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Protein sequence design has been widely applied in rational pro-

tein engineering and increasing the design accuracy and effi-

ciency is highly desired. Here we present ProDESIGN-LE, an

accurate and efficient design approach, which adopts a con-

cise but informative representation of residue’s local environ-

ment and trains a transformer to select an appropriate residue

at a position from its local environment. ProDESIGN-LE it-

eratively applies the transformer on the positions in the tar-

get structure, eventually acquiring a designed sequence with all

residues fitting well with their local environments. ProDESIGN-

LE designed sequences for 68 naturally occurring and 129 hal-

lucinated proteins within 20 seconds per protein on average,

and the predicted structures from the designed sequences per-

fectly resemble the target structures with state-of-the-art aver-

age TM-score exceeding 0.80. We further experimentally val-

idated ProDESIGN-LE by designing five sequences for an en-

zyme, chloramphenicol O-acetyltransferase type III (CAT III),

and recombinantly expressing the proteins in E. coli. Of these

proteins, three exhibited excellent solubility, and one yielded

monomeric species with circular dichroism spectra consistent

with the natural CAT III protein.
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Introduction

Protein sequence design, the inverse of protein folding, aims
to design protein sequences that fold into a desired back-
bone structure (1). Computational approaches to protein
sequence design have been widely used in rational protein
engineering, including design of functional enzymes (2, 3),
drugs (4, 5), and vaccines (6, 7). Despite the extraordinary
advances (8–10), increasing the efficiency and accuracy of
protein sequence design still remains a great challenge.

Protein sequence design can be accomplished using a
concurrent strategy, in which the all residues of the protein
are determined simultaneously. Most approaches of this type
seek to exploit the inter-residue distances derived from the

target structure for sequence design. For example, SPROF
views the inter-residue distance map as an image with the de-
signed sequence as its caption. In an analogy to the task of
image captioning, SPROF applies a convolutional neural net-
work (CNN) to infer protein sequence from the inter-residue
distance map (11). ProteinSolver, another representative ap-
proach, uses a deep graph neural network to find a protein se-
quence that satisfies as many inter-residue constraints derived
from the target structure as possible (12). These approaches
are usually very efficient as they assign all residues of the
protein simultaneously.

Protein sequence can also be designed in an iterative fash-
ion — at each iteration step, the residue at a randomly se-
lected position is mutated to improve the fitness between the
entire protein sequence and the target structure. To mea-
sure the fitness, Rosetta sequence design’s fixed backbone
(FixBB) protocol (13) uses Rosetta (14) energy, which is a
human-crafted energy function consisting of dozens of en-
ergy terms, including physics-based terms such as van der
Waals forces and solvation energy, and knowledge-based
terms such as torsion angle preference. Notably, neural net-
works have been widely used by this strategy: Anand et
al. proposed to learn potential directly from existing pro-
tein structures using a 3D-CNN model (9); SPIN2 (15),
DenseCPD (16), and ProDCoNN (17) use deep neural net-
works to predict the most likely substituting residue type at a
position conditioned by its surrounding structural features.

Due to the local nature of the residue-residue interactions
within proteins, most of the existing approaches exploit lo-
cal environment of a certain residue in a target structure (re-
ferred to as target residue hereinafter), including geometry
features (e.g., relative position of surrounding residues) and
chemical context (e.g., residue type of neighboring residues
and solvent accessibility) to predicted the target residue. For

