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Abstract 1 

Multicellular organisms require intercellular and intracellular signaling to coordinately regulate 2 

different cell functions. The technological advance of spatial transcriptomics (ST) lets us 3 

leverage spatial information to better elucidate cell signaling and functioning. Here, we present 4 

stMLnet, a method that infers spatial intercellular communication and multilayer signaling 5 

regulations from ST data by quantifying distance-weighted ligand–receptor (LR) signaling 6 

activity based on diffusion and mass action models and mapping it to intracellular targets. We 7 

demonstrated the applicability of stMLnet on a breast cancer ST dataset and benchmarked its 8 

performance using multiple cell line perturbation datasets, synthetic data, and LR-target 9 

correlations stratified by cellular distance. We then applied stMLnet to an ST dataset of SARS-10 

CoV-2-infected lung tissue, revealing positive feedback circuits between alveolar epithelial cells, 11 

macrophages, and monocytes in a COVID-19 microenvironment. Furthermore, we applied 12 

stMLnet to analyze glioma-macrophage interactions for deciphering intercellular and 13 

intracellular signaling mechanisms underlying immunotherapy resistance in gliomas. Our 14 

proposed method provides an effective tool for predicting LR-target regulations between 15 

interacting cells, which can advance the mechanistic and functional understanding of cell–cell 16 

communication. 17 

 18 

Keywords 19 

Cell–cell communication / Modeling and inference / Multilayer signaling network / Spatial 20 

transcriptomics 21 

  22 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.27.497696doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497696
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction 1 

It has become increasingly clear that cell fates and functions are not only determined by the 2 

intrinsic genetic makeup of the cell, but they are also influenced by neighboring cells and the 3 

spatial environment in multicellular tissue (Boulanger et al, 2007; Scadden, 2006). Recent 4 

studies have revealed that cell–cell interactions (CCIs) play important roles in cell differentiation, 5 

tissue development, immunity, and cancers (Pires-daSilva & Sommer, 2003). Elucidating the 6 

mechanisms by which intercellular signaling regulates intracellular gene expression is essential 7 

to advance our understanding of the functional and therapeutic roles of CCIs (Armingol et al, 8 

2021).  9 

Cells can interact with each other in multiple ways, such as physical cell–cell contact (e.g., cell 10 

adhesions) (Boisset et al, 2018; Parsons et al, 2010) and biochemical cell–cell communication 11 

(CCC) mediated by diffusible molecules (e.g., autocrine, paracrine or endocrine via ligand–12 

receptor (LR) interactions) (Armingol et al, 2021). CCC plays vital roles in many physiological 13 

functions of multicellularity, and its dysregulation often drives the occurrence and development 14 

of many diseases (Heasley, 2001). CCC generally involves four sequential events (Krauss, 15 

2014): 1) secretion and diffusion of ligand molecules; 2) reception and specific binding of the 16 

ligand by the receptor, leading to receptor activation; 3) induction of one or multiple signaling 17 

transduction pathways by the activated receptors, leading to the activation of downstream 18 

transcriptional factors (TFs); and 4) regulation of target gene expression by the activated TFs 19 

and initiation of cell phenotype switching. Together, the signaling mechanisms involved in 20 

functional CCC include both intercellular LR interactions and intracellular signaling transduction 21 

and transcriptional regulation, which is referred to as the multilayer signaling network (Almet et 22 

al, 2021; Cheng et al, 2020; Zhang et al, 2020). Traditional experimental studies have often 23 

focused on a single or a few signaling molecules to study intercellular communications, lacking 24 

information across multiple scales of signaling. Systems analysis of signaling regulations in 25 

functional CCC is challenging and critical.  26 

Single-cell RNA sequencing (scRNA-seq) provides unprecedented high-throughput data to 27 

decipher intercellular communication by analyzing cell-type-specific expression of ligands and 28 

receptors (Armingol et al, 2021). Recently, several computational methods or tools have been 29 

developed to infer CCC from scRNA-seq data (Almet et al, 2021; Armingol et al, 2021). However, 30 

most existing methods or tools (e.g., (Cang & Nie, 2020; Efremova et al, 2020; Jin et al, 2021; 31 

Wang et al, 2019b)) only consider intercellular LR signaling pairs without dissecting the 32 

response of their downstream pathways (see a comprehensive comparison of related methods 33 

in Table S1).  34 

Previously we developed a multilayer network approach to infer both intercellular and 35 

intracellular signaling networks (Cheng et al, 2021; Ni et al, 2022; Zhang et al, 2020). While 36 

several other methods (e.g., (Browaeys et al, 2020; Zhang et al, 2021)) also consider 37 

intracellular responses, the information of cellular distance affecting the transportation and 38 

reception of secretory molecules across the spatial environment is missing because of the loss 39 

of the positional information of cells in the scRNA-seq data. Recently, the rapid advancement 40 

of spatially resolved sequencing technology that measures both gene expression and positional 41 
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information of cells (Longo et al, 2021) has afforded new opportunities to infer spatial and 1 

functional CCC (Walker et al, 2022).                  2 

In this study, we present stMLnet, a spatial transcriptomics (ST)-based multilayer network 3 

method for inferring spatial intercellular communication and LR-target gene regulations. 4 

stMLnet mechanistically quantifies cell-distance-dependent LR signaling activity based on a 5 

mathematical model of ligand diffusion and the LR reaction, and it quantitatively maps the 6 

intercellular LR signals to intracellular gene expressions using explainable tree-based machine 7 

learning. Our method can prioritize ligands, receptors, or their pairs that regulate specific target 8 

genes. We demonstrated stMLnet on an ST dataset of breast cancer and evaluated its 9 

predictive accuracy using cell line perturbation data, simulation data, and differential LR-target 10 

correlations in distal and proximal cell pairs. After benchmarking stMLnet with other methods, 11 

we applied stMLnet to analyze CCIs underlying the inflammatory response to COVID-19 12 

infection and to decipher intercellular and intracellular signaling mechanisms underlying 13 

immunotherapy resistance in gliomas. 14 

Results  15 

Overview of stMLnet 16 

 17 

Fig 1. stMLnet framework. (A) Inputs of stMLnet. (B-E) Workflow of stMLnet. (B) Integration of prior 18 

network information. stMLnet integrates prior information from multiple data sources of molecular 19 

interactions, including LR interaction, signaling pathways, and transcriptional regulations, into prior 20 

knowledge databases of stMLnet (i.e., LigRecDB, RecTFDB, and TFTarget DB) by the directed weighted 21 

graph and random walk algorithm. (C) Statistical inference of multilayer signaling network. Based on the 22 

transcriptomic data and the prior information, stMLnet employs the statistical test method to infer the 23 

multilayer signaling network and obtain the correspondence between LR pairs and the downstream target 24 

genes (TGs) (LR~TG). (D) Quantification of LR signaling activity. Based on the ligand diffusion model and 25 

the law of mass action, the LR signaling activity is modeled as a distance-dependent function. (E) Random 26 
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forest regression links LR activity to target gene expression. Explainable importance score of the 𝒌𝒕-th 1 

feature (𝑳𝑹𝒌𝒕
) contributing to the target expression 𝑮𝒕 was computed to prioritize the upstream ligands 2 

or receptors regulating target genes. 3 

Our proposed method aims to infer, quantify, and visualize both intercellular communications 4 

and the intracellular gene regulatory network from ST data with an emphasis on the impact of 5 

spatial cellular distance in CCCs (Fig 1). First, stMLnet integrates multiple data sources of 6 

molecular interactions (including LR interaction, signaling pathways, and transcriptional 7 

regulations) (Text S1) into in-house knowledge databases (i.e., LigRecDB, RecTFDB, and 8 

