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1 Abstract

2 Multicellular organisms require intercellular and intracellular signaling to coordinately regulate
3 different cell functions. The technological advance of spatial transcriptomics (ST) lets us
4 leverage spatial information to better elucidate cell signaling and functioning. Here, we present
5 stMLnet, a method that infers spatial intercellular communication and multilayer signaling
6 regulations from ST data by quantifying distance-weighted ligand-receptor (LR) signaling
7 activity based on diffusion and mass action models and mapping it to intracellular targets. We
8  demonstrated the applicability of stMLnet on a breast cancer ST dataset and benchmarked its
9 performance using multiple cell line perturbation datasets, synthetic data, and LR-target
10  correlations stratified by cellular distance. We then applied stMLnet to an ST dataset of SARS-
11 CoV-2-infected lung tissue, revealing positive feedback circuits between alveolar epithelial cells,
12 macrophages, and monocytes in a COVID-19 microenvironment. Furthermore, we applied
13 stMLnet to analyze glioma-macrophage interactions for deciphering intercellular and
14  intracellular signaling mechanisms underlying immunotherapy resistance in gliomas. Our
15 proposed method provides an effective tool for predicting LR-target regulations between
16  interacting cells, which can advance the mechanistic and functional understanding of cell—cell
17 communication.
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Introduction

=

It has become increasingly clear that cell fates and functions are not only determined by the
intrinsic genetic makeup of the cell, but they are also influenced by neighboring cells and the
spatial environment in multicellular tissue (Boulanger et al, 2007; Scadden, 2006). Recent
studies have revealed that cell—cell interactions (CCls) play important roles in cell differentiation,
tissue development, immunity, and cancers (Pires-daSilva & Sommer, 2003). Elucidating the
mechanisms by which intercellular signaling regulates intracellular gene expression is essential
to advance our understanding of the functional and therapeutic roles of CCls (Armingol et al,
2021).
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10 Cells can interact with each other in multiple ways, such as physical cell—cell contact (e.g., cell
11 adhesions) (Boisset et al, 2018; Parsons ef al, 2010) and biochemical cell-cell communication
12 (CCC) mediated by diffusible molecules (e.g., autocrine, paracrine or endocrine via ligand—
13 receptor (LR) interactions) (Armingol et al, 2021). CCC plays vital roles in many physiological
14 functions of multicellularity, and its dysregulation often drives the occurrence and development
15 of many diseases (Heasley, 2001). CCC generally involves four sequential events (Krauss,
16  2014): 1) secretion and diffusion of ligand molecules; 2) reception and specific binding of the
17 ligand by the receptor, leading to receptor activation; 3) induction of one or multiple signaling
18 transduction pathways by the activated receptors, leading to the activation of downstream
19  transcriptional factors (TFs); and 4) regulation of target gene expression by the activated TFs
20 and initiation of cell phenotype switching. Together, the signaling mechanisms involved in
21 functional CCC include both intercellular LR interactions and intracellular signaling transduction
22 and transcriptional regulation, which is referred to as the multilayer signaling network (Almet et
23 al, 2021; Cheng et al, 2020; Zhang et al, 2020). Traditional experimental studies have often
24  focused on a single or a few signaling molecules to study intercellular communications, lacking
25 information across multiple scales of signaling. Systems analysis of signaling regulations in
26 functional CCC is challenging and critical.

27 Single-cell RNA sequencing (scRNA-seq) provides unprecedented high-throughput data to
28 decipher intercellular communication by analyzing cell-type-specific expression of ligands and
29 receptors (Armingol et al, 2021). Recently, several computational methods or tools have been
30  developed to infer CCC from scRNA-seq data (Almet et al, 2021; Armingol et al, 2021). However,
31 most existing methods or tools (e.g., (Cang & Nie, 2020; Efremova et al, 2020; Jin et al, 2021;
32 Wang et al, 2019b)) only consider intercellular LR signaling pairs without dissecting the
33 response of their downstream pathways (see a comprehensive comparison of related methods
34 in Table S1).

35 Previously we developed a multilayer network approach to infer both intercellular and
36 intracellular signaling networks (Cheng et al, 2021; Ni et al, 2022; Zhang et al, 2020). While
37  several other methods (e.g., (Browaeys et al, 2020; Zhang et al, 2021)) also consider
38 intracellular responses, the information of cellular distance affecting the transportation and
39 reception of secretory molecules across the spatial environment is missing because of the loss
40 of the positional information of cells in the scRNA-seq data. Recently, the rapid advancement
41 of spatially resolved sequencing technology that measures both gene expression and positional
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1 information of cells (Longo et al, 2021) has afforded new opportunities to infer spatial and
functional CCC (Walker et al, 2022).

N

In this study, we present stMLnet, a spatial transcriptomics (ST)-based multilayer network
method for inferring spatial intercellular communication and LR-target gene regulations.
stMLnet mechanistically quantifies cell-distance-dependent LR signaling activity based on a
mathematical model of ligand diffusion and the LR reaction, and it quantitatively maps the
intercellular LR signals to intracellular gene expressions using explainable tree-based machine
learning. Our method can prioritize ligands, receptors, or their pairs that regulate specific target
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genes. We demonstrated stMLnet on an ST dataset of breast cancer and evaluated its
10  predictive accuracy using cell line perturbation data, simulation data, and differential LR-target
11 correlations in distal and proximal cell pairs. After benchmarking stMLnet with other methods,
12 we applied stMLnet to analyze CClIs underlying the inflammatory response to COVID-19
13 infection and to decipher intercellular and intracellular signaling mechanisms underlying
14 immunotherapy resistance in gliomas.

15 Results

16 Overview of stMLnet
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18 Fig 1. stMLnet framework. (A) Inputs of stMLnet. (B-E) Workflow of stMLnet. (B) Integration of prior
19 network information. stMLnet integrates prior information from multiple data sources of molecular
20 interactions, including LR interaction, signaling pathways, and transcriptional regulations, into prior
21 knowledge databases of stMLnet (i.e., LigRecDB, RecTFDB, and TFTarget DB) by the directed weighted
22 graph and random walk algorithm. (C) Statistical inference of multilayer signaling network. Based on the
23 transcriptomic data and the prior information, stMLnet employs the statistical test method to infer the
24 multilayer signaling network and obtain the correspondence between LR pairs and the downstream target
25 genes (TGs) (LR~TG). (D) Quantification of LR signaling activity. Based on the ligand diffusion model and
26 the law of mass action, the LR signaling activity is modeled as a distance-dependent function. (E) Random
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1 forest regression links LR activity to target gene expression. Explainable importance score of the k;-th
2 feature (LRy,) contributing to the target expression G, was computed to prioritize the upstream ligands

w

or receptors regulating target genes.