example, DenseCPD and 3D-CNN draw a 20× 20× 20Å
3

box centered on a target residue as boundary of a local
environment. DenseCPD uses four backbone atoms, i.e.,
N,C,Cα,O, and Cβ in local environments to predict the
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Fig. 1. Overview of protein sequence design using ProDESIGN-LE. A, To design a sequence for a desired target backbone structure, ProDESIGN-LE starts from a random
sequence and then iteratively selects the appropriate residue type for a random position, e.g., the local environment of position 114 is fed into transformer encoder and FC
layer, yielding a distribution over 20 residue types. ProDEISGN-LE selects the most likely amino acid TYR and thus mutates the design sequence accordingly. ProDESIGN-
LE repeats these steps until all residues fits well with their local environments, eventually acquiring a designed sequence. B, An example of the full-atom local environment
around a target residue (in red), which contains all atoms within a sphere with a pre-defined radius centered at the residue. C, The concise but informative representation of
local environment used by ProDESIGN-LE considers relative positions of neighboring residues. For the residue TYR114, its three neighbors SER103, CYS110, and ALA117
are shown here. For each residue, we construct a local frame with x̂ and ŷ being the result of applying the Gram–Schmidt process to {

−−−→
CαC,

−−−→
CαN}, ẑ being x̂ × ŷ. We

then calculate a 3 × 3 transform matrix R and a 3-dim translation vector t for each neighbor with respect to TYR114. D, Energy vs. RMSD plot of the predicted structure
for the intermediate sequences during redesigning protein CAT III. Here, RMSD measures the proximity of the predicted structure to the target structure. The structures with
smaller RMSD usually have lower energy, especially for the native-like proteins with RMSD less than 5Å (blue dots). E, The design process for protein CAT III. The initial
random sequence has its predicted structure deviating greatly from the target structure (TM-score: 0.16). After 200 rounds of iteration, ProDESIGN-LE acquires a design
with associated structure perfectly matching the target structure (TM-score: 0.64). F, The superimposition of the predicted structure for the designed sequence (red) with the
target structure (blue).

most likely amino acid types for target residues, which are
then fed into FixBB as additional design constraints, aiming
to reduce sequence search space during design. In contrast,
3D-CNN uses all atoms within this box, including both back-
bone and rotamer atoms. It should be noted that when consid-
ering all atoms, we have to rebuild rotamers and evaluate the
full-atom structures at each iteration step, which will greatly
decrease the design efficiency.

Here, we present ProDESIGN-LE, an accurate and effi-
cient approach to protein sequence design (Fig. 1A). The
rational underlying our approach is that a designed protein,
if every composing residue fits well with its local environ-
ment defined by the target structure and neighboring residues,
is expected to fold into a structure globally resembling the
target structure. ProDESIGN-LE uses a concise but infor-
mative representation of local environment, which describes
the chemical context of a target residue using residue type
rather than atoms of neighboring residues. Inspired by previ-

ous studies on protein structure prediction (18, 19), we uses
the rotations from a target residue to its neighboring residues
as a critical component of local environment’s representation
(Fig. 1C and Supplementary Fig. 1). We further designed a
transformer to learn the dependency of a residue on its local
environment. ProDESIGN-LE iteratively applies the trained
transformer to select an appropriate residue at a random po-
sition of the target structure, and updates the local environ-
ments of the neighboring residues accordingly, eventually ac-
quiring a designed sequence with all residues fitting well with
their own local environments. Our approach does not require
frequent rebuilding the full-atom structures at the intermedi-
ate design steps, thus greatly improving design efficiency. In
addition, by using the residue types to characterize the chemi-
cal context, our approach achieves higher accuracy compared
with design approaches considering backbone atoms alone.

We assessed ProDESIGN-LE in silico using 68 naturally
occurring proteins and 129 hallucinated proteins, and com-
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pare its performance with FixBB, 3D-CNN, and Protein-
Solver. We further experimentally validated ProDESIGN-LE
by designing five sequences for an enzyme, chloramphenicol
O-acetyltransferase type III (CAT III) and recombinantly ex-
pressing the designed proteins in E. coli. The in silico assess-
ing and experimental characterizing results clearly demon-
strate the accuracy and efficiency of ProDESIGN-LE in pro-
tein sequence design.

