

1 **RyR2 inhibition with dantrolene is antiarrhythmic, antifibrotic, and improves cardiac function in**  
2 **chronic ischemic heart disease**

3

4 **Jeffrey Schmeckpeper MD/PhD\*<sup>1</sup>, Kyungsoo Kim PhD\*<sup>1</sup>, Sharon A George PhD<sup>2,3</sup>, Dan Blackwell PhD,<sup>1</sup>**  
5 **Jaclyn A Brennan PhD,<sup>2</sup> Igor R Efimov PhD,<sup>2,3</sup> Bjorn C Knollmann MD/PhD.<sup>1</sup>**

6 \*Author contributed equally to the manuscript

7 **Affiliations:**

8 1. Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology,  
9 Vanderbilt University Medical Center, Nashville, Tennessee, USA.  
10 2. Department of Biomedical Engineering, the George Washington University, Washington DC,  
11 3. Department of Biomedical Engineering, Northwestern University, Chicago IL.

12 **Correspondence**

13  
14 Björn C. Knollmann, M.D., Ph.D.  
15 William Stokes Professor of Medicine and Pharmacology  
16 Director, Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART)  
17 Division of Clinical Pharmacology  
18 Vanderbilt University School of Medicine  
19 Medical Research Building IV, Rm. 1265  
20 2215B Garland Ave  
21 Nashville, TN 37232-0575  
22 Office: (615) 343-6493 • Lab: (615) 936-7303 • Fax: (615) 343-0434  
23 Email: [bjorn.knollmann@vanderbilt.edu](mailto:bjorn.knollmann@vanderbilt.edu)  
24 Lab Url: <http://www.mc.vanderbilt.edu/knollmannlab>

25  
26 **Short title: Antiarrhythmic and antifibrotic action of dantrolene in CIHD**

27

1 **Abstract**

2 **Background:** Ventricular tachycardia (VT) is responsible for sudden death in chronic ischemic heart  
3 disease (CIHD) patients. The cardiac ryanodine receptor (RyR2) releases Ca<sup>2+</sup> from the sarcoplasmic  
4 reticulum (SR) and links electrical excitation to contraction. RyR2 hyperactivity has been widely  
5 documented in CIHD and may contribute to VT risk and progressive LV remodeling.

6 **Objective:** To test the hypothesis that targeting RyR2 hyperactivity plays a mechanistic role in VT  
7 inducibility and progressive heart failure in CIHD that can be prevented by the RyR2 inhibitor  
8 dantrolene.

9 **Methods:** CIHD was induced in C57BL/6J mice by left coronary artery ligation. Four weeks later, mice  
10 were randomized to either acute or chronic (6 weeks via osmotic mini-pump) treatment with dantrolene  
11 or vehicle. VT inducibility was assessed by programmed stimulation *in vivo* and in isolated hearts.  
12 Electrical substrate remodeling was assessed by optical mapping. Ca<sup>2+</sup> sparks and spontaneous Ca<sup>2+</sup>  
13 releases were measured in isolated cardiomyocytes. Cardiac remodeling was assessed by histology and  
14 qRT-PCR. Cardiac function and contractility were assessed by echocardiography.

15 **Results:** Compared to vehicle, acute dantrolene treatment reduced VT inducibility and improved LV  
16 contractility *in vivo*. Optical mapping in isolated hearts demonstrated reentrant VT prevention by  
17 dantrolene, which normalized the shortened refractory period (VERP) and prolonged action potential  
18 duration (APD), preventing APD alternans. In single CIHD cardiomyocytes, dantrolene normalized RyR2  
19 hyperactivity and prevented spontaneous SR Ca<sup>2+</sup> release. Chronic dantrolene treatment reduced  
20 peripheral muscle strength but had no adverse effects on body weight or mortality. Chronic dantrolene  
21 not only reduced VT inducibility but also reduced peri-infarct fibrosis and prevented the progression of  
22 LV dysfunction in CIHD mice.

23 **Conclusion:** RyR2 hyperactivity plays a mechanistic role for VT risk, infarct remodeling, and contractile  
24 dysfunction in CIHD mice. Our data provide proof of concept for the anti-arrhythmic and anti-fibrotic  
25 efficacy of dantrolene in CIHD.

26 **Keywords:** Dantrolene, Ryanodine Receptor, Ventricular Tachycardia, Heart Failure

27 **Non-standard Abbreviations and Acronyms:**

28 AF – Atrial Fibrillation  
29 APD – Action Potential Duration  
30 CIHD – Chronic Ischemic Heart Disease  
31 CPVT - catecholaminergic polymorphic ventricular tachycardia  
32 DAD - delayed afterdepolarization  
33 EMG – Electromyogram  
34 FS - Fractional shortening  
35 ICD – implantable cardioverter-defibrillator  
36 PSAX – parasternal short-axis  
37 PSLX - parasternal long-axis  
38 LV – Left ventricle/ventricular  
39 LVEDd – Left ventricular end-diastolic dimension  
40 LVESd - Left ventricular end-systolic dimension  
41 LVEF - Left ventricular ejection fraction  
42 MI – Myocardial Infarction

1 mVcfc - mean velocity circumferential fiber shortening  
2 PES – Programmed electrical stimulation  
3 RV – Right ventricle/ventricular  
4 RyR2 – Ryanodine Receptor 2  
5 SR – Sarcoplasmic reticulum  
6 SCD – Sudden cardiac death  
7 VT - Ventricular Tachycardia  
8 VF – Ventricular Fibrillation  
9

10 **Clinical Perspective:**

11 What is New?

12     • The mouse CIHD model is a more clinically relevant model in which treatment is started late  
13        after infarction, when heart failure is already established.  
14     • Acute and chronic dantrolene treatment suppresses VT inducibility by restoring myocyte APD,  
15        terminating APD alternans and normalizing VERP.  
16     • Chronic dantrolene treatment prevents pathological remodeling and peri-infarct fibrosis, the  
17        substrate for reentry VT. Cardiac function is improved with chronic dantrolene therapy.

18 Clinical Implications:

19     • Treatment with dantrolene, which is already approved for clinical use, is a promising therapy in  
20        patients with ischemic heart disease, in whom other antiarrhythmic drugs are contraindicated.  
21     • Dantrolene inhibition of RyR2 not only suppresses VT but also improves cardiac function in  
22        chronic ischemic heart disease.

1 **Introduction:**

2 Sudden cardiac death (SCD) due to ventricular tachycardia (VT) or ventricular fibrillation (VF) is a  
3 significant public health problem, accounting for up to 20% of all deaths in adults in the US.<sup>1</sup> The vast  
4 majority (>90%) of SCD occurs in patients with coronary disease. While implantable cardioverter-  
5 defibrillators (ICDs) are the primary therapeutic option for cardiac arrest survivors after myocardial  
6 infarction and others at high risk for SCD, ICDs terminate arrhythmias after they occur and many  
7 patients with and without ICDs continue to require anti-arrhythmic drugs to prevent arrhythmias.  
8 Currently available anti-arrhythmic drugs targeting ion channels on the cell surface have limited efficacy  
9 when used acutely in patients with structural heart disease and can worsen heart failure. Their chronic  
10 use provides either no survival benefit or increases mortality due to pro-arrhythmic effects.<sup>2, 3</sup> New  
11 therapeutic approaches are needed to prevent arrhythmia and SCD in patients with structural heart  
12 disease.

13 The cardiac ryanodine receptor 2 (RyR2) releases calcium (Ca<sup>2+</sup>) from the sarcoplasmic reticulum (SR) to  
14 coordinate cardiac excitation-contraction coupling. Dysfunction of RyR2 leads to SR Ca<sup>2+</sup> leak during  
15 diastole, which reduces SR Ca<sup>2+</sup> content and is energetically costly to a failing heart.<sup>4</sup> Additionally,  
16 arrhythmogenic spontaneous Ca<sup>2+</sup> release events in cardiomyocytes isolated from animal models of  
17 heart failure<sup>5</sup> have been related to an increase in the RyR2 phosphorylation status by PKA or  
18 Ca<sup>2+</sup>/calmodulin-dependent protein kinase II.<sup>6, 7</sup> Mutations that render RyR2 hyperactive cause  
19 catecholaminergic polymorphic ventricular tachycardia (CPVT), where catecholamine-induced  
20 spontaneous Ca<sup>2+</sup> release from SR via RyR2 generates potentially fatal cardiac arrhythmias. The current  
21 model proposes that these modifications lead to conformation changes in RyR2, which allows  
22 spontaneous diastolic SR Ca<sup>2+</sup> release, resulting in delayed afterdepolarizations (DADs) and triggered  
23 beats that can generate ventricular tachyarrhythmias.<sup>8</sup> Evidence from modeling and animal studies  
24 suggests that Ca<sup>2+</sup> leak triggers ventricular ectopy and generates an arrhythmogenic substrate that can  
25 support monomorphic VT through multiple mechanisms.<sup>6, 9, 10</sup> Furthermore, a rise in intracellular Ca<sup>2+</sup>  
26 due to RyR2 opening may activate small conductance calcium-activated potassium channels, shortening  
27 refractory periods and facilitating reentry and ventricular fibrillation.<sup>11</sup> Hence, normalizing the RyR2  
28 hyperactivity<sup>12</sup> that results in Ca<sup>2+</sup> leak can be considered a promising strategy for preventing  
29 ventricular arrhythmias associated with structural heart disease.

