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ABSTRACT

A whole genome co-expression network was created using Mycobacterium tuberculosis
transcriptomic data from publicly available RNA-sequencing experiments covering a wide
variety of experimental conditions. The network includes expressed regions with no
formal annotation, including putative short RNAs and untranslated regions of expressed
transcripts, along with the protein-coding genes. These unannotated expressed
transcripts were among the best-connected members of the module sub-networks, making
up more than half of the ‘hub’ elements in modules that include protein-coding genes
known to be part of regulatory systems involved in stress response and host adaptation.
This dataset provides a valuable resource for investigating the role of non-coding RNA,
and conserved hypothetical proteins, in transcriptomic remodelling. Based on their
connections to genes with known functional groupings and correlations with replicated
host conditions, predicted expressed transcripts can be screened as suitable candidates

for further experimental validation.

Abbreviations

CDS, coding sequence

ME, module eigengene

MM, module membership

Mtb, Mycobacterium tuberculosis

MTBC, Mycobacterium tuberculosis complex
ncRNA, non-coding RNA

ORF, open reading frame

RNA-seq, RNA sequencing

RNAP, RNA polymerase
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sORF, short open reading frame
sRNA, short non-coding RNA
TSS, transcription start site
UTR, untranslated region

WGCNA, weighted gene co-expression analysis
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INTRODUCTION

Tuberculosis continues to be a leading cause of death worldwide, causing over 1.5 million
deaths, and infecting over 10 million people in 2020 (World Health Organization, 2021).
The human-adapted pathogen causing tuberculosis, Mycobacterium tuberculosis (Mtb),
has a complex lifestyle that requires rapid adaptation to host defences and immune
pressure, including nutritional immunity, hypoxia and lipid-rich environments. In order
to eradicate the disease, it is crucial to understand how the pathogen survives attacks
from host immune cells and persists in an extended latent state inside the host. To adapt
to these environmental challenges, bacterial cells must make complex transcriptomic
adjustments, and these are thought to be complemented and fine-tuned by post-

transcriptional regulation.

The mycobacterial genome produces a range of conditionally expressed transcripts, many
of which are poorly annotated and understood. In this paper, ‘non-coding’ RNA (ncRNA)
refers to non-ribosomal RNA transcripts not known to be translated into peptides, such
as short RNAs (sRNAs) acting on either distant or antisense mRNA targets and the
expressed untranslated regions (UTRs) flanking coding genes (which may also contain
short open reading frames (sORFs), upstream from coding regions). Non-coding RNA can
alter the abundance of gene products by controlling mRNA stability and processing, access
to ribosome binding sites and the translation of overlapping open reading frames (ORFs).
Discovering the contribution of the non-coding genome to specific adaptation-response
pathways may improve our ability to design therapeutics and prevent the evolution of

persistent phenotypes.
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Uncovering the role of non-coding RNA in adaptation and transcriptomic
remodelling

The proportion of non-ribosomal, ncRNA in the Mtb transcriptome has been shown to
increase in stationary and hypoxic conditions, indicating a potential role in adjusting to
environmental cues (Aguilar-Ayala et al., 2017; Arnvig et al., 2011; Gerrick et al., 2018;
Ignatov et al., 2015). Several mycobacterial ncRNA transcripts (particularly, sSRNA) have
been extensively studied and found to be associated with regulatory systems controlling
adaptation to stress conditions or growth phase, linked to virulence pathways and to
access to lipid media (Arnvig et al., 2011; Gerrick et al., 2018; Girardin & McDonough,
2020; Mai et al., 2019; Moores et al., 2017; Solans et al., 2014). Non-coding regulation in
Mtb appears to function quite differently compared to model organisms, eschewing the
use of any known chaperone proteins for RNA-RNA interactions and with few sRNA
homologs found outside the phyla (Gerrick et al., 2018; Mai et al., 2019; Schwenk &
Arnvig, 2018). The discovery and characterisation of ncRNA in Mtb, especially sRNAs,
has progressed using both molecular biology methods and high-throughput sequence-
based approaches (reviewed in Schwenk & Arnvig, 2018) but characterising the gene
interactions of a particular sRNA is an experimentally-expensive process, and the number
of fully-characterised ncRNAs remains limited. Annotation of identified transcripts
remains incomplete, as well, with only 30 listed in the Mtb H37Rv reference sequence
(GenBank AL123456.3). Efforts to compile a comprehensive list of annotated ncRNAs for
Mtb faces challenges of non-standardised nomenclature, different standards of
experimental validation, incomplete reference annotations (especially for the animal-
adapted species of the Mycobacterium tuberculosis complex (MTBC)) and the variable
expression of non-coding transcripts in response to different experimental conditions

(Stiens et al., 2022).
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100  Prediction of ncRNA from RNA-sequencing (RNA-seq) data in the compact Mtb genome
101  1is challenging. Paradoxically, more sensitive, high-depth sequencing can make it more
102 difficult to identify the small, low-abundance, functional transcripts above stochastic gene
103  expression and technical noise. Parameters of detection must therefore be carefully
104  considered for each dataset to account for variation in expression levels. Though RNA-
105 seq-based ncRNA prediction algorithms are often assumed to overpredict putative
106 ncRNAs, especially at the 5’ and 3’ ends of coding genes, there are biological and technical
107  reasons for detecting abundant signal in the unannotated regions of the genome.
108  Ribosome profiling (Ribo-seq) methods that sequence the ribosome-protected fragments of
109 mRNA have identified actively translated RNA in the 5 UTRs of annotated protein-coding
110  mRNA transcripts (Canestrari et al., 2020; D’Halluin et al., 2022; Sawyer et al., 2021;
111  Shell et al., 2015; C. Smith et al., 2022). These unannotated sORFs may represent
112 functional peptides or function to regulate the translation of the downstream transcript;
113 however, it is impossible to tell the difference between a putative ncRNA and a sORF from
114  RNA-seq signal alone. Additionally, post-transcriptional processing may be the norm for
115  prokaryotes at both the 5 and 3’ ends of coding transcripts, with 3’ ends in mycobacteria
116  often lacking clear signal termination (Dar & Sorek, 2018; D’Halluin et al., 2022; Wang
117  etal., 2019). Finally, polycistronic transcripts often include non-coding sequence between
118  the genes of an operon, and this may contain functional elements and/or processing sites
119  (Martini et al., 2019).