Results and discussion

The concept of ProDESIGN-LE approach. We aim to de-
sign a sequence S that can fold into a desired backbone
structure B, which is specified using coordinates of each
residue’s three backbone atoms, N,Cα and C. Formally, the
ith residue’s position is represented as Bi = (Ni,Cαi,Ci),
where Ni,Cαi,Ci ∈ R

3 denote the 3D coordinates of these
atoms, respectively. The design is denoted as S = s1s2 · · ·sn,
where si and n denote the ith residue and sequence length,
respectively.

We represent the fitness of the designed sequence S with
the desired backbone structure B as a conditional distribu-
tion P (S|B), which is approximated using the fitness of
each residue with its local environment. The local envi-
ronment of a residue describes its chemical context using
the residue type of its neighbors and describes its geomet-
ric features using the relative positions of the neighbors.
Formally, we define the ith residue’s local environment as
envi = {(sj ,Bj 	Bi, j− i)|‖Cαi−Cαj‖ ≤ T}, where T
represents a distance cut-off (set as 12 Å in the study), and
the operator	 calculates the relative position of two residues,
including relative rotation and translation. Using the relative
position with respect to the target residue Bj	Bi instead of
the original coordinate Bj gives our approach advantage of
the rotation and translation invariance.

We further represent the fitness of a residue with its sur-
rounding local environment as P (si|envi). Using these no-
tations, we approximate P (S|B) as its pseudo-likelihood:

P (S|B)≈

n∏

i=1

P (si|envi).

Our design algorithm aims to find a sequence S that
maximizes the fitness P (S|B). We accomplish this objec-
tive through decomposing it into residue-wise sub-objectives,
i.e., maximizing each residues’ fitness with its surround-
ing local environment P (si|envi). In particular, our algo-
rithm starts from a random sequence and then iteratively ex-
ecutes the following three steps for improvement: 1) ran-
domly selects a position i, 2) calculates the conditional
probability P (a|envi) for each possible residue type a, and
mutates si to be the most likely residue type, i.e., si ←
argmaxaP (a|envi), and 3) all neighbors of the i-th residue
have their local environments automatically updated after
mutating si. These three steps are iterated until the fitness
P (S|B) converges.

In our approach, we learn the conditional distribution
P (si|envi) using a transformer as classifier, which is trained

on a subset of PDB40 dataset (see Methods for details). The
geometrical features in local environment envi, i.e., the rel-
ative position of two residues Bj 	Bi, is represented as a
3× 3 rotation matrix together with a 3× 1 translation vec-
tor. We flat the rotation matrix into a 9× 1 vector, catenate
it with other features (e.g., one-hot encoding of residue type
and sequence position) as input to the classifier (for details
see Supplementary Fig. 1).

We evaluated ProDESIGN-LE using two ways, i.e., com-
paring the predicted structures of the designed sequences
with target structures, and recombinantly expressing the de-
signed proteins in E. coli and experimentally characterizing
them. In the study, we predict structure for the designed se-
quence using AlphaFold2 (19) and our inhouse software Pro-
FOLD Zero, an improved version of ProFOLD (20). Pro-
FOLD Zero is suitable for the task of sequence design as it
was specially designed for the structure prediction of single
protein sequence without requirement of multiple sequence
alignment.

Using CAT III protein as an example, we describe the ma-
jor steps and operations of ProDESIGN-LE as below (Fig.
1E). We aim to design a protein with the backbone struc-
ture of the CAT III from E. coli as the target (PDB en-
try: 6X7Q, 212 a.a.). Initially, ProDESIGN-LE set the pro-
tein sequence randomly as SAHIP....QKIW (the entire se-
quences of the initial design and intermediate designs are
provided in Supplementary Text 1). As expected, the 3D
structure predicted from this random sequence deviates sig-
nificantly from the target structure (TM-score: 0.16). At the
first step, ProDESIGN-LE selected position 114, whose lo-
cal environment involves the information of its three neigh-
bors, i.e., SER103, CYS110, and ALA117. By feeding
this local environment into the geometry transformer and
the follow-up fully connected layer, ProDESIGN-LE calcu-
lated the probability of all residue types and selected the
most likely residue type (TYR: 0.30) to replace the origi-
nal residue type at this position. After repeating this proce-
dure 200 times, ProDESIGN-LE yielded a designed sequence
SWRTVD....SDPE with its predicted structure in perfect
agreement with the target structure (TM-score: 0.64). In con-
trast, the predicted structure of the native sequence achieves
a TM-score of 0.66. Fig. 1D plots the energy of the pre-
dicted structures versus their RMSDs with respect to the tar-
get structure, which suggests that the structures with smaller
RMSD usually have lower energy, especially for the native-
like proteins with RMSD less than 5Å (blue dots).