Our proposed method aims to infer, quantify, and visualize both intercellular communications
and the intracellular gene regulatory network from ST data with an emphasis on the impact of
spatial cellular distance in CCCs (Fig 1). First, stMLnet integrates multiple data sources of
molecular interactions (including LR interaction, signaling pathways, and transcriptional
regulations) (Text S1) into in-house knowledge databases (i.e., LigRecDB, RecTFDB, and

O 00 N o U b

TFTargetDB) by using the directed weighted graph and random walk algorithm (Text S2) (Fig
10 1B). Second, based on the prior network information and the gene expression data, stMLnet
11 uses Fisher’s exact test to infer the structure of the multilayer signaling network (Text S4) and
12 obtain the paths from LR pairs to the downstream targets (LR~TG) (Fig 1C). Third, to quantify
13 LR signaling activity, stMLnet mechanistically models the LR signaling activity as a cell-
14  distance-dependent function based on a ligand diffusion model and the law of mass action (Fig
15 1D). Lastly, to model the nonlinear LR-TG regulation relationships, stMLnet employs an
16  explainable tree-based modeling approach (e.g., random forest regression) to link LR activity
17 totarget gene expression, with feature importance ranking to measure the contribution of each
18 upstream ligand and/or receptor to the target gene expression (Fig 1E).

19 The input of stMLnet includes the gene expression matrix (genexspot) (X), cell location matrix
20 (spotxdim) (Y), and cell type matrix (spotxannotation) (Z) to indicate the cell type annotation
21 and labels of receiver cells and/or sender cells. The cell location matrix is used to calculate the
22 cell distance matrix (D). In addition, stMLnet also allows inputs of a set of genes of interest as
23 target genes for analysis. The output of stMLnet includes the multilayer signaling network (LR-
24 TF-TG), LR signaling activity, and importance ranking of LR or L/R with respect to their ability
25 to regulate target gene expression. stMLnet also provides various visualizations of the results,
26 for instance, the circle plot of the CCC network, edge bundling plot of intercellular LR activity,
27 waterfall plot of multilayer signaling network, multilayer network visualization of sub-networks
28 downstream of a specified ligand, and heatmap of functional enrichment for ligands/receptors
29 based on downstream target genes.

30 Demonstration of stMLnet on an ST dataset of breast cancer
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2 Fig 2. Application of stMLnet to an ST dataset of breast cancer. (A) The cell type annotation for spots
3 in the ST data and the cell type proportion distribution of malignant cells and T cells. (B) The CCC network.
4 Different node colors represent different cell types. The edges represent intercellular communications
5 from the sender cells to the receiver cells. The edge color is consistent with that of the sender cells, and
6 the edge width represents the number of LR pairs. (C) The edge bundling plot of LR signaling activity (top
7 ranked). The nodes represent ligands or receptors, with different colors for different cell types. The edges
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represent LR signaling from the sender cells (e.g., T cells, endothelial cell, and epithelial cells) to the
receiver cells (e.g., malignant cells here), with the edge color being consistent with that of the sender cell.
The node size or edge width indicates the average strength of the LR signaling. (D) The waterfall plot of
the multilayer signaling network. Regulatory paths from upstream LR pairs (top ranked) to their
downstream targets in malignant cells are shown. The path color indicates the cellular source (sender
cells) of the ligand signaling, and the path width represents the importance score of each LR with respect
to TG regulation. (E) The multilayer signaling subnetwork indicates the regulatory paths from a specified

ligand/receptor to its downstream TFs and then to target genes. Regulatory networks downstream of
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TGFB1 (up) or SEMA4D (below) in malignant cells are shown. Top-ranked target genes according to

=
o

importance scores are prioritized for visualization. (F) Heatmap of functional enrichment for CCC. The GO

=
=

biological process (BP) (up) or KEGG (below) enrichment of the downstream targets for a set of upstream

=
N

receptors during CCI with T cells as senders and malignant cells as receivers is shown. Top-ranked

=
w

function terms according to p-values were prioritized for visualization.

14  Toglobally analyze CCCs between different cell types, including malignant cells, T cells, B cells,
15 macrophages, epithelial cells, endothelial cells, and stromal cells, in the tumor
16 microenvironment of breast cancer (Fig 2A, Fig S4), we applied stMLnet to infer the multilayer
17 signaling networks for all pairs of sender cells and receiver cells. The interaction-changed
18  genes (ICGs) (Dries et al, 2021a) in each type of receiver cell were selected as the
19  corresponding target genes of interest. The circle plot of the CCC network (Fig 2B)
20  demonstrates abundant interactions between different cell types in the tumor microenvironment.

21 To decipher microenvironmental regulatory mechanisms of the target genes in the breast
22 cancer cells, we focused on the inferred multilayer network with the malignant cells as the
23 receiver and other cell types as senders. The edge bundling plot of LR interactions (Fig 2C)
24 shows LR signaling from various sender cells, including T cells, endothelial cells, and epithelial
25 cells, to the malignant cells. Different LR pairs possessed varied signaling activities, depending
26 on both ligand/receptor expression levels and sender—receiver cell distances. Furthermore, the
27 waterfall plot of the multilayer signaling network (Fig 2D) shows regulatory paths from upstream
28 LR pairs (top ranked) to their downstream targets in malignant cells. Based on the computed
29 (partial) importance scores (Text S5), we could prioritize upstream LR regulators for given
30  target genes or downstream targets for a specified ligand/receptor. For instance, TGFB1 and
31 SEMAA4D, expressed by T cells, deliver intense signals to interact with their receptors (ENG
32 and ERBB2, respectively) and contribute largely to the regulation of a number of target genes.

33 In addition, the multilayer signaling subnetwork (Fig 2E) indicates the signaling paths from a
34 specified ligand to the corresponding receptor(s), and then to downstream TFs and target genes.
35 As shown, TGFB1 regulated the downstream target genes through pathways that activate TFs,
36 including SMAD1, STAT1, and WWP1 in malignant cells, while the pathways downstream of
37 SEMA4D-ERBB2 signaling activated TFs, including ESR1, FOX3, and STAT1/5.