120

121  The location of a transcription start site (TSS) in the 5’ end of a predicted transcript
122 supports the biological relevance of a predicted ncRNA. However, the available lists of
123 Mtb TSS sites (Cortes et al., 2013; Shell et al., 2015) have been mapped only in starvation
124 and exponential growth and may not include TSSs that are expressed under different

125  experimental conditions. New TSS maps, published subsequent to this analysis may
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126  increase the number of predicted transcripts with a TSS (D’Halluin et al., 2022).
127  Furthermore, functional ncRNA elements generated from the 3’ UTRs of coding genes
128  through RNase processing would presumably lack a TSS. 3° UTRs that are functionally
129  independent from their cognate coding sequence (CDS) have been identified in other
130  bacteria (Desgranges et al., 2021; Menendez-Gil et al., 2020; Ponath et al., 2022).
131  Therefore, it is important to consider predicted UTRs as separate annotated elements
132 from protein-coding transcripts when quantifying differential expression.

133

134 To include a complete picture of the interaction of the non-coding genome with coding
135  genesinvolved in adaptation pathways, we have generated a novel set of ncRNA sequence-
136 based predictions (sSRNAs and UTRs) from the same datasets using our in-house software
137  package, baerhunter(Ozuna et al., 2019). Some of these predicted transcripts overlap with
138  predictions from previous studies, but many represent novel predictions. The expression
139  of these transcripts is quantified along with the protein-coding genes and used in network
140  analysis to provide a more complete picture of the functional groupings involved in
141  adaptation to environmental changes. Including a variety of culture conditions that
142 replicate aspects of the host environment improves the chances that the expression of any
143  ncRNA that is restricted to one or more conditions is included in the network (Ami et al.,
144 2020).

145

146 Using WGCNA to implicate functional associations of non-coding RNA
147
148  Weighted gene co-expression network analysis (WGCNA) (B. Zhang & Horvath, 2005) has

149  been widely used to identify functional groups of genes, called ‘modules’, through the
150  application of hierarchical clustering to differential expression levels of RNA transcripts
151  in microarray or RNA-seq experiments. Recent studies have focussed entirely on the

152  protein-coding portion of the transcriptome, using WGCNA with RNA-seq to cluster the


https://doi.org/10.1101/2022.06.22.497203
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.22.497203; this version posted June 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

153  differentially expressed genes of Mycobacterium marinum in response to resuscitation
154  after hypoxia (Jiang et al., 2020) and Mycobacterium aurum infected macrophages (Lu et
155  al., 2021). Mtb microarray data have been used to cluster protein-coding genes that show
156  differential expression among species-specific strains (Puniya et al., 2013) and in response
157  to two different hypoxic models to identify potential transcription factors (Jiang et al.,
158  2016). Another recent network analysis, using a matrix deconvolution method followed by
159  module clustering, uses a large number of RNA-seq samples including deletion mutants,
160  infection models and antibiotic-treated samples as well as restricted media and culture
161  conditions (Yoo, et al., 2022). They identify 80 modules of protein-coding genes that each
162  approximate an isolated source of variance, together estimated to account for 61% of the
163  total variance seen in in the dataset. This proportion is reportedly lower than results from
164  similar analyses in other organisms, potentially due to the bias in the types of conditions
165 available in the database and/or the complex nature of regulation in Mtb (Yoo, et al.,
166  2022). However, the contribution of regulatory ncRNA elements may be a considerable
167  unexplored source of variance in this complex system. Here we use an alternative,
168  complementary approach by including ncRNA, as well as annotated protein-coding genes,
169  in the modules.

170

171  In this study, WGCNA was applied to multiple Mtb H37Rv datasets covering 15 different
172 culture conditions replicating various growth conditions, nutrient sources and stressors
173  encountered in the host environment. We present a global view of the non-coding genome
174  across an extensive WGCNA network and interrogate selected modules to identify
175  functional groupings between protein-coding and non-coding transcripts, as well as
176  between well-characterised genes and those with little functional annotation. The

177  correlation of the modules with the various conditions can identify participants in large-
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178  scale transcriptomic remodelling programs in response to changes in environmental
179  conditions.
180

181

152 MATERIALS AND METHODS
183

184  The overall workflow for this analysis is presented in Figure 1. All scripts for baerhunter,
185 WGCNA and subsequent analysis are available at:

186  https://github.com/jenjanel18/mtb_modules.

187
188  Figure 1. Analysis workflow
RNA-seq datasets 52 samples from four publicly available datasets (SRA, ArrayExpress)
mapped onto Mtb p . d . ds (tri tic. b
H37Rv reference re-processing and mapping reads (trimmomatic, bwa-mem)
Non-coding RNA
prediction baerhunter
Quantification (Rsubread, embedded in baerhunter)
Quantification of I . .
feature expression Normalisation/transformation (DESeq2: rlog)
Batch correction (Limma)
Gene co-expression
network analysis e
‘ Identify hub genes
AR MR Functional enrichment
members
189 Identify known regulons
190
191
192
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193  Data Acquisition and Mapping

194
195 Datasets were downloaded from SRA (https://www.ncbi.nlm.nih.gov/sra/docs/ ) and Array

196  Express (https://www.ebi.ac.uk/arrayexpress/) using the accession numbers listed in
197 Table 1. To minimise batch effects and ensure compatibility with RNA prediction
198  software, we limited analysis to datasets with similar library strategies. Samples were
199  included based on inspection to confirm that 1) samples were from monocultures of wild-
200 type Mtb H37Rv strain and 2) sequencing was using a paired-end, stranded protocol.
201 Reads from samples that passed quality control thresholds were trimmed using
202  Trimmomatic (Bolger et al, 2014) to remove adapters and low-quality bases from the 5'
203  and 3’ ends of the sequences. Trimmed reads were mapped to the H37Rv reference genome
204 (GenBank AL123456.3) using BWA-mem in paired-end mode (Li, Heng, 2013). All
205 samples had >70% percent reads mapped with an overall mean of ~ 27.75M mapped reads

206 and a range of 3.97M to 60.68M mapped reads per sample (Supp Table 1, ‘Samples’ tab).