TFTargetDB) by using the directed weighted graph and random walk algorithm (Text S2) (Fig 9 

1B). Second, based on the prior network information and the gene expression data, stMLnet 10 

uses Fisher’s exact test to infer the structure of the multilayer signaling network (Text S4) and 11 

obtain the paths from LR pairs to the downstream targets (LR~TG) (Fig 1C). Third, to quantify 12 

LR signaling activity, stMLnet mechanistically models the LR signaling activity as a cell-13 

distance-dependent function based on a ligand diffusion model and the law of mass action (Fig 14 

1D). Lastly, to model the nonlinear LR-TG regulation relationships, stMLnet employs an 15 

explainable tree-based modeling approach (e.g., random forest regression) to link LR activity 16 

to target gene expression, with feature importance ranking to measure the contribution of each 17 

upstream ligand and/or receptor to the target gene expression (Fig 1E).  18 

The input of stMLnet includes the gene expression matrix (gene×spot) (𝑿), cell location matrix 19 

(spot×dim) (𝒀), and cell type matrix (spot×annotation) (𝒁) to indicate the cell type annotation 20 

and labels of receiver cells and/or sender cells. The cell location matrix is used to calculate the 21 

cell distance matrix (𝑫). In addition, stMLnet also allows inputs of a set of genes of interest as 22 

target genes for analysis. The output of stMLnet includes the multilayer signaling network (LR-23 

TF-TG), LR signaling activity, and importance ranking of LR or L/R with respect to their ability 24 

to regulate target gene expression. stMLnet also provides various visualizations of the results, 25 

for instance, the circle plot of the CCC network, edge bundling plot of intercellular LR activity, 26 

waterfall plot of multilayer signaling network, multilayer network visualization of sub-networks 27 

downstream of a specified ligand, and heatmap of functional enrichment for ligands/receptors 28 

based on downstream target genes.  29 

Demonstration of stMLnet on an ST dataset of breast cancer 30 
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 1 

Fig 2. Application of stMLnet to an ST dataset of breast cancer. (A) The cell type annotation for spots 2 

in the ST data and the cell type proportion distribution of malignant cells and T cells. (B) The CCC network. 3 

Different node colors represent different cell types. The edges represent intercellular communications 4 

from the sender cells to the receiver cells. The edge color is consistent with that of the sender cells, and 5 

the edge width represents the number of LR pairs. (C) The edge bundling plot of LR signaling activity (top 6 

ranked). The nodes represent ligands or receptors, with different colors for different cell types. The edges 7 
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represent LR signaling from the sender cells (e.g., T cells, endothelial cell, and epithelial cells) to the 1 

receiver cells (e.g., malignant cells here), with the edge color being consistent with that of the sender cell. 2 

The node size or edge width indicates the average strength of the LR signaling. (D) The waterfall plot of 3 

the multilayer signaling network. Regulatory paths from upstream LR pairs (top ranked) to their 4 

downstream targets in malignant cells are shown. The path color indicates the cellular source (sender 5 

cells) of the ligand signaling, and the path width represents the importance score of each LR with respect 6 

to TG regulation. (E) The multilayer signaling subnetwork indicates the regulatory paths from a specified 7 

ligand/receptor to its downstream TFs and then to target genes. Regulatory networks downstream of 8 

TGFB1 (up) or SEMA4D (below) in malignant cells are shown. Top-ranked target genes according to 9 

importance scores are prioritized for visualization. (F) Heatmap of functional enrichment for CCC. The GO 10 

biological process (BP) (up) or KEGG (below) enrichment of the downstream targets for a set of upstream 11 

receptors during CCI with T cells as senders and malignant cells as receivers is shown. Top-ranked 12 

function terms according to p-values were prioritized for visualization.  13 

To globally analyze CCCs between different cell types, including malignant cells, T cells, B cells, 14 

macrophages, epithelial cells, endothelial cells, and stromal cells, in the tumor 15 

microenvironment of breast cancer (Fig 2A, Fig S4), we applied stMLnet to infer the multilayer 16 

signaling networks for all pairs of sender cells and receiver cells. The interaction-changed 17 

genes (ICGs) (Dries et al, 2021a) in each type of receiver cell were selected as the 18 

corresponding target genes of interest. The circle plot of the CCC network (Fig 2B) 19 

demonstrates abundant interactions between different cell types in the tumor microenvironment.  20 

To decipher microenvironmental regulatory mechanisms of the target genes in the breast 21 

cancer cells, we focused on the inferred multilayer network with the malignant cells as the 22 

receiver and other cell types as senders. The edge bundling plot of LR interactions (Fig 2C) 23 

shows LR signaling from various sender cells, including T cells, endothelial cells, and epithelial 24 

cells, to the malignant cells. Different LR pairs possessed varied signaling activities, depending 25 

on both ligand/receptor expression levels and sender–receiver cell distances. Furthermore, the 26 

waterfall plot of the multilayer signaling network (Fig 2D) shows regulatory paths from upstream 27 

LR pairs (top ranked) to their downstream targets in malignant cells. Based on the computed 28 

(partial) importance scores (Text S5), we could prioritize upstream LR regulators for given 29 

target genes or downstream targets for a specified ligand/receptor. For instance, TGFB1 and 30 

SEMA4D, expressed by T cells, deliver intense signals to interact with their receptors (ENG 31 

and ERBB2, respectively) and contribute largely to the regulation of a number of target genes.  32 

In addition, the multilayer signaling subnetwork (Fig 2E) indicates the signaling paths from a 33 

specified ligand to the corresponding receptor(s), and then to downstream TFs and target genes. 34 

As shown, TGFB1 regulated the downstream target genes through pathways that activate TFs, 35 

including SMAD1, STAT1, and WWP1 in malignant cells, while the pathways downstream of 36 

SEMA4D-ERBB2 signaling activated TFs, including ESR1, FOX3, and STAT1/5. 37 

To infer biological functions of the intercellular communication, we performed GO BP and KEGG 38 

pathway enrichment for the downstream target genes of each receptor. The heatmap of 39 

functional enrichment (Fig 2F) shows that a panel of pathways or biological processes related 40 

to immunology or metabolism was dysregulated, indicating microenvironment-induced 41 

alterations of the functional states of malignant cells. 42 
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Testing and benchmarking stMLnet using cell line perturbation data 1 

 2 

Fig 3. Benchmarking stMLnet against other methods using cell line perturbation data. The predicted 3 

L/R-targets regulations were validated by testing whether the targets were differentially expressed in 7 4 

datasets of breast cancer cell lines under corresponding L/R perturbation conditions (e.g., TGFB1 or IL6 5 

stimulation, NRP1 knockout, or CXCR4 mutation). The prediction accuracy of stMLnet was compared to 6 

that of CytoTalk, NicheNet, or MISTy, assessed by AUCROC and AUCPR. ‘NA’ indicates that the 7 

corresponding ligands or receptors used for cell line perturbation could not be inferred by CytoTalk. 8 

To test the accuracy of the LR-target prediction of stMLnet on the breast cancer ST dataset, 9 

we collected 7 datasets of breast cancer cell lines with different perturbation conditions (e.g., 10 