Redesign naturally occurring proteins using ProDE-

SIGN-LE. Using 68 naturally occurring protein domains ex-
tracted from the CASP14 dataset as representatives (see Sup-
plementary Text 2 for full list), we evaluated ProDESIGN-LE
and compared it with the widely-used design approaches, in-
cluding 3D-CNN model, ProteinSolver, and FixBB.

The evaluation criteria include: (1) sequence matching

(aka sequence identity): the sequence identity between the
designed sequence and native sequence of the target struc-
ture, (2) structure matching: the structure similarity (mea-
sured using TM-score) between the target structure and the
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Fig. 2. Assessing in silico the designed sequences for 68 naturally occurring (A, B, C) and 129 hallucinated proteins (D, E, F). We designed sequences for these proteins
using FixBB, ProteinSolver, 3D-CNN, and ProDESIGN-LE and assessed the designed sequences using three metrics: (1) the sequence identity between the designed
sequence and native sequence of the target structure (C, F), (2) the structure similarity (measured using TM-score) between the target structure and the predicted structure
of the designed sequence (A, D), (3) we further built a threading structure through complementing the target backbone structure with the sidechains determined by designed
sequences. The energy of the resultant threading structure is used as measurement of the fitness between the designed sequence and the target backbone structure (B,

E). We used AlphaFold2 (denoted as AF2) to predict structures for the naturally occurring proteins and used ProFOLD Zero (denoted as PF0) to predict structures for the
hallucinated proteins.

predicted structure of the designed sequence. (3) sequence-

structure matching: we further evaluated the fitness between
the designed sequence and the target structure through build-
ing and assessing a threading structure. The threading struc-
ture was built as performed by template-based modelling
(21), i.e., complementing the target backbone structures with
the sidechains determined by designed sequences and then
fine-tuning the sidechain conformation using Rosetta relax
protocol (22). The energy of the resultant threading structure
is used as measurement of the fitness between the designed
sequence and the target backbone structure, and an ideal de-
signed sequence is expected to have a low energy.

We show the design for protein T1093-D3 as a concrete
example (Supplementary Fig. 2). Protein T1093-D3 con-
tains a total of 106 residue with 3 α-helices and 10 β-strands
in its native structure. The sequence identity between the de-
sign and protein T1093-D3 is 0.28. For 92 out of the 106
residues, the predicted structure is in perfect agreement with
the target structure (mean Cα RMSD: 0.84 Å). The designs
for 20 proteins are shown in Supplementary Figure 3 as rep-
resentatives.

For the 68 CASP14 proteins, the sequence designs by
ProDESIGN-LE achieved an mean sequence identify of 0.33,
at the same level with ProteinSolver (0.32), 3D-CNN (0.28),
and FixBB (0.28). In contrast, the predicted structures of
these designs achieved a mean TM-score of 0.84, which is
significantly close to that of the predicted structure using
the native sequence (0.88) and higher than all other design
approaches including ProteinSolver (0.75), 3D-CNN (0.74),
and FixBB (0.64). In addition, the threading structures gener-
ated using the designs by ProDESIGN-LE have lower energy
than other design approaches (Fig. 2A-C).

We also carried out ablation analysis of ProDESIGN-LE
through evaluating the variants with coordinate frames or ro-
tations of neighboring residues removed from local environ-
ments. As shown in Fig. 2 A and D, the coordinate frames
of neighboring residues are critical information of local envi-
ronments.