38 Toinfer biological functions of the intercellular communication, we performed GO BP and KEGG
39 pathway enrichment for the downstream target genes of each receptor. The heatmap of
40  functional enrichment (Fig 2F) shows that a panel of pathways or biological processes related
41  to immunology or metabolism was dysregulated, indicating microenvironment-induced
42 alterations of the functional states of malignant cells.
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1 Testing and benchmarking stMLnet using cell line perturbation data

A Lig/Rec Condition Cell Ling AUCROC AUCPR
GSE157680 NRP1 Knockdown MDA- MB-231 0.9444 0.9167
GSE15893 CXCR4 Mutant MDA-MB-231 0.7976 0.8049
GSE160990 TGFB1 Treatment MDA-MB-231 0.7778 0.9223
GSE54329(1) IL6 Treatment EFM-18 0.5714 0.3333
GSE54329(2) IL6 Treatment HCC1428 0.9655 0.75
GSE54329(3) L6 Treatment MDA-MB-134VI 0.6429 0.3778
GSE54329(4) IL6 Treatment MDA-MB-175-VlldsRed  0.7241 0.5556
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2
3 Fig 3. Benchmarking stMLnet against other methods using cell line perturbation data. The predicted
4 L/R-targets regulations were validated by testing whether the targets were differentially expressed in 7
5 datasets of breast cancer cell lines under corresponding L/R perturbation conditions (e.g., TGFB1 or IL6
6 stimulation, NRP1 knockout, or CXCR4 mutation). The prediction accuracy of stMLnet was compared to
7 that of CytoTalk, NicheNet, or MISTy, assessed by AUCROC and AUCPR. NA’ indicates that the
8 corresponding ligands or receptors used for cell line perturbation could not be inferred by CytoTalk.

9  To test the accuracy of the LR-target prediction of stMLnet on the breast cancer ST dataset,
10  we collected 7 datasets of breast cancer cell lines with different perturbation conditions (e.g.,
11 TGFB1 or IL6 stimulation, NRP1 knockout, or CXCR4 mutation) (Fig 3A). If the downstream
12 target genes are differentially expressed, they are considered to be potentially regulated by the
13 corresponding ligand or receptor. As such, it is reasonable to use the differentially expressed
14  genes (DEGs) as the ground truth of downstream targets of a specific ligand or receptor
15 (Browaeys et al, 2020; Zhang et al, 2021). To this end, we compared the predicted partial
16 importance scores of the corresponding ligand or receptor on the target genes (Text S5) with
17 the ground truth (i.e., the differential expression status (true or false) of the target genes in each
18 cell line after perturbation) and evaluated the prediction accuracy using AUCROC and AUCPR.
19  The result (Fig 3B) indicates that stMLnet had good predictive accuracy on most datasets
20  (AUCROC was greater than 0.72, and AUCPR was greater than 0.55 on 5 of 7 datasets).
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We compared stMLnet with other methods of CCC inference or L/R-target regulation prediction.
Table S1 lists their characteristics, such as model/algorithm, input, intercellular prediction,
intracellular prediction, and spatial information utilization. Among them, NicheNet (Browaeys et
al, 2020), CytoTalk (Zhang et al, 2021), and MISTy (Tanevski et al, 2021) were selected for
quantitative benchmarking, as these three methods could predict L/R-target regulation. The
implementation of these methods for benchmarking is described in Text S7. We compared their
prediction accuracy (AUCROC and AUCPR) with that of stMLnet by using the cell line
perturbation data, as described above. The results (Fig 3B) show that stMLnet significantly
outperformed the other three methods on all 7 datasets.

O 00 N O U b W N

10  Analysis of distance-weighted LR signaling activity

11 In the stMLnet model, the LR signaling activity is dependent on the spatial distance between
12 the sender cell and the receiver cell (Equation (5)). To analyze the distance-weighted LR

13 signaling activity, we substituted the reciprocal distance weight (ﬁ) in LR signaling activity with
ij

14  the alternative constant weight (1) or exponential weight (e_%), and we compared the
15 performance of stMLnet with the two variants. We compared the prediction accuracies of LR-
16 target regulation based on the above three distance weights using cell line perturbation data
17 (asused in Fig 3). Various evaluation metrics, including AUCROC (area under the ROC curve),
18  AUCPR (area under the Precision/Recall curve), PPV (positive predictive value), Accuracy,
19 Error rate, and MCC (Matthews correlation coefficient), were used for assessment. All of the
20  above evaluation metrics were averaged on the 7 cell line datasets, and stMLnet consistently
21 performed better than the other two variants, favoring the reciprocal distance weight for
22 modeling LR signaling activity (Fig 4A).

23 To scrutinize the distance-weighted LR signaling activity, we performed a simulation study
24 based on a mathematical model of ligand diffusion and L-R-TF-Target regulation (see details in
25  the Methods section) to generate 100 sets of synthetic data (Fig $3). The simulated spatial
26 expression data were used as input of stMLnet (without using the prior information of the
27 predefined multilayer network) to infer the regulation of TGs’ expression by LR pairs. The
28 predicted importance scores for LR-TG regulations were benchmarked with the ground truth of
29  the simulated network topology. The evaluation of the 6 metrics, namely, AUCROC, AUCPR,
30  Accuracy, PPV, Error rate, and MCC, on 100 synthetic datasets (Fig 4B) showed that the
31 reciprocal distance weight significantly outperformed the other two variants. These results affirm
32 the rationality and effectiveness of stMLnet in modeling spatial distance-dependent cell
33 communication and gene regulation.
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Fig 4. Analysis of distance-weighted LR signaling activity. The performance of stMLnet in LR-target

prediction was compared to that of its variants with modified distance weights of LR activity scoring. The

distance weights are the reciprocal function (i.e., %) in stMLnet and exponential function (i.e., exp (— 5 12) )

or constant function (i.e., 1) in its two variants, respectively. (A) Based on cell line perturbation data, the

performances of stMLnet and the two variants were evaluated and compared. The evaluation metrics
(AUCROC, AUCPR, Accuracy, PPV, Error rate, and MCC) were averaged on 7 cell line datasets. (B)
Based on 100 synthetic datasets, the performances of stMLnet and the two variants in predicting LR-

target regulation were evaluated and compared. The Wilcoxon rank sum test p value was used to assess

the statistical significance.
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Fig 5. Evaluating stMLnet based on LR-target correlations. (A) Distributions of mutual information

between LR signaling activities and target gene expressions (LR, ~TG,) in different cell types. The LR-

target pairings predicted by stMLnet had larger mutual information values than other methods (e.g.,

CytoTalk) and random pairing. (B) Correlation of LRy, ~TG, predicted by stMLnet in malignant cells

stratified by close or far distance to the sender cells. The close group had higher correlation than the

distant group, assessed by the mutual information, the absolute value of PCC, and the —log10(p value of

PCC).