30 After myocardial infarction, the heart undergoes substantial remodeling associated with inflammation,  
31 replacement fibrosis, cardiomyocyte hypertrophy and chamber dilation driven by wall stress, cytokines  
32 and neurohormonal activation.<sup>13</sup> Multiple animal models and human studies with ischemia and heart  
33 failure have shown that there is RyR2 hyperactivity due to oxidation and posttranslational modification,  
34 which causes Ca<sup>2+</sup> leak in the setting of pathological remodeling.<sup>14-19</sup> While the extent to which RyR2  
35 modification contributes to left ventricular (LV) dysfunction in these models remains controversial<sup>7</sup>, it is  
36 clear that diastolic Ca<sup>2+</sup> leak plays a role in decreased Ca<sup>2+</sup> transients and reduced excitation-  
37 contraction coupling at the cellular level.<sup>20</sup>

38 Dantrolene has been used clinically for many years to suppress skeletal muscle Ca<sup>2+</sup> leak due to  
39 mutations in RyR1 in malignant hyperthermia. Multiple studies have shown that dantrolene also  
40 stabilizes the tertiary structure of RyR2 and prevents diastolic Ca<sup>2+</sup> leak in failing myocytes.<sup>21</sup> Acute or  
41 short-term dantrolene treatment has been used to suppress RyR2 hyperactivity in induced ventricular  
42 and atrial arrhythmias<sup>16, 22</sup>, doxorubicin cardiotoxicity<sup>23</sup>, resuscitation models after ventricular fibrillation

1 arrest<sup>24</sup>, and genetic models of RyR2 mutations that cause catecholamine polymorphic VT (CPVT).<sup>25</sup>  
2 While long-term dantrolene treatment has shown promise in preventing ventricular arrhythmia, cardiac  
3 remodeling and reduced contractility in a model of tachycardia mediated heart failure<sup>21</sup>, to date, no  
4 study has evaluated long-term dantrolene treatment late after myocardial infarction and ischemic heart  
5 failure.

6 Here, we utilized an accepted murine model of chronic ischemic heart disease (CIHD) to provide proof of  
7 concept for the therapeutic efficacy of targeting RyR2 with dantrolene after myocardial infarction. Our  
8 experimental study demonstrates for the first time that preventing RyR2 hyperactivity not only  
9 suppresses DAD-triggered activity but also prevents reentrant VT induction *in vivo*. The anti-arrhythmic  
10 action of dantrolene is likely the result of improved SR Ca<sup>2+</sup> handling, which normalized the shortened  
11 ventricular action potential and effective refractoriness that rendered CIHD hearts susceptible to  
12 reentrant VT. In addition, long-term treatment with dantrolene improved cardiac function and reduced  
13 fibrosis in the infarct border zone, which is a substrate for reentrant VT. Taken together, our results  
14 demonstrate that RyR2 hyperactivity not only contributes mechanistically to VT induction but also to  
15 adverse cardiac remodeling and progressive LV dysfunction in CIHD. RyR2 should be considered a  
16 therapeutic target for preventing VT and improving cardiac function in structural heart disease.

17

18 **Methods:**

19 **Mouse CIHD model:** All studies were approved by the Vanderbilt Animal Care and Use Committee of  
20 Vanderbilt University, USA (Protocol M1900081-00) and performed in accordance with NIH guidelines.  
21 To induce CIHD, 10-12 week old male and female C57BL/6J mice underwent complete ligation of the left  
22 coronary artery as previously described.<sup>26</sup> Mice were allowed to recover for 4 weeks before inclusion  
23 into the study. The inclusion criteria for CIHD mice were 1) Fractional shortening < 35%, 2) Ejection  
24 fraction <50%, and 3) mean velocity fiber shortening <2.5 circ/sec. A total of 39 male and 54 female  
25 mice were included in the study. All data analysis was performed in a blinded fashion regarding the  
26 treatment group.

27 For chronic dantrolene treatment, osmotic mini-pump (#2006, Alzet) were implanted subcutaneously in  
28 CIHD mice 4 weeks post coronary ligation per manufactures protocol. Dantrolene sodium suspension  
29 (Ryanodex, Eagle Pharmaceuticals) was diluted in 0.9% normal saline to deliver 20 mg/kg/day of  
30 dantrolene over 6 weeks.

31 **Mouse transesophageal programmed electrical stimulation (PES):** Sham and CIHD mice were  
32 anesthetized with inhaled isoflurane (3% for induction, 2-2.5% for maintenance) while breathing  
33 spontaneously and placed in the supine position on a heating pad. Surface ECG was recorded  
34 continuously using AD Instruments amplifiers and LabChart 8 software. An octopolar 2F electrode  
35 catheter (CIB'ER MOUSE™; NuMED, Inc) was placed in the esophagus via the mouth, guided by  
36 electrogram tracings to verify position. Unipolar pacing was performed using a programmable stimulator  
37 with 6 mA of pacing amplitude and 3 ms of pulse width for all studies. PES consisted of pacing with a  
38 train of 15 beats (10 Hz, S1), followed by a single extra stimulus (S2) to determine the ventricular  
39 effective refractory period (VERP). VT induction was then performed using 3 extra stimuli (S2-S4)  
40 following each pacing train to induce VT. Dantrolene (30 mg/kg, intraperitoneal injection) using  
41 Ryanodex (Eagle Pharmaceuticals, Inc., NJ) or 0.9% normal saline was administered to mice 30 minutes

1 prior to the study. Isoproterenol (1.5 mg/kg, intraperitoneal injection) was administered after capturing  
2 ventricular pacing.

3 **Optical mapping of isolated mouse hearts:** CIHD mice were anesthetized by isoflurane 4 weeks after  
4 coronary ligation. Hearts were isolated after thoracotomy and Langendorff perfused with a modified  
5 Tyrode's solution (130 mM NaCl, 24 mM NaHCO<sub>3</sub>, 1.2 mM NaH<sub>2</sub>PO<sub>4</sub>, 4 mM KCl, 1 mM MgCl<sub>2</sub>, 5.6 mM  
6 Glucose and 1.8 mM CaCl<sub>2</sub>, pH 7.4 at 37°C). Cardiac motion was arrested during optical mapping using  
7 blebbistatin (15  $\mu$ M). Hearts were paced using a bipolar platinum pacing wire placed on the anterior  
8 surface of the heart, at the center of the field of view, using pulses at 1.5x threshold of stimulation and 2  
9 ms duration. Restitution properties were measured by pacing at multiple basic cycle lengths (BCL) from  
10 200 - 60 ms. After a 15 min equilibration period, hearts were stained with di-4-ANEPPS, a voltage-  
11 sensitive dye (37.5  $\mu$ g/ml in Tyrode solution). After a 5 min washout period, the dye was excited using  
12 light at 510 $\pm$ 5 nm wavelength. Emitted fluorescence was filtered using a 610 $\pm$ 20nm bandpass filter and  
13 recorded using a CMOS camera (MiCam05, SciMedia). Optical recordings were obtained at baseline,  
14 Isoproterenol (250 nM) treatment and Iso + Dantrolene (10  $\mu$ M) treatment. Optical signals were  
15 analyzed using a custom Matlab program (Rhythm).<sup>27</sup>

16 **Action potential and Ca<sup>2+</sup> transient measurements in isolated myocytes:** Cardiomyocytes were loaded  
17 with Fura-2 acetoxyethyl ester (Fura-2 AM; Invitrogen) as described previously.<sup>28</sup> After Fura-2 loading,  
18 experiments were conducted in NT solution containing 1  $\mu$ M isoproterenol and 2 mM CaCl<sub>2</sub>. Fura-2 AM-  
19 loaded myocytes were pre-incubated for 1 hour with vehicle or 1  $\mu$ M dantrolene. Spontaneous Ca<sup>2+</sup>  
20 release events were quantified during the 30 seconds following cessation of the pacing train. Data were  
21 analyzed using IonWizard data analysis software (Milton, MA).

22 **Ca<sup>2+</sup> sparks in permeabilized cardiomyocytes:** Ca<sup>2+</sup> sparks were measured in isolated adult myocytes  
23 from CIHD mice by spinning-disc confocal microscopy as previously described.<sup>29</sup> Analysis of spark  
24 frequency was performed using the SparkMaster plugin for ImageJ and all data were normalized to SR  
25 Ca<sup>2+</sup> content for the experimental day. Statistical comparisons were made using a linear mixed-effects  
26 (hierarchical) model<sup>30</sup>, clustered by mouse to account for random effects between isolations and  
27 calculate Bonferroni-adjusted p values.

28 **Statistics:** Statistical analyses were performed using Prism v9.0.2 (GraphPad Software, Inc.) or R for  
29 linear regression modeling. Statistical tests used are reported in the statistical summary table  
30 (Supplemental Figure 1) and the figure legends. For normally distributed data (VERP, APD<sub>80</sub>, Infarct Size,  
31 Fibrosis area, FS, mcVcf, LVESD, LVEF), mean and standard deviation are provided. ANOVA with  
32 Bonferroni correction was used for multiple comparisons to assess for interaction between variables. For  
33 non-normally distributed data (VT episodes/train, VT duration, Ca<sup>2+</sup> sparks, and Spontaneous Ca<sup>2+</sup>  
34 release), the mean and 95% confidence intervals are provided. Linear regression models were used to  
35 assess the interaction between multiple variables and multiple comparisons when the data were non-  
36 normally distributed.

37

38 **Results:**

39 **CIHD renders mice susceptible to VT induction by programmed electrical stimulation.**

1 Programmed electrical stimulation (PES) is widely used to initiate sustained monomorphic VT and is  
2 traditionally considered a predictor of future arrhythmic events and mortality following myocardial  
3 infarction. We first tested whether PES could induce VT in CIHD mice. A transesophageal PES approach  
4 was used to allow for repeated measurement in the same mouse (Fig 1A). PES induced VT in 17.7 % of  
5 CIHD mice (6 of 34 mice: Fig 1C), whereas sham mice did not exhibit any inducible VT (Fig 1B&C). The  
6 addition of a catecholamine challenge with isoproterenol (PES+Iso) rendered 47.1% of CIHD mice  
7 inducible (16 of 34 mice: Fig 1C). There was no difference in VT induction between male and female  
8 mice (VT inducibility: male 4/9 vs female 12/25; P=.4709, Fischer Exact Test). Iso also significantly  
9 increased the frequency (Fig 1D) and duration of VT (Fig 1E) per CIHD mice. Taken together, these data  
10 demonstrate that PES+Iso reproducibly induces VT in CIHD mice.

11 **Acute dantrolene treatment suppresses VT and PVC in CIHD.**

12 To test whether acute RyR2 inhibition with dantrolene can prevent VT induction, CIHD mice underwent  
13 a baseline PES followed by a PES in the presence of dantrolene one week later, followed by another PES  
14 2 weeks later (Fig. 2A). Acute injection of dantrolene 30 min prior to the PES significantly reduced VT  
15 inducibility in CIHD mice by 33.3% (OR 0.0; P=0.039 Fischer Exact Test, Fig 2B). In the CIHD mice with VT,  
16 dantrolene also significantly reduced the frequency (Fig 2C) and duration of VT episodes (Fig 2D).  
17 Importantly, after the 2-week washout period, CIHD mice exhibited VT inducibility similar to baseline  
18 (Fig. 2B-E). Dantrolene also suppressed PVCs during PES+Iso, which returned to baseline numbers after  
19 washout (Fig2E). Together, these data demonstrate that dantrolene treatment suppresses both VT  
20 inducibility and PVCs in CIHD.