Assessing the generalization of ProDESIGN-LE to hal-

lucinated proteins. We further assessed the generalization
of ProDESIGN-LE using 129 hallucinated proteins, which
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Fig. 3. Accuracy of prediction of a residue according its local environment. A,

ProDESIGN-LE predicts a distribution over 20 residue types for a target residue,
and assigns each residue type with a confidence score. We calculate the top-K
(K =1, 2, 3, 4 and 5 ) accuracy of the predicted residue types exceeding a confi-
dence score cut-off (x axis). B, The relationship between the prediction accuracy
and the ground-truth residue type extracted from the native sequence of the protein.
C, The confusion matrix shows the ground-truth residue type and the predicted dis-
tribution over all possible 20 residue types.

were created through inverting the neural networks trained to
predict structures from sequences (23). These hallucinated
proteins serve as ideal test data for evaluating the general-
ization of protein design approaches as they are de novo and
unrelated to the proteins used to train the neural networks.

For the 129 hallucinated proteins, all approaches yielded
designs with sequence identity at the same level. However,
the structures predicted using ProFOLD Zero from the de-
signs by ProDESIGN-LE achieved an average TM-score of
0.83, which is considerably better than the designs by Pro-
teinSolver (0.69), 3D-CNN (0.77), and FixBB (0.68) (Fig.
2D, F). We repeated this experiment using AlphaFold2 as
prediction tool and achieved similar observation (Supple-
mentary Fig. 4).

In addition, when using the design by ProDESIGN-LE,
the average energy of the resultant threading structures is
-238.57, which is close to those generated using FixBB (-
328.72) and lower than those generated using ProteinSolver
(53.25), 3D-CNN (-221.50), and random sequences (500.88).
Thus, compared with other approaches, the designs by FixBB
and ProDESIGN-LE are more compatible with the halluci-
nated structures (Fig. 2E).

ProDESIGN-LE also showed considerably high time ef-
ficiency: ProDESIGN-LE accomplishes sequence design for
CAT III with 212 residues within 25 s on an ordinary GPU
(Nvidia RTX 3090, memory: 24 GB), which is greatly faster
than FixBB (348 s). For the 68 naturally occurring and
129 hallucinated proteins, ProDESIGN-LE accomplished se-
quence design within 20 seconds per protein on average. The
running time of ProDESIGN-LE increases quadratically with
the length of target structure as expected (Supplementary Fig.
5).

Together, these results demonstrate that ProDESIGN-LE
can be used to efficiently design both naturally occurring pro-
teins and hallucinated proteins.

Assessing the effectiveness of local environment on

predicting residue type. An ideal definition of local en-
vironment around a residue should effectively describe the
preference of residue types in the environment. To assess the

effectiveness of the local environment used by ProDESIGN-
LE, we calculated accuracy of the predicted residue types in
each local environment. We also investigated the correlation
between prediction accuracy and entropy of the predicted dis-
tribution of residue types. We used the negative entropy as
confidence score of the prediction.

We sorted all 758,160 local environments extracted from
the test set according to their confidence scores, and then cal-
culated the accuracy of the predicted residue types that might
appear in these local environments. The top 10% of local
environments with the highest confidence score achieved a
top-1 and top-5 prediction accuracy of 0.902 and 0.982, re-
spectively, i.e., for 90.2% and 98.2% of these local environ-
ments, ProDESIGN-LE can successfully rank the ground-
truth residue type as top 1 and top 5, respectively (Fig. 3A).
Even for the top 50% of local environments with high confi-
dence score, the prediction accuracy is still considerably high
(top-1 accuracy: 0.567, top-5 accuracy: 0.892).