207

208  Table 1. Datasets used in analysis. Accession numbers from SRA and Array Express.
Dataset Num of Instrument Library Layout Library Strand Library Avg Ribo

samples Strategy = Spot depleted
Length

PRJEB65014_3 3 Illumina MiSeq paired end reversely stranded = cDNA 150 Y
E-MTAB-6011
PRINA278760 22 Illumina HiSeq 2000 paired end reversely stranded = cDNA 50 Y
GSE67035
PRINA327080 15 Illumina HiSeq 2000 paired end reversely stranded = cDNA 180 Y
GSE83814
PRINA390669 12 Illumina NextSeq 500 = paired end reversely stranded = cDNA 287 N
GSE100097

209

210

211 Non-coding RNA prediction

212 Each dataset was run through the R-package, baerhunter (Ozuna et al., 2019), using the
213 ‘feature file editor’ function optimised to the most appropriate parameters for the
214  sequencing depth (https:/github.com/jenjanel18/mtb_modules). ‘Count features’ and

215  ‘tpm_norm_flagging’functions were used for transcript quantification and to identify low

10
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216  expression hits (less than or equal to 10 transcripts per million) in each dataset, which
217  were subsequently eliminated. When viewed on a genome browser, coverage at the 3’ ends
218  of putative sSRNA and UTRs often appears to decrease gradually, with the actual end of
219  the transcript appearing indistinct, compared to the 5 end. Prokaryotic ncRNA
220  transcripts may not demonstrate a clear fall-off of expression signal in RNA-seq, as
221  pervasive transcription is regulated by the changing levels of Rho protein observed in
222 different conditions (Bidnenko & Bidnenko, 2018; Wade & Grainger, 2014). These very
223 long predictions can mask predicted transcripts in the same region from other samples,
224 obscuring potentially interesting shorter transcripts expressed in different conditions. For
225  this reason, transcripts longer than 1000 nucleotides were eliminated before combining
226  the predictions between datasets. The predicted annotations for each dataset were
227  combined into a single annotation file, adding the union of the predicted boundaries to
228  the reference genome for H37Rv (AL123456.3). Predictions that overlapped with
229  annotated ncRNAs and UTR predictions that overlapped sRNA predictions from a
230  different dataset were eliminated. Transcript quantification was repeated on each dataset
231  using the resulting combined annotation file and the count data from each dataset was
232 merged into a single counts matrix.

233

234 DESeq2v1.30.1 (Love et al., 2014) was used on the complete counts matrix including the
235  filtered baerhunter predictions to calculate size factors, estimate dispersion and
236  normalise the data with the regularised log transformation function (Supp figures, S1 and
237  S2). The normalised data was checked for potential batch effects using PCA plots and
238  hierarchical dendrograms. Limma v3.46.0 (Ritchie et al., 2015) removeBatchEffect’ was
239  applied with a single batch argument to remove batch effects associated with the first
240  component (batching the data according to dataset due to technical differences) while

241  preserving differences between samples. The final hierarchical dendrogram, post-batch

11
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242 correction, indicates successful application as samples cluster by similar experimental
243  conditions, rather than by dataset alone (Figure 2 compared to Supp figure S3). Samples
244  from experiment PRJEB65014 continue to group together, but as they represent single
245  replicates in unique conditions, it is difficult to estimate the influence of confounding
246  batch effects for these samples.

247

248

249  Figure 2. Hierarchical dendrogram of rlog transformed and Zimma batch corrected

250  expression data by sample. The sample labels are coloured by dataset, demonstrating that
251  they are clustering by condition, rather than experiment.
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255 Creation of the WGCNA network

256  The normalised and batch-corrected expression matrix was used to create a signed co-
257  expression network using the R package, WGCNA v1.69 (Langfelder & Horvath, 2008),
258  with the following parameters: corType = "bicor", networkType = "signed", power = 14,

259  TOMType = "signed", minModuleSize = 20, reassignThreshold = 0, mergeCutHeight =

12
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260  0.15, deepSplit = 2. In this type of network, the ‘nodes’ are the genes, and the ‘edges’, or
261  links, are created when gene expression patterns correlate. In contrast to unweighted
262  binary networks where links are assigned O or 1 to indicate whether or not the genes are
263  linked, in a weighted network, the links are given a numeric weight based on how closely
264  correlated the expression is. WGCNA first calculates the signed co-expression similarity
265  for each gene pair. The absolute value of this correlation is raised to a power (determined
266 by the user, based on a scale-free topology model that mimics biological systems (Supp
267  figure S4) in order to weight the strong connections more highly than the weaker
268  connections. The resulting similarity matrix is used to cluster groups of genes with strong
269  connections to each other in a non-supervised manner (.e., it doesn’t use any previous
270  information about gene groups or connected regulons). A cluster dendrogram is created
271  (Supp figure, S8) and closely connected branches of the dendrogram are merged into
272 modules based on a cut-off value (also a parameter controlled by the user). The modules
273  are defined by a ‘module eigengene’ (ME), which explains most of the variance in the
274  expression values in the module. The connectivity of the MEs define the shape of the
275  overall network (Supp figure, S9). The modules can then be tested for potential
276  correlations with experimental conditions without incurring the same punitive penalties
277  for multiple testing as individual gene correlations would (Supp figure, S10). In signed
278  networks, correlation of the module with a condition can be in either the positive or
279  negative direction, as modules include transcripts that are similar in both the degree and
280  direction of correlation, allowing for a more fine-grained analysis than with unsigned
281  networks.

282

283  To test correlations of modules with experimental conditions, the individual RNA-seq
284  samples were assigned to a condition based on the experimental description in the project

285 metadata. Some of these conditions were shared among the different projects, so when

13
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286  appropriate, samples from different datasets were assigned the same condition, resulting
287  1in 15 tested conditions. For example, late-stage reaeration samples were tested along with
288  exponential growth samples, and samples that tested hypoxia and cholesterol utilisation
289  together were included in multiple conditions. Models of hypoxia differed between the
290 RNA-seq projects, and these samples were assigned to different conditions: ‘hypoxia’
291  versus ‘extended hypoxia’ (Supp Table 1, ‘Condition summary’ tab). All correlations were
292  made using robust biweight midcorrelation tests and all p-values were corrected for
293  multiple testing with the BH-fdr method (Benjamini & Hochberg, 1995). Significance was
294  evaluated as an adjusted p-value (paaj) of < 0.05.

295

296 Module Enrichment

297  Modules were interrogated for enrichment for Gene Onotology (GO) terms (Ashburner et
298  al., 2000; The Gene Ontology Consortium, 2021), Clusters of Orthologous Groups (COG)
299  (Galperinet al., 2021), KEGG pathway genes (Kanehisa et al., 2022), functional categories
300 and literature searches for known regulons. GO terms, COG term and KEGG pathway
301 enrichment were accessed programmatically using the David web service (Huang et al.,
302 2009b, 2009a; Jiao et al., 2012) to query the list of protein-coding genes from each module
303 for enrichment. Enrichment was determined using a modified one-sided Fisher’s Exact
304 Test (EASE’ score) with fdr correction for multiple testing, with pag < 0.01 considered
305  significantly enriched for a particular term or pathway, and pag < 0.05 for COG term.
306 Enrichment for the 11 functional categories from Mycobrowser annotation (Kapopoulou
307 etal., 2011) was determined using a one-sided Fisher’s Exact Test with fdr correction for
308  multiple testing. Modules were enriched for a particular functional category if pag; < 0.01.
309  Lists of genes associated with known regulons were mined from literature and enrichment
310  was tested using the same one-sided Fisher’s Exact Test as above with a pag; < 0.01 cut-

311 off for enrichment.

