heterozygosity that could not adequately be explained by admixture, or if missing more than 5% of the
SNPs that passed QC. In case of duplicate samples or monozygotic twins, the sample with lower
missingness was retained. This resulted in a total of 80,876 individuals genotyped at 251,551 SNPs in
iPSYCH2012 and 48,974 individuals genotyped at 450,445 SNPs in iPSYCH2015i passing QC. QC detailed

in depth in supplementary S1. PLINK v1.90b30 64-bit 20 May 2015% was used for QC.

Pre-phasing Data Integration Protocols

We evaluated four different ways of integrating data as shown in Figure 1.

Separate. In this protocol (Figure 1a), samples from iPSYCH2012 and iPSYCH2015i are phased
and imputed separately. 124 trio offspring were added to both cohorts. Ten whole genome sequenced
samples from the PGP-UK cohort were down sampled to both the iPSYCH2012 and iPSYCH2015i SNPs
that passed QC and merged with both cohorts. This resulted in two cohorts: (1) Cohort2012 (81,022
samples, 251,551 SNPs, 0.1% missingness) which includes iPSYCH2012, trio offspring genotyped on the
Infinium PsychChip v1.0 and ten PGP-UK samples, down sampled to the Infinium PsychChip v1.0 variants
that pass QC. (2) Cohort2015i (49,120 samples, 450,455 SNPs, 0.31% missingness) which includes the
iPSYCH2015i, trio offspring genotyped on the lllumina Global Screening Array v2.0 and ten PGP-UK

samples, down sampled to the lllumina global screening array v2.0 variants that pass QC.

Intersection. In this protocol (Figure 1b), samples from iPSYCH2012 and iPSYCH2015i were
merged at the 116,962 QC’ed SNPs present on both iPSYCH arrays. 62 offspring samples were chosen at

random from each of the trio datasets genotyped using both iPSYCH arrays and merged to this dataset
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along with ten PGP-UK samples, down sampled to the 116,962 common loci. This resulted in the

intersection (129,886 samples, 116,962 SNPs, 0.17% missingness) cohort.

Union. In this protocol (Figure 1c), samples from iPSYCH2012, iPSYCH2015i were merged with
missingness to the 596,028 QC’ed SNP loci, genotyped on either iPSYCH array. To this, 62 samples each
from the trio dataset genotyped on both arrays were merged, same as in the intersection. Five PGP-UK
samples, each down sampled to the SNPs present on either genotyping array, were merged resulting in

the union cohort (129,886 samples, 596,028 SNPs, 44.54% missingness).

Two-stage. In this protocol (Figure 1d), eight sets of phased haplotypes from the Cohort2012
and Cohort2015i obtained in the separate protocol were initially imputed using BEAGLES.1 in batches of
10,000 samples to the 596,028 QC’ed SNPs genotyped on either iPSYCH array with HRCv1.1 as the
reference. Then the two cohorts were merged, retaining the same 62 trio samples from each cohort as
chosen in the intersection and union approaches along with five PGP-UK samples from each cohort,

forming the twostage cohort (129,886 samples, 596,028 SNPs, 0% missingness).

All datasets were stored and processed in variant call format (VCF)

(http://samtools.github.io/hts-specs/VCFv4.2.pdf) using bcftools®®,

Phasing

Cohorts arising from each data integration protocol were phased using three methods and two

different parameters, BEAGLE5S (phase-states=280, 560), SHAPEIT4.1.2 (pbwt-depth = 4, 8), EAGLE2.4.1

(Kpbwt = 10000, 20000) with the added aim of benchmarking improvements in accuracy at a higher
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resolution parameter set at the expense of longer run times and memory requirements. A consensus
haplotype set was generated by taking the majority haplotype estimate across the three tools at both
the default and higher resolution parameters at each locus within each individual using BEAGLE’s

consensusvcf module (consensusvcf.jar). The HRCv1.1 dataset, consisting of 64,976 haplotypes™ was

used as the reference panel.

Imputation

All cohorts were imputed using BEAGLES5.1 with HRCv1.1 as the reference. Due to the cohort
sizes, imputations were carried out in batches of 10,000 samples. Imputed dosage (DS) for an individual
at a bi-allelic locus is calculated as DS = p(RA) + 2*p(AA) where p(RA) is the genotype probability
corresponding to the presence of one alternate allele (A) and one reference allele (R) as per the
reference panel and p(AA) corresponding to the genotype probability of the presence of two copies of

the alternate allele.

Phasing accuracy

Phasing accuracy was evaluated by calculating switch error rates (SER) in the trio offspring at the
QC’ed heterozygous SNPs common to both iPSYCH arrays. A switch error occurs when there arises an
inconsistency between the computationally assigned phase and the phase observed by mendelian
transmission with knowledge of parental haplotypes. SER is the number of such switches divided by the
total possible switches™ . The code for SER calculation has previously been used® and available on GitHub

(https://github.com/odelaneau/switchError).
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Imputation accuracy

Imputation accuracy within iPSYCH was calculated as the squared Pearson correlation
coefficient (r*) between true genotypes and imputed dosages within different minor allele frequency
(MAF) bins (MAF as measured in HRCv1.1) at each of the 10,000 SNPs masked prior to phasing.
Imputation accuracy within PGP-UK was calculated as the r* between true genotypes obtained from
multisampling variant calling using samtools*® and imputed dosages in eight MAF bins at 6,517,513 loci
that were genotyped on neither iPSYCH array. The code is available on GITHUB

(https://github.com/vagm2/impute paper/blob/main/truth vs impute 2021 02 24.pl). To evaluate

variations in imputation accuracy by ancestral origin, r* was calculated within iPSYCH samples, grouped

according to the country of birth of both parents according to the Danish civil register***>.

Phenotype simulations

To evaluate the impact of whole genome imputation on polygenic scores, a quantitative trait for
129,850 iPSYCH individuals was simulated using GCTA* version 1.92.1beta6, with a heritability of 0.5

and the 10,000 masked SNPs as causal loci with effect sizes drawn from a standard normal distribution.

Association Tests

To evaluate the presence of batch artifacts in each protocol we conducted multiple GWAS with
iPSYCH cohort membership (iPSYCH2012 vs iPSYCH2015i) as the outcome using the glm module of
PLINKv2.00a2LM 64-bit Intel (10 Nov. 2019)*. As a baseline, we performed the GWAS using true values

of 10,000 masked genotypes as explanatory variables. Subsequently, GWAS were performed comparing
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allele frequencies from true genotypes in one cohort to imputed dosages in the other and imputed
dosages in both, across all four data integration protocols (separate, union, intersection, twostage).
Tests were restricted to iPSYCH individuals without mental disorders (i.e., a random sample of
psychiatric controls), of a homogenous genetic origin based on principal component analysis
(Supplementary S1.1) using Eigenstrat*®, and pruned for relatedness beyond the third degree using
kinship coefficients estimated by KING**. The overall inflation of test statistics above the null was
evaluated using the genomic inflation factor which compares the median of the chi-square test statistic
obtained from each GWAS to the expected median of a chi-square distribution with 1 degree of

freedom.