21 To determine why CIHD mice were susceptible to VT induction, we measured the ventricular effective  
22 refractory period (VERP). CIHD mice exhibit a shortened VERP (Sham  $38.6 \pm 0.7$  ms vs. CIHD  $35.2 \pm 1.1$  ms;  
23 P=0.032, Fig 2F), which can facilitate reentry arrhythmias. Acute dantrolene administration normalized  
24 the VERP of CIHD mice. After a 2-week washout, the VERP had returned to the short baseline values of  
25 CIHD mice. These data show that the normalization of the VERP is specific to dantrolene treatment  
26 rather than ongoing remodeling of the myocardium post-infarction.

27 **Acute dantrolene prevents reentry by suppressing APD alternans and prolonging APD in the infarct  
28 border zone.**

29 Optical mapping of action potentials was performed on isolated CIHD hearts to examine the mechanism  
30 of VT induction and its prevention by dantrolene. Burst pacing with Iso induced VT in all CIHD hearts and  
31 dantrolene treatment suppressed VT inducibility (Fig. 3D). Phase maps generated from optical action  
32 potentials demonstrated a reentrant pattern around the infarct scar (Fig. 3A) and VT induction (Fig. 3B)  
33 was observed in ECG and optical recordings. Consistent with its normalizing effect on VERP in vivo,  
34 dantrolene administration prolonged APD<sub>50</sub> in isolated CIHD hearts (Fig 3C and E). Conduction velocity  
35 (CV) was not altered in CIHD hearts or affected by dantrolene treatment (Fig 3C and F). APD alternans, a  
36 known risk indicator for VT induction, were observed in isolated CIHD hearts at baseline, with a  
37 significant increase in beat-to-beat variability after Iso treatment (Fig 3G and H). Dantrolene suppressed  
38 APD alternans after Iso treatment (Fig 3G and H). These data demonstrate that blockade of RyR2 in CIHD  
39 hearts prevents arrhythmogenic VERP shortening of the myocardium and reduces the electrical  
40 heterogeneity of the myocardium without affecting the conduction velocity, thereby preventing  
41 reentrant circuits around the established infarct.

1 **Acute dantrolene administration suppresses spontaneous SR Ca<sup>2+</sup> release from RyR2.**

2 Several studies have reported that CIHD renders RyR2 channels hyperactive. To directly assess RyR2  
3 function in our CIHD mouse model, we measured Ca<sup>2+</sup> sparks, an indicator of the rate of spontaneous  
4 RyR2 openings in cardiomyocytes (Fig 1A). Indeed, Ca<sup>2+</sup> sparks frequency (Sham 0.75±0.02 sparks/caff  
5 amp vs. CIHD 0.96±0.02 sparks /caff amp,  $P=2.20\times 10^{-16}$ ; Fig 4B) and Ca<sup>2+</sup> leak (Sham: 46.8, 95% CI 0.72-  
6 076 vs CIHD 75.7, 95% CI 66.5-84.7,  $P=6.14\times 10^{-6}$ ; Fig 4C) were significantly increased in ventricular  
7 cardiomyocytes isolated from CIHD hearts. Dantrolene administration normalized Ca<sup>2+</sup> spark frequency  
8 and Ca<sup>2+</sup> leak to values observed in cardiomyocytes isolated from sham hearts (Fig 4B-C, Supplemental  
9 Fig 2). We next examined Ca<sup>2+</sup> handling in intact cardiomyocytes (Fig 4D). After a rapid pacing train with  
10 1 & 3 Hz, isolated myocytes showed increased spontaneous Ca<sup>2+</sup> release events, indicative of delayed  
11 afterdepolarizations (DADs), which were suppressed by dantrolene (Fig 4D&E). Together, these data  
12 showed that dantrolene suppresses spontaneous SR Ca<sup>2+</sup> release in CIHD cardiomyocytes.

13 **Chronic dantrolene treatment suppresses VT risk with minimal adverse effects.**

14 Dantrolene has been used clinically for malignant hyperthermia and spasticity but is not without adverse  
15 effects, most notably on skeletal muscle weakness, GI symptoms, and liver toxicity. CIHD mice were  
16 implanted with subcutaneous osmotic pumps to deliver 20 mg/kg/day of dantrolene over 6 weeks. To  
17 test if chronic dantrolene treatment adversely affects CIHD mice, mouse weight and muscle strength  
18 were monitored. There was no difference in mortality over the course of the study (Fig 5A). Mice  
19 treated with dantrolene show normal growth over the study (Supplemental Fig 2), with mild skeletal  
20 muscle weakness noted on EMG (Fig 5B).

21 Dantrolene treatment suppressed VT induction by 22.2% (61.1% vehicle vs 38.9% dantrolene;  $P=0.036$   
22 Fischer Exact Test) (Fig. 5C). Dantrolene also significantly reduced the duration and frequency of VT  
23 episodes (Fig 5D). As with acute treatment, chronic dantrolene normalized the VERP at 6 weeks (Vehicle  
24 33.9±1.3 ms vs. Dantrolene 39.2±1.1 ms;  $P=0.032$ ) (Fig 5D). These data show that chronic dantrolene  
25 treatment is as effective as an acute treatment for preventing VT in CIHD with minimal long-term  
26 adverse effects.

27 **Chronic dantrolene treatment prevents progressive LV dysfunction and peri-infarct fibrosis in CIHD.**

28 LV remodeling after MI through infarct expansion in the border zone, interstitial fibrosis, and chamber  
29 dilation provides a substrate for reentry ventricular arrhythmias as well as reducing cardiac function and  
30 leading to heart failure. To test if dantrolene can prevent progressive remodeling late after MI, cardiac  
31 function, fibrosis, biomarkers for wall stress, and hypertrophy were assessed after 6 weeks of  
32 dantrolene treatment.

33 Although it did not change the size of the infarct scar, dantrolene treatment largely prevented the  
34 development of interstitial fibrosis in the peri-infarct zone (Fig 6B). Expression of genes responsible for  
35 cardiac fibrosis (Col1a1, Col1a3, Postn), heart failure biomarkers of increased wall stress (Nppa, Nppb),  
36 and hypertrophy (Myh7/Myh6 ratio) continued to be upregulated in the infarct border zone at 10 weeks  
37 post infarction. However, these were significantly reduced after 6 weeks of treatment with dantrolene  
38 (Fig 6C, Supplemental Table 2). Fibrosis was not significantly increased in the remote region. Heart  
39 failure (Nppa, Nppb) and hypertrophy (Myh7/Myh6 ratio) biomarkers were also significantly increased  
40 in the remote region after infarction, but the expression was less than in the infarct border zone.

1 Concordant with the changes observed in the border zone, these markers were reduced in the remote  
2 region with 6-week dantrolene treatment. Notably, dantrolene also normalized the reduced fibronectin  
3 (Fn1) expression in the infarct border zone and remote region 10 weeks (Fig. 6). These data show that  
4 treatment with dantrolene reduces progressive fibrosis and negative remodeling in both the border  
5 zone and remote region in CIHD mice.

6 Chronic dantrolene treatment significantly improved LV contractile function compared to vehicle, as  
7 evidenced by an increased fractional shortening (Fig 7A; Supplemental Table 3) and mean velocity fiber  
8 shortening (Fig 7B; Supplemental Table 3) with 6-week dantrolene treatment. Consequently, dantrolene  
9 prevented the progression of systolic dysfunction (Fig 7C; Supplemental Table 3) and reduction in LV  
10 ejection fraction from 4 to 10 weeks post-infarction (Fig 7D; Supplemental Table 3). These data  
11 demonstrate the therapeutic efficacy of dantrolene for preventing progressive pathological remodeling  
12 and improve cardiac function even after heart failure has been established.

13

#### 14 **Discussion**

15 Persistent LV systolic dysfunction 40 days after MI is associated with increased mortality from SCD due  
16 to ventricular arrhythmias. While ICDs and current heart failure guideline directed medical therapy have  
17 improved mortality, a third of patients continue to have progressive LV dysfunction, which increases the  
18 risk of ventricular arrhythmias and can ultimately lead to the need for cardiac transplant and increased  
19 risk of ventricular arrhythmias.<sup>31</sup> Therapy with ICD placement, anti-arrhythmic drugs and/or catheter  
20 ablation reduces the risk of ventricular arrhythmias. However, current anti-arrhythmic drug therapy for  
21 VT in structural heart disease is primarily limited to Class III drugs and beta-blockers, which have issues  
22 with drug toxicities, intolerance and/or limited effectiveness. The use of dantrolene to suppress RyR2  
23 hyperactivity in the failing heart represents a new therapeutic target to prevent VT and improve cardiac  
24 function in CIHD.

25 Cardiac remodeling after an ischemic injury has been shown to induce both areas of fixed anatomical  
26 block in the setting of fibrosis and functional block by slowing conduction or changing the refractoriness  
27 of the surviving myocardium.<sup>32</sup> The mechanisms of ventricular arrhythmias VT in CIHD include a  
28 combination of triggered activity beats due to diastolic SR Ca<sup>2+</sup> release, resulting in DADs, and substrate  
29 heterogeneous refractoriness due to interstitial fibrosis that allows for reentry. Diminished cell-to-cell  
30 coupling associated with fibrosis and abnormal Ca<sup>2+</sup> can contribute to slow conduction and provide  
31 reentry substrate. In addition, functional block and APD alternans due to abnormal Ca<sup>2+</sup> handling drives  
32 T-wave alternans and is associated with SCD.<sup>33, 34</sup> Continued diastolic SR Ca<sup>2+</sup> leak also leads to poor  
33 contractile reserve in the surviving myocardium, worsening cardiac function. The most crucial finding in  
34 this study is that inhibition of RyR2 calcium leak not only suppressed inducible VT but also reduced  
35 cardiac fibrosis and improved cardiac function. The prevention of further negative remodeling after MI is  
36 even more significant considering treatment with dantrolene was not started until 4 weeks after  
37 coronary ligation, when the infarct scar was already established. This demonstrates the utility of  
38 dantrolene and RyR2 inhibition in the heart to prevent VT and improve systolic function with the  
39 surviving myocardium late after injury.