TGFB1 or IL6 stimulation, NRP1 knockout, or CXCR4 mutation) (Fig 3A). If the downstream 11 

target genes are differentially expressed, they are considered to be potentially regulated by the 12 

corresponding ligand or receptor. As such, it is reasonable to use the differentially expressed 13 

genes (DEGs) as the ground truth of downstream targets of a specific ligand or receptor 14 

(Browaeys et al, 2020; Zhang et al, 2021). To this end, we compared the predicted partial 15 

importance scores of the corresponding ligand or receptor on the target genes (Text S5) with 16 

the ground truth (i.e., the differential expression status (true or false) of the target genes in each 17 

cell line after perturbation) and evaluated the prediction accuracy using AUCROC and AUCPR. 18 

The result (Fig 3B) indicates that stMLnet had good predictive accuracy on most datasets 19 

(AUCROC was greater than 0.72, and AUCPR was greater than 0.55 on 5 of 7 datasets).  20 
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We compared stMLnet with other methods of CCC inference or L/R-target regulation prediction. 1 

Table S1 lists their characteristics, such as model/algorithm, input, intercellular prediction, 2 

intracellular prediction, and spatial information utilization. Among them, NicheNet (Browaeys et 3 

al, 2020), CytoTalk (Zhang et al, 2021), and MISTy (Tanevski et al, 2021) were selected for 4 

quantitative benchmarking, as these three methods could predict L/R-target regulation. The 5 

implementation of these methods for benchmarking is described in Text S7. We compared their 6 

prediction accuracy (AUCROC and AUCPR) with that of stMLnet by using the cell line 7 

perturbation data, as described above. The results (Fig 3B) show that stMLnet significantly 8 

outperformed the other three methods on all 7 datasets.  9 

Analysis of distance-weighted LR signaling activity 10 

In the stMLnet model, the LR signaling activity is dependent on the spatial distance between 11 

the sender cell and the receiver cell (Equation (5)). To analyze the distance-weighted LR 12 

signaling activity, we substituted the reciprocal distance weight (
1

𝑑𝑖𝑗
) in LR signaling activity with 13 

the alternative constant weight ( 1 ) or exponential weight ( 𝑒−
𝑑𝑖𝑗
2

2𝑙2 ), and we compared the 14 

performance of stMLnet with the two variants. We compared the prediction accuracies of LR-15 

target regulation based on the above three distance weights using cell line perturbation data 16 

(as used in Fig 3). Various evaluation metrics, including AUCROC (area under the ROC curve), 17 

AUCPR (area under the Precision/Recall curve), PPV (positive predictive value), Accuracy, 18 

Error rate, and MCC (Matthews correlation coefficient), were used for assessment. All of the 19 

above evaluation metrics were averaged on the 7 cell line datasets, and stMLnet consistently 20 

performed better than the other two variants, favoring the reciprocal distance weight for 21 

modeling LR signaling activity (Fig 4A). 22 

To scrutinize the distance-weighted LR signaling activity, we performed a simulation study 23 

based on a mathematical model of ligand diffusion and L-R-TF-Target regulation (see details in 24 

the Methods section) to generate 100 sets of synthetic data (Fig S3). The simulated spatial 25 

expression data were used as input of stMLnet (without using the prior information of the 26 

predefined multilayer network) to infer the regulation of TGs’ expression by LR pairs. The 27 

predicted importance scores for LR-TG regulations were benchmarked with the ground truth of 28 

the simulated network topology. The evaluation of the 6 metrics, namely, AUCROC, AUCPR, 29 

Accuracy, PPV, Error rate, and MCC, on 100 synthetic datasets (Fig 4B) showed that the 30 

reciprocal distance weight significantly outperformed the other two variants. These results affirm 31 

the rationality and effectiveness of stMLnet in modeling spatial distance-dependent cell 32 

communication and gene regulation. 33 
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 1 

Fig 4. Analysis of distance-weighted LR signaling activity. The performance of stMLnet in LR-target 2 

prediction was compared to that of its variants with modified distance weights of LR activity scoring. The 3 

distance weights are the reciprocal function (i.e., 
1

𝑑
) in stMLnet and exponential function (i.e., 𝑒𝑥𝑝⁡(−

𝑑2

2𝑙2
)) 4 

or constant function (i.e., 1) in its two variants, respectively. (A) Based on cell line perturbation data, the 5 

performances of stMLnet and the two variants were evaluated and compared. The evaluation metrics 6 

(AUCROC, AUCPR, Accuracy, PPV, Error rate, and MCC) were averaged on 7 cell line datasets. (B) 7 

Based on 100 synthetic datasets, the performances of stMLnet and the two variants in predicting LR-8 

target regulation were evaluated and compared. The Wilcoxon rank sum test p value was used to assess 9 

the statistical significance. 10 

  11 
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Evaluating stMLnet based on LR-target correlations 1 

 2 

Fig 5. Evaluating stMLnet based on LR-target correlations. (A) Distributions of mutual information 3 

between LR signaling activities and target gene expressions (𝐿𝑅𝑘𝑡
~𝑇𝐺𝑡) in different cell types. The LR-4 

target pairings predicted by stMLnet had larger mutual information values than other methods (e.g., 5 

CytoTalk) and random pairing. (B) Correlation of 𝐿𝑅𝑘𝑡
~𝑇𝐺𝑡  predicted by stMLnet in malignant cells 6 

stratified by close or far distance to the sender cells. The close group had higher correlation than the 7 

distant group, assessed by the mutual information, the absolute value of PCC, and the –log10(p value of 8 

PCC). 9 

To further evaluate the predictions of stMLnet regarding LR-target regulations, we hypothesized 10 

that the more reliable the inferred network, the higher the correlation between LR signaling 11 

activity and target gene expression. As such, we computed the mutual information (MI) or the 12 

Pearson correlation coefficient (PCC) for each pair of ⁡𝐿𝑅𝑘𝑡
~𝑇𝐺

𝑡
  (𝑡 = 1, 2，… ,𝑚;⁡𝑘𝑡 = 1, 2，13 

… , 𝑛𝑡) in the multilayer networks inferred by stMLnet based on the breast cancer ST dataset. 14 
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We then compared values of MI or PCC of 𝐿𝑅𝑘𝑡
~𝑇𝐺𝑡 with that of random pairing or that inferred 1 

by other methods. Here, only CytoTalk could be used for comparison, as NicheNet predicts 2 

ligand-target regulations but does not involve receptors, and MISTy does not explicitly model 3 

LR interactions. The LR-target pairings predicted by stMLnet had larger MI values than 4 

CytoTalk and random pairing, across various cell types (Fig 5A). In addition, evaluations using 5 

PCC or –log10(p value of PCC) (Fig S5) consistently showed that stMLnet exhibited higher LR-6 

target correlations than CytoTalk and random pairing. 7 

Closer cells have a larger probability to communicate with each other, so intercellular signaling 8 

should have a stronger impact on intracellular gene expression. To further inspect LR-target 9 

correlations of stMLnet, we divided sender-receiver pairs, based on cellular pairwise distances, 10 

into a close group (cell pairs with a distance less than the 25th percentile of all of the pairwise 11 

distances) and distant group (cell pairs with distance greater than the 75th percentile of all of 12 

the pairwise distances). We set malignant cells as receivers and examined whether the close 13 

group had a higher correlation (MI or PCC) between LR signaling activity and the target gene 14 

expression than the distant group. The results (Fig 5B) show that both MI values and PCC 15 

values as well as –log10(p value of PCC) of the predicted 𝐿𝑅𝑘𝑡
~𝑇𝐺𝑡 were larger in the close 16 

group than in the distant group. These results further verify the reliability of stMLnet in LR-target 17 

predictions.  18 

stMLnet revealed positive feedback circuits between alveolar epithelial cells, 19 

macrophages, and monocytes in a COVID-19 microenvironment 20 

We applied stMLnet to a set of ST data of COVID-19-infected lung tissue (Fig 6A) to investigate 21 