Polygenic Scores

Polygenic scores (PGS) for each individual, j, were constructed using simulated per-allele effects
as follows:

PGS;= X 1 mfX;y
where m is the total number of SNPs (10,000 masked SNPs), § is simulated effect for SNP /, Xj; is the
imputed dosage or best guess genotype count of effect alleles for individual j at SNP i. Variance
explained by PGS was calculated by fitting two linear models using the function, Im in R. The simulated
trait value is the outcome, individual PGS is the sole explanatory variable in one model, while individual
PGS, age, gender and first 10 principal components of genetic ancestry are explanatory variables in the
second model. Variance in the simulated trait value explained by PGS is the difference between the
correlation coefficients (R?) between the two models. We restrict the analysis to 67,587 individuals from
iPSYCH2012 and 41,069 individuals from iPSYCH2015i with parents and both sets of grandparents born

in Denmark and clustering with the CEU (Utah residents with Northern and Western European ancestry)
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and GBR (British in England and Scotland) populations of the 1000 genomes phase 3 dataset in principal

component analysis (Supplementary S1.1).

Results

Phasing Accuracy:

Phasing accuracy was measured using SER (Methods) with three methods, two parameter
settings each, and a consensus set across four data integration protocols (Figure 2a, Supplementary S3,
Supplementary Table 9). Our results show that phasing accuracy depends on the data integration
protocol, phasing methods and associated parameters, target sample size, genotyped SNP density in the
target, rate, and structure of genotype missingness. In general, the two-stage protocol, which leverages
the largest possible sample size and density of SNPs, with no missingness, shows consistently high
accuracy across all phasing methods (SER = 0.17 - 0.55%). The intersection protocol, which also leverages
the largest sample size, albeit with lowest SNP density, proves the least accurate (SER = 0.38 - 1.04%).
The ranking of the protocols was generally consistent across methods, except for the union, which
achieved the lowest overall SER with BEAGLES at parameter value, phase-states=560. The union was
also the worst performing protocol when taking consensus haplotypes across all three methods (SER =
0.61% at default parameters), suggesting the genotype missingness introduced by this protocol causes

systematic phasing errors that are reproduced across tools.

In protocols involving little to no genotype missingness (i.e., not Union), BEAGLES and
SHAPEIT4.1.2 show similar accuracy, outperforming EAGLE2.4.1 across integration methods and

parameters. The union was again a point of departure from the trends, with BEAGLES performing better
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(SER =0.17%) on the union and SHAPEIT4.1.2 performing better on the twostage (SER = 0.17%). This
implicates genotype missingness for phasing performance, suggesting that BEAGLES handles this more
robustly than SHAPEIT4.1.2. When considering the twostage protocol, which we hypothesized could
mitigate initial missing genotypes, SHAPEIT4.1.2 performed like BEAGLES on the union (and better than
on the twostage), suggesting, modulo initial missingness, SHAPEIT4.1.2 may have at least as good a

phasing algorithm as BEAGLES.

Comparing the phasing accuracy across chromosomes within each method and data integration
protocol reveals that phasing accuracy follows the number of SNPs per centimorgan in the target
dataset, with denser chromosomes showing lower SER (Supplementary figure 1). We also observe that
EAGLE2.4.1 and BEAGLES produce more accurate estimates in the Cohort2012 where the sample size is
higher and SNP density is sparser whereas SHAPEIT4.1.2 produces more accurate estimates in the
Cohort2015i where the SNP density is higher and target sample size is comparatively smaller. As
mentioned above, the worse performance of SHAPEIT4.1.2 and EAGLE2.4.1 on the union as opposed to
the twostage highlight the sensitivity to initial missing genotypes. These results show the necessity for
benchmarking the robustness of phasing methods in less-than-ideal conditions, specific to study cohorts,

prior to deploying them in such untested scenarios.

Imputation Accuracy:

The accuracy of imputations derived from each set of haplotype scaffolds (i.e., from each tool,
parameters and data integration protocol set) are presented in figures 2b, c and Supplementary Table 7.
Variability in imputation accuracy stems more from the choice of data integration protocol, rather than

the choice of phasing method or parameters. Since all methods process data in variant call format (VCF),
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this renders the choice of phasing method less relevant if the end goal is to attain the most accurate
missing data imputation. The highest imputation accuracy is obtained when the cohorts are phased
separately, with the r* between true masked genotypes and imputed dosages varying between 0.43 at
rare (MAF < 0.005) and 0.95 at more common (0.2 < MAF <= 0.5) SNPs. This trend is consistent across
haplotypes generated by all methods. The added bioinformatics effort aimed at enhancing sample size
without missingness with the twostage protocol did not yield a higher imputation accuracy than the
separate protocol. At the minor allele frequency bin, 0.01 < MAF <= 0.05, using haplotypes phased by
BEAGLES, both approaches show identical accuracy (r°=0.88) (Supplementary Table 7). The imputation
accuracy is degraded when using the intersection protocol with an attenuation between 8.4-13.6% at
common and 13.9-18.6% at rare SNPs as compared to the separate protocol, highlighting the drop in
phasing accuracy at low target SNP density carrying over to imputation performance.

Haplotypes estimated by SHAPEIT4.1.2 in the union protocol are an outlier and resulting
imputations are of noticeably poorer quality compared to haplotypes obtained from other methods.
Phasing in the presence of missingness is itself a two-step process, where each phasing method makes a
rough imputation of missing data prior to constructing haplotypes. If this data is not overwritten during
imputation, the prephasing imputation algorithm implemented by SHAPEIT4.1.2 could be the reason for
problems with the union protocol. This becomes more credible when considering the imputation
accuracy obtained from the twostage protocol using SHAPEIT4.1.2, where the attenuation is mitigated.

The pattern of results described above is replicated in the PGP-UK samples (Supplementary Figure 2).

A comparison of imputation accuracies between Cohort2012 and Cohort2015i within the
separate protocol using the PGP-UK samples (Supplementary Figure 2c, Supplementary Table 9) shows
higher imputation accuracy in Cohort2015i, imputed from a higher SNP density as compared to

Cohort2012 with a larger sample size with a difference as high as 6.7% at € (0.1,0.05]. This finding is
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important because it emphasizes a trade-off between sample size and SNP density and, with modern
samples, perhaps SNP density should be emphasized. Enhanced parameters that showed higher phasing
accuracy do not seem to substantially increase imputation accuracy (Supplementary figures 2a, b).
Taken together, these results show that imputation performance suffers when merging cohorts
genotyped on different arrays prior to phasing and choice of phasing method is less relevant than data

integration protocol.