In-depth examination suggested that the prediction ability
of a local environment is tightly correlated with the residue
it surrounds. As shown in Supplementary Fig. 6, the predic-
tion confidence score of local environments exhibits a sub-
stantial correlation with the solvent accessibility of central
residues (Pearson correlation coefficient: −0.68). Moreover,
the prediction accuracy is high in the case that the ground-
truth residue is Pro (0.80) or Gly (0.69), implying that the
local environment around these residues are more constrained
(Fig. 3B). This correspond well with previous studies which
showed proline and glycine confer unique structural con-
straints on backbone due to proline’s distinctive cyclic struc-
ture and glycine’s lack of side chain (24, 25), thus result in
the distinctive local environments around them. In contrast,
the prediction accuracy is relatively low in the case that the
ground-truth residue is Met (0.09): methionine is frequently
predicted as leucine (Supplementary Fig. 7), which coincides
with its chemical property.

It should be noted that the prediction accuracy increases
monotonically with confidence score (Fig. 3A), thus enabling
the use of confidence score as an effective index of the relia-
bility of prediction.

Experimental characterization of designed sequences

of CAT III. CAT III is an enzyme that confers resistance of
antibiotic chloramphenicol to certain bacterium (26). The
functional form of CAT III is a homotrimer, of which the sub-
strate pockets lie between two adjacent protomers. We chose
the CAT III from E. coli as the design target, which consists
of 212 residues, forming five α-helices, two 310-helices, and
two β-sheets (Fig. 1F).

We used CAT III as a representative example to evalu-
ate ProDESIGN-LE through experimentally characterizing
its designs for this protein. In particular, we executed
ProDESIGN-LE using the backbone structure of CAT III as a
target structure, and acquired 5 designed sequences (denoted
as CAT-h1, CAT-h2, CAT-h3, CAT-h4, CAT-h5) as results. To
experimentally characterize the designed sequences, we syn-
thesized their coding genes, and recombinantly expressed the
corresponding proteins in E. coli. The recombinant proteins
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Fig. 4. Experimental characterization of the designed protein (CAT-h2) and natural protein (CAT III). Column A, Thermostable analysis of the two proteins by nanoDSF
measurement. The designed protein CAT-h2: the onset denaturation temperature of protein is 64.6 ◦C and the folding Tm value is 72.5 ◦C; The natural protein CAT III: the
onset denaturation temperature of protein is 53.7 ◦C and the folding Tm values is 74.8 ◦C. Ratio: 350 nm/330 nm fluorescence intensity. Column B, Circular dichroism
spectra of the proteins from 185 to 260 nm at 25 ◦C. The designed protein CAT-h2 (red) exhibited circular dichroism spectra consistent with the natural protein CAT III (blue).

were separated using SDS-PAGE. As shown in Supplemen-
tary Fig. 8, all 5 proteins were successfully expressed, which
matches well with mass of the 6xHis-tagged protein at around
29 kDa. In addition, three out of the five proteins, CAT-h2,
CAT-h3 and CAT-h4, were expressed as soluble form.

We further purified the soluble designs by Ni-affinity
chromatography for in-depth analysis. Sedimentation veloc-
ity experiment of the 6xHis-tagged CAT-h2 yielded a peak
at 28.9 kDa, indicating that CAT-h2 exists in a monomeric
form with a mass of approximately 25 kDa (Supplementary
Fig. 9). The designed CAT-h2 was highly thermostable with
a melting temperature of 72.5 ◦C, comparable with CAT III
(74.8 ◦C, Fig. 4A and Supplementary Table 1). In addition,
structural superimposition of the predicted structure of CAT-
h2 and the target structure revealed a 4.02 Å Cα RMSD over
212 residues. Here, we examined design CAT-h2 by circu-
lar dichroism (CD) spectroscopy. The CD spectra of CAT-h2
were in good agreement with those acquired from CAT III
(Fig. 4B), showing characteristic profiles of α/β proteins
(Supplementary Tables 2, 3).

Together, these results clearly demonstrate that the de-
signed proteins by ProDESIGN-LE can be successfully ex-
pressed and can fold into stable structures with the desired
secondary structures.