#### 40 ***Effect of Dantrolene on Cardiac Electrophysiology in CIHD***

1 It has been recognized that altered Ca<sup>2+</sup> cycling produces Ca<sup>2+</sup> alternans, which contribute to the  
2 formation of functional reentry and arrhythmia by inducing the formation of functional reentry and  
3 arrhythmia by inducing dispersion of excitability or refractoriness, and is associated with SCD.<sup>35, 36</sup>  
4 Transmural heterogeneity of APD in CIHD rabbits has shown a correlation between the beat-to-beat  
5 cycle length at which alternans occurs and a reduction in the VF threshold.<sup>37, 38</sup> Targeting functional  
6 reentry and substrate heterogeneity in infarcted tissue is key to preventing ventricular arrhythmias and  
7 SCD. Class Ic anti-arrhythmic drugs can induce electrical alternans<sup>39</sup> and ventricular arrhythmias<sup>40</sup> in  
8 ischemic hearts, and are contraindicated in structural heart disease.<sup>41, 42</sup> One of the most striking results  
9 of this study is that dantrolene normalizes APD and VERP in CIHD and suppresses APD alternans and  
10 substrate heterogeneity in the infarct border zone without affecting conduction time.

11 Several animal models have demonstrated the utility of suppressing RyR2 diastolic Ca<sup>2+</sup> leak in  
12 preventing reentry mechanisms in AF, VT and VF.<sup>12, 22, 24</sup> The proposed mechanism of dantrolene is to  
13 stabilize the tertiary structure, which prevents Ca<sup>2+</sup> leak. Consistent with prior data, dantrolene  
14 treatment suppressed spontaneous SR Ca<sup>2+</sup> release and Ca<sup>2+</sup> sparks in the CIHD model. Notably, both  
15 acute and chronic dantrolene treatment reduced VT induction by normalizing the APD and VERP *in vivo*  
16 with minimal adverse effects. The data here provide proof of concept for another therapeutic option to  
17 patients with breakthrough ventricular arrhythmias where other anti-arrhythmic drugs have failed or are  
18 not tolerated.

#### 19 ***Effect of Dantrolene on Cardiac Function in CIHD***

20 RyR2 hyperactivity leading to diastolic Ca<sup>2+</sup> leak has been documented in isolated myocytes from  
21 animal models and patients with systolic heart failure.<sup>43</sup> Increased Ca<sup>2+</sup> leak reduces SR Ca<sup>2+</sup> stores,  
22 which subsequently diminishes Ca<sup>2+</sup> release in systole, leading to reduced myocyte contraction. Thus,  
23 stabilizing RyR2 and preventing diastolic Ca<sup>2+</sup> leak could improve cardiac function in HF. Our data show  
24 suppression of RyR2 hyperactivity by dantrolene reduces pathological cardiac remodeling and improves  
25 LV function.

26 Few studies have evaluated the effect of RyR2 inhibition on cardiac function and remodeling in CIHD.  
27 Isolated cardiac strips from patients with idiopathic dilated cardiomyopathy have improved force  
28 generation with dantrolene treatment in response to isoproterenol.<sup>20</sup> In dogs with RV pacing-induced  
29 cardiomyopathy, long-term treatment with dantrolene blunted chamber dilation and improved LV  
30 systolic function over 4 weeks.<sup>21</sup> Recently, in a rat model of MI, treatment with dantrolene at the time of  
31 MI improved LV function, reduced atrial fibrosis and atrial fibrillation, although infarct size and LV  
32 fibrosis were not reported in this study.<sup>16</sup> In contrast to these animal models where dantrolene was  
33 administered at the time of injury, in our model of CIHD, mice have an established infarct scar prior to  
34 dantrolene treatment, which is more clinically relevant to patients with ischemic cardiomyopathy.

35 In our model, long-term dantrolene treatment reduced border zone fibrosis and myocyte hypertrophy  
36 while improving markers of wall stress and cardiac function. A possible mechanism here is that  
37 improved Ca<sup>2+</sup> handling in the surviving cardiomyocytes have restores contractile function leading to  
38 reduced wall stress, as seen with reduced ANP and BNP expression. This would attenuate the  
39 pathological remodeling driven by cytokine and neurohormonal activation.<sup>13</sup> Interestingly, the  
40 expression of fibronectin was normalized in the infarct border zone and remote region late after  
41 infarction. While fibronectin enhances collagen type I polymerization and fibrosis early after infarction<sup>44</sup>,  
42 Fn1-KO mice show progressive LV dysfunction at later time points after MI.<sup>45</sup> Overall, these results

1 support targeting RyR2 hyperactivity late after ischemia to suppress progressive negative remodeling of  
2 the heart by reducing ongoing fibrosis, wall stress, and hypertrophy in the infarct border zone to  
3 improve cardiac function in ischemic heart failure.

4 In conclusion, our data provide proof of concept for targeting RyR2 hyperactivity and diastolic Ca<sup>2+</sup> leak  
5 to suppress ventricular arrhythmias, reduce cardiac fibrosis and improve cardiac function in CIHD.

6

7 **Acknowledgments**

8 We acknowledge the Translational Pathology Shared Resource supported by NCI/NIH Cancer Center  
9 Support Grant P30CA068485 and Shared Instrumentation Grant S10 OD023475-01A1 for the Leica Bond  
10 RX.

11 **Funding**

12 This research was supported by the American Heart Association Arrhythmia and Sudden Death  
13 Strategically Focused Research Network grant 19SFRN34830019 (to BCK, IRE). This research was also  
14 supported by the US National Institutes of Health grants NHLBI R35 HL144980 (to BCK) and NIH  
15 3OT2OD023848, Leducq Foundation project RHYTHM (to IRE).

16 **Disclosures**

17 The authors have declared that no conflict of interest exists.

1 1. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T,  
2 Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD,  
3 Myerburg RJ and Page RL. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular  
4 Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of  
5 Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm  
6 Society. *Circulation*. 2018;138:e272-e391.

7 2. Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, Arensberg D, Baker A,  
8 Friedman L, Greene HL and et al. Mortality and morbidity in patients receiving encainide, flecainide, or  
9 placebo. The Cardiac Arrhythmia Suppression Trial. *N Engl J Med*. 1991;324:781-8.

10 3. Cardiac Arrhythmia Suppression Trial III. Effect of the antiarrhythmic agent moricizine on  
11 survival after myocardial infarction. *N Engl J Med*. 1992;327:227-33.

12 4. Bers DM. Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction.  
*Annu Rev Physiol*. 2014;76:107-27.

13 5. Fischer TH, Maier LS and Sossalla S. The ryanodine receptor leak: how a tattered receptor  
14 plunges the failing heart into crisis. *Heart Fail Rev*. 2013;18:475-83.

15 6. Wehrens XH, Lehnart SE, Reiken S, Vest JA, Wronski A and Marks AR. Ryanodine  
16 receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression.  
17 *Proc Natl Acad Sci U S A*. 2006;103:511-8.

18 7. Dobrev D and Wehrens XH. Role of RyR2 phosphorylation in heart failure and arrhythmias:  
19 Controversies around ryanodine receptor phosphorylation in cardiac disease. *Circ Res*. 2014;114:1311-9;  
20 discussion 1319.

21 8. Katra RP and Laurita KR. Cellular mechanism of calcium-mediated triggered activity in the heart.  
*Circ Res*. 2005;96:535-42.

22 9. Alvarado FJ and Valdivia HH. Mechanisms of ryanodine receptor 2 dysfunction in heart failure.  
*Nat Rev Cardiol*. 2020;17:748.

23 10. Eisner DA, Kashimura T, O'Neill SC, Venetucci LA and Trafford AW. What role does modulation of  
24 the ryanodine receptor play in cardiac inotropy and arrhythmogenesis? *J Mol Cell Cardiol*. 2009;46:474-  
25 81.

26 11. Chua SK, Chang PC, Maruyama M, Turker I, Shinohara T, Shen MJ, Chen Z, Shen C, Rubart-von  
27 der Lohe M, Lopshire JC, Ogawa M, Weiss JN, Lin SF, Ai T and Chen PS. Small-conductance calcium-  
28 activated potassium channel and recurrent ventricular fibrillation in failing rabbit ventricles. *Circ Res*.  
29 2011;108:971-9.

30 12. Kajii T, Kobayashi S, Shiba S, Fujii S, Tamitani M, Kohno M, Nakamura Y, Nanno T, Kato T, Okuda  
31 S, Uchinoumi H, Oda T, Yamamoto T and Yano M. Dantrolene prevents ventricular tachycardia by  
32 stabilizing the ryanodine receptor in pressure- overload induced failing hearts. *Biochem Biophys Res  
Commun*. 2020;521:57-63.

33 13. Sutton MG and Sharpe N. Left ventricular remodeling after myocardial infarction:  
34 pathophysiology and therapy. *Circulation*. 2000;101:2981-8.

35 14. Maxwell JT, Domeier TL and Blatter LA. Dantrolene prevents arrhythmogenic Ca<sup>2+</sup> release in  
36 heart failure. *Am J Physiol Heart Circ Physiol*. 2012;302:H953-63.

37 15. Shan J, Kushnir A, Betzenhauser MJ, Reiken S, Li J, Lehnart SE, Lindegger N, Mongillo M, Mohler  
38 PJ and Marks AR. Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight  
39 response in mice. *J Clin Invest*. 2010;120:4388-98.

40 16. Nofi C, Zhang K, Tang YD, Li Y, Migirov A, Ojamaa K, Gerdes AM and Zhang Y. Chronic dantrolene  
41 treatment attenuates cardiac dysfunction and reduces atrial fibrillation inducibility in a rat myocardial  
42 infarction heart failure model. *Heart Rhythm O2*. 2020;1:126-135.

1 17. Reynolds JO, Quick AP, Wang Q, Beavers DL, Philippen LE, Showell J, Barreto-Torres G, Thuerauf  
2 DJ, Doroudgar S, Glembotski CC and Wehrens XH. Junctophilin-2 gene therapy rescues heart failure by  
3 normalizing RyR2-mediated Ca(2+) release. *Int J Cardiol.* 2016;225:371-380.