Imputation accuracy in non-European and admixed samples

It is known that GWAS results and subsequent PGS constructed from them do not generalize
well across populations®. This is typically attributed to inaccuracies in the estimation of SNP effect sizes
(i.e., per SNP beta) due, e.g., to variable LD across populations*®. However, if non-European haplotypes
are underrepresented in either reference or target data sets, imputed genotypes in these individuals
may be of lower quality and errors in the genotypes themselves could be contributing to the
generalization problems of GWAS. Imputation accuracy was estimated in non-European and admixed
iPSYCH samples, grouped according to the birthplace of the proband’s parents (Figure 3a, b;
Supplementary Figure 4, Supplementary Table 8). Individuals born to non-Scandinavian European
parents had lower imputation accuracy (7.07-12.58%) than those with both parents born in Denmark.
These effects were larger for individuals with both parents born in Asia (11.1-11.2%), Africa (17.37-
17.48%), or Middle East (11.2-17.7%). The attenuation in imputation accuracy within admixed
individuals is comparatively lower, varying between 4.47-8.56% as compared to individuals with both
parents born in Denmark. These results, as expected, suggest that imputation accuracy varies by

ancestry and introduces a systematic loss of information in the genotypes of non-Europeans.
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Impact on PGS:

PGS calculated using true genotypes in iPSYCH2012 and 2015i respectively explained 45.4 and
45.6% of the variance in the simulated continuous trait (Figure 4a, Supplementary S7). An attenuation in
variance explained was observed when PGS were instead calculated using imputed dosages, which was
lowest when using the separate protocol for iPSYCH2012 (2.52%) and twostage protocol for
iPSYCH2015i (1.83%) and highest when using the intersection protocol (iPSYCH2012: 5.89%;
iPSYCH2015i: 5.72%). There appears to be a minor gain in variance explained, when using imputed
dosages, rather than best guess genotypes for PGS, which is most pronounced when using the
intersection protocol (iPSYCH2012: 1.54%; iPSYCH2015i: 1.88%). Our results are in line with findings
from animal breeding studies®* demonstrating reduced genetic prediction accuracy introduced by

imputations.

Another application of PGS is to prioritize individuals in top quantiles of a PGS distribution for
monitoring and intervention. To investigate the effect of imputation accuracy on such applications,
individuals in iPSYCH2012 and 2015i were grouped into percentiles of PGS risk for the simulated trait
based on PGS calculated using genotypes or imputed dosages from the four data integration protocols.
The results (Figure 4b) are consistent with prior work® showing a discrepancy in individual rank that is
higher in the middle percentiles and lower in the more actionable top percentiles of the PGS
distribution. The discordance in individuals in the top percentiles between PGS constructed by true
genotypes and imputed dosages is, however, much higher than the 5% previously reported. The overlap
in the proportion of individuals ranked in the top 5 percentiles of PGS using true genotypes and imputed
dosages is highest in both cohorts when employing either the separate or twostage protocol

(iPSYCH2012: 80%, iPSYCH2015i: 84%) and lowest when using the intersection protocol (iPSYCH2012:
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71%, iPSYCH2015i: 73%). This overlap in the top 5 percentiles is also greater within iPSYCH2015i, as
compared to iPSYCH2012, continuing the trend that higher phasing and imputation accuracies in target

samples attributable to higher array density carries through to PGS performance.

Batch effects

Association studies were performed comparing genotypes and imputed dosages at the masked
SNPs from all four data integration protocols in unrelated controls of iPSYCH2012 and 2015i of a
homogenous genetic origin with the genotyping array as the outcome (see Methods). The resulting
genomic inflation factor in test statistics across different thresholds for imputation quality is shown in
figure 5a, supplementary S8. The number of SNPs used in the association tests at each imputation

quality threshold is shown in figure 5b.

The baseline for the inflation observed by comparing the genotyped SNPs in controls is g =
1.05. No inflation is observed when comparing SNPs imputed in both iPSYCH2012 and iPSYCH2015i using
the intersection protocol, while test statistics are most inflated when using the union protocol. Using the
separate and twostage protocols, inflation is reduced at high thresholds of BEAGLE imputation r?, but
not eliminated. For example, in the Separate protocol, with SNP imputation quality filter, DR2 >= 0.9, the
Ble.=1.13 when comparing SNPs genotyped in iPSYCH2012 to SNPs imputed in iPSYCH2015i, and [, =
1.18 when comparing SNPs imputed in iPSYCH2012 to SNPs genotyped in iPSYCH2015i and [y.=1.1
when comparing SNPs imputed in both. At this threshold, 22% of the imputed SNPs are excluded. This
analysis suggests that imputations performed from different genotyped backbones, which result in
genotyped SNPs being compared to imputed SNPs, will contain batch artifacts that can be difficult to

remove by standard SNP exclusion, which might also be complicated, due to a lack of robustness of
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imputation quality metrics under different data integration protocols (Supplementary S5,

Supplementary Figure S3).

Discussion

As the cost of genotyping drops, the burden of complex trait analysis is moving away from
genotyping requisite participants and towards storage, computational requirements, and the
bioinformatics expertise to integrate and analyze such datasets*’. Phasing and imputation have
somewhat remained a black box in bioinformatics pipelines with researchers having the opportunity to
avail themselves of services like the Michigan imputation server”® to reduce the computational burden
of data preparation. However, privacy stipulations governing datasets generated through national
biobanks might prohibit use of such services. The benchmarking work presented in this study stresses
the importance of making an educated choice of data integration protocols that could introduce a
tradeoff among peculiarities such as a sparse marker set, small sample size, high missingness in the

input dataset, or the potential of batch artifacts.

The benchmarking of imputation accuracy presented in this study replicates previous findings®,
suggesting imputation from the intersection of markers when incorporating samples genotyped on
multiple arrays leads to a loss of accuracy while imputation from the union of the markers leads to
spurious associations with genotyping arrays>®. Consistent with our hypothesis that the phasing accuracy
could be improved by increasing the target sample size by jointly analyzing the two cohorts (by either
the union or two-stage protocol) we did observe a drop in SER. However, these improvements did not
result in improvements in imputation accuracy, likely reflecting that the phasing tools were not

developed with this type of systematic missingness in mind. Until software that can leverage this
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apparent potential for improvement in phasing accuracy are available, our results suggest that phasing
and imputing separately results in equivalent or better imputation accuracy. The higher phasing and
imputation accuracies, PGS performance in the sub-cohort of iPSYCH individuals genotyped using the
[llumina Global Screening Array, enriched with more common markers as compared to the sub-cohort
imputed using the Infinium Psych Array, enriched for rare markers with prior associations to psychiatric
phenotypes, suggests that when faced with a choice, it might be more beneficial to prioritize genotyping
arrays with more common markers that overlap more with the content of haplotype reference panels.
Analysis pipelines and methods focusing on common disease research, rely on established high quality
SNP sets, such as HapMap3 and use thresholds to exclude rare markers during QC, effectively rendering

them useless for such applications.