CCIs underlying the inflammatory response to SARS-CoV-2 infection. The CCC network (Fig 22 

6B) showed abundant and active intercellular interactions, indicating dysregulated 23 

hyperinflammation in the COVID-19-infected lung tissue microenvironment.  24 

We focused on communications between alveolar epithelial cells (AECs), macrophages, and 25 

monocytes, as the latter two are pivotal innate immune cells against SARS-CoV-2 infection 26 

(Merad & Martin, 2020), while AECs express a high level of the SARS-CoV-2 receptor ACE2 27 

(Zhao et al, 2020), acting as a master communicator during viral infection (Miura, 2019). The 28 

edge bundling plot of LR interactions (Fig 6C) shows paracrine LR signaling from other cell 29 

types to AECs (left panel), macrophages (middle panel), and monocytes (right panel). 30 

Interestingly, relatively stronger activities of LR signaling were observed for each pair of the 31 

above three cell types. For example, FN1-SDC4 and TGM2-ITGB1 signaling from 32 

macrophages to AECs and C3-CD81 and GPC3-CD81 signaling from AECs to macrophages 33 

exhibited clearly stronger activities than other LR pairs. Moreover, we found that a number of 34 

ligand genes (e.g., FN1 and TGM2 in macrophages; C3 and GPC3 in AECs; and CD14, NID1, 35 

VCAN in monocytes) were also target genes in the multilayer networks of the three cell types 36 

(Table S2), and that almost all of these ligands as targets were positively correlated with their 37 

upstream LR signaling (Fig 6D). Collectively, these results indicate positive feedback loops 38 

between AECs, macrophages, and monocytes through paracrine LR signaling interactions (Fig 39 

6E). The positive feedback of cytokine signaling may account for the sustained production and 40 

accumulation of inflammatory cytokines and dysregulated hyperinflammation in severe COVID-41 

19 patients (Chen et al, 2021).  42 
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 1 

Fig 6. Application of stMLnet to a ST dataset of COVID-19. (A) The cell type annotation and 2 

deconvolution of the ST data of COVID-19 patient, with a set of scRNA-seq data as a reference. (B) The 3 

CCC network. (C) The edge bundling plot of intercellular LR signaling activity (top ranked) with alveolar 4 

epithelial cells (left panel), macrophages (middle panel), or monocytes (right panel) as receiver cells. The 5 

node size or edge width indicates the averaged strength of the LR signaling. (D) Correlations between 6 

expressions of ligand genes as intracellular targets and their upstream LR signaling activities. Most PCC 7 
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values (R) were positive except for a small fraction of monocytes. (E) Positive feedback circuits between 1 

AECs, macrophages, and monocytes. Representative ligands as paracrine cytokines are shown. (F) The 2 

multilayer signaling paths from the representative paracrine ligands to targets in AECs, macrophages, or 3 

monocytes inferred by stMLnet. Top-ranked target genes according to importance scores were prioritized 4 

for visualization. 5 

 6 

Furthermore, the multilayer subnetworks (Fig 6E, Fig S6) demonstrate the signaling paths from 7 

representative ligands to targets in AECs, macrophages, or monocytes. Several TFs, such as 8 

NFKB1, RELA, and JUN, were inferred to be involved in the intracellular signaling pathways 9 

underlying the above intercellular feedback circuits. These TFs are reportedly critical in 10 

regulating the gene expressions of inflammatory cytokines during SARS-CoV-2 infection, and 11 

they are targets of FDA-approved drugs (Santoso et al, 2021), indicating their therapeutical 12 

values for COVID-19 by disrupting the above feedback circuits.  13 

In addition, we investigated the biological functions of the above intercellular feedback circuits 14 

by performing functional enrichment analysis for their intracellular target genes. The GO BP 15 

and KEGG pathway enrichment (Fig S7) demonstrated that processes or pathways related to 16 

COVID-19, immune response, cell adhesion, and the extracellular matrix (ECM) were 17 

significantly enriched for communications among AECs, macrophages, and monocytes. These 18 

results indicate the important roles of the abovementioned intercellular feedback loops in 19 

pulmonary injury and immune disorders in response to SARS-CoV-2 infection, and they are 20 

consistent with the results of previous studies (Peteranderl et al, 2016; Romero et al, 2015). 21 

 22 

stMLnet deciphers tumor–macrophage interactions underlying immunotherapy 23 

resistance in gliomas  24 

Owing to the limited availability of ST datasets, we can directly apply stMLnet to scRNA-seq 25 

data that are more widely available by using the “latent” spatial distance between cells as the 26 

input of stMLnet, based on the assumption of structural correspondence between distances in 27 

expression space and physical space (Nitzan et al, 2019). 28 

CSF1R inhibitor (BLZ945) treatment is a macrophage-targeting immunotherapy for gliomas 29 

(Pyonteck et al, 2013). However, acquired resistance to CSF1R inhibition may emerge during 30 

the treatment, as observed in animal experiments (Quail et al, 2016). To investigate the 31 

microenvironment-mediated mechanism underlying resistance to CSF1R inhibition (a 32 

macrophage-targeting immunotherapy) in gliomas, we applied stMLnet to a set of scRNA-seq 33 

data (GSE131928) (Neftel et al, 2019) (Fig 7A) by using the expression-based Euclid distance 34 

as the proximity of the spatial distance of cells. The inferred CCC network (Fig 7B) 35 

demonstrates that abundant intercellular LR signaling from glioma cells to macrophages existed, 36 

indicating that glioma cells may substantially impact macrophages’ functions through 37 

intercellular interactions.  38 

The multilayer networks (Fig 7C) further demonstrate the signaling paths downstream of IL13–39 

IL4R and IL34-CSF1R in macrophages (left panel) or those downstream of IGF1-ITGAV in 40 

tumor cells (right panel). TFs STAT and NFAT were found to be involved in the downstream of 41 

IL4R or CSF1R signaling, which is consistent with the experimental studies (Quail et al, 2016). 42 

The waterfall plot of the multilayer signaling network (Fig 7D) shows regulatory paths from 43 
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upstream LR pairs (top ranked) to their downstream targets in macrophages (left panel) and 1 

malignant cells (right panel). GSEA analysis showed that highly expressed genes in 2 

macrophages were enriched in the activation and migration of macrophages (Fig S8A). The 3 

highly expressed genes in malignant cells were positively correlated with the gene sets related 4 

to the development and differentiation of neurons, neuronal stem cell population maintenance, 5 

and the VEGF signaling pathway (Fig S8B). GO enrichment analysis for downstream target 6 

genes in the multilayer networks revealed several important dysregulated pathways induced by 7 

glioma-activated CSF1R signaling (left panel) or IL4R signaling (right panel) in macrophages 8 

(Fig S8C) and dysregulated pathways induced by macrophages-activated ITGAV signaling in 9 

tumor cells (Fig S8D). The enriched pathways included several crucial pathways, such as the 10 