4 18. Chou CC, Wen MS, Lee HL, Chang PC, Wo HT, Yeh SJ and Wu D. Dantrolene suppresses  
5 ventricular ectopy and arrhythmogenicity with acute myocardial infarction in a langendorff-perfused  
6 pacing-induced heart failure rabbit model. *J Cardiovasc Electrophysiol.* 2014;25:431-439.

7 19. Fauconnier J, Pasquie JL, Bideaux P, Lacampagne A and Richard S. Cardiomyocytes hypertrophic  
8 status after myocardial infarction determines distinct types of arrhythmia: role of the ryanodine  
9 receptor. *Prog Biophys Mol Biol.* 2010;103:71-80.

10 20. Meissner A, Min JY, Haake N, Hirt S and Simon R. Dantrolene sodium improves the force-  
11 frequency relationship and beta-adrenergic responsiveness in failing human myocardium. *Eur J Heart  
12 Fail.* 1999;1:177-86.

13 21. Kobayashi S, Yano M, Suetomi T, Ono M, Tateishi H, Mochizuki M, Xu X, Uchinoumi H, Okuda S,  
14 Yamamoto T, Koseki N, Kyushiki H, Ikemoto N and Matsuzaki M. Dantrolene, a therapeutic agent for  
15 malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing  
16 interdomain interactions within the ryanodine receptor. *J Am Coll Cardiol.* 2009;53:1993-2005.

17 22. Liu T, Xiong F, Qi XY, Xiao J, Villeneuve L, Abu-Taha I, Dobrev D, Huang C and Nattel S. Altered  
18 calcium handling produces reentry-promoting action potential alternans in atrial fibrillation-remodeled  
19 hearts. *JCI Insight.* 2020;5.

20 23. Azam MA, Chakraborty P, Bokhari MM, Dadson K, Du B, Masse S, Si D, Niri A, Aggarwal AK, Lai  
21 PFH, Riazi S, Billia F and Nanthakumar K. Cardioprotective effects of dantrolene in doxorubicin-induced  
22 cardiomyopathy in mice. *Heart Rhythm O2.* 2021;2:733-741.

23 24. Zamiri N, Masse S, Ramadeen A, Kusha M, Hu X, Azam MA, Liu J, Lai PF, Vigmond EJ, Boyle PM,  
24 Behradfar E, Al-Hesayen A, Waxman MB, Backx P, Dorian P and Nanthakumar K. Dantrolene improves  
25 survival after ventricular fibrillation by mitigating impaired calcium handling in animal models.  
*Circulation.* 2014;129:875-85.

25 25. Uchinoumi H, Yano M, Suetomi T, Ono M, Xu X, Tateishi H, Oda T, Okuda S, Doi M, Kobayashi S,  
26 Yamamoto T, Ikeda Y, Ohkusa T, Ikemoto N and Matsuzaki M. Catecholaminergic polymorphic  
27 ventricular tachycardia is caused by mutation-linked defective conformational regulation of the  
28 ryanodine receptor. *Circ Res.* 2010;106:1413-24.

29 26. Muthuramu I, Lox M, Jacobs F and De Geest B. Permanent ligation of the left anterior  
30 descending coronary artery in mice: a model of post-myocardial infarction remodelling and heart failure.  
*J Vis Exp.* 2014.

31 27. Laughner JL, Ng FS, Sulkin MS, Arthur RM and Efimov IR. Processing and analysis of cardiac  
32 optical mapping data obtained with potentiometric dyes. *Am J Physiol Heart Circ Physiol.*  
33 2012;303:H753-65.

34 28. Chopra N, Kannankeril PJ, Yang T, Hlaing T, Holinstat I, Ettenson K, Pfeifer K, Akin B, Jones LR,  
35 Franzini-Armstrong C and Knollmann BC. Modest reductions of cardiac calsequestrin increase  
36 sarcoplasmic reticulum Ca2+ leak independent of luminal Ca2+ and trigger ventricular arrhythmias in  
37 mice. *Circ Res.* 2007;101:617-26.

38 29. Batiste SM, Blackwell DJ, Kim K, Kryshtal DO, Gomez-Hurtado N, Rebbeck RT, Cornea RL,  
39 Johnston JN and Knollmann BC. Unnatural verticilide enantiomer inhibits type 2 ryanodine receptor-  
40 mediated calcium leak and is antiarrhythmic. *Proc Natl Acad Sci U S A.* 2019;116:4810-4815.

41 30. Sikkel MB, Francis DP, Howard J, Gordon F, Rowlands C, Peters NS, Lyon AR, Harding SE and  
42 MacLeod KT. Hierarchical statistical techniques are necessary to draw reliable conclusions from analysis  
43 of isolated cardiomyocyte studies. *Cardiovasc Res.* 2017;113:1743-1752.

44 31. Solomon SD, Zelenkofske S, McMurray JJ, Finn PV, Velazquez E, Ertl G, Harsanyi A, Rouleau JL,  
45 Maggioni A, Kober L, White H, Van de Werf F, Pieper K, Califf RM, Pfeffer MA and Valsartan in Acute  
46

1 Myocardial Infarction Trial I. Sudden death in patients with myocardial infarction and left ventricular  
2 dysfunction, heart failure, or both. *N Engl J Med.* 2005;352:2581-8.

3 32. Zipes DP. Mechanisms of clinical arrhythmias. *J Cardiovasc Electrophysiol.* 2003;14:902-12.

4 33. Rosenbaum DS, Jackson LE, Smith JM, Garan H, Ruskin JN and Cohen RJ. Electrical alternans and  
5 vulnerability to ventricular arrhythmias. *N Engl J Med.* 1994;330:235-41.

6 34. Gold MR, Ip JH, Costantini O, Poole JE, McNulty S, Mark DB, Lee KL and Bardy GH. Role of  
7 microvolt T-wave alternans in assessment of arrhythmia vulnerability among patients with heart failure  
8 and systolic dysfunction: primary results from the T-wave alternans sudden cardiac death in heart failure  
9 trial substudy. *Circulation.* 2008;118:2022-8.

10 35. Ter Keurs HE and Boyden PA. Calcium and arrhythmogenesis. *Physiol Rev.* 2007;87:457-506.

11 36. Sato D, Shiferaw Y, Garfinkel A, Weiss JN, Qu Z and Karma A. Spatially discordant alternans in  
12 cardiac tissue: role of calcium cycling. *Circ Res.* 2006;99:520-7.

13 37. Myles RC, Burton FL, Cobbe SM and Smith GL. Alternans of action potential duration and  
14 amplitude in rabbits with left ventricular dysfunction following myocardial infarction. *J Mol Cell Cardiol.*  
15 2011;50:510-21.

16 38. Lou Q and Efimov IR. Enhanced susceptibility to alternans in a rabbit model of chronic  
17 myocardial infarction. *Conference proceedings : Annual International Conference of the IEEE Engineering  
18 in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference.*  
19 2009;2009:4527-30.

20 39. Tachibana H, Yamaki M, Kubota I, Watanabe T, Yamauchi S and Tomoike H. Intracoronary  
21 flecainide induces ST alternans and reentrant arrhythmia on intact canine heart: A role of 4-  
22 aminopyridine-sensitive current. *Circulation.* 1999;99:1637-43.

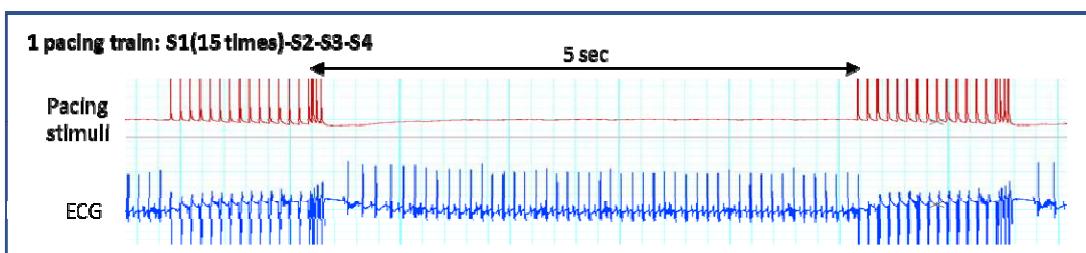
23 40. Ranger S and Nattel S. Determinants and mechanisms of flecainide-induced promotion of  
24 ventricular tachycardia in anesthetized dogs. *Circulation.* 1995;92:1300-11.

25 41. Pratt CM and Moye LA. The cardiac arrhythmia suppression trial. Casting suppression in a  
26 different light. *Circulation.* 1995;91:245-7.

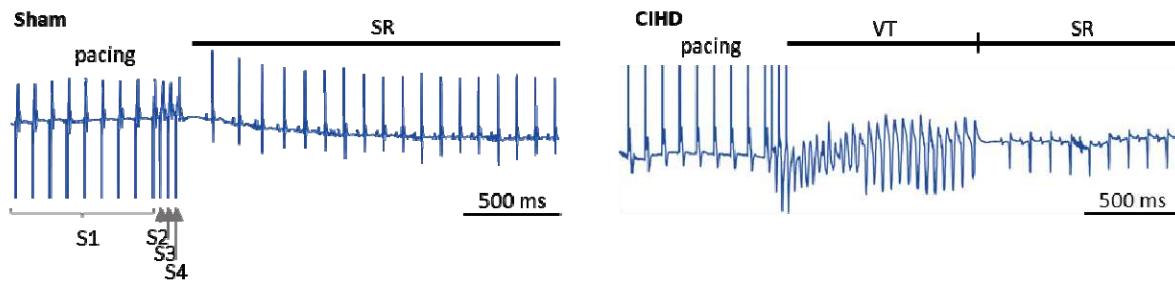
27 42. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T,  
28 Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD,  
29 Myerburg RJ and Page RL. 2017 AHA/ACC/HRS guideline for management of patients with ventricular  
30 arrhythmias and the prevention of sudden cardiac death: Executive summary: A Report of the American  
31 College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the  
32 Heart Rhythm Society. *Heart Rhythm.* 2018;15:e190-e252.

33 43. Hartmann N, Pabel S, Herting J, Schatter F, Renner A, Gummert J, Schotola H, Danner BC, Maier  
34 LS, Frey N, Hasenfuss G, Fischer TH and Sossalla S. Antiarrhythmic effects of dantrolene in human  
35 diseased cardiomyocytes. *Heart Rhythm.* 2017;14:412-419.