Imputed data will contain non-random errors, especially in presence of systemic missingness, as
can be the case when genotyping of samples is performed in batches and over time. Therefore, it is
critical to consider the sensitivity of any analysis performed on these datasets. Technical artifacts in the
genotype generation process are one of the sources of poor performance of PGS across cohorts®’. While
the attenuation introduced in PGS performance and the discordance of individual rank in different
percentiles of the risk distribution when PGS are calculated using imputed data as compared to
genotyped SNPs has received attention in animal breeding studies, this remains under-researched in
human populations. As one of the clinically informative uses of PGS lies in selecting a subset of

individuals in the actionable risk percentiles of a PGS distribution®®?’

, errors introduced during phasing
and imputation could have a sizable impact on genetic risk profiling - especially when data is acquired
over time and according to different protocols. The presence of spurious associations with genotyping

arrays when comparing allele frequencies of genotypes and imputed dosages between cohorts as

demonstrated in this study shows the need to pick stringent quality control thresholds for GWAS. As
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stringent filtering might reduce the power due to exclusion of many imputed SNPs, other approaches
such as including the genotyping array as a covariate in regression models or as a fixed effect in linear

mixed models need to be further investigated.

Haplotype reference panels employed for phasing and imputation are skewed towards
Europeans and the evaluation of imputation accuracy within iPSYCH individuals, grouped by parental
birthplace shows differentially worse accuracy in non-Europeans, stressing the need for reference
panels with a more genetically diverse catalog of haplotypes, if genotyping arrays and imputation are to

be used in precision medicine initiatives in a fair and equitable manner*>*®

. While considerable attention
has been paid to the lack of PGS portability between populations due to less informative SNP effects,
less attention has been paid to imputation quality in non-European populations, which introduces an
additional source of error, not only in PGS but also in GWAS within these populations. While our
comparisons held the reference population constant to the largest set of haplotypes that are currently
publicly available, testing the imputation performance with varying references would also be
informative. There has been demonstrable improvement in imputation accuracy for individuals of
Hispanic/latin and African descent using the NHLBI Trans-Omics for Precision Medicine whole genome

sequenced reference panel®, but it is currently only available through an imputation server, rendering

its usage prohibitive for studies with data privacy stipulations.

In conclusion, this study demonstrates four different ways of integrating data genotyped on
multiple arrays with sparse marker overlap. Care should be applied when integrating data sets and
building biobanks for precision medicine initiatives, as improper treatment can hurt PGS performance,

introduce batch artifacts, and produce systematically lower quality data in non-European samples.
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Figure 1. Four pre-phasing data integration protocols.

[a] shows the separate protocol where the cohorts genotyped on each array are phased and imputed
separately. [b] shows the intersection protocol where the two cohorts are merged to include only SNPs
in common to both genotyping arrays prior to phasing and imputation. [c] shows the union protocol
where the two cohorts are merged to include SNPs genotyped on either array and the resulting dataset
with missingness is phased and imputed. [d] Shows the twostage protocol where the haplotypes
obtained from the separate protocol are initially imputed to the markers in the union protocol, prior to a
second stage of phasing before the cohorts are split back to the original sets of genotyped SNPs after

which imputation to the full reference panel is performed.
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Figure 2. Phasing and imputation accuracy vary across state-of-the-art tools and data integration
approaches.
[a] Shows the accuracy in switch error rate percentage of phasing across the three tools at two
parameter sets each and a consensus approach taking the majority haplotype at each locus from the
three tools at both parameter sets across all four data integration protocols. Default parameters are
SHAPEIT4.1.2 pbwt-depth=4, BEAGLES phase-states=280, EAGLE2.4.1 Kpbwt=10000. High Resolution
parameters are SHAPEIT4.1.2 pbwt-depth=8, BEAGLES phase-states=560, EAGLE2.4.1 Kpbwt=20000. The
switch error rates were computed within 124 trio offspring by comparing the computationally assigned
phase to the mendelian transmission from known parental genotypes at the heterozygous loci common
to both genotyping arrays. [b] Shows the imputation accuracy (r’) within each data integration protocol,
grouped by choice of phasing tool at different minor allele frequency bins at the 10,000 SNPs common
to both genotyping arrays that were masked prior to phasing. [c] shows the accuracy (r2) of imputation

from haplotypes estimated using the three different tools and the consensus approach grouped by
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choice of data integration protocol at different minor allele frequency bins. All imputations were

performed using BEAGLES.1 with the HRCv1.1 as the haplotype reference panel.

1.00

0.954

0,80
w0854
o (.80

0.754
o 0.704
O 0654
5 0.604
£ 0.554
= 0.504
gna.&

0,404
S 0354
EUKU-
O 5254

125

2 0204
= 0.154
N 0104
0.054
0,004

[a]

Se-04 0001 0005 001 005 01
Minor Allele Frequency Bin

0.2

0.5

PARENTAL_ORIGIN

- Africa (N = 754)

—o— Asia (N = 992)

—=~ Denmark (N = 109984)

== Europa (N = 1974)
MiddleEast (N = 1343)

~s~ Scandinavia (N = 178)

0.954
0904
0854
0.804
& 0754
B or04
2 0654
E 0604
i 0,55
Sos04
0454
O 0.404
2 0354
= 0304
« g.254

0.204

0.154

Se-04

o.0o1

0005 001 005 04
Minor Allele Frequency Bin

Figure 3. The accuracy of imputation varies extensively by genetic ancestry.
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[a] shows the imputation accuracy (r”) in iPSYCH samples grouped by parental birthplace as ascertained

from the Danish civil registers at different minor allele frequency bins within the 10,000 SNPs common

to both genotyping arrays, masked prior to phasing. [b] shows the imputation accuracy (r?) in admixed

samples where at least one parent was born in Denmark. All imputations were performed using the

separate protocol, haplotype estimation was performed using BEAGLES phase-states=560, imputations

were performed using BEAGLES.1 with the HRCv1.1 as the reference.
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Figure 4. The effects of polygenic scores are attenuated when using imputed data.

[a] shows the variance explained (r*) in a simulated continuous phenotype with a SNP heritability of 0.5
and the 10,000 SNPs common to both genotyping arrays, masked prior to phasing as causal loci.
Variance explained was calculated using the true genotypes, along with imputed dosages and best guess
genotypes from the four different data integration protocols. Haplotypes were phased using BEAGLES
phase-states=560, imputed using BEAGLES.1 with the HRCv1.1 as the reference. [b] Shows the
proportion of individuals in common within each 5-percentile bin when ranked using PGS calculated

using true genotypes and imputed dosages.
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Figure 5. Inflation of test-statistics shows type-| errors associated with imputation.