MAPK pathway and PI3K-AKT pathway, that are reportedly important in tumor initiation and 11 

progression. These results indicate the critical functional roles of IL4R and CSF1R signaling in 12 

macrophages, which can be exploited as potential targets for gliomas.  13 

Among the abovementioned inferred intercellular LRs between glioma cells and macrophages, 14 

CSF1R signaling, IL4R signaling, and IGF1 signaling were validated to be involved in 15 

macrophage-glioma interactions and BLZ945 resistance (Quail et al, 2016) (Fig 7E, upper 16 

panel). stMLnet not only correctly predicted those known ligands or receptors, but it also 17 

revealed additional signaling pathways, while NicheNet and CytoTalk failed to predict all of the 18 

known interactions (Fig 7E, lower panel). In addition, to quantitatively assess the accuracy of 19 

stMLnet prediction regarding CSF1R-targets regulation, a set of RNA-seq data of macrophages 20 

isolated from mice (GSE69104) was analyzed. Differential expression status (true or false) of 21 

the target genes between the CSF1R-responder group (EP) and Veh group was used as the 22 

ground truth. AUCROC, AUCPR, Accuracy, PPV, Error rate, and MCC were computed for 23 

quantitative evaluation. The CSF1R-target predictions by NicheNet and CytoTalk were also 24 

evaluated for benchmarking. The result (Fig 7F) shows that stMLnet performed significantly 25 

better than NicheNet for all of the evaluation metrics, while CytoTalk could not successfully 26 

predict CSF1R from the data.  27 
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 1 

Fig 7. Application of stMLnet to single-cell RNA-seq data of gliomas. (A) UMAP visualization and cell 2 

type annotation. (B) The CCC network. (C) The multilayer signaling subnetwork downstream of IL13-IL4R 3 

signaling and IL34-CSF1R signaling in macrophages (left panel) or that downstream of IGF1-ITGAV 4 
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signaling in tumor cells (right panel). Only top-ranked target genes are shown for visualization purposes. 1 

(D) The multilayer signaling paths from upstream LR pairs (top-ranked) to their downstream targets in 2 

macrophages (left panel) or tumor cells (right panel). Different colors of paths represent cellular sources 3 

(sender cells) of the ligand signaling, and the width of the path represents the importance score for each 4 

LR~TG regulation. (E) The known interactions between macrophages and glioma cells that were validated 5 

and reported in the literature (upper panel) and the predictions of stMLnet, NicheNet, or CytoTalk (lower 6 

panel). (F) Evaluating stMLnet prediction regarding CSF1R-targets regulation in macrophages based on 7 

gene expression changes after CSF1R inhibitor treatment in responder mice. stMLnet outperformed 8 

NicheNet, and CytoTalk could not predict out CSF1R (‘NA’). 9 

Discussion 10 

We have described stMLnet, a tool to decipher mechanisms underlying cellular 11 

communications and molecular regulations from ST data. It combines data integration, 12 

statistical inference, mechanistic modeling, and machine learning to construct a multilayer 13 

signaling network, infer LR signaling activity, and predict LR-target gene regulation. stMLnet 14 

leverages spatial information in the ST data to quantify intercellular signaling activity and, more 15 

importantly, connect extracellular signals to intracellular gene expression. stMLnet can be used 16 

to depict the microenvironmental regulation of gene expression by prioritizing upstream 17 

regulators for a given set of target genes or inferring downstream pathways and regulator 18 

networks for a given ligand or receptor.  19 

One of the challenges in CCC inference is the lack of appropriate benchmarking, which impedes 20 

the methodological development and practical applications of such tools. As such, the 21 

predictions derived from different methods or tools sometimes differ from each other, and their 22 

prediction accuracies have not been well tested. In this study, we collected cell line perturbation 23 

datasets for quantitative benchmarking. Although in vitro data are not the perfect gold standard, 24 

to the best of our knowledge, cell line perturbation data have been the best choice for 25 

benchmarking ligand-target predictions until now, as differential responses of target genes to 26 

ligand or receptor perturbations characterize the potential regulations between them. Among 27 

the existing methods (Armingol et al, 2022a; Armingol et al, 2022b; Arnol et al, 2019; Baccin et 28 

al, 2020; Baruzzo et al, 2022; Browaeys et al, 2020; Cabello-Aguilar et al, 2020; Cang & Nie, 29 

2020; Dries et al, 2021b; Efremova et al, 2020; Hou et al, 2020b; Jin et al, 2021; Noël et al, 30 

2021; Pham et al, 2020; Tanevski et al, 2021; Wang et al, 2019a; Wang et al, 2019b; Yuan & 31 

Bar-Joseph, 2020; Zhang et al, 2021) (Table S1), we chose NicheNet, CytoTalk, and MISTy as 32 

competitors for benchmarking stMLnet, as they can output prediction scores of ligand-target 33 

regulations that can be compared to the ground truth (differential expression of targets in 34 

response to ligand/receptor perturbations). The results show that stMLnet outperformed the 35 

other methods on multiple datasets.  36 

The advances of stMLnet that led to its superior performance are as follows. First, the L-R-TF-37 

TG multilayer network modeling framework is adequate and effective in depicting intercellular 38 

communication-mediated gene expression. The multilayer network method evaluates the 39 

upstream activities using the downstream responses, which may reduce false-positive 40 

predictions. To fulfill this objective, we integrate carefully curated prior network database 41 
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information with context- and cell type-specific expression data to discover potential causal 1 

relationships between the upstream signaling and the downstream targets by employing the 2 

random walk algorithm and statistical inference method (e.g., Fisher’s exact test). Second, the 3 

spatial information in the ST data is leveraged to mechanistically quantify LR signaling activities 4 

based on a mathematical diffusion model of microenvironmental ligands. This leads to a 5 

parameter-free reciprocal relationship between effective ligand signals receipted by the receiver 6 

cells and cell–cell physical distance, which, although simplified, avoids unfeasible estimation or 7 

calibration of ligand-specific parameters (e.g., diffusion rate and degradation rate). Third, we 8 

employ an explainable random forest regression model to measure the contribution of each 9 

ligand or receptor or LR pair in regulating target gene expression.   10 

Admittedly, our study had some limitations. For example, our method makes several simplified 11 

assumptions. In our diffusion model, we approximate the ligand concentration around the 12 

sender cells with ligand gene expression by assuming a positive correlation between them. 13 

Similarly, regarding the LR signaling activity, we use receptor gene expression to substitute its 14 

protein level in the receiver cells. Additionally, the TF-target information comes from prior 15 

databases, which are not cell-type-specific. These drawbacks can be addressed by integrating 16 

ST data with emerging single-cell multi-omics data, such as single-cell proteomics data and 17 

single-cell ATAC sequencing data, thanks to the fast development of sequencing technology. 18 

In future studies, we will develop novel multiscale models that integrate multi-omics data across 19 

multiple layers to make better inferences of CCC and gene–gene regulations.  20 

In summary, stMLnet, a modeling framework for deciphering intercellular signaling and 21 

intracellular regulations, provides an effective method to enrich the downstream analysis of 22 

spatial transcriptomics data for biological and clinical applications.   23 

Methods 24 

The proposed method stMLnet mainly encapsulates four components (Fig 1), i.e., constructing 25 

prior network databases based on multiple data sources, inferring multilayer signaling network 26 

based on gene expression data, calculating distance-dependent LR signaling activity, and 27 

quantifying regulatory relationships between upstream L/R and downstream target genes in the 28 

inferred multilayer network.  29 

Collection and integration of prior network information 30 

To infer inter- and intra-cellular signaling networks, we collected multiple data sources of 31 

molecular interactions as prior network information (Text S1). We processed and integrated 32 

them into prior knowledge databases of stMLnet at three scales of signaling transduction: 33 