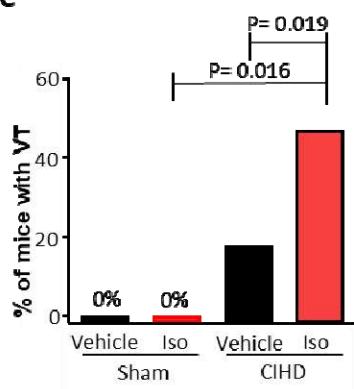
36 44. Valiente-Alandi I, Potter SJ, Salvador AM, Schafer AE, Schips T, Carrillo-Salinas F, Gibson AM,  
37 Nieman ML, Perkins C, Sargent MA, Huo J, Lorenz JN, DeFalco T, Molkentin JD, Alcaide P and Blaxall BC.  
38 Inhibiting Fibronectin Attenuates Fibrosis and Improves Cardiac Function in a Model of Heart Failure.  
39 *Circulation.* 2018;138:1236-1252.


40 45. Konstandin MH, Toko H, Gastelum GM, Quijada P, De La Torre A, Quintana M, Collins B, Din S,  
41 Avitabile D, Volkers M, Gude N, Fassler R and Sussman MA. Fibronectin is essential for reparative cardiac  
42 progenitor cell response after myocardial infarction. *Circ Res.* 2013;113:115-25.