To further evaluate the predictions of stMLnet regarding LR-target regulations, we hypothesized
that the more reliable the inferred network, the higher the correlation between LR signaling
activity and target gene expression. As such, we computed the mutual information (MI) or the

Pearson correlation coefficient (PCC) for each pair of LRy, ~TG, (t=12, ...m; k,=1,2,

..., ;) in the multilayer networks inferred by stMLnet based on the breast cancer ST dataset.
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We then compared values of Ml or PCC of LRy, ~TG, with that of random pairing or that inferred
by other methods. Here, only CytoTalk could be used for comparison, as NicheNet predicts
ligand-target regulations but does not involve receptors, and MISTy does not explicitly model
LR interactions. The LR-target pairings predicted by stMLnet had larger Ml values than
CytoTalk and random pairing, across various cell types (Fig 5A). In addition, evaluations using
PCC or —-log10(p value of PCC) (Fig S5) consistently showed that stMLnet exhibited higher LR-
target correlations than CytoTalk and random pairing.

N o0 A W N e
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Closer cells have a larger probability to communicate with each other, so intercellular signaling

9  should have a stronger impact on intracellular gene expression. To further inspect LR-target
10  correlations of stMLnet, we divided sender-receiver pairs, based on cellular pairwise distances,
11  into a close group (cell pairs with a distance less than the 25th percentile of all of the pairwise
12 distances) and distant group (cell pairs with distance greater than the 75th percentile of all of
13 the pairwise distances). We set malignant cells as receivers and examined whether the close
14 group had a higher correlation (Ml or PCC) between LR signaling activity and the target gene
15 expression than the distant group. The results (Fig 5B) show that both MI values and PCC
16 values as well as —log10(p value of PCC) of the predicted LR,,~TG, were larger in the close
17 group than in the distant group. These results further verify the reliability of stMLnet in LR-target
18  predictions.

19  stMLnet revealed positive feedback circuits between alveolar epithelial cells,
20 macrophages, and monocytes in a COVID-19 microenvironment

21 We applied stMLnet to a set of ST data of COVID-19-infected lung tissue (Fig 6A) to investigate
22 CCls underlying the inflammatory response to SARS-CoV-2 infection. The CCC network (Fig
23 6B) showed abundant and active intercellular interactions, indicating dysregulated
24 hyperinflammation in the COVID-19-infected lung tissue microenvironment.

25 We focused on communications between alveolar epithelial cells (AECs), macrophages, and
26 monocytes, as the latter two are pivotal innate immune cells against SARS-CoV-2 infection
27 (Merad & Martin, 2020), while AECs express a high level of the SARS-CoV-2 receptor ACE2
28 (Zhao et al, 2020), acting as a master communicator during viral infection (Miura, 2019). The
29 edge bundling plot of LR interactions (Fig 6C) shows paracrine LR signaling from other cell
30 types to AECs (left panel), macrophages (middle panel), and monocytes (right panel).
31 Interestingly, relatively stronger activities of LR signaling were observed for each pair of the
32 above three cell types. For example, FN1-SDC4 and TGM2-ITGB1 signaling from
33 macrophages to AECs and C3-CD81 and GPC3-CD81 signaling from AECs to macrophages
34  exhibited clearly stronger activities than other LR pairs. Moreover, we found that a humber of
35 ligand genes (e.g., FN1 and TGM2 in macrophages; C3 and GPC3 in AECs; and CD14, NID1,
36 VCAN in monocytes) were also target genes in the multilayer networks of the three cell types
37 (Table S2), and that almost all of these ligands as targets were positively correlated with their
38 upstream LR signaling (Fig 6D). Collectively, these results indicate positive feedback loops
39 between AECs, macrophages, and monocytes through paracrine LR signaling interactions (Fig
40  6E). The positive feedback of cytokine signhaling may account for the sustained production and
41 accumulation of inflammatory cytokines and dysregulated hyperinflammation in severe COVID-
42 19 patients (Chen et al, 2021).
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Fig 6. Application of stMLnet to a ST dataset of COVID-19. (A) The cell type annotation and
deconvolution of the ST data of COVID-19 patient, with a set of sScRNA-seq data as a reference. (B) The
CCC network. (C) The edge bundling plot of intercellular LR signaling activity (top ranked) with alveolar
epithelial cells (left panel), macrophages (middle panel), or monocytes (right panel) as receiver cells. The
node size or edge width indicates the averaged strength of the LR signaling. (D) Correlations between
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expressions of ligand genes as intracellular targets and their upstream LR signaling activities. Most PCC
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1 values (R) were positive except for a small fraction of monocytes. (E) Positive feedback circuits between

2 AECs, macrophages, and monocytes. Representative ligands as paracrine cytokines are shown. (F) The

3 multilayer signaling paths from the representative paracrine ligands to targets in AECs, macrophages, or

4 monocytes inferred by stMLnet. Top-ranked target genes according to importance scores were prioritized

5 for visualization.

6

7 Furthermore, the multilayer subnetworks (Fig 6E, Fig S6) demonstrate the signaling paths from

8 representative ligands to targets in AECs, macrophages, or monocytes. Several TFs, such as

9 NFKB1, RELA, and JUN, were inferred to be involved in the intracellular signaling pathways
10 underlying the above intercellular feedback circuits. These TFs are reportedly critical in
11 regulating the gene expressions of inflammatory cytokines during SARS-CoV-2 infection, and
12 they are targets of FDA-approved drugs (Santoso et al, 2021), indicating their therapeutical
13 values for COVID-19 by disrupting the above feedback circuits.
14 In addition, we investigated the biological functions of the above intercellular feedback circuits
15 by performing functional enrichment analysis for their intracellular target genes. The GO BP
16 and KEGG pathway enrichment (Fig S7) demonstrated that processes or pathways related to
17 COVID-19, immune response, cell adhesion, and the extracellular matrix (ECM) were
18 significantly enriched for communications among AECs, macrophages, and monocytes. These
19 results indicate the important roles of the abovementioned intercellular feedback loops in
20 pulmonary injury and immune disorders in response to SARS-CoV-2 infection, and they are
21 consistent with the results of previous studies (Peteranderl et al, 2016; Romero et al, 2015).
22
23 stMLnet deciphers tumor—-macrophage interactions underlying immunotherapy
24 resistance in gliomas

25 Owing to the limited availability of ST datasets, we can directly apply stMLnet to sScCRNA-seq
26  data that are more widely available by using the “latent” spatial distance between cells as the
27 input of stMLnet, based on the assumption of structural correspondence between distances in
28  expression space and physical space (Nitzan et al, 2019).

29 CSF1R inhibitor (BLZ945) treatment is a macrophage-targeting immunotherapy for gliomas
30 (Pyonteck et al, 2013). However, acquired resistance to CSF1R inhibition may emerge during
31  the treatment, as observed in animal experiments (Quail et al, 2016). To investigate the
32 microenvironment-mediated mechanism underlying resistance to CSF1R inhibition (a
33 macrophage-targeting immunotherapy) in gliomas, we applied stMLnet to a set of sScRNA-seq
34  data (GSE131928) (Neftel et al, 2019) (Fig 7A) by using the expression-based Euclid distance
35 as the proximity of the spatial distance of cells. The inferred CCC network (Fig 7B)
36  demonstrates that abundant intercellular LR signaling from glioma cells to macrophages existed,
37 indicating that glioma cells may substantially impact macrophages’ functions through
38 intercellular interactions.