LigRecDB (ligand-receptor prior database), TFTargetDB (TF-target gene prior database), and 34 

RecTFDB (receptor-TF prior database) (Fig S1) (Table S3).      35 

LigRecDB 36 

The ligand-receptor interaction information comes from connectomeDB2020 (Hou et al, 2020a), 37 

iTALK (Wang et al, 2019b), NicheNet (Browaeys et al, 2020) and CellChat (Jin et al, 2021). 38 

Most of the ligand-receptor pairs deposited in these databases are evidenced by the literature 39 
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reports or supported by multiple other databases. Ultimately, we curated a ligand-receptor 1 

database LigRecDB that consists of 3659 pairs of non-redundant LR interactions, including 920 2 

ligands and 751 receptors.       3 

TFTGDB 4 

The interaction information between TF and target genes comes from TRRUST (Han et al, 5 

2018), HTRIdb (Bovolenta et al, 2012), RegNetwork (Liu et al, 2015) and GTRD (Kolmykov et 6 

al, 2021). TRRUST and HTRIdb deposit a number of literature-supported TF-target genes 7 

interactions. RegNetwork integrates 25 previously existing databases including 8 

predicted/experimental transcriptional regulatory interactions. Ultimately, we collected 373501 9 

pairs of TF-target gene interactions, with 525 TFs and 23021 targets, which compose the 10 

TFTargetDB database.  11 

RecTFDB 12 

To infer links from receptors to TFs, we used R package graphite (Sales et al, 2019) to extract 13 

information of intracellular molecular interactions or signaling pathways from 8 existing 14 

databases. Based on such information, we constructed directed weighted network and 15 

employed a random walk algorithm (László et al, 1996) to infer receptor-TF links (Text S2) and 16 

the hyper-parameters were calibrated using perturbation-expression data of 69 cell lines 17 

involving 27 ligands and 13 receptors (Fig S2). At last, 17450 pairs of non-redundant receptor-18 

TF links were predicted out, comprising 751 receptors and 525 TFs, which compose the 19 

RecTFDB database. 20 

The comparison of the prior databases of stMLnet with those of NicheNet (Browaeys et al, 2020) 21 

and Omnipath (Türei et al, 2016) is described in Text S6.       22 

Inference of multilayer intercellular and intracellular signaling networks  23 

The multilayer signaling network comprises of four layers of signaling molecules (i.e., ligand, 24 

receptor, TF and target genes) and three coherent sub-networks (i.e., LR signaling, receptor-25 

TF pathways, and TF-target gene interactions). Based on our previous works (Cheng et al, 26 

2021; Ni et al, 2022; Zhang et al, 2020), we used Fisher’s exact test to qualitatively infer 27 

activated TFs from target gene expressions and then to infer activated LR pairs from the TF 28 

activity, by leveraging both the above prior network databases and the dataset-/cell type-29 

specific gene expressions. In this way, only activated LR pairs and activated TFs were retained 30 

in the inferred multilayer network (see details in Text S3).  31 

Modeling distance-dependent ligand-receptor signaling activity 32 

To quantify signaling activities of LR pairs, we employed a mechanistic modeling approach by 33 

considering ligand diffusion in the microenvironment. Assume that the spatial coordinates of 34 

cell 𝑖 and cell 𝑗 are (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) and (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗), respectively. The Euclid distance between cell 𝑖 35 

and cell 𝑗 is 𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
+ (𝑧𝑖 − 𝑧𝑗)

2
. Denote 𝐿𝑅𝑘 as the 𝑘-th pair of ligand-36 

receptor, and 𝐿𝑖
𝑘  and 𝑅𝑗

𝑘  the corresponding ligand expression in the 𝑖-th cell and receptor 37 

expression in the 𝑗-th cell, respectively.  38 
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The ligand is a type of cytokine, which can diffuse in the microenvironment following release by 1 

the sender cells. The spatial-temporal distribution of the ligand concentration⁡𝑢(𝑥, 𝑦, 𝑧) during 2 

diffusion can be described by a partial differentia equation (PDE) as follows, 3 

𝜕𝑢(𝑥,𝑦,𝑧)

𝜕𝑡
= 𝐷∆𝑢(𝑥, 𝑦, 𝑧),⁡ (𝑥, 𝑦, 𝑧) ∈ 𝑹3\𝐵1, (1) 

where ∆  is the Laplace operator, defined as ∆𝑢 =
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑧2 . 𝐷  is the diffusion 4 

coefficient. 𝐵1 represents unit ball indicating the sender cell. We assume that the diffusion of 5 

the ligand is relatively fast and the above equation quickly reaches to the steady-state. 6 

Therefore,  7 

∆𝑢(𝑥, 𝑦, 𝑧) = 0,⁡ (𝑥, 𝑦, 𝑧) ∈ 𝑹3\𝐵1. (2) 

We further assume that the diffusion of the ligand across the local microenvironment is 8 

homogenous, and thereby the solution to the above equation is radially symmetric, i.e., 9 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢(𝑟), where 𝑟 = √𝑥2 + 𝑦2 + 𝑧2 . Consequently, the above steady-state diffusion 10 

model could be simplified to an ordinary differential equation (ODE): 11 

𝑟𝑢′′(𝑟) + 2𝑢′(𝑟) = 0. (3) 

Solving the above ODE, we get  12 

𝑢(𝑟) = 𝐶1

1

𝑟
+ 𝐶2, (4) 

where 𝐶1  and 𝐶2  are constants. Assume that the ligand concentration is 𝑢1  along the 13 

boundary of 𝐵1 and 0 far away. So we impose the boundary conditions⁡𝑢(1) = 𝑢1, 𝑢(∞) = 0. 14 

As such, 𝑢(𝑟) =
1

𝑟
𝑢1. We used the ligand expression in the sender cell (𝐿𝑖

𝑘) as a proximity of 15 

𝑢1. Therefore, the signaling strength of 𝐿𝑖
𝑘 received by the 𝑗-th cell is 

1

𝑑𝑖𝑗
𝐿𝑖

𝑘.  16 

Furthermore, based on the law of mass-action, the signaling strength of the 𝑘-th LR pair 17 

activated at the 𝑗-th cell could be defined as 18 

𝐿𝑅𝑗
𝑘 = ∑ (

1

𝑑𝑖𝑗
𝐿𝑖
𝑘𝑅𝑗

𝑘)𝑛
𝑖=1 . (5) 

These equations quantitatively describe the influence of cell distance on ligand-receptor 19 

signaling intensity, so that the ligands from the sender cells with different distances react with 20 

the receptor of the receiver cell in different extent. As a result, the samples of LR signals (i.e., 21 

receiver cells) are consistent with those of the corresponding target genes, allowing mapping 22 

LR signal to the intracellular target gene expression. 23 

Random forest regression for LR-target regulation 24 

Assume 𝑚 target genes (i.e., 𝐺1, 𝐺2, … , 𝐺𝑚) in the inferred multilayer network and 𝑛𝑡 pairs of 25 