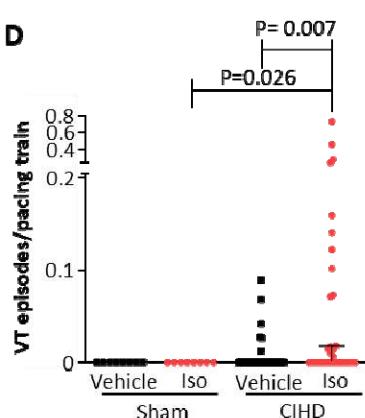
43


44

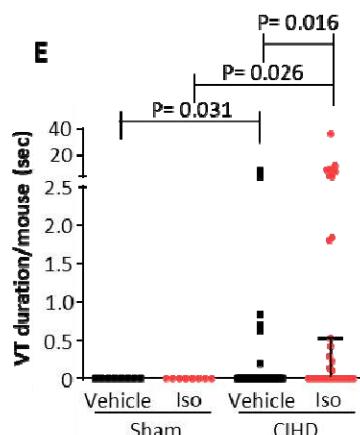
45


A



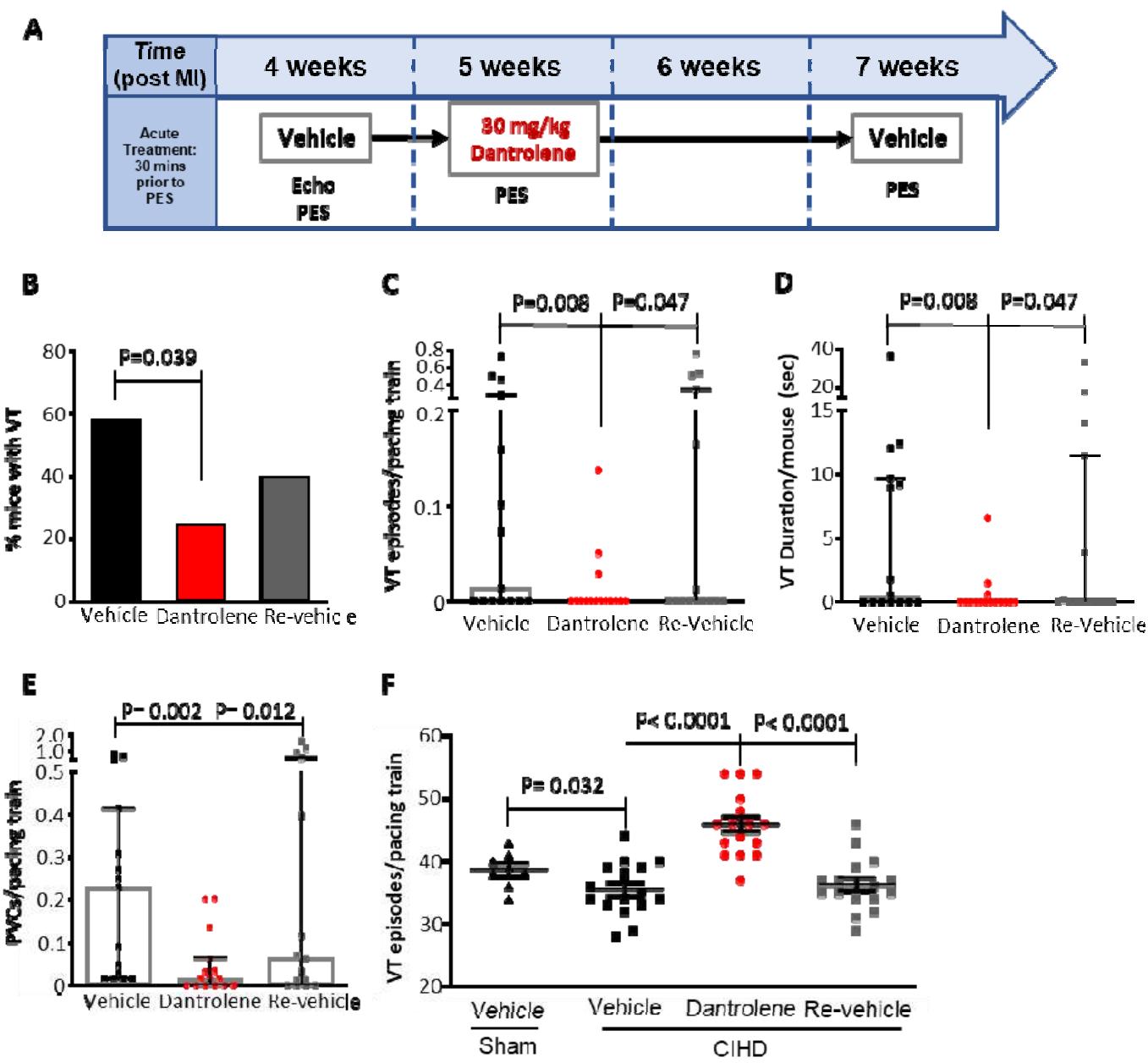

B




C

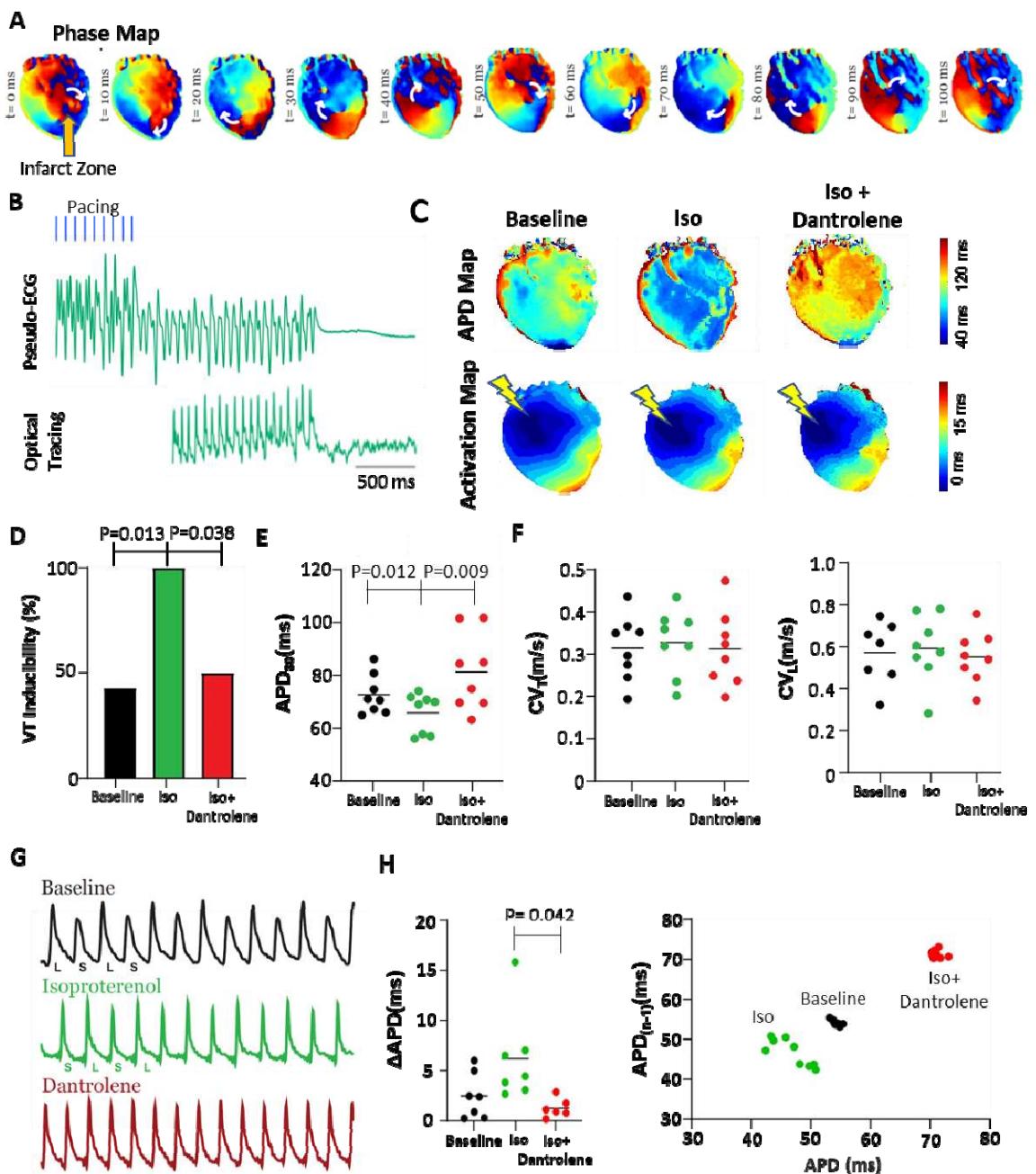


D

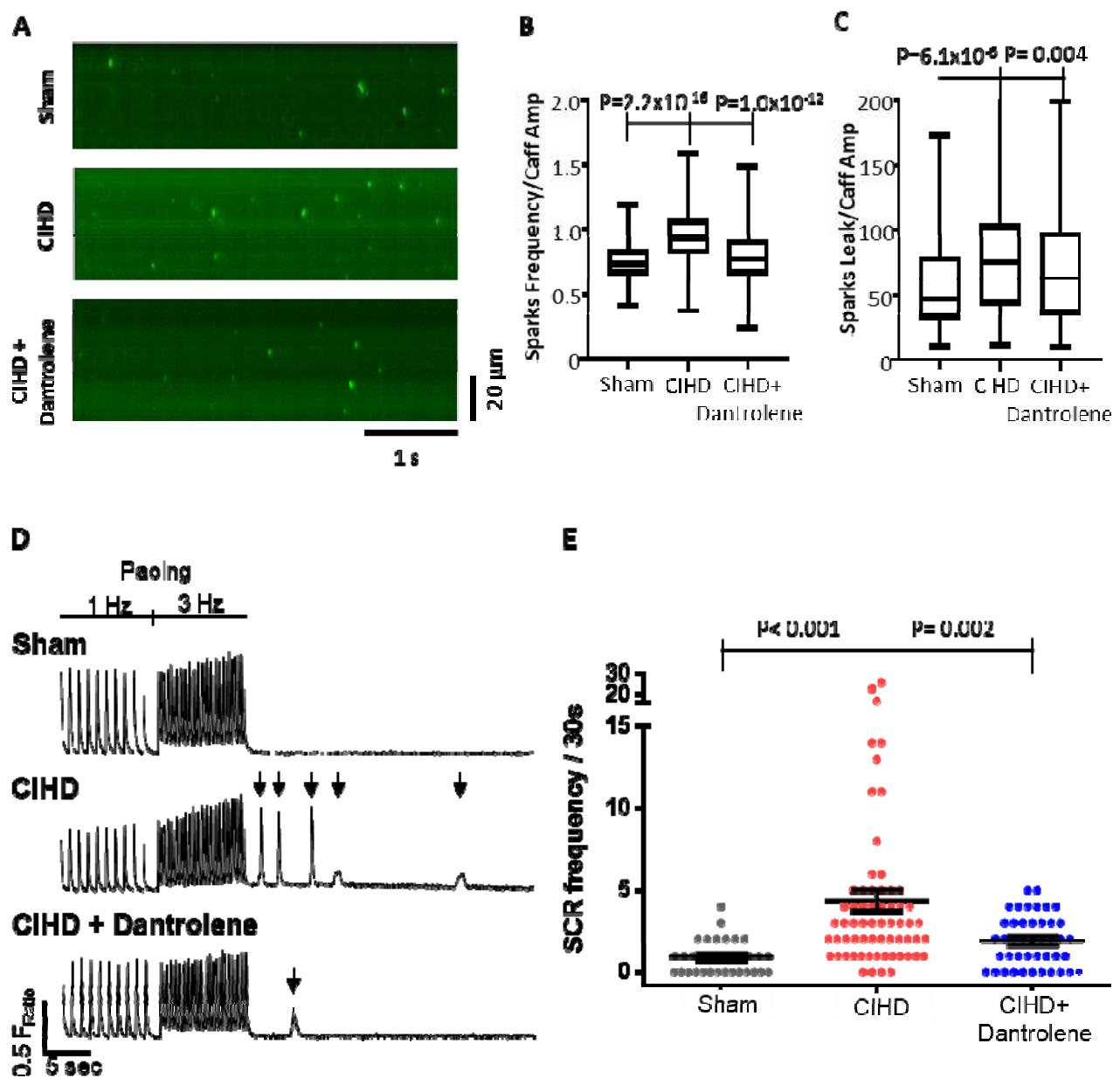



E

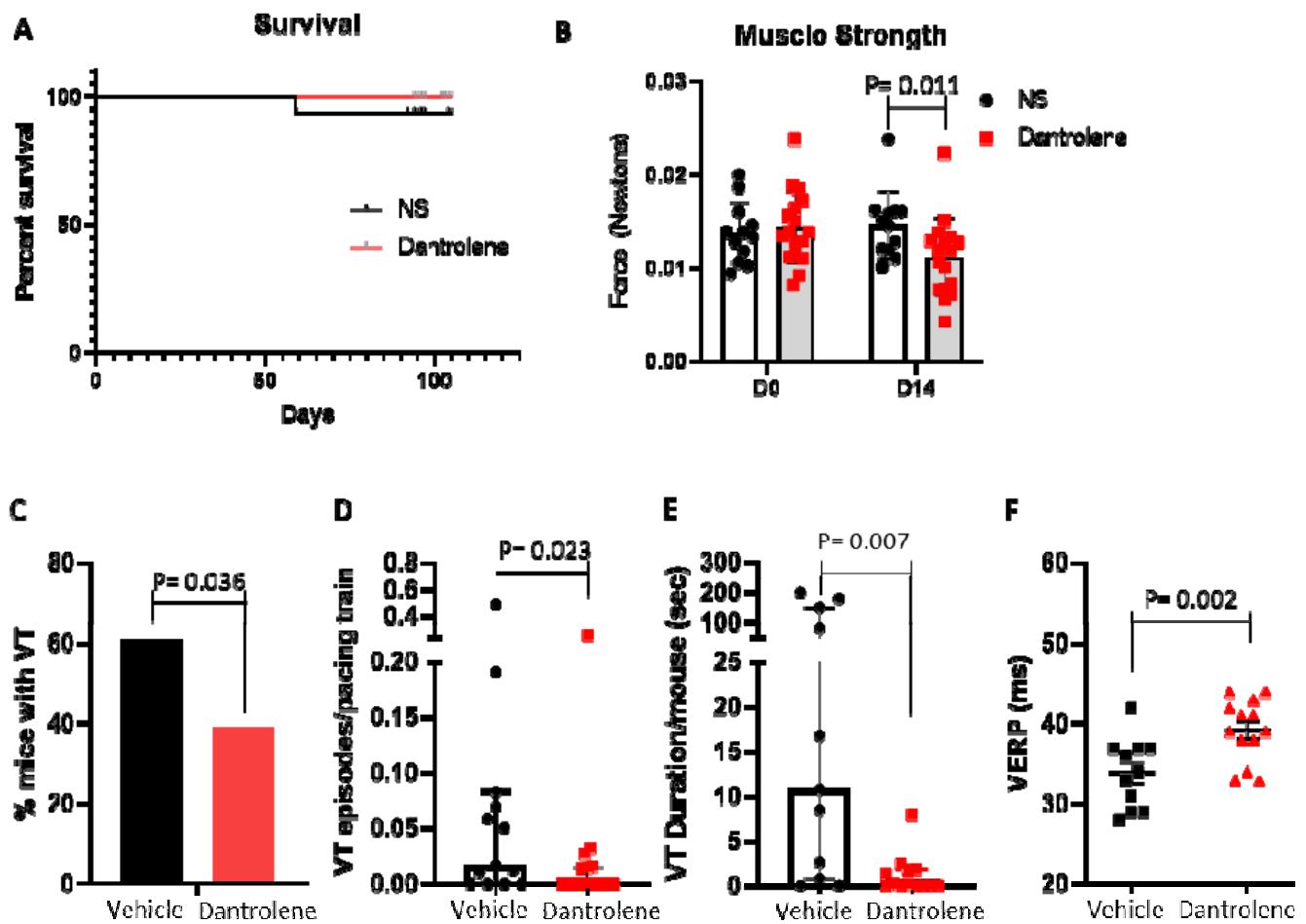



1

2 **Figure 1. Inducibility of ventricular tachycardia (VT) by programmed electrical stimulation.** (A) 3 Stimulation protocol (top) and representative electrocardiogram (ECG, bottom). An episode of 4 programmed stimulation protocol consists of 15 S1 stimuli followed by three (S2-S4) extra stimuli that 5 are optimized with minimum intervals of ventricular capturing. (B) Representative ECG traces of sham 6 (left) and CIHD (right) mice after an episode of pacing protocol in the presence of isoproterenol. CIHD 7 mice exhibit inducible VT followed by spontaneous conversion to sinus rhythm (SR). (C) Incidence of 8 inducible VT. P values were obtained using the Fischer Exact Test. (D) VT episodes/pacing train and (E) 9 VT duration in sham and CIHD mice. P values were obtained using the Wilcoxon signed-rank test. [Sham 10 N=8 and CIHD= 34 mice]