[a] Shows the inflation in test statistics represented using lambda genomic control, when performing an
association test at each of the 10,000 SNPs common to both genotyping arrays masked prior to phasing.
Controls of a homogeneous genetic origin were compared between the iPSYCH2012 and iPSYCH2015i
cohorts with the genotyping array as the outcome at different thresholds of post-imputation quality
control across the four different data integration protocols. The dotted horizontal line indicates the
baseline @, when the association test was performed using true genotypes from both arrays.
Haplotypes were phased using BEAGLES phase-states=560, imputations were done using BEAGLES.1
with the HRCv1.1 as the reference. [b] Shows the number of SNPs left after each threshold of post

imputation quality control across the four data integration protocols.
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SUPPLEMENTARY INFORMATION

S1. QUALITY CONTROL OF GENOTYPING DATA

The quality control steps prior to phasing are divided into two stages. An initial SNP level QC and a
second sample level QC performed on a subset of individuals of a relatively homogenous genetic origin,
as determined through the Danish birth registers and principal components analysis, within the iPSYCH

sample.

$1.1. Identifying a genetically homogenous sample subset for QC:

Certain steps in the quality control process such as tests of Hardy Weinberg equilibrium, identification of
samples with abnormal heterozygosity etc. could be biased by genetic diversity in the dataset. To
perform these quality control steps in an unbiased manner; we identify a set of samples of a
homogenous genetic origin. To do this, the variant calls from the 1000 genomes phase 3 project” were

downloaded in VCF format.

Within each sub-population of the 1000 genomes dataset, we excluded variants for the following

reasons:

Less than 5% minor allele frequency

Hardy Weinberg p < 10-6

Pairwise r2 > 0.1 in a 1kB region
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No overlap with the marker set in the Infinium Psych Chip v1.0 and the Global Screening array
v2.0.
Insertions/Deletions

Regions with extended linkage disequilibrium?.

The resulting data was merged with iPSYCH2012 and iPSYCH2015i using PLINK®. We performed a
principal component analysis using the smartpca module of the eigensoft software package’, the
principal components were computed using the 1000 genomes samples and the iPSYCH2012,

iPSYCH2015i samples were projected into the resulting principal component space.

We further utilized the Danish national birth records to identify a set of 47,586 individuals whose
parents and both sets of grandparents were born in Denmark. For each sample in our dataset, we
calculate the mahalanobis distance of the sample from the multivariate mean of the joint distribution of
the first ten principal components obtained from the 47,586 individuals previously identified. We
exclude a sample as an outlier if the distance has a probability less than 5.73x10” under a chi-square
distribution with 10 degrees of freedom. This resulted in 120,890 samples classified as inliers to be used

for quality control.

$1.2. SNP QC

$1.2.1 Aligning to the reference:
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All 26 waves of iPSYCH2012, 78 waves of iPSYCH2015i, Trios2012, Trios2015 and the PGP-UK samples
were aligned to Haplotype Reference Consortium v1.1 (hereafter referred to as HRC) using
GenotypeHarmonizer v1.4.20-SNAPSHOT. SNP IDs in the target datasets were harmonized to the SNP
IDs in the HRC where a match was found, A/T and G/C SNPs were rescued where possible using linkage
disequilibrium information, variants absent in the reference, multi-allelic SNPs and indels were

excluded.

$1.2.2 SNP Missingness:

Per SNP and sample missingness were calculated using PLINK 2.0. Genotyping for iPSYCH2012 was
performed in 26 waves. We initially excluded variants missing in > 5% of samples in each individual
wave. The samples were further merged and variants that were either not genotyped in all 26 waves or
were found to be missing in >= 5% of samples in the merged dataset were further excluded. 344,498

SNPs pass this QC.

The genotyping for iPSYCH2015i was performed in 78 waves. We excluded SNPs missing in more than
5% of the samples in each genotyping wave. Samples were merged across batches and SNPs missing in
more than 5% of samples across the entire cohort were removed. A total of 558,013 SNPs pass

missingness filters.

$1.2.3 Differential Missingness between Cases and Controls:

We test for SNPs showing differential missingness between cases and controls of a homogenous genetic

origin as described in section 1 using the --test-missing option in PLINK. We excluded SNPs that show
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evidence for differential missingness with an FDR adjusted p-value <= 0.2. 342,837 SNPs in iPSYCH2012

and 555,131 SNPs in iPSYCH2015i pass this filter.

$1.2.4 Test of Hardy Weinberg Equilibrium in Controls:

The individuals of a homogenous genetic origin as derived in section 1 were further subset to include
individuals without any disease diagnosis as ascertained from the Danish national patient registers and a
test for Hardy Weinberg equilibrium was performed using the --hardy option in PLINK. We exclude SNPs
that fail this test with an FDR adjusted p <=0.2. 338,104 SNPs in iPSYCH2012 and 544,308 SNPs in

iPSYCH2015i pass this QC.

$1.2.5 SNPs significantly associated with a genotyping wave or batch:

Due to the large sample size of iPSYCH, the genotyping for iPSYCH2012 was performed in 26 waves and

the genotyping for iPSYCH2015i was performed in 78 waves. To identify markers showing significant

batch effects, we performed 26 and 78 logistic regressions in iPSYCH2012 and iPSYCH2015i respectively

where samples of a homogenous genetic origin in a particular wave are cases and samples in other

waves are controls. For each SNP, we take the minimum of p-values from all association tests.

The p-values thus selected do not follow a uniform distribution and the cumulative distribution function

of drawing minimums from n independent distributions Y = min{(p,, p, .. p») is given by

CDF(Y)=p(Y<=y)=1-1(1-y)"
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If p;is the i" element in a set of m sorted p-values, the CDF of p; is given by i/m. The i element in a set

of m sorted minimum p-values is given by

pi=1-(1-1/m)*"

The qqg-plot of observed vs expected p-values using the above theoretical distribution suggests some

inflation.

FDR adjustment using the above CDF is given by

Prar = M — (1 - pi)"/sum(p < p)

We chose an FDR adjusted p-value cut-off of 0.1 to exclude SNPs, which corresponded to a p-value of

6.31x107in iPSYCH2012 and 2.38x10°® in iPSYCH 2016. SNPs passing QC filters, iPSYCH 2012 = 333,308,

iPSYCH2015i = 543,422.

§1.2.6 Minor Allele Frequency:

A subset of 34,545 individuals in iPSYCH2012 were exome sequenced using the lllumina capture kit on

HiSeq machines. Quality control was performed using HAIL and variant calling was performed in

accordance with the GATK best practices. More details on the data processing have previously been

described®.
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For these individuals, we calculated genotype concordance between the exome sequencing data and
genotypes from the iPSYCH2012 array data using bcftools” as shown in supplementary table 1. We
observe that the concordance between genotyped and next generation sequencing datasets drops
sharply at minor allele frequencies below 0.001. So, we chose this as a sensible threshold for censoring

SNPs. SNPs passing QC filters: iPSYCH2012: 261,551, iPSYCH2015i: 460,445.