39  The multilayer networks (Fig 7C) further demonstrate the signaling paths downstream of IL13—
40 ILAR and IL34-CSF1R in macrophages (left panel) or those downstream of IGF1-ITGAV in
41 tumor cells (right panel). TFs STAT and NFAT were found to be involved in the downstream of
42 IL4AR or CSF1R signaling, which is consistent with the experimental studies (Qualil et al, 2016).
43 The waterfall plot of the multilayer signaling network (Fig 7D) shows regulatory paths from
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upstream LR pairs (top ranked) to their downstream targets in macrophages (left panel) and
malignant cells (right panel). GSEA analysis showed that highly expressed genes in
macrophages were enriched in the activation and migration of macrophages (Fig S8A). The
highly expressed genes in malignant cells were positively correlated with the gene sets related
to the development and differentiation of neurons, neuronal stem cell population maintenance,
and the VEGF signaling pathway (Fig S8B). GO enrichment analysis for downstream target
genes in the multilayer networks revealed several important dysregulated pathways induced by
glioma-activated CSF1R signaling (left panel) or IL4R signaling (right panel) in macrophages
(Fig S8C) and dysregulated pathways induced by macrophages-activated ITGAV signaling in
tumor cells (Fig S8D). The enriched pathways included several crucial pathways, such as the
MAPK pathway and PI3K-AKT pathway, that are reportedly important in tumor initiation and
progression. These results indicate the critical functional roles of IL4R and CSF1R signaling in
macrophages, which can be exploited as potential targets for gliomas.
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14 Among the abovementioned inferred intercellular LRs between glioma cells and macrophages,
15  CSFI1R signaling, IL4AR signaling, and IGF1 signaling were validated to be involved in
16 macrophage-glioma interactions and BLZ945 resistance (Quail et al, 2016) (Fig 7E, upper
17 panel). stMLnet not only correctly predicted those known ligands or receptors, but it also
18  revealed additional signaling pathways, while NicheNet and CytoTalk failed to predict all of the
19 known interactions (Fig 7E, lower panel). In addition, to quantitatively assess the accuracy of
20  stMLnet prediction regarding CSF1R-targets regulation, a set of RNA-seq data of macrophages
21 isolated from mice (GSE69104) was analyzed. Differential expression status (true or false) of
22 the target genes between the CSF1R-responder group (EP) and Veh group was used as the
23 ground truth. AUCROC, AUCPR, Accuracy, PPV, Error rate, and MCC were computed for
24 quantitative evaluation. The CSF1R-target predictions by NicheNet and CytoTalk were also
25  evaluated for benchmarking. The result (Fig 7F) shows that stMLnet performed significantly
26 better than NicheNet for all of the evaluation metrics, while CytoTalk could not successfully
27 predict CSF1R from the data.
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Fig 7. Application of stMLnet to single-cell RNA-seq data of gliomas. (A) UMAP visualization and cell
type annotation. (B) The CCC network. (C) The multilayer signaling subnetwork downstream of IL13-IL4R
signaling and IL34-CSF1R signaling in macrophages (left panel) or that downstream of IGF1-ITGAV
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signaling in tumor cells (right panel). Only top-ranked target genes are shown for visualization purposes.
(D) The multilayer signaling paths from upstream LR pairs (top-ranked) to their downstream targets in
macrophages (left panel) or tumor cells (right panel). Different colors of paths represent cellular sources
(sender cells) of the ligand signaling, and the width of the path represents the importance score for each
LR~TG regulation. (E) The known interactions between macrophages and glioma cells that were validated
and reported in the literature (upper panel) and the predictions of stMLnet, NicheNet, or CytoTalk (lower
panel). (F) Evaluating stMLnet prediction regarding CSF1R-targets regulation in macrophages based on
gene expression changes after CSF1R inhibitor treatment in responder mice. stMLnet outperformed
NicheNet, and CytoTalk could not predict out CSF1R (‘NA’).
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10 Discussion

11 We have described stMLnet, a tool to decipher mechanisms underlying cellular
12 communications and molecular regulations from ST data. It combines data integration,
13 statistical inference, mechanistic modeling, and machine learning to construct a multilayer
14 signaling network, infer LR signaling activity, and predict LR-target gene regulation. stMLnet
15 leverages spatial information in the ST data to quantify intercellular signaling activity and, more
16 importantly, connect extracellular signals to intracellular gene expression. stMLnet can be used
17 to depict the microenvironmental regulation of gene expression by prioritizing upstream
18 regulators for a given set of target genes or inferring downstream pathways and regulator
19 networks for a given ligand or receptor.

20 One of the challenges in CCC inference is the lack of appropriate benchmarking, which impedes
21 the methodological development and practical applications of such tools. As such, the
22 predictions derived from different methods or tools sometimes differ from each other, and their
23 prediction accuracies have not been well tested. In this study, we collected cell line perturbation
24 datasets for quantitative benchmarking. Although in vitro data are not the perfect gold standard,
25  to the best of our knowledge, cell line perturbation data have been the best choice for
26 benchmarking ligand-target predictions until now, as differential responses of target genes to
27  ligand or receptor perturbations characterize the potential regulations between them. Among
28  the existing methods (Armingol et al, 2022a; Armingol et al, 2022b; Arnol et al, 2019; Baccin et
29 al, 2020; Baruzzo et al, 2022; Browaeys et al, 2020; Cabello-Aguilar et al, 2020; Cang & Nie,
30 2020; Dries et al, 2021b; Efremova et al, 2020; Hou et al, 2020b; Jin et al, 2021; Noél et al,
31 2021; Pham et al, 2020; Tanevski et al, 2021; Wang et al, 2019a; Wang et al, 2019b; Yuan &
32 Bar-Joseph, 2020; Zhang et al, 2021) (Table S1), we chose NicheNet, CytoTalk, and MISTy as
33 competitors for benchmarking stMLnet, as they can output prediction scores of ligand-target
34 regulations that can be compared to the ground truth (differential expression of targets in
35 response to ligand/receptor perturbations). The results show that stMLnet outperformed the
36  other methods on multiple datasets.