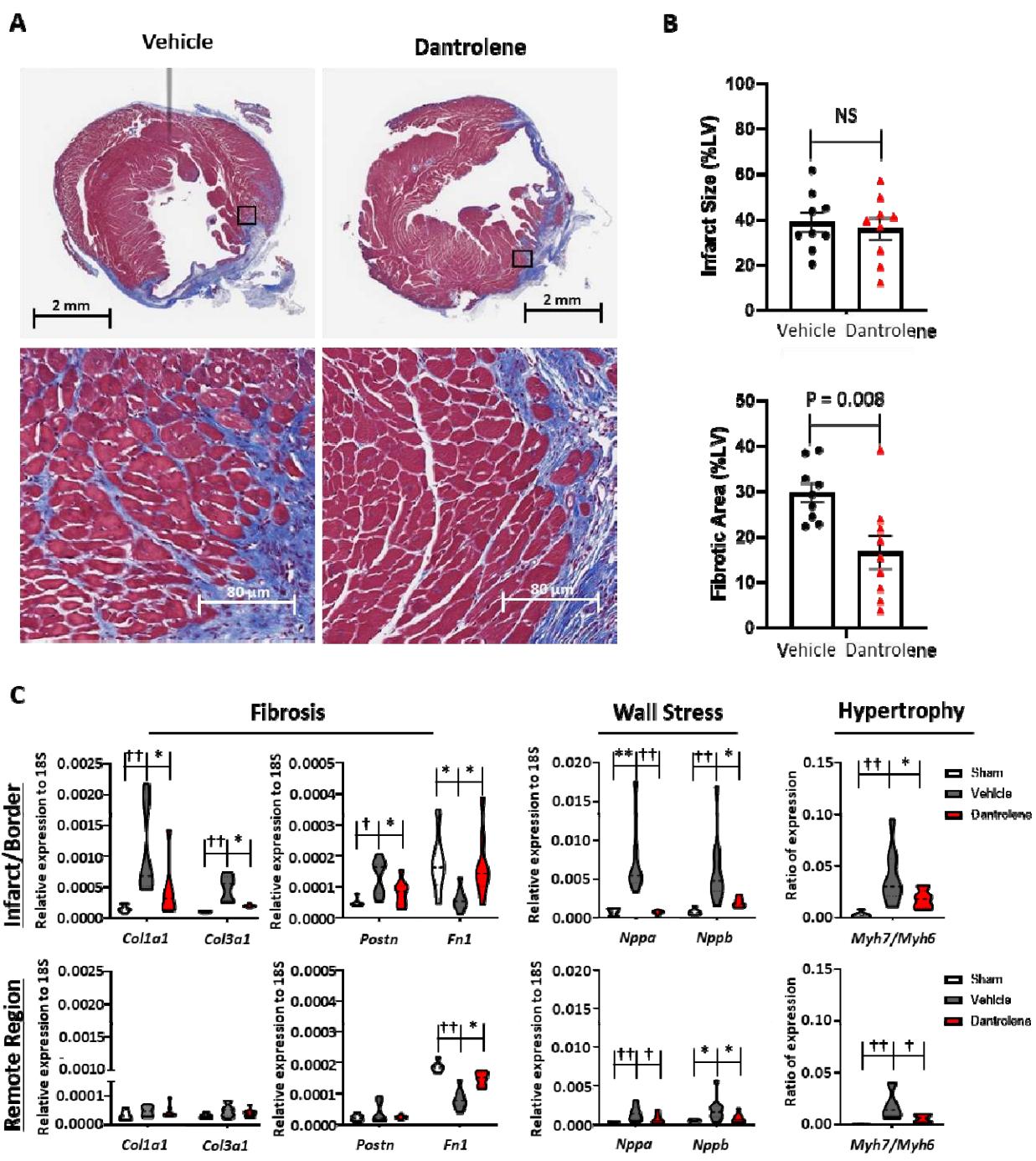



1

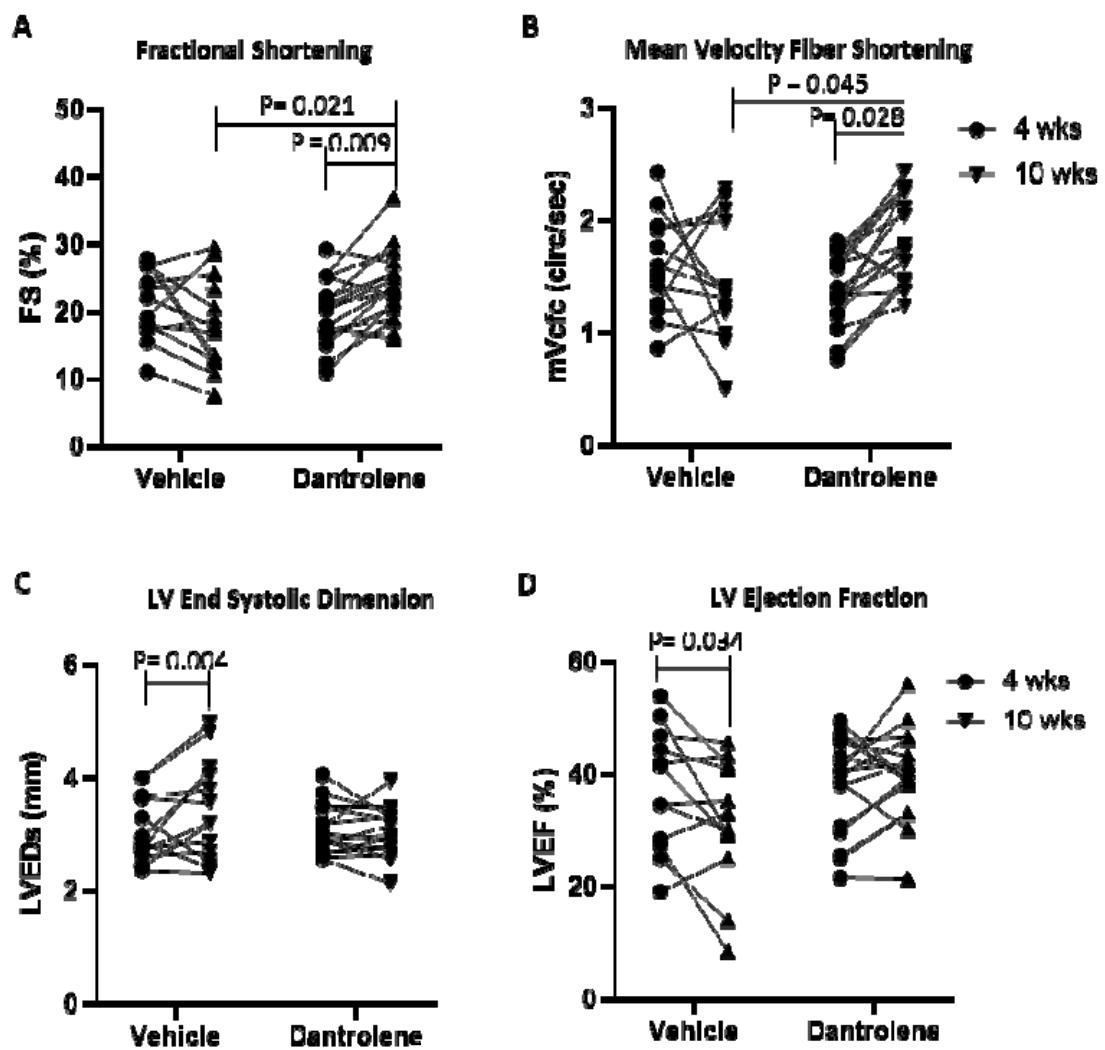

2 **Figure 2: Acute dantrolene treatment reduces VT inducibility and ventricular ectopy in CIHD mice. (A)**  
3 Experimental timeline. (B) Incidence of inducible VT by programmed electrical stimulation (PES). P  
4 values were obtained using the Fischer Exact Test. (C) VT episodes/pacing train and (D) VT duration per  
5 pacing train. (E) PVC frequency per pacing train. P values were obtained using the Wilcoxon signed-rank  
6 test. (F) Ventricular effective refractory period (VERP) measured during PES. P-values were obtained  
7 using Welsh ANOVA with Dunnett's T3 multiple comparisons test. [N= 15 mice]



2 **Figure 3. Dantrolene suppresses VT induction in ex vivo CIHD hearts by increasing APD and inhibiting**  
3 **APD alternans. (A) Phase maps illustrating reentrant arrhythmia in an ex vivo heart treated with Iso. (B)**  
4 **Volume-conducted ECG and optical (voltage) trace of reentrant ventricular tachycardia (VT) during Iso**  
5 **treatment. (C) APD (top) and activation (bottom) maps during Baseline, Iso and Iso + Dantrolene**  
6 **conditions. (D) VT inducibility, (E) APD<sub>80</sub>, (F) CVT and CVL during Baseline, Iso and Iso + Dantrolene**  
7 **conditions. (G) Representative optical (voltage) traces demonstrating APD alternans under Baseline and**  
8 **Iso conditions. (H) Summary alternans amplitude during Baseline, Iso and Iso + Dantrolene conditions**  
9 **(left) and Poincaré plot demonstrating increased beat-to-beat variability during Iso treatment (right). P-**  
10 **values were obtained using paired, two-tailed Student's t-tests with Bonferroni correction for multiple**  
11 **comparisons. [N = 8 mice].**




**Figure 4: Dantrolene reduces SR Ca<sup>2+</sup> leak and spontaneous SR Ca release in CIHD cardiomyocytes. (A)**  
1 Representative images of Ca Sparks from permeabilized CIHD cardiomyocytes (4 weeks) treated acutely  
2 with vehicle or dantrolene. (B) Spark frequency and (C) spark-mediated SR Ca leak in permeabilized  
3 cardiomyocytes. [Sham N= 3 mice, n= 121 cells; CIHD N= 3 mice, n= 125 cells; CIHD+Dantrolene N=3  
4 mice, n= 135 cells] (D) Representative Ca transient records from intact cardiomyocytes treated with  
5 vehicle or dantrolene. Arrow indicates spontaneous SR Ca release events after the pacing train. (E)  
6 Summary data of spontaneous SR Ca release events during a 30s period following the pacing train. P-  
7 values obtained using Linear mixed-effect (hierarchical) model with Bonferroni correction. [Sham N=3  
8 mice, n= 33 cells; CIHD N=3 mice, n=64 cells; CIHD+Dantrolene N=3 mice, n= 43 cells]  
9




1  
2 **Figure 5: Chronic dantrolene treatment suppresses VT induction with minimal side effects.** (A) Survival  
3 from time of osmotic pump implantation (4 weeks post-MI). (B) Mice showed a significant decrease in  
4 peripheral skeletal muscle strength at 2 weeks of dantrolene treatment. Effect of 6-week dantrolene  
5 treatment on (C) VT inducibility, (D) VT episodes/pacing train, (E) VT duration and (F) ventricular  
6 effective refractory period (VERP). P values were obtained using the Wilcoxon signed-rank test. [Vehicle  
7 n=13, Dantrolene n=17]

8



2 **Figure 6: Chronic dantrolene reduces fibrosis and LV remodeling in ischemic cardiomyopathy. (A)**  
3 Representative mid-LV Masson's Trichrome staining from CIHD mice after 6 weeks treatment with  
4 vehicle or dantrolene. (B) Quantification of infarct scar size and fibrosis. P-value obtained using Mann-  
5 Whitney test. [Vehicle n=9, Dantrolene n=9] (C) Dantrolene reduced gene expression of fibrotic, wall  
6 stress and hypertrophy markers in infarct/border zone after 6 weeks of treatment. P values were  
7 obtained using Kruskal-Wallis test with Dunn's post-test [\* P<0.05, \*\* P<0.01, † P<.005, †† P<0.001;  
8 Sham = 6, Vehicle n=9, Dantrolene n=9]



1  
2 **Figure 7: Chronic Dantrolene treatment improves cardiac function in the CIHD model.** Dantrolene  
3 improved (A) fractional shortening and (B) contractility after 6 weeks of treatment. Dantrolene  
4 prevented progressive (C) systolic dysfunction and (D) LVEF decline after 6 weeks of treatment. P-value  
5 obtained using 2way ANOVA mixed-effect model with Bonferroni post-test. [Vehicle n=13, Dantrolene  
6 n=17]