Allele Frequency Bin Concordance between genotyping array Number of SNPs
and Exome Sequencing Data

0.00001 - 0.0001 0.4085 20701

0.0001 - 0.001 0.7976 30367

0.001 - 0.01 0.9676 14145

0.01-0.1 0.9966 6795

0.1-05 0.999 5081

05-1 0.9991 28

Supplementary Table 1. Concordance between genotypes from Infinium Psych Chip v1.0 and whole

exome sequencing data in a subset of 34,545 individuals in iPSYCH2012.

$1.2.7 SNP Masking:
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To evaluate the performance of missing data imputation, we randomly selected 10,000 SNPs that were
genotyped on both the Illumina PsychArray v1.0 and the Illumina Global Screening Array v2.0 using the
sample function in R. These were excluded prior to haplotype estimation. SNPs used for haplotype

estimation and imputation, iPSYCH2012: 251,551, iPSYCH2015i: 450,445.

$1.3. SAMPLE QC

$1.3.1 Abnormal Heterozygosity:

Abnormal levels of heterozygosity that cannot adequately be explained by admixture, population
structure or runs of homozygosity could indicate sample contamination. To identify individuals with
heterozygosity that cannot be accounted for by population phenomena, we use an approach described
by the UK biobank (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/genotyping_qc.pdf). Per sample
heterozygosity, homozygosity and missingness were calculated using PLINK --het, --homozyg and --
missing options respectively. Ancestry adjusted heterozygosity is computed as the residuals from the

model shown below:

H(x) ~ Ho + PC; + PC; + PCs + PCy + PCy + PC,° + PC3” + PCy* + PCy*PC, + PC,*PCs + PC3*PCy + PC,*PCy +

PC1*PC3 + PCZ*PC4+ E

Where H(x) = Observed heterozygosity
Ho = Mean heterozygosity/Intercept
PC4, PC,, PCs, PC4 = First four principal components of genetic ancestry

E = Residual/Ancestry adjusted heterozygosity
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We further fit two linear models predicting the observed and ancestry adjusted heterozygosities from
runs of homozygosity calculated using PLINK. Samples are flagged as outliers if the observed and
ancestry adjusted heterozygosity as well as the residuals from the models fit against runs of
homozygosity are four standard deviations away from the mean. 166 samples from iPSYCH2012 and 98

samples from iPSYCH2015i failed this quality check and were excluded.

$1.3.2 Sample Duplication

A total of 121 samples were found to be genotyped more than once across the 26 waves in iPSYCH2012.
Further, mapping sample identifiers to unique identifiers from the registers yielded 159 sample
identifiers in iPSYCH2012 and 25 sample identifiers in iPSYCH2015i mapping to a non-unique identifier in
the registry. Two samples from iPSYCH2012 were found to be genotyped again in iPSYCH2015i due to
the randomness of ascertainment. In each case, the sample with lower missingness was retained. 6
samples in iPSYCH2012 and 1 sample in iPSYCH2015i were genotyped as part of the trios and were

excluded.

Kinship analysis performed using KING® revealed three monozygotic twins in iPSYCH2012 and ten

monozygotic twins in iPSYCH2015i. In each case, the case was retained and if both samples were cases,

the sample with higher missingness was excluded.

$1.3.3 Sample Missingness:

Two samples from the iPSYCH2012 cohort were excluded for excessive missingness (> 5%).
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This left us with 80,876 samples in iPSYCH2012, genotyped at 251,551 loci and 48,974 individuals in
iPSYCH2015i, genotyped at 450,445 loci to be used as a backbone for haplotype estimation and missing

data imputation.

S2. ANCESTRY COMPOSITION OF iPSYCH

Parental Birthplace iPSYCH2012 iPSYCH2015i
Denmark 67044 41673
Denmark_Europe 2416 1591
Denmark_Scandinavia 1476 913
Europe 1169 785
Denmark_Unknown 829 543
MiddleEast 775 563
Asia 594 384
Asia_Denmark 581 292
Africa 473 277
Denmark_Greenland 435 284
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Africa_Denmark 431 292
Denmark_NorthAmerica 363 234
Denmark_MiddleEast 354 216
Denmark_SouthAmerica 235 184
Scandinavia 109 67

Supplementary Table 2. Ancestry composition of iPSYCH by parental birthplace as obtained from the

Danish Civil Registers®. Underscore delimited combinations indicate parents born in different regions.

$3. SWITCH ERROR RATES:

PROTOCOL METHOD PARAMETERS SER%
COHORT2012 |BEAGLES PhaseStates560 0.2991
COHORT2015i |BEAGLES PhaseStates560 0.3077
COHORT2012 |BEAGLES PhaseStates280 0.308
COHORT2015i |BEAGLES PhaseStates280 0.3147
COHORT2012 |SHAPEIT4.1.2 PbwtDepth8 0.294
COHORT2015i |SHAPEIT4.1.2 PbwtDepth8 0.2745
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COHORT2012 |SHAPEIT4.1.2 PbwtDepth4 0.3317
COHORT2015i |SHAPEIT4.1.2 PbwtDepth4 0.3133
COHORT2012 |EAGLE2.4.1 Kpbwt20000 0.5504
COHORT2015i |EAGLE2.4.1 Kpbwt20000 0.7651
COHORT2012 |EAGLE2.4.1 Kpbwt10000 0.6331
COHORT2015i |EAGLE2.4.1 Kpbwt10000 0.9454
COHORT2012 |CONSENSUS High Resolution 0.2534
COHORT2015i |CONSENSUS High Resolution 0.2593
COHORT2012 [CONSENSUS Default 0.2624
COHORT2015i [CONSENSUS Default 0.2689
INTERSECTION |BEAGLES PhaseStates560 0.4554
INTERSECTION |BEAGLES PhaseStates280 0.4995
INTERSECTION [SHAPEIT4.1.2 PbwtDepth8 0.4715
INTERSECTION [SHAPEIT4.1.2 PbwtDepth4 0.632
INTERSECTION [EAGLE2.4.1 Kpbwt20000 0.9204
INTERSECTION [EAGLE2.4.1 Kpbwt10000 1.0372
INTERSECTION |CONSENSUS High Resolution 0.3773
INTERSECTION |CONSENSUS Default 0.435
UNION BEAGLES PhaseStates560 0.1743
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UNION BEAGLES PhaseStates280 0.1918
UNION SHAPEIT4.1.2 PbwtDepth8 0.2192
UNION SHAPEIT4.1.2 PbwtDepth4 0.2444
UNION EAGLE2.4.1 Kpbwt20000 0.5831
UNION EAGLE2.4.1 Kpbwt10000 0.7692
UNION CONSENSUS High Resolution 0.5513
UNION CONSENSUS Default 0.6137
TWOSTAGE BEAGLES PhaseStates560 0.2323
TWOSTAGE BEAGLES PhaseStates280 0.2373
TWOSTAGE SHAPEIT4.1.2 PbwtDepth8 0.1737
TWOSTAGE SHAPEIT4.1.2 PbwtDepth4 0.1904
TWOSTAGE EAGLE2.4.1 Kpbwt20000 0.4706
TWOSTAGE EAGLE2.4.1 Kpbwt10000 0.5497
TWOSTAGE CONSENSUS High Resolution 0.189