14
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312

313  Non-coding RNA prediction, network analysis and subsequent data manipulation was
314  performed with R (v4.0.5, 2021-03-31). All plots were made in R with the following
315 packages: WGCNA (v1.69), dendextend (v1.15.2), ggplot2(v3.3.5). Scripts and expression

316 data are available at https://github.com/jenjanel18/mtb _modules .

317

318
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319 RESULTS AND DISCUSSION

320

321 Mtb expresses an extensive range of ncRNA transcripts over a wide variety

322 of experimental conditions

323 Mycobacterium tuberculosis RNA-seq datasets were selected from publicly available data
324  to find experiments using the wild-type H37Rv strain and representing a range of growth
325  conditions the pathogen may encounter in a host environment. Four datasets passing our
326  quality standards were subjected to our analysis pipeline (see Material and Methods) and
327  included 52 samples under 15 different experimental conditions (Supp Table 1, ‘Samples’
328  tab). The R package, baerhunter (Ozuna et al., 2019), was used to predict ncRNA in
329  intergenic regions, antisense RNA (opposite a protein-coding gene) and UTRs at both the
330 5 and 3’ ends of genes by searching the mapped RNA-seq data for expression peaks
331  outside of the annotated regions in the reference sequence for H37Rv. Non-coding RNA
332  predictions from each dataset were filtered for low expression and combined to create a
333  single set of non-overlapping annotations that encompassed all predictions made from any
334  sample under any experimental condition. In total, 1283 putative sRNAs were predicted
335  (including both truly intergenic transcripts as well as those antisense to a protein-coding
336  gene, or annotated RNA) and 1715 UTRs which includes all transcribed regions outside
337  of annotated protein-coding sequences at both 5’ and 3’ ends, as well as the non-coding
338  regions between adjacent genes in operons. All putative ncRNA transcripts (sRNAs and
339 UTRs) were searched for a TSS near the start of the predicted 5 boundary using
340  previously published annotations (Cortes et al., 2013; Shell et al., 2015). Annotated TSSs
341  were found within 20 nucleotides of the 5’ end in 43% of the predicted sRNA transcripts.
342  Predicted 5 UTRs had a TSS within 10 nucleotides of the start in 42% of cases, compared
343  with 3% of the predicted 3 UTRs. Where the UTR covered the entire sequence between

344  two protein-coding regions (labelled as ‘between’ UTRs), 9% had a TSS in the first 10
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345  nucleotides of the sequence (Table 2 and Supp Table 2 ‘putative_sRNAs’, ‘putative_UTRs’
346  tabs).

347

348  Table 2. Tally of predicted expressed elements in the baerhunter-generated combined
349  annotation file. 4015 protein-coding genes were included in the annotation. *TSS
350 predictions from (Cortes et al., 2013; Shell et al., 2015).

351
Predicted element Number predicted With predicted TSS* (exponential
and starvation)
Total SRNA 1283 553
SRNA ‘intergenic’ 91 23
sRNA ‘antisense’ 1192 530
Total UTRs 1715 273
5’ UTRs 475 200
3’ UTRs 602 16
‘Between’ UTRs 638 57
352
353

354  The predicted sRNAs were further annotated using the accepted nomenclature
355 (Lamichhane et al., 2013) which identifies the putative ncRNA relative to annotated gene
356 loci and differently signifies truly intergenic sSRNAs and those that overlap any part of a
357  protein-coding region on the opposite strand. Most of the putative sSRNAs are antisense to
358 the protein-coding region of one or more genes, but 91 putative sRNAs have predicted
359  boundaries that do not overlap an annotated transcript on either strand (or overlap an
360 annotated transcript on the opposite strand by fewer than 10 nucleotides). This number
361  is most probably an underestimate of the truly ‘intergenic’ sSRNAs in the genome, as many
362  of the sSRNA predictions appear over-estimated at the 3’ end, effectively classifying them
363 as an antisense RNA even though the 5 half of the transcript does not overlap any genes
364 onthe opposite strand. Isoforms of annotated sSRNAs can be subject to post-transcriptional

365  processing to create an active transcript (Moores et al., 2017) and post-transcriptional
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366 processing of 3’ ends in vivo is more likely the norm for most prokaryotic transcripts
367 (Wang et al., 2019). However, for our purposes, any RNA-seq transcripts that extend to
368 overlap a protein-coding gene on the other strand in any dataset will be labelled as
369 antisense RNA.

370

371  The generated combined annotation file was used to quantify the expression of all 7043
372  expressed elements, including every annotated CDS, annotated ncRNA and predicted
373  ncRNA, in each sample. Raw counts of expression varied greatly among the datasets due
374  to different sequencing depth, as well as between some samples within datasets (as would
375  be expected with different environmental conditions), and only three protein-coding genes
376  showed no expression in any sample. The raw expression counts were transformed using
377 DESeq2’s rlog function (Love et al., 2014), and plots of the dispersion of count data show
378 that the median expression level between samples and between datasets has been
379  normalised (Supp figures S1, S2). The distribution of the normalised expression levels of
380 protein-coding regions alone shows consistent median expression levels across the entire
381 dataset, however distribution of the normalised data restricted to putative sSRNAs shows
382  more variability, with certain conditions showing increased or decreased expression of
383  these transcripts (Supp figures S5-S7). This is not unexpected, given that several studies
384  have identified pervasive transcription in hypoxic infection models, stationary phase and
385 dormancy. This is accompanied by a concomitant increase in non-rRNA expression
386  (especially antisense RNA transcripts) and in the number of predicted TSSs in Mtb and
387 M. smegmatis (a fast-growing, non-pathogenic strain) (Arnvig et al., 2011; Ignatov et al.,
388  2015; Martini et al., 2019).