Conclusion

The in silico assessments and experimental characteriza-
tion results presented here for protein sequence design by
ProDESIGN-LE have highlighted the special features of
learning the concise but effective representation of local envi-
ronments around residues. The results have also highlighted
the superiority of the design paradigm used by ProDESIGN-
LE, in which a protein with expected global structure is de-
signed through iteratively selecting an appropriate residue at
a random position to fit well with its local environment. The

accuracy and efficiency of ProDESIGN-LE have been clearly
demonstrated using both naturally occurring and hallucinated
proteins as representatives, along with experimental charac-
terization of the designed proteins expressed in E. coli.

The present ProDESIGN-LE considers the proximity be-
tween the structure of the designs with the target structures
only but pays no attention to the biochemical characteristics
of the designed proteins. At present, of the five designed
proteins for CAT III, three showed excellent solubility but
two were insoluable. One possible reason of the two insolu-
able proteins might be the overuse of hydrophobic residues
on protein surface (Supplementary Fig. 10). Thus, a pos-
sible improvement might be posing restrictions on the use of
residues in the surface and core. In addition, determining how
to design multimer with significant affinity among subunits
is also highly desired. This might be accomplished through
adding a neural network module to predict affinity and adding
it into the objective function. In future studies, these will be
incorporated into ProDESIGN-LE. The algorithm and oper-
ations of ProDESIGN-LE can be readily extended to further
improve success rate of design without significant modifica-
tions of the basic ideas.

We anticipate that our work on protein sequence design
by ProDESIGN-LE with improved accuracy and efficiency
will facilitate the rational protein engineering.

Methods

Network architecture. ProDESIGN-LE consists of a 3-
layer transformer encoder that takes local environments as in-
put and yields their embeddings as output (27). ProDESIGN-
LE further uses a fully-connected layer to transform the em-
beddings into a distribution over 20 residue types. We imple-
mented ProDESING-LE in Python (ver. 3.8.8) and PyTorch
(ver. 1.9.1).
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Model training. ProDESIGN-LE uses the cross-entropy loss
function as its optimization objective function. We train
our model with a batch size of 1000 using Adam optimizer
(β1 = 0.9,β2 = 0.999) with learning rate 1×10−3 (28). The
training process costs about 2 hours on a single Nvidia RTX
3090.

Datasets. We train and test the transformer using the struc-
tures collected in the PDB40 database (29). We excluded
the structures that contain any DNA/RNA chain or structures
contain multiple models. To avoid potential data leaking,
we constructed test set with structures that have no similar
structures in training set, this is achieved via MMseq2 by fil-
tering structures in test set with sequences similar (e-value
< 1×10−3) to any sequence in training set.

Each sample in training and test set represents a residue of
the protein structures obtained as mentioned above. For each
residue, we describe its local environment as the following
features: 1) the residue type of neighboring residues in one-
hot encoding, 2) the relative 3D position of each neighboring
residue with respect to the target residue, represented as a ro-
tation matrix and a translation vector, 3) the distance between
a neighbor residue with the target residue in sequence.

As results, we acquired a training set containing
5,867,488 residues extracted from 9,995 protein structures
and a test set containing 758,160 residues extracted from 401
proteins structures.

We test the performance of ProDESING-LE in sequence
design using 68 naturally occurring proteins extracted from
CASP14 and 129 hallucinated structures (23).

Predicting 3D structure for the designed sequences.

We evaluate a designed sequence using the proximity be-
tween the predicted structure of the designed sequence and
the target structure. Here, we predict 3D structures for the
designed sequences through running AlphaFold2 with its de-
fault setting on a template released before 2020-02-25.

We further apply ProFOLD Zero, an improved version of
ProFOLD (20), to predict structures for the hallucinated pro-
teins. ProFOLD Zero is suitable for the task of sequence de-
sign as it was specially designed for the structure prediction
of single protein sequence without requirement of multiple
sequence alignment.