37  The advances of stMLnet that led to its superior performance are as follows. First, the L-R-TF-
38 TG multilayer network modeling framework is adequate and effective in depicting intercellular
39 communication-mediated gene expression. The multilayer network method evaluates the
40 upstream activities using the downstream responses, which may reduce false-positive
41 predictions. To fulfill this objective, we integrate carefully curated prior network database
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information with context- and cell type-specific expression data to discover potential causal
relationships between the upstream signaling and the downstream targets by employing the
random walk algorithm and statistical inference method (e.g., Fisher’s exact test). Second, the
spatial information in the ST data is leveraged to mechanistically quantify LR signaling activities
based on a mathematical diffusion model of microenvironmental ligands. This leads to a
parameter-free reciprocal relationship between effective ligand signals receipted by the receiver
cells and cell—cell physical distance, which, although simplified, avoids unfeasible estimation or
calibration of ligand-specific parameters (e.g., diffusion rate and degradation rate). Third, we
employ an explainable random forest regression model to measure the contribution of each
ligand or receptor or LR pair in regulating target gene expression.
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11 Admittedly, our study had some limitations. For example, our method makes several simplified
12 assumptions. In our diffusion model, we approximate the ligand concentration around the
13 sender cells with ligand gene expression by assuming a positive correlation between them.
14 Similarly, regarding the LR signaling activity, we use receptor gene expression to substitute its
15 protein level in the receiver cells. Additionally, the TF-target information comes from prior
16  databases, which are not cell-type-specific. These drawbacks can be addressed by integrating
17 ST data with emerging single-cell multi-omics data, such as single-cell proteomics data and
18 single-cell ATAC sequencing data, thanks to the fast development of sequencing technology.
19 In future studies, we will develop novel multiscale models that integrate multi-omics data across
20 multiple layers to make better inferences of CCC and gene—gene regulations.

21 In summary, stMLnet, a modeling framework for deciphering intercellular signaling and
22 intracellular regulations, provides an effective method to enrich the downstream analysis of
23 spatial transcriptomics data for biological and clinical applications.

2 Methods

25 The proposed method stMLnet mainly encapsulates four components (Fig 1), i.e., constructing
26 prior network databases based on multiple data sources, inferring multilayer signaling network
27 based on gene expression data, calculating distance-dependent LR signaling activity, and
28 quantifying regulatory relationships between upstream L/R and downstream target genes in the
29 inferred multilayer network.

30  Collection and integration of prior network information

31  To infer inter- and intra-cellular signaling networks, we collected multiple data sources of
32 molecular interactions as prior network information (Text S1). We processed and integrated
33  them into prior knowledge databases of stMLnet at three scales of signaling transduction:
34 LigRecDB (ligand-receptor prior database), TFTargetDB (TF-target gene prior database), and
35 RecTFDB (receptor-TF prior database) (Fig S1) (Table S3).

36 LigRecDB

37  Theligand-receptor interaction information comes from connectomeDB2020 (Hou et al, 2020a),
38 iTALK (Wang et al, 2019b), NicheNet (Browaeys et al, 2020) and CellChat (Jin et al, 2021).
39 Most of the ligand-receptor pairs deposited in these databases are evidenced by the literature
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1 reports or supported by multiple other databases. Ultimately, we curated a ligand-receptor
2 database LigRecDB that consists of 3659 pairs of non-redundant LR interactions, including 920
3 ligands and 751 receptors.

4  TFTGDB

The interaction information between TF and target genes comes from TRRUST (Han et al,
2018), HTRIdb (Bovolenta et al, 2012), RegNetwork (Liu et al, 2015) and GTRD (Kolmykov et
al, 2021). TRRUST and HTRIdb deposit a number of literature-supported TF-target genes
interactions. RegNetwork integrates 25 previously existing databases including
predicted/experimental transcriptional regulatory interactions. Ultimately, we collected 373501
10 pairs of TF-target gene interactions, with 525 TFs and 23021 targets, which compose the
11 TFTargetDB database.

O 00 N o U

12 RecTFDB

13 To infer links from receptors to TFs, we used R package graphite (Sales et al, 2019) to extract
14 information of intracellular molecular interactions or signaling pathways from 8 existing
15 databases. Based on such information, we constructed directed weighted network and
16 employed a random walk algorithm (Laszlé et al, 1996) to infer receptor-TF links (Text S2) and
17 the hyper-parameters were calibrated using perturbation-expression data of 69 cell lines
18 involving 27 ligands and 13 receptors (Fig S2). At last, 17450 pairs of non-redundant receptor-
19 TF links were predicted out, comprising 751 receptors and 525 TFs, which compose the
20 RecTFDB database.

21 The comparison of the prior databases of stMLnet with those of NicheNet (Browaeys et al, 2020)
22 and Omnipath (Turei et al, 2016) is described in Text S6.

23 Inference of multilayer intercellular and intracellular signaling networks

24 The multilayer signaling network comprises of four layers of signaling molecules (i.e., ligand,
25 receptor, TF and target genes) and three coherent sub-networks (i.e., LR signaling, receptor-
26  TF pathways, and TF-target gene interactions). Based on our previous works (Cheng et al,
27 2021; Ni et al, 2022; Zhang et al, 2020), we used Fisher’s exact test to qualitatively infer
28  activated TFs from target gene expressions and then to infer activated LR pairs from the TF
29  activity, by leveraging both the above prior network databases and the dataset-/cell type-
30  specific gene expressions. In this way, only activated LR pairs and activated TFs were retained
31 in the inferred multilayer network (see details in Text S3).

32 Modeling distance-dependent ligand-receptor signaling activity

33  To quantify signaling activities of LR pairs, we employed a mechanistic modeling approach by
34  considering ligand diffusion in the microenvironment. Assume that the spatial coordinates of
35 cell i and cell j are (x;y;,2;) and (x;,;, z), respectively. The Euclid distance between cell i

36 andcell j is d;; = \/(xi - xj)2 + (v - yj)2 + (z - zj)z. Denote LR* asthe k-th pair of ligand-

37 receptor, and Lf and R the corresponding ligand expression in the i-th cell and receptor
38 expression in the j-th cell, respectively.

19


https://doi.org/10.1101/2022.06.27.497696
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.27.497696; this version posted June 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1 Theligand is a type of cytokine, which can diffuse in the microenvironment following release by
2 the sender cells. The spatial-temporal distribution of the ligand concentration u(x,y,z) during
3 diffusion can be described by a partial differentia equation (PDE) as follows,

du(x,y.z)

S——=DAu(x,y,z), (x,y,2)€ R3\B,, )

. . 9%u | 9%u | 9%u . . .
4  where A is the Laplace operator, defined as Au:ﬁ"'a_yz"'ﬁ' D is the diffusion

5 coefficient. B; represents unit ball indicating the sender cell. We assume that the diffusion of

6 the ligand is relatively fast and the above equation quickly reaches to the steady-state.
7 Therefore,

Au(x,y, Z) = O, (X,y, Z) S R3\Bl. (2)
8 We further assume that the diffusion of the ligand across the local microenvironment is

9 homogenous, and thereby the solution to the above equation is radially symmetric, i.e.,

10  u(x,y,z) =u(r), where r =,/x% + y? + z2. Consequently, the above steady-state diffusion
11 model could be simplified to an ordinary differential equation (ODE):

ru”(r) +2u'(r) = 0. (3)
12 Solving the above ODE, we get

() = €, % te, 4)

13 where €, and C, are constants. Assume that the ligand concentration is u; along the
14 boundary of B; and O far away. So we impose the boundary conditions u(1) = u,, u(e) = 0.