389

390 Module networks represent groups of co-expressed genes and predicted non-

391 coding RNA
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392

393 Creation of the WGCNA network

394 A weighted co-expression network was created from the normalised RNA-seq expression
395 data using WGCNA (Langfelder & Horvath, 2008) (see Materials and Methods). This
396 program segregates genetic elements with similar patterns of expression over a range of
397  samples into modules. The modules represent sub-networks of connected genes, and
398  functional relationships can be explored among the members of the individual modules.
399  The ‘hub’ genes represent the most highly connected gene elements within a module and
400  have highest module membership values. Module membership is measured by correlation
401  of the expression of the individual genes with the module eigengene (ME), the vector that
402  best represents the variation in the module.

403

404  The signed co-expression network presented in this paper consists of 56 different modules,
405  assigning 97.6% of the expressed elements (CDS, putative UTRs and putative sRNAs)
406  into 55 modules, with 168 unassigned elements clustered in the ‘grey’ module (Supp Table
407 2, ‘Module_Overview’ tab). Module size ranged from 1086 to 25 expressed elements. The
408 modules (using the ME) were tested for correlations with the various conditions used in
409 the RNA-seq experiments (see Materials and Methods). The RNA-seq data was
410  categorised into 15 different experimental conditions in total with varying numbers of
411  replicates (Supp Table S1, ‘Condition Summary’ tab), therefore, a statistically significant
412  correlation of modules with every condition was not expected. However, some modules do
413  show significant correlations with conditions such as iron restriction, cholesterol media,
414  hypoxia and growth phase and this can be informative when considering the association
415  of the gene groups with biological processes (Figure 3).

416

417 Well-established regulons cluster together in single modules
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418 In many cases, the gene membership of the modules includes well-established regulons
419  or groups of functionally related genes, establishing the biological relevance of the module
420  sub-networks and proof of concept for the application of WGCNA on such a heterogenous
421  dataset. For example, the DosR regulon is a well-studied regulon associated with hypoxia
422  and stress responses (Du et al., 2016; Rustad et al., 2008; Voskuil et al., 2004). 40 of the
423 48 DosR-regulated genes are found in a single module, ‘greenyellow, which is negatively
424 correlated with reaerated culture and exponential growth (Figure 3) and enriched for the
425 GO term, ‘response to hypoxia’. Unsurprisingly, this represents statistically significant
426  enrichment of DosR-regulated genes in the module (one-sided Fisher’s exact test, paa=
427  6.6e-50). The ‘greenyellow’module is also enriched for genes from the PhoP regulon (one-
428  sided Fisher’s exact test, pa.gi=0.021) which is associated with hypoxic response and
429  coordination with the DosR regulon (Gonzalo-Asensio et al., 2008; Singh et al., 2020). The
430  KstR regulon includes 74 genes under control of the TetR-type transcriptional repressor,
431  KstR, known to be involved in lipid catabolism and upregulated during infection (Kendall
432 et al., 2007, 2010). The ‘turquoisé module is significantly enriched for known KstR-
433  regulated genes (one-sided Fisher’s exact test, padsj = 0.0026) with 35 of 74 KstR-regulated
434  genes clustering together in the module. This module showed significant positive
435  correlation with hypoxia, extended hypoxia and stationary growth phase, and a negative
436  correlation with exponential growth (Figure 3).

437

438  Other examples include genes involved in mycobactin synthesis which are nearly all found
439  in the ‘steelblue’module (positively correlated with the low iron condition), and the genes
440  of the DIM locus which are significantly enriched (one-sided Fisher’s Exact test,
441  paa=4.95e-5) in the ‘paleturquoise’ module (positively correlated for exponential growth
442  and reaerated culture and negatively correlated to slow growth conditions) (Figure 3). As

443  these examples show, known associated genes are co-located in modules which represent
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444  afunctional group of genes that have co-regulated expression under various experimental
445  conditions. The modules can be further explored to identify novel associations.

446

447

448  Figure 3. Heat map of correlation of module eigengene (ME) of each module with selected
449  experimental conditions. Correlation was calculated using biweight midcorrelation (bicor)

450 and p-values were adjusted for multiple testing (BH-fdr). Positive correlation is red,
451  negative correlation is blue. Non-significant correlations in grey (pagj < 0.05).
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454  Predicted non-coding RNAs are enriched In certain modules
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455  Putative sRNAs and predicted UTRs were distributed throughout all modules in the
456  network (Figure 4, Supp Table 2, ‘Module_Overview’ tab). The number of predicted
457  elements were enriched in certain modules: the two largest modules, turquorse’and ‘blue),
458  are significantly enriched for predicted sRNAs, and eight modules are statistically
459  enriched for predicted UTRs (one-sided Fisher’s exact test, pasj < 0.01, Supp Table 2,
460  ‘Module_Overview’ tab). A roughly linear relationship between the number of CDS and
461  the number of UTRs, is to be expected, given that UTRs are defined by the baerhunter
462  algorithm by their position at the start or end of protein-coding genes (Ozuna et al., 2019).
463  However, if the UTRs are positioned in an operon, there will be a smaller increase in the
464  relative number of UTRs with an increasing number of protein-coding genes, as UTRs
465 between two protein-coding genes are predicted as a single UTR. As a result, the two
466  modules with the highest number of predicted operons (from OperonDB, Chetal & Janga,
467  2015), ‘turquoise’and ‘browrn’, have a lower relative proportion of UTRs (Figure 5).

468

469  Within the module sub-networks, the tight co-expression of protein-coding genes and
470  ncRNA is reflected by the number of ncRNA found among the most connected elements
471  in the module. The ‘hub’ elements are those with the best correlation to the ME and
472  therefore the most tightly connected elements in the individual module networks. In 12
473  modules, ncRNA (both predicted and annotated) make up more than half of the elements
474  with module membership values (MM ) > = 0.80 (our threshold for identifying hub
475  elements) (Supp Table 2, ‘Hub_info’ tab). This implicates ncRNA as important members
476  of the regulatory pathways implemented to adapt to conditions such as hypoxia,
477  cholesterol media and low iron. The 30 annotated ncRNAs in the Mtb reference genome
478  (AL123456.3) are spread over 15 modules, with 10 of them hubs of the modules, and one
479  unassigned (‘grey’ module) (Supp Table 2, ‘Annotated ncRNA’ tab). For example,

480 Ms1/MTS2823, observed to be the most abundantly expressed ncRNA in expression
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481  studies over various stress conditions ( Arnvig et al., 2011; Arnvig & Young, 2012; Ignatov
482 et al., 2015; Sikovd et al., 2019), is a hub element in a module that is positively correlated
483  with hypoxia and negatively correlated with exponential and reaerated culture conditions
484  (Tightsteelbluel’, Figure 3). Mcr7/ncRv2395A, found to be part of the PhoP regulon
485  (Solans et al., 2014), is a hub in the ‘magenta’module enriched for elements in the KEGG
486  pathway for valine, leucine and isoleucine degradation and correlated positively with the
487  low iron condition (Figure 3). F6/ncRv10243/SfdS, a sSRNA upregulated in starvation and
488  mouse infection models, is thought to be involved in regulating lipid metabolism and long-
489  term persistence (Houghton et al., 2021). This ncRNA is a hub in a module found to be
490  enriched for the GO terms ‘lipid metabolism’ and ‘biosynthesis of fatty acids’ ( Zightcyan)
491  and found to be correlated positively with low iron and negatively with extended hypoxia
492  conditions (Figure 3).