TWOSTAGE CONSENSUS Default 0.1912

Supplementary Table 3. Phasing accuracy as indicated by switch error rates obtained by comparing the

mendelian transmission of phase to computationally estimated phase within 124 trio offspring for

whom parental genotypes are known at heterozygous loci genotyped on both iPSYCH arrays.
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The marker coverage from the iPSYCH genotyping arrays is not uniform across all chromosomes. As

shown in supplementary figure 1, this leads to a variability in the accuracy of haplotype estimation by

chromosome number.

Switch Error Rate %
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Supplementary figure 1. [a] Haplotype estimation accuracy as shown by switch error rates obtained

from comparing computationally assigned phase to mendelian transmission in 124 trio offspring whose

parental genotypes are known. [b] SNP density across chromosomes within each data integration

protocol.

S4. IMPUTATION ACCURACY WITHIN PERSONAL GENOMES PROJECT - UK SAMPLES

BAM files corresponding to 10 samples from the personal genomes project - UK'® were downloaded

from the European Genome-Phenome Archive (EGA, study accession: PRIEB17529), sample accessions
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(SAMEA4545245, SAMEA4545246, SAMEA4545247, SAMEA4545248, SAMEA4545249, SAMEA4545250,
SAMEA4545251, SAMEA4545252, SAMEA4545253, SAMEA4545254). Variant calling was performed
using samtools mpileup and the samples were further downsampled to each of the two iPSYCH
genotyping arrays and added to cohorts arising from each data integration protocol prior to phasing and
imputation. The accuracy of the imputation was calculated as the squared Pearson correlation
coefficient between the imputed dosages and variant calls at 6.5 million loci not genotyped on either
iPSYCH array. The results as shown in supplementary figures 2a, b across minor allele frequency bins as
ascertained from the HRCv1.1 haplotype reference panel show similar results to the results obtained by
gauging the accuracy at the 10,000 SNPs masked prior to phasing. The accuracy of imputation appears
to rely more on choice of data integration protocol than haplotype estimation tool. The haplotypes
obtained from SHAPEIT4.1.2 in presence of high missingness introduced by the union protocol led to

inaccurate imputations.

A comparison of imputation accuracy between the two iPSYCH genotyping arrays as shown in
supplementary figure 2c reveals that all tools yield more accurate imputations in the cohort generated
using the denser Illumina global screening array v2.0, despite a relatively lesser sample size for
haplotype estimation as compared to the cohort generated using the Infinium PsychChip v1.0 with less

dense SNP information but a higher sample size.
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Supplementary Figure 2. Accuracy of imputation within the personal genomes project - UK whole
genome sequenced samples, calculated as the squared Pearson correlation coefficient between imputed
dosages and true genotypes at loci absent from either iPSYCH genotyping array. [a] Grouped by choice
of haplotype estimation tool. [b] Grouped by choice of data integration protocol. [c] Comparison

between imputation accuracy obtained by using each iPSYCH genotyping array.
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S5. RELIABILITY OF IMPUTATION QUALITY METRICS

Imputation software, such as BEAGLES.1 provides an estimated quality score for imputed
dosages (BEAGLE-r?) at each SNP, which is a predicted correlation between the true and estimated
genotypes at a given variant. The r* at an imputed locus is an important quantity, as it can be used to
estimate the reduction in effective sample size for an association test'! and as a filtering threshold to
ensure only high quality markers are used for association tests and polygenic scoring’?. We sought to
evaluate the robustness of this metric across data integration protocols by comparing it to the empirical
imputation accuracy (Empirical-r’) calculated from the 10,000 masked SNPs (Supplementary Figure 3).
The squared Pearson correlation coefficient of BEAGLE-r* and EMPIRICAL-ris highest for intersection
protocol (rZBEAGLE_rZ empricaL-r2 = 0.98) protocol and lowest for the union (rZBEAGLE_rZ evpiricaLr2 = 0.77)
(Supplementary Figure 3). Hence, uncertainties introduced by high genotype missingness in the target
dataset, prior to phasing travels through the whole genome imputation pipeline, leading to a potential
inclusion of genotype dosages, estimated at less than the recommended thresholds and impacting the

accuracy of estimates and replicability of complex trait analyses.
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Supplementary Figure 3. The relationship between empirical imputation accuracy, as measured by the
squared Pearson correlation coefficient of true genotypes and imputed dosages at 10,000 masked SNPs,
and BEAGLE r* within each data integration protocol. The plot shows the BEAGLE r* is best calibrated for
the imputations from the intersection protocol whereas it overestimates the accuracy, in presence of

high genotype missingness, as present in the union protocol.
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$6. IMPUTATION ACCURACY IN NON-EUROPEAN AND ADMIXED SAMPLES ACROSS DATA

INTEGRATION PROTOCOLS
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Supplementary Figure 4. Accuracy of imputation varies by parental origin. The attenuation in
imputation accuracy within samples of non-European origin is further magnified by choice of data
integration protocol. [a] Shows the accuracy of imputation within the 10,000 masked SNPs at different
minor allele frequency bins within samples grouped by the birthplace of their parents according to the
Danish civil registers across all four data integration protocols. [b] Shows the accuracy of imputation

within the 10,000 masked SNPs within samples where at least one parent was born in Denmark.