LRs linked to each target gene 𝐺𝑡 (i.e., 𝐿𝑅1, 𝐿𝑅2, … , 𝐿𝑅𝑛𝑡
). To decipher quantitative regulation 26 

relationship between LR pairs and the target genes, we divided this task into 𝑚 sub-problems 27 

by decoding the following functions:  28 

𝐺𝑡 = 𝑓𝑡(𝐿𝑅1, 𝐿𝑅2, … , 𝐿𝑅𝑛𝑡
), 𝑡 = 1, 2，… ,𝑚. (6) 
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Due to complex regulation relationship between LRs and the target gene, the above 𝑓𝑡   is 1 

generally non-linear. We thus employed explainable tree-based regression to learn 𝑓𝑡 . We 2 

constructed random forest regression model for each of the 𝑚 target genes (Fig 1E). We used 3 

the signaling activities 𝐿𝑅1, 𝐿𝑅2, … , 𝐿𝑅𝑛𝑡  (calculated from Equation (5)) across the receiver cells 4 

as input to predict the expression of the target gene 𝐺𝑡. Based on the random forest model, we 5 

could calculate the importance score of the 𝑘𝑡 -th feature ( 𝐿𝑅𝑘𝑡
) contributing to the 𝐺𝑡  6 

expression, and thereby rank LR pairs. Moreover, we also refined the permutation importance 7 

score to account for the disassembled importance of L or R alone, which was referred to partial 8 

importance score (Text S5).  9 

Data collection and processing 10 

Breast cancer dataset 11 

The spatial transcriptomics (ST) data of breast cancer was obtained from the 10x Genomics 12 

website. The preprocessing of the ST data, including quality control, normalization, and 13 

dimension reduction (tSNE analysis), was conducted using standard pipeline of Seurat. The 14 

cell type annotation information in a scRNA-seq dataset (GSE118389) (Karaayvaz et al, 2018) 15 

was mapped to each spot of the ST data (‘FindTransferAnchors’ and ‘TransferData’ in Seurat 16 

v3.2.3 (Stuart et al, 2019)). Furthermore, the cell type-specific gene expression for the dominant 17 

cell type in each spot was calculated using ‘get_decomposed_data’ function in RCTD v1.1.0 18 

(Cable et al, 2021) with the aid of the cell type proportion matrix from Seurat output and the 19 

above scRNA-seq reference dataset. We also employed Giotto (Dries et al, 2021a) to get ICGs 20 

by using ‘findICG’ function and ‘filterICG’ function with default parameters, which were used as 21 

the input target gene set of interest for stMLnet. The ST data was imputed using Seurat 22 

‘runALRA’ function to mitigate the sparsity of the expression matrix for the LR signaling 23 

quantification and random forest regression. 24 

COVID-19 dataset 25 

The ST data of COVID-19-infected human lung tissue was processed with the original code 26 

deposited at Mendeley: https://doi.org/10.17632/xjtv62ncwr.1. Following the original study 27 

(Gracia Villacampa et al, 2021), the NNMF method and the Pearson correlation were used to 28 

calculate spot-factor matrix and factor-celltype matrix to calculate cell type proportion for each 29 

spot in the ST data. More specifically, we firstly merged the similar subtypes according to the 30 

reference 10x scRNA-seq dataset (Travaglini et al, 2020) (Table S4) and then two truncation 31 

parameters (factor_cutoff = 0.5 and celltype_cutoff = 0.5) related to spot-factor matrix and 32 

factor-celltype matrix were utilized to avoid excessive dispersion of cell type proportion. The 33 

cell type proportion matrix was defined as the Hadamard product of the above two matrices. 34 

The cell type-specific gene expression for the first two dominant cell types in each spot was 35 

calculated using ‘get_decomposed_data’ function in RCTD v1.1.0 (Cable et al, 2021). The 36 

processed data is shown in Fig S9. Among the two samples, we selected sample 1 for further 37 

analysis and CCC inference. The cell type-specific DEGs in the ST data in each type of receiver 38 

cells (analyzed using ‘FindMarkers’ function in Seurat) were selected as the target genes of 39 

interest for input of stMLnet to infer multilayer signaling networks. 40 

Glioma dataset 41 
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A set of scRNA-seq data of glioma (GSE131928) was used to analyze tumor-microenvironment 1 

interactions in gliomas. The standard pipeline of Seurat was performed for quality control, 2 

normalization, dimension reduction (tSNE analysis) and cell clustering. We used the marker 3 

genes provided in the original study (Neftel et al, 2019) for cell type annotation.  4 

To select target genes of interest as input for stMLnet, we also collected a set of RNA-seq data 5 

of the isolated glioma cells or macrophages from three groups of mice with different responses 6 

to the CSF1R inhibitor treatment (Reb, rebound; EP, endpoint; Vel, vehicle) (GSE69104 (Quail 7 

et al, 2016)). After CPM standardization, low-expression genes with expression levels below 8 

0.5 in more than 6 samples were filtered. We calculated differentially expressed genes (DEGs) 9 

in macrophages between different groups (Reb v.s. EP, EP v.s. Veh) using Wilcoxon rank sum 10 

test (|logfc|>2, p.adj<0.1). The DEGs between Reb and EP could be viewed as resistance-11 

related genes, which were input to stMLnet as potential target genes in macrophages or tumor 12 

cells to infer their upstream regulators.  13 

For other cell types (e.g., T cells and oligodendrocytes), we used highly expressed genes in 14 

these cell types, analyzed from the scRNA-seq data by using ‘FindMarkers’ function in Seurat 15 

(|logfc|>2, p.adj<0.05, pct>=0.1), as respective target genes of interest for stMLnet input.  16 

In addition, the DEGs in macrophages between EP and Veh groups could be viewed as genes 17 

responsive to CSF1R inhibition and thus potentially regulated by CSF1R, which were used to 18 

test the prediction of stMLnet with respect to the CSF1R-regulated target genes.  19 

Cell lines data 20 

To calibrate parameters for prior information integration, we collected 129 datasets of cell line 21 

gene expression that were treated with ligands or perturbed by receptor knockout/mutation from 22 

the GEO database (Table S5), involving 23 tissues, 65 cell lines, 42 ligands and 18 receptors. 23 

We used limma (Ritchie et al, 2015) to select DEGs of each cell line (before vs. after 24 

perturbation) under criteria of |logfc|>1 and p.adj<0.05. Ultimately 70 datasets, each with more 25 

than 50 DEGs, were used for correction of prior databases in this study.  26 

Simulation study 27 

To evaluate the quantitative model involved in stMLnet, we benchmarked stMLnet with a set of 28 

synthetic data of spatial gene expressions. We consider 5 ligands, 2 receptors, 3 TFs and 4 29 

target genes. The ground truth of the multilayer network is shown in Fig S3A. 30 

We simulate 3 types of cells, including 2 types of sender cells (SC1 and SC2) and 1 type of 31 

receiver cells (RC). These cells are randomly located at a fraction of grids within a 2-32 

dimensional lattice (100× 100) that simulates a square domain of tissue slice (𝛺 ⊂ 𝑹2 ). The 33 

ligand genes are expressed by the sender cells and the products are subject to diffusion. The 34 

receptor genes, TFs and TGs of the receiver cells do not diffuse across microenvironment.   35 

The spatial-temporal changes of the extracellular ligands are modeled using the following 36 

reaction-diffusion equation 37 

𝜕[𝐿𝑖]

𝜕𝑡
= 𝐷𝑖𝛥[𝐿𝑖] + ∑𝑟𝑖𝑘𝜒𝑆𝐶𝑘

(𝑥)