493

494  Figure 4. Relative proportion of annotated CDS, predicted UTRs and predicted sRNAs in
495  each module, ordered by module size.

496
497
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508 UTR and adjacent ORF expression differ in nearly 50% of cases

509 We were interested to see how many of the predicted UTRs were assigned the same
510  module as the adjacent ORF—indicating whether the ORF and its adjacent UTR were co-
511  regulated. Intuitively, the UTR of a protein-coding gene would be expected to be expressed
512  asasingle transcript along with the ORF and show similar expression patterns. However,
513  both 5 and 3’ UTRs can act independently of the attached ORF and RNA abundance in
514 RNA-seq experiments reflects both transcription activity and transcript stability. For
515 example, some 5 UTRs are known to contain regulatory elements, such as riboswitches,
516  that alter the transcription of the downstream ORF (Dar et al., 2016; Kipkorir et al., 2021;
517 Schwenk & Arnvig, 2018; Warner et al., 2007), whereas sRNAs cleaved from 3’ UTRs have
518  been shown to regulate the stability of the remaining transcript--with different half-lives

519 as a result (Chao et al., 2012; Dar & Sorek, 2018; Menendez-Gil & Toledo-Arana, 2021).
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520  Of the baerhunterpredicted UTRs labelled 5' and 3’, the UTRs co-segregated with the
521 ORF they were closest to approximately half the time (Table 3). We would expect
522 correctly-identified 5 UTRs to utilise a TSS (whether or not there is a known predicted
523  TSS), whereas it appears functional 3 UTRs are more likely to be cleaved from the longer
524  mRNA transcript (Dar & Sorek, 2018; Menendez-Gil & Toledo-Arana, 2021; Ponath et al.,
525  2022). Our data confirms this® transcripts classified as 5 UTRs are much more likely to
526  have a predicted TSS in the first 10 nucleotides than transcripts classified as 3" UTRs
527  (42% vs 2.7%). Approximately 11% of the UTRs predicted to be between ORFs (labelled,
528 ‘Between’ UTRs) have predicted TSS (Table 3). The presence of a TSS in the first 10
529  nucleotides of the predicted UTR appeared to have little bearing on whether or not the
530 UTR and its adjacent ORF are assigned to the same module, with 56% of 5’ and 44% of 3’
531 UTRs with a predicted TSS co-assigned with their adjacent ORF partner. A similar
532 proportion of the ‘Between’ UTRs (38%) do not segregate with either the ORF upstream
533  or downstream, indicating their expression is, to some degree, independent of either
534  adjacent ORF. All UTRs that are in modules independent of their adjacent ORF(s) are
535  found in Supplementary Table 2, ‘independent_UTRs’ tab.

536

537 Table 3. UTRs and module assignment of adjacent ORFs. DS=downstream,

538  US=upstream. TSS indicates presence of annotated TSS in first 10 nucleotides of
539  predicted UTR (Cortes et al., 2013; Shell et al., 2015).

540
Total (excluding grey) Number with TSS Number in same Proportion of UTRs in
module as adjacent same module as ORF
ORF
5’ UTR 462 196 227 DS 48%
3’ UTR 592 16 296 US 49%
BTWN UTR 622 55 117 DS 19%
140 US 23%
126 both 20%
239 none 38%
541
542

543  Antisense RNAs are hubs in modules independent of cognate ORF
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544 It has been observed that the overall abundance of antisense RNA and other non-
545  ribosomal RNA increases upon exposure to stress such as hypoxia and nutrient restriction
546  (Arnvig et al., 2011; Ignatov et al., 2015), and in our network, ncRNA, including antisense
547 RNAs, were found to be well-connected hubs in module sub-networks associated with
548  known gene regulons, such as DosR and KstR. This supports the view that antisense RNA
549 may be part of specific regulatory networks, especially those that are involved in
550 adaptation to environmental conditions, rather than products of indiscriminate pervasive
551  transcription (Arnvig et al., 2011; Lloréns-Rico et al., 2016). Not unexpectedly, very few
552 (7%) of the predicted antisense transcripts were assigned to the same module as the
553  protein-coding region overlapping on the opposite strand (choosing the most downstream
554  locus in the event of multiple overlapping ORFs), signifying distinct patterns of expression
555 for transcripts on opposite strands, possibly due to independent or bi-directional
556  promoters and/or overlapping transcription termination sites. Bi-directional promoters
557 have been identified in multiple prokaryotic genomes, and competition for RNA
558 polymerase (RNAP) binding among divergently transcribed sense/antisense pairs may
559  function as a mechanism for regulation of gene expression (Ju et al., 2019; Warman et al.,
560 2021). Long 3’ UTRs that overlap with converging protein-coding genes on the opposite
561 strand (or with the 3° UTR) can create an ‘excludon’ regulatory arrangement, where
562  transcription of the two opposite mRNAs is simultaneously regulated by RNase targeting,
563  or mutually exclusive due to RNAP collision (Sdenz-Lahoya S. et al., 2019; Toledo-Arana
564 & Lasa, 2020). Examining the module groupings of the antisense RNAs and their base-
565  pairing target on the other strand may provide insight on which genes are regulated by
566  antisense transcription.

567

568 Focus on Selected Module Networks

569
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570  The large-scale transcription analysis presented here is useful for the more global
571  analysis of the overall trends related to ncRNA and transcription, but there is a great deal
572  of information to be gleaned by more fine-grained inspection of individual module
573  groupings. To discover novel associations in such a large and complex dataset, we have
574  selected a few modules for closer examination, focussing on those that contain gene groups
575  or regulons related to the tested conditions. Many of the modules that contain interesting
576  correlations or gene regulon enrichments also include an abundance of putative sRNAs
577 and UTRs. Using the ‘guilt by association’ principle, we can hypothesise that the well-
578  connected ncRNAs found among the module hub elements have a role in transcriptional
579  ‘remodelling’ in response to changes in environmental conditions such as growth on
580  cholesterol-containing media, restricted iron or hypoxia.