S7. PGS ANALYSIS

PROTOCOL COHORT Variance Explained INSTRUMENT
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(Squared Pearson's Correlation

Coefficient)
TRUTH iPSYCH2012 0.4541 TRUE GENOTYPES
TRUTH iPSYCH2015I 0.4564 TRUE GENOTYPES
SEPARATE iPSYCH2012 0.4289 IMPUTED DOSAGES
INTERSECTION [iPSYCH2012 0.3952 IMPUTED DOSAGES
UNION iPSYCH2012 0.416 IMPUTED DOSAGES
TWOSTAGE iPSYCH2012 0.4285 IMPUTED DOSAGES
SEPARATE iPSYCH2015i 0.4379 IMPUTED DOSAGES
INTERSECTION [iPSYCH2015i 0.3992 IMPUTED DOSAGES
UNION iPSYCH2015i 0.4186 IMPUTED DOSAGES
TWOSTAGE iPSYCH2015i 0.4381 IMPUTED DOSAGES
SEPARATE iPSYCH2012 0.423 BEST GUESS GENOTYPES
INTERSECTION [iPSYCH2012 0.3798 BEST GUESS GENOTYPES
UNION iPSYCH2012 0.4099 BEST GUESS GENOTYPES
TWOSTAGE iPSYCH2012 0.4228 BEST GUESS GENOTYPES
SEPARATE iPSYCH2015i 0.4337 BEST GUESS GENOTYPES
INTERSECTION ([iPSYCH2015i 0.3804 BEST GUESS GENOTYPES
UNION iPSYCH2015i 0.4186 BEST GUESS GENOTYPES
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TWOSTAGE iPSYCH2015i 0.4339 BEST GUESS GENOTYPES

Supplementary Table 4. Variance explained in a simulated continuous phenotype with a SNP heritability
of 0.5 and the 10,000 masked SNPs as causal loci by true genotypes and imputed dosages, best guess

genotypes across the four data integration protocols.

S8. BATCH EFFECTS

PROTOCOL iPSYCH2012 |iPSYCH2015i(R2 MAF N LAMBDA_GC
TWOSTAGE Imputed Imputed 0 0.01 9566 1.23
TWOSTAGE Imputed Imputed 0.3 0.01 9564 1.23
TWOSTAGE Imputed Imputed 0.6 0.01 9430 1.22
TWOSTAGE Imputed Imputed 0.8 0.01 8871 1.18
TWOSTAGE Imputed Imputed 0.9 0.01 7964 1.13
TWOSTAGE Imputed Imputed 0.95 0.01 6410 1.1
TWOSTAGE Imputed Imputed 1 0.01 1845 1.01
TWOSTAGE Genotyped [Imputed 0 0.01 9543 1.18
TWOSTAGE Genotyped [Imputed 0.3 0.01 9541 1.18
TWOSTAGE Genotyped [Imputed 0.6 0.01 9407 1.17
TWOSTAGE Genotyped [Imputed 0.8 0.01 8849 1.15
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TWOSTAGE Genotyped |Imputed 09 0.01 7945 1.11
TWOSTAGE Genotyped (Imputed 0.95 0.01 6397 1.09
TWOSTAGE Genotyped [Imputed 1 0.01 1841 1.01
TWOSTAGE Imputed Genotyped |0 0.01 9543 1.28
TWOSTAGE Imputed Genotyped (0.3 0.01 9541 1.28
TWOSTAGE Imputed Genotyped (0.6 0.01 9407 1.25
TWOSTAGE Imputed Genotyped (0.8 0.01 8849 1.21
TWOSTAGE Imputed Genotyped [0.9 0.01 7945 1.16
TWOSTAGE Imputed Genotyped [0.95 0.01 6397 1.09
TWOSTAGE Imputed Genotyped |1 0.01 1841 1
SEPARATE Imputed Imputed 0 0.01 9569 1.25
SEPARATE Imputed Imputed 0.3 0.01 9566 1.25
SEPARATE Imputed Imputed 0.6 0.01 9431 1.23
SEPARATE Imputed Imputed 0.8 0.01 8869 1.19
SEPARATE Imputed Imputed 0.9 0.01 7957 1.13
SEPARATE Imputed Imputed 0.95 0.01 6404 11
SEPARATE Imputed Imputed 1 0.01 1822 1
SEPARATE Genotyped |Imputed 0 0.01 9546 1.18
SEPARATE Genotyped |Imputed 0.3 0.01 9544 1.18
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SEPARATE Genotyped (Imputed 0.6 0.01 9497 1.17
SEPARATE Genotyped |Imputed 0.8 0.01 9220 1.14
SEPARATE Genotyped [Imputed 09 0.01 8565 1.1
SEPARATE Genotyped |Imputed 0.95 0.01 7105 1.07
SEPARATE Genotyped |Imputed 1 0.01 1747 1
SEPARATE Imputed Genotyped [0 0.01 9561 1.28
SEPARATE Imputed Genotyped (0.3 0.01 9559 1.28
SEPARATE Imputed Genotyped (0.6 0.01 9423 1.26
SEPARATE Imputed Genotyped (0.8 0.01 8858 1.21
SEPARATE Imputed Genotyped [0.9 0.01 7939 1.16
SEPARATE Imputed Genotyped [0.95 0.01 6384 1.09
SEPARATE Imputed Genotyped |1 0.01 1792 0.98
UNION Imputed Imputed 0 0.01 9571 2.81
UNION Imputed Imputed 0.3 0.01 9571 2.81
UNION Imputed Imputed 0.6 0.01 9536 2.8
UNION Imputed Imputed 0.8 0.01 9326 2.74
UNION Imputed Imputed 0.9 0.01 8799 2.62
UNION Imputed Imputed 0.95 0.01 7628 2.43
UNION Imputed Imputed 1 0.01 1478 1.93
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UNION Genotyped |Imputed 0 0.01 9548 1.77
UNION Genotyped |Imputed 0.3 0.01 9548 1.77
UNION Genotyped [Imputed 0.6 0.01 9513 1.76
UNION Genotyped |Imputed 0.8 0.01 9304 1.74
UNION Genotyped |Imputed 09 0.01 8779 1.7
UNION Genotyped |Imputed 0.95 0.01 7612 1.68
UNION Genotyped |Imputed 1 0.01 1476 1.59
UNION Imputed Genotyped [0 0.01 9548 2.13
UNION Imputed Genotyped (0.3 0.01 9548 2.13
UNION Imputed Genotyped (0.6 0.01 9513 2.11
UNION Imputed Genotyped (0.8 0.01 9304 2.04
UNION Imputed Genotyped (0.9 0.01 8779 194
UNION Imputed Genotyped [0.95 0.01 7612 1.75
UNION Imputed Genotyped |1 0.01 1476 1.23
INTERSECTION Imputed Imputed 0 0.01 9570 1
INTERSECTION Imputed Imputed 03 0.01 9499 1
INTERSECTION Imputed Imputed 0.6 0.01 3802 1
INTERSECTION Imputed Imputed 0.8 0.01 7183 1.01
INTERSECTION Imputed Imputed 0.9 0.01 5226 1

LVI


https://doi.org/10.1101/2022.06.27.497703
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.27.497703; this version posted June 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

INTERSECTION Imputed Imputed 0.95 0.01 3096 0.97

INTERSECTION Imputed Imputed 1 0.01 421 0.89

Supplementary Table 5. Batch effects, as demonstrated by the inflation in test statistics when
performing GWAS with genotyped and imputed dosages from the two iPSYCH cohorts at the 10,000

masked SNPs in controls of European origin with the genotyping array as the outcome.

* Supplementary tables 6 - 9 in appendix.
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