15 As such, u(r) = %ul. We used the ligand expression in the sender cell (L¥) as a proximity of

16 u,. Therefore, the signaling strength of L¥ received by the j-th cell is diijL{-‘.

17 Furthermore, based on the law of mass-action, the signaling strength of the k-th LR pair
18  activated at the j-th cell could be defined as

k _ 1 ykpk
LRf = B0, (- LARY). (5)

19  These equations quantitatively describe the influence of cell distance on ligand-receptor
20  signaling intensity, so that the ligands from the sender cells with different distances react with
21 the receptor of the receiver cell in different extent. As a result, the samples of LR signals (i.e.,
22 receiver cells) are consistent with those of the corresponding target genes, allowing mapping
23 LR signal to the intracellular target gene expression.

24  Random forest regression for LR-target regulation

25  Assume m target genes (i.e., Gy, G, ..., Gy,) in the inferred multilayer network and n, pairs of
26 LRs linked to each target gene G; (i.e., LRy, LR,, ..., LRy,). To decipher quantitative regulation
27 relationship between LR pairs and the target genes, we divided this task into m sub-problems
28 by decoding the following functions:

Gt = ft(LRl'LRZl ""LRnt)’ t= 1'2' ., M (6)

20
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Due to complex regulation relationship between LRs and the target gene, the above f; is
generally non-linear. We thus employed explainable tree-based regression to learn f,. We
constructed random forest regression model for each of the m target genes (Fig 1E). We used
the signaling activities LRy, LR, ..., LR,, (calculated from Equation (5)) across the receiver cells
as input to predict the expression of the target gene G,. Based on the random forest model, we
could calculate the importance score of the k,-th feature (LR,,) contributing to the G,
expression, and thereby rank LR pairs. Moreover, we also refined the permutation importance
score to account for the disassembled importance of L or R alone, which was referred to partial
importance score (Text Sb).
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10  Data collection and processing
11 Breast cancer dataset

12 The spatial transcriptomics (ST) data of breast cancer was obtained from the 10x Genomics
13 website. The preprocessing of the ST data, including quality control, normalization, and
14 dimension reduction (tSNE analysis), was conducted using standard pipeline of Seurat. The
15 cell type annotation information in a scRNA-seq dataset (GSE118389) (Karaayvaz et al, 2018)
16  was mapped to each spot of the ST data (‘FindTransferAnchors’ and ‘TransferData’ in Seurat
17 v3.2.3 (Stuart et al, 2019)). Furthermore, the cell type-specific gene expression for the dominant
18 cell type in each spot was calculated using ‘get_decomposed_data’ function in RCTD v1.1.0
19 (Cable et al, 2021) with the aid of the cell type proportion matrix from Seurat output and the
20  above scRNA-seq reference dataset. We also employed Giotto (Dries et al, 2021a) to get ICGs
21 by using findICG’ function and filterICG’ function with default parameters, which were used as
22 the input target gene set of interest for stMLnet. The ST data was imputed using Seurat
23 ‘runALRA’ function to mitigate the sparsity of the expression matrix for the LR signaling
24 quantification and random forest regression.

25 COVID-19 dataset

26  The ST data of COVID-19-infected human lung tissue was processed with the original code
27  deposited at Mendeley: https://doi.org/10.17632/xjtv62ncwr.1. Following the original study

28  (Gracia Villacampa et al, 2021), the NNMF method and the Pearson correlation were used to
29 calculate spot-factor matrix and factor-celltype matrix to calculate cell type proportion for each
30 spot in the ST data. More specifically, we firstly merged the similar subtypes according to the
31 reference 10x scRNA-seq dataset (Travaglini et al, 2020) (Table S4) and then two truncation
32 parameters (factor_cutoff = 0.5 and celltype_cutoff = 0.5) related to spot-factor matrix and
33  factor-celltype matrix were utilized to avoid excessive dispersion of cell type proportion. The
34 cell type proportion matrix was defined as the Hadamard product of the above two matrices.
35 The cell type-specific gene expression for the first two dominant cell types in each spot was
36  calculated using ‘get_decomposed_data’ function in RCTD v1.1.0 (Cable et al, 2021). The
37 processed data is shown in Fig $9. Among the two samples, we selected sample 1 for further
38 analysis and CCC inference. The cell type-specific DEGs in the ST data in each type of receiver
39 cells (analyzed using ‘FindMarkers’ function in Seurat) were selected as the target genes of
40 interest for input of stMLnet to infer multilayer signaling networks.

41 Glioma dataset

21
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A set of scRNA-seq data of glioma (GSE131928) was used to analyze tumor-microenvironment
interactions in gliomas. The standard pipeline of Seurat was performed for quality control,
normalization, dimension reduction (tSNE analysis) and cell clustering. We used the marker

A w0

genes provided in the original study (Neftel et al, 2019) for cell type annotation.

To select target genes of interest as input for stMLnet, we also collected a set of RNA-seq data
of the isolated glioma cells or macrophages from three groups of mice with different responses
to the CSF1R inhibitor treatment (Reb, rebound; EP, endpoint; Vel, vehicle) (GSE69104 (Quail
et al, 2016)). After CPM standardization, low-expression genes with expression levels below

O 00 N o w!u

0.5 in more than 6 samples were filtered. We calculated differentially expressed genes (DEGs)
10 in macrophages between different groups (Reb v.s. EP, EP v.s. Veh) using Wilcoxon rank sum
11 test (|logfc|>2, p.adj<0.1). The DEGs between Reb and EP could be viewed as resistance-
12 related genes, which were input to stMLnet as potential target genes in macrophages or tumor
13 cells to infer their upstream regulators.

14 For other cell types (e.g., T cells and oligodendrocytes), we used highly expressed genes in
15 these cell types, analyzed from the scRNA-seq data by using ‘FindMarkers’ function in Seurat
16 (llogfc|>2, p.adj<0.05, pct>=0.1), as respective target genes of interest for stMLnet input.