581

582  One condition that causes a major shift in the transcriptome is the adaptation of Mtb to
583 a cholesterol or lipid-rich environment, a process that involves a multitude of gene
584  pathways to facilitate the pathogen’s survival and persistence in the infected macrophage
585  (Del Portillo et al., 2019; Pandey Amit K. & Sassetti Christopher M., 2008; Pawelczyk et
586 al., 2021). In fact, a recent study, published after this analysis, observes differential
587  expression of over 500 protein-coding genes with a switch from glycerol to cholesterol as
588  the carbon source (Pawelczyk et al., 2021). Our network includes transcriptomes from
589  several samples that utilise cholesterol and fatty-acid containing media over a range of
590  growth conditions including hypoxia (SRA project: PRINA390669) (Aguilar-Ayala et al.,
591  2017) and although several modules have a significant correlation with the cholesterol
592  media trait, other modules with clusters of genes related to cholesterol catabolism are
593  correlated to hypoxia or extended hypoxia conditions. All of these modules are found to
594  contain a large number of predicted non-coding elements, confirming studies that show

595 increased ncRNA expression levels in response to lipid conditions and cholesterol,
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596  especially when combined with hypoxia; conditions meant to most resemble those
597  encountered in host infection models (Aguilar-Ayala et al., 2017; Del Portillo et al., 2019;
598  Soto-Ramirez et al., 2017).

599

600  Several modules correlating with the low iron condition show enrichment of genes
601  associated with siderophore synthesis, transport and regulation, along with redox sensors
602 and genes known to be upregulated in response to cholesterol media. Restricting iron
603  availability to growing cells is meant to replicate a host response to infection and will
604  stimulate a cascade of pathways to enable the pathogen to survive in a slow-growing, or
605 latent state. The co-expression of genes involved in metal ion homeostasis and genes
606  known to be involved in adaptation to cholesterol and lipids is supported by observations
607 1in arecent study that the presence of cholesterol causes changes in metal ion metabolism
608  (Pawelczyk et al., 2021) and closer inspection may uncover gene interactions related to
609  the metabolic changes made in anticipation of re-entry from hypoxic environments when
610  bacteria are particularly vulnerable to oxidative stress (Eoh et al., 2017; Gerrick et al.,
611  2018).

612

613  The data have been organised into an easily-accessible spreadsheet for researchers to
614  query particular genes or modules of interest and find associated protein-coding genes or
615 ncRNA (Supp Table 2). We anticipate this to be a useful resource to find ncRNA
616 candidates for further study, to identify associations of genes with unknown functions,
617 and to suggest roles for ‘moonlighting’ proteins that may be associated with unexpected
618  gene groupings.

619

620  The largest module includes the kstR regulon and is enriched for predicted sRNAs
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621  The ‘turquoise’ module contains more than 1,000 expressed elements, with over 50% of
622  the hubs being predicted sRNAs. It contains 461 protein-coding genes, including 34 of the
623 71 KstR regulon genes and 52 transcription factors (Rustad et al., 2014). 26 of the 32 kstR
624  regulon genes found to be differentially expressed in Mtb grown with cholesterol versus
625  glycerol as the main carbon source (Pawelczyk et al., 2021) are found in the ‘turquoise’
626  module, with 15 of them hubs. The hubs also include 10 transcription factors and DNA
627  binding proteins, including IdeR, FurA, KstR, KstR2 and SigB, anti-sigma factor ResA,
628  two annotated sRNAs (mcr11/ncRv11264c, and mpr6/mncRv1222) and many predicted
629  ncRNA elements including 131 predicted sRNAs and 26 UTRs (Supp Table 2, ‘CDS hubs,
630  ‘srna_hubs’ tabs). The module has 46 complete predicted operons from OperomeDB
631  (Chetal & Janga, 2015), and the highest number of consecutive ORF's in the genome of all
632  the modules.

633

634  The size of the turquoise’module, and the fact that it has resisted splintering into smaller
635  modules during the tree-cutting process, indicates that it includes many highly connected
636  gene operons involved in multiple interconnected stress response pathways. The module
637  shows enrichment for the GO terms ‘regulation of transcription’ and ‘cholesterol catabolic
638  process’, as well as for the KEGG pathway for steroid degradation (Supp Table 2, ‘Module
639  Overview tab). Despite the inclusion of genes linked specifically to cholesterol
640  metabolism, a significant correlation of the %urquoise’ module with the cholesterol-
641  containing media condition was not established; rather, the module shows positive
642  correlations with hypoxia (bicor = 0.41, padj = 0.001), extended hypoxia (bicor = 0.035, pad
643 = 0.002) and stationary (bicor = 0.34, pagi = 0.03) conditions, and a negative correlation
644  with exponential growth (bicor = -0.42, pagj = 0.009) (Figure 3). Transcriptomic changes in

645  response to lipid degradation include many genes related to redox maintenance which are
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646  found in the module, including redox-sensing whiB3 and whiB4 (Larsson et al., 2012;
647  Mehta & Singh, 2019).

648

649  Among the module hubs, are annotated sRNAs such as mecrl11/ncRv11264c, which has
650  been associated with dormancy and hypoxic conditions and shown to regulate the
651  expression of genes related to the metabolic remodelling associated with persistence and
652  slow growth states in Mtb (Girardin & McDonough, 2020). Other annotated ncRNA in
653 ‘turquoise’include: mpr6é (ncRv1222), G2 (ncRv11689¢), mcr16 (ncRv2243c), C8/4.5S RNA
654  (ncRv13722Ac), and another experimentally-verified ncRNA, mrsI (ncRv11846) that was
655  predicted as a somewhat longer transcript in this study (and in a previous study, ( Arnvig
656 et al., 2011) which extends antisense to the gene Rv1847
657  (putative_sRNA:m2096739_2097122 / ncRv1847c). MrsI has been found to be upregulated
658 in several growth states and stress conditions and is implicated in anticipatory regulation
659  of iron acquisition (Gerrick et al., 2018). Most of the predicted sRNAs in the turquoise’
660  hubs are classified as antisense transcripts, with 82 having predicted TSSs within 10 nt
661  of the start. In addition, 7 strictly ‘intergenic’ predicted sSRNAs are among the hubs. Four
662  of these have predicted TSS within 20 nucleotides of the start. (Supp Table 2,
663  ‘intergenic_putative_sRNAs’ tab).