Protein expression and purification. Coding DNA se-
quences of designed proteins were constructed into the BamH

I and Xho I sites of pET-28a(+). E. coli BL21 (DE3) cells
were transformed with the plasmids. Protein expression was
induced at an OD600 between 0.6 and 0.8 with 210 µmol/L
IPTG for 16 h at 16 ◦C. Cells were harvested and son-
icated in a lysis buffer containing 100 mmol/L Tris-HCl
and 100 mmol/L NaCl at pH 8.5. The soluble supernatant
was purified by Ni-affinity chromatography and collected in
pH 8.5 50 mmol/L imidazole buffer. The purified protein
was sealed in a dialysis bag at 4 ◦C, replaced with 400 mL
2 mmol/L Hepes buffer for 3 h, and dialyzed 3 times to avoid
Tris and NaCl in the sample.

Analyzing protein thermal stability. The protein thermal
stability was analyzed via NanodsF-Prometheus NT.48 de-
vice by following the method used by Ref. Magnusson et al.
30. The protein samples were prepared in buffer contain-
ing 100 mmol/L NaCl, 10 mmol/L Tris, pH 8.5 with a pro-
tein concentration of 0.5 mg/mL. The 10 µL CFEs of sam-
ples was loaded in capillaries; the temperature gradient of
1 ◦C/min from 25 to 95 ◦C was applied and the intrinsic pro-
tein fluorescence at 330 and 350 nm were recorded. The nan-
oDSC scans were background-corrected and analyzed with
Launch NanoAnalyze software.

Circular dichroism spectroscopy. The circular dichroism
spectra of the designed CAT proteins and natural CAT pro-
tein (PDB entry: 6X7Q) were determined by a Chiras-
can V100 Circular dichroism spectrometer (Applied Photo-
physics, https://www.photophysics.com/Britain) (31). The
path length and volume of Quartz cells were 1 mm and
200 µL, respectively. The time-per-point was 0.5 s, the scan-
ning step was 1 nm, and the scanning ranged from 185 to
280 nm. The spectrum was calibrated with Hepes buffer
(2 mmol/L, pH 8.5). The ultraviolet absorbance of CAT pro-
tein was measured using a circular dichroism spectrometer,
and the absorbance was in the range of 0.6 to 1.2 , indicating
that the signal-to-noise ratio was suitable for analysis. The
100 µL samples were typically loaded at concentrations of
0.15 to 0.2 mg/mL in pH 8.5 2 mmol/L Hepes buffer into a
quartz cell. The results were taken as CD ellipticity in mdeg.
The percentages of α-helix, β-sheets, and random coils de-
signed CAT proteins and control CAT proteins were calcu-
lated using the CDNN soft and net using 23 basespectra (ad-
vanced CD spectra).

Analytical ultracentrifugation. Sedimentation velocity
experiments were performed in a ProteomeLab XL-I an-
alytical ultracentrifuge (Beckman Coulter, Brea, CA)(32),
equipped with AN-60Ti rotor (4-holes) and conventional
double-sector aluminum centerpieces of 12 mm optical
path length, loaded with 380 µL sample and 400 µL buffer
(10 mmol/L Tris-HCl, pH 7.0, 100 mmol/L NaCl). Before
the run, the rotor was equilibrated for approximately 1 h
at 20 ◦C in the centrifuge. Then experiments were carried
out at 20 ◦C and 41000 rpm, using continuous scan mode
and radial spacing of 0.003 cm. Scans were collected in
3 min intervals at 280 nm. The fitting of absorbance versus
cell radius data was performed using SEDFIT software
(https://sedfitsedphat.nibib.nih.gov/software/default.aspx)
and continuous sedimentation coefficient distribution c(s)
model, covering range of 0 to 20 S. Biophysical parameters
of the buffer are: density ρ = 1.006 g/cm3, viscosity η
= 0.01031 P, and the parameters of proteins are: partial
specific volume V-bar = 0.73000 cm3/g.

Statistical analysis. All experiments were independently
carried out at least three times and the results were expressed
as mean ± standard deviation (SD).
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