17 In addition, the DEGs in macrophages between EP and Veh groups could be viewed as genes
18 responsive to CSF1R inhibition and thus potentially regulated by CSF1R, which were used to
19  test the prediction of stMLnet with respect to the CSF1R-regulated target genes.

20 Cell lines data

21 To calibrate parameters for prior information integration, we collected 129 datasets of cell line
22 gene expression that were treated with ligands or perturbed by receptor knockout/mutation from
23 the GEO database (Table S5), involving 23 tissues, 65 cell lines, 42 ligands and 18 receptors.
24 We used limma (Ritchie et al, 2015) to select DEGs of each cell line (before vs. after
25 perturbation) under criteria of |logfc|>1 and p.adj<0.05. Ultimately 70 datasets, each with more
26 than 50 DEGs, were used for correction of prior databases in this study.

27  Simulation study

28  To evaluate the quantitative model involved in stMLnet, we benchmarked stMLnet with a set of
29 synthetic data of spatial gene expressions. We consider 5 ligands, 2 receptors, 3 TFs and 4
30 target genes. The ground truth of the multilayer network is shown in Fig S3A.

31 We simulate 3 types of cells, including 2 types of sender cells (SC1 and SC:) and 1 type of
32 receiver cells (RC). These cells are randomly located at a fraction of grids within a 2-
33 dimensional lattice (100x100) that simulates a square domain of tissue slice (2 c R?). The
34 ligand genes are expressed by the sender cells and the products are subject to diffusion. The
35 receptor genes, TFs and TGs of the receiver cells do not diffuse across microenvironment.

36 The spatial-temporal changes of the extracellular ligands are modeled using the following
37 reaction-diffusion equation

(- pafw) + 2, retse ) = il (7)

38 where [L;] = [L;](x,t) represents the concentration of the ligand L; at location x € 2 and time
22
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t. D; and d; represents, respectively, the diffusion coefficient and degradation rate of the ligand
L;. ry is the release rate of the ligand L; by sender cells SC, (k =1o0r2). ys (x) is an
indicator function of the sender cells, taking value 1 where there is a sender cell at location x,
and 0 otherwise. Random initial value and the no-flux boundary condition are imposed to the

g W R

above equation.

[e)]

The level of each receptor is assumed steady through the simulation. The activation of each TF
7 within the receiver cells is modulated by the upstream LR signaling, which is described as

d[TF,
[ l] Z ajl Z blj L ] [R ] ﬁl[TFl] (8)

9  where [TF|] = [TF](x,t) represents the activation level of the TF, at location x and time ¢t.
10 b;; equals to 1 or 0, representing binding or non-binding between ligand L; and receptor R;.

8 follows,

11 a;, is the activation coefficient of TF, by R;. fp, is the degradation rate of TF,.
12 The expression of each target gene is regulated by TFs, which is described as follows,

d[TG]
[ Zuls [TF] - s[TG] ©)

13 where [TGq] = [TGs](x,t) represents the expression level of the target gene TG, atlocation x
14 and time t. y;; is the regulatory coefficient of TG, expression by TF,. y, is the degradation
15 rate of TG;.

16 To get the steady-state values of spatial gene expression, we solve the following equations:

—DiA[L;] = z T Xsc, (X) — di[L;]

k

oLl _ (19)
on lpg

[TH](x) = Z%zzbu [Li] - [R)] (1)
[T6,)(x) = V_sZ s [TF] (12)

17 Equations (10) were solved using finite difference method with five-point central difference
18 scheme (Text §7). The values of some parameters (e.g., 7, @, B, s, ¥s @nd [Ry]) in the
19 above model were randomly sampled in each simulation. By simulating the above model with
20 random parameter values 100 times, we got 100 sets of synthetic data each includes spatial
21 expression values of 5 ligands, 2 receptors and 4 target genes and location coordinates of the
22 SCs and RCs. Fig 3C-H illustrate a set of representative simulation data. Such spatial
23 expression data was used as input of the random forest regression model in stMLnet (without
24 using the prior information of the predefined multilayer network) to infer the regulation of TGs’
25 expression by LR pairs. The predicted importance scores for LR-TG regulations were

26 benchmarked with the ground truth.

27 Appendix

28 Appendix is available online and includes the following contents:
29  Text S1. Collection and integration of prior network information.
23
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Text S2. Inference and optimization of Receptor-TF regulatory matrix.

Text S3. Inference of structure of multilayer signaling network.

Text S4. Importance ranking of the upstream regulators.

Text S5. Implementation of CytoTalk, NicheNet and MISTy.

Text S6. Comparison of prior databases.

Text S7. Numerical simulation.

Figure S1. The collection and sorting of prior knowledge database.

Figure S2. Comparison and parameterization of prior knowledge database.

Figure S3. lllustration for the simulation study.

Figure S4. Data preprocessing of the ST data of breast cancer.

Figure 85. Verifying stMLnet based on LR-target correlations.

Figure S6. The waterfall plot of the multilayer signaling network for the cellular feedback
circuits inferred from the COVID-19 ST dataset.

Figure 87. Heatmap of functional enrichment for cellular feedback circuits inferred from the
COVID-19 ST dataset.

Figure S8. Enrichment analysis for the multilayer signaling networks of glioma.

Figure S9. The cell type annotation and deconvolution of the COVID-19 ST dataset.
Table S1. Summary and comparison of cell communication inference methods.

Table S2. Correlations between ligand genes and their upstream LR regulators involved in
cellular feedback circuits in COVID-19.

Table S3. Statistics of information in the constructed prior databases LigRecDB, RecTFDB
and TFTGDB.

Table S4. The information used for cell type annotation for the COVID-19 dataset.

Table S5. The detailed information of cell line datasets.

Data availability

The ST data of breast cancer was downloaded from the 10X Genomics website

(https://support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_Breast Cancer Block A Section 1).

The ST data of COVID-19-infected lung tissue was downloaded from Mendeley
(https://doi.org/10.17632/xjtv62ncwr.1). The scRNA-seq data of breast cancer, the scRNA-seq
data of glioma, and the bulk RNA-seq data of macrophages were downloaded from the NCBI
GEO database (GSE118389, GSE131928, and GSE69104, respectively). The scRNA-seq data
of the lung was downloaded from Synapse (https://www.synapse.org/#!Synapse:syn21041850).

The cell line gene expression datasets were downloaded from the NCBI GEO database, with
the access numbers listed in Table S5. The simulation data is available from a public repository
of Github (https://github.com/SunXQlab/stMLnet-simulation). The source code for the data
analysis in the manuscript is available from Github (https://github.com/SunXQlab/stMLnet-
AnalysisCode). The R package of stMLnet is publicly available from Github
(https://github.com/SunXQlab/stMLnet). A web-based application of stMLnet is also developed

and available at www.stmlnet.top/net.
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