664

665  Detoxification-linked proteins cluster in the module best correlated with cholesterol
666  media condition

667 The black’ module showed positive correlation with the cholesterol media condition
668  (bicor=0.54, paa=0.002) and negative correlation with low iron (bicor = -0.48, padj= 0.001)
669  (Figure 3). Many protein-coding genes involved in detoxification pathways are hubs in the
670  module, including several encoding transmembrane proteins such as the mmpL5 mmpS5

671  efflux pump operon (Rv0676c-Rv0677c), as well as the next gene downstream, Rv0678,
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672  which was identified as part of a ‘core lipid response’ in differential expression analysis in
673  lipid-rich media (Aguilar-Ayala, et al., 2017). The 5 UTR for Rv0677c and 3’ UTRs for
674  Rv0676¢c and Rv0677c are also hubs. This operon is involved in siderophore transport and
675 expressed in cholesterol and lipid-rich environments (Aguilar-Ayala, et al., 2017;
676  Pawelczyk et al., 2021). Other detoxification-linked genes in the module, such as the ABC-
677 family transporter efflux system, Rv1216¢-1219c¢ and the operon including PPE53
678 (Rv3159c), Rv3160c and Rv316lc, have also been implicated in transcriptomic
679  remodelling in response to cholesterol (Aguilar-Ayala et al., 2017; Pawelczyk et al., 2021).
680

681  Among the hubs are three predicted antisense RNAs. One antisense RNA, ncRv1358c
682  (putative_sRNA:m1530046_1530745) has a TSS near its start and is found antisense to
683  Rv1359. Rv1359 and the upstream gene, Rv1358, on the opposite strand are very similar
684  to each other (43.7% identity in 197 aa overlap) and to another gene elsewhere in the
685  genome, Rv0891c (48.5% identity in 204 aa overlap) (Kapopoulou et al., 2011). All three
686 genes are possible LuxR family transcriptional regulators which are thought to be
687 involved in quorum-sensing adaptations and contain a probable ATP/GTP binding site
688  motif (Chen & Xie, 2011; Modlin et al., 2021). Expression of this antisense sSRNA appears
689  to suppress the expression of the transcript on the opposite strand to varying degrees in
690 all conditions (Figure 6). Expression of a shorter transcript appears to begin inside the
691  Rv1359 ORF, where the transcript is not overlapped by the antisense transcript, possibly
692  utilising an internal T'SS at 1530774.

693

694

695 Figure 6. Expression of antisense transcript putative_sRNA:m1530046_1530745 (magenta bar) seems to
696 suppress the expression of most of Rv1359 and Rv1358. An internal TSS exists inside the Rv1359 CDS at
697 1530774 near where expression begins. Sample SRR5689230 from PRJNA27860, exponential growth on
698 cholesterol and fatty acid media. Strand coverage using the ‘second’ read of each pair mapping to the
699 transcript strand, visualised using Artemis genome browser (Carver et al., 2012).

700
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703

704  Two adjacent predictions, the 3 UTR for Rv1772 (putative_ UTR:p2006948_2007063)
705  followed by ncRv1773/ putative_sRNA:p2007213_2007377, are hubs in the ‘black’module.
706  Together, they extend to overlap the antisense strand of a large portion of Rv1773c, a
707  probable transcriptional regulator in the IclR-family, found in a different module
708  (‘navajowhite2). The 3 UTR for Rv1772 was previously identified as an abundant
709  antisense transcript during exponential growth (Arnvig et al., 2011). The start of the
710  predicted sRNA transcript has no known TSS and could instead be an extension of the
711  predicted 3 UTR (Supp figure S11). (When combining predicted annotations from
712 different datasets, long predicted UTRs that overlapped shorter sSRNA predictions were
713 discarded, see Methods). In E.coli, the IclR-family transcriptional regulators demonstrate
714 both activating and repressing activities on targets such as multidrug efflux pumps and
715  the aceBAK operon which regulates the glyoxylate shunt (Zhou et al., 2012). Ic/2a
716  (Rv1915) is one of the Mtb isoforms of the isocitrate/methylocitrate lyase gene, ace4, and
717  may be regulated by Rv1773c, as seen in E.coli. Icl2a, Rv1772, its predicted UTR and the
718  antisense RNA (ncRv1773) are all hubs in the black’module. /c/22 has been observed to
719  be upregulated with cholesterol as the sole carbon source and likely has a second function

720  as part of the methylcitrate cycle to convert the fatty acid metabolites propionate and
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721  propionyl CoA to less toxic compounds (Bhusal et al., 2017; Pawelczyk et al., 2021).
722  Another predicted antisense RNA in the black’ hubs, ncRv0027¢/
723  putative_sRNA:m31259_31967, has a TSS near its start (31967) and is antisense both to
724  Rv0027 and Rv0028, conserved hypothetical proteins with no known function found in
725  different modules.

726

727  The module including transcriptional regulator whiB1 and genes of kstR2 regulon, links
728  metal ion balance with cholesterol utilisation

729  The ‘lightcyan’ module 1s significantly enriched for genes under control of another TetR-
730  type repressor, KstR2, (one-sided Fisher’s exact test, pag = 4.27e-06) with 7 of the 15
731  known regulon genes found in the module. KstR2-regulated genes are known to be
732 involved in cholesterol utilisation (Kendall et al., 2010) and the protein-coding genes of
733 this module were enriched for the COG term, ‘lipid metabolism’, and KEGG pathways,
734  ‘Biosynthesis of unsaturated fatty acids’ and ‘Fatty acid metabolism’. However this
735  module did not significantly correlate with the cholesterol media condition. Instead, the
736 ME was positively-correlated with the low iron condition (bicor = 0.59, pad¢j = 9e-5) and
737  negatively-correlated with the extended hypoxia condition (bicor = 0.41, pasj = 0.008)
738  (Figure 3). The correlation of this ME with the low iron condition implies that there are
739  expressed elements within the module that are involved in iron homeostasis, possibly in
740  tandem with adaptation to cholesterol. Intriguingly, one of the hub genes of this module
741  encodes the redox-sensing transcriptional regulator, WhiB1. This transcription factor is
742  known to be stimulated by a variety of stress conditions and in vivo, and binds an iron-
743 sulfur cluster (Larsson et al., 2012; L. J. Smith et al., 2010).

744

745  The hubs of the Zightcyan’module include several predicted sRNAs, and the annotated

746  sRNA, F6. F6/ncRv10243/SfdS is a sigF-dependent ncRNA which has been shown to be
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747  induced in nutrient starvation, oxidative stress, acid stress (Arnvig & Young