𝑘

− 𝑑𝑖[𝐿𝑖] (7) 

where [𝐿𝑖] = [𝐿𝑖](𝑥, 𝑡) represents the concentration of the ligand 𝐿𝑖 at location 𝑥 ∈ 𝛺 and time 38 
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𝑡. 𝐷𝑖 and 𝑑𝑖 represents, respectively, the diffusion coefficient and degradation rate of the ligand 1 

𝐿𝑖 . 𝑟𝑖𝑘  is the release rate of the ligand 𝐿𝑖  by sender cells SC𝑘 ⁡(𝑘 = 1⁡or⁡2) . 𝜒𝑆𝐶𝑘
(𝑥)  is an 2 

indicator function of the sender cells, taking value 1 where there is a sender cell at location 𝑥, 3 

and 0 otherwise. Random initial value and the no-flux boundary condition are imposed to the 4 

above equation.  5 

The level of each receptor is assumed steady through the simulation. The activation of each TF 6 

within the receiver cells is modulated by the upstream LR signaling, which is described as 7 

follows, 8 

𝜕[𝑇𝐹𝑙]

𝜕𝑡
= ∑𝛼𝑗𝑙

𝑗

∑𝑏𝑖𝑗[𝐿𝑖] ⋅ [𝑅𝑗]

𝑖

− 𝛽𝑙[𝑇𝐹𝑙] (8) 

where [𝑇𝐹𝑙] = [𝑇𝐹𝑙](𝑥, 𝑡) represents the activation level of the 𝑇𝐹𝑙 at location 𝑥 and time 𝑡. 9 

𝑏𝑖𝑗 equals to 1 or 0, representing binding or non-binding between ligand 𝐿𝑖 and receptor 𝑅𝑗. 10 

𝛼𝑗𝑙 is the activation coefficient of 𝑇𝐹𝑙 by 𝑅𝑗. 𝛽𝑙 is the degradation rate of 𝑇𝐹𝑙.  11 

The expression of each target gene is regulated by TFs, which is described as follows, 12 

𝜕[𝑇𝐺𝑠]

𝜕𝑡
= ∑𝜇𝑙𝑠

𝑙

[𝑇𝐹𝑙] − 𝛾𝑠[𝑇𝐺𝑠] (9) 

where [𝑇𝐺𝑠] = [𝑇𝐺𝑠](𝑥, 𝑡) represents the expression level of the target gene 𝑇𝐺𝑠 at location 𝑥 13 

and time 𝑡. 𝜇𝑙𝑠 is the regulatory coefficient of 𝑇𝐺𝑠 expression by 𝑇𝐹𝑙. 𝛾𝑠 is the degradation 14 

rate of 𝑇𝐺𝑠.  15 

To get the steady-state values of spatial gene expression, we solve the following equations: 16 

−𝐷𝑖𝛥[𝐿𝑖] = ∑𝑟𝑖𝑘𝜒𝑆𝐶𝑘
(𝑥) − 𝑑𝑖[𝐿𝑖]

𝑘

 

𝜕[𝐿𝑖]

𝜕𝑛⃗ 
|
𝜕𝛺

= 0 

(10) 

[𝑇𝐹𝑙](𝑥) =
1

𝛽𝑙

∑𝛼𝑗𝑙

𝑗

∑𝑏𝑖𝑗[𝐿𝑖] ⋅ [𝑅𝑗]

𝑖

 (11) 

[𝑇𝐺𝑠](𝑥) =
1

𝛾𝑠

∑𝜇𝑙𝑠

𝑙

[𝑇𝐹𝑙] (12) 

Equations (10) were solved using finite difference method with five-point central difference 17 

scheme (Text S7). The values of some parameters (e.g., 𝑟𝑖𝑘, 𝛼𝑗𝑙, 𝛽𝑙, 𝜇𝑙𝑠, 𝛾𝑠 and [𝑅𝑗]) in the 18 

above model were randomly sampled in each simulation. By simulating the above model with 19 

random parameter values 100 times, we got 100 sets of synthetic data each includes spatial 20 

expression values of 5 ligands, 2 receptors and 4 target genes and location coordinates of the 21 

SCs and RCs. Fig 3C-H illustrate a set of representative simulation data. Such spatial 22 

expression data was used as input of the random forest regression model in stMLnet (without 23 

using the prior information of the predefined multilayer network) to infer the regulation of TGs’ 24 

expression by LR pairs. The predicted importance scores for LR-TG regulations were 25 

benchmarked with the ground truth.   26 

Appendix  27 

Appendix is available online and includes the following contents: 28 

Text S1. Collection and integration of prior network information. 29 
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Text S2. Inference and optimization of Receptor-TF regulatory matrix. 1 

Text S3. Inference of structure of multilayer signaling network. 2 

Text S4. Importance ranking of the upstream regulators. 3 

Text S5. Implementation of CytoTalk, NicheNet and MISTy. 4 

Text S6. Comparison of prior databases. 5 

Text S7. Numerical simulation. 6 

Figure S1. The collection and sorting of prior knowledge database.  7 

Figure S2. Comparison and parameterization of prior knowledge database.  8 

Figure S3. Illustration for the simulation study. 9 

Figure S4. Data preprocessing of the ST data of breast cancer. 10 

Figure S5. Verifying stMLnet based on LR-target correlations.  11 

Figure S6. The waterfall plot of the multilayer signaling network for the cellular feedback 12 

circuits inferred from the COVID-19 ST dataset. 13 

Figure S7. Heatmap of functional enrichment for cellular feedback circuits inferred from the 14 

COVID-19 ST dataset. 15 

Figure S8. Enrichment analysis for the multilayer signaling networks of glioma.  16 

Figure S9. The cell type annotation and deconvolution of the COVID-19 ST dataset.  17 

Table S1. Summary and comparison of cell communication inference methods.  18 

Table S2. Correlations between ligand genes and their upstream LR regulators involved in 19 

cellular feedback circuits in COVID-19.  20 

Table S3. Statistics of information in the constructed prior databases LigRecDB, RecTFDB 21 

and TFTGDB.  22 

Table S4. The information used for cell type annotation for the COVID-19 dataset.  23 

Table S5. The detailed information of cell line datasets. 24 

Data availability 25 

The ST data of breast cancer was downloaded from the 10X Genomics website 26 

(https://support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_Breast_Cancer_Block_A_Section_1). 27 

The ST data of COVID-19-infected lung tissue was downloaded from Mendeley 28 

(https://doi.org/10.17632/xjtv62ncwr.1). The scRNA-seq data of breast cancer, the scRNA-seq 29 

data of glioma, and the bulk RNA-seq data of macrophages were downloaded from the NCBI 30 

GEO database (GSE118389, GSE131928, and GSE69104, respectively). The scRNA-seq data 31 

of the lung was downloaded from Synapse (https://www.synapse.org/#!Synapse:syn21041850). 32 

The cell line gene expression datasets were downloaded from the NCBI GEO database, with 33 

the access numbers listed in Table S5. The simulation data is available from a public repository 34 

of Github (https://github.com/SunXQlab/stMLnet-simulation). The source code for the data 35 

analysis in the manuscript is available from Github (https://github.com/SunXQlab/stMLnet-36 

AnalysisCode). The R package of stMLnet is publicly available from Github 37 

(https://github.com/SunXQlab/stMLnet). A web-based application of stMLnet is also developed 38 

and available at www.stmlnet.top/net.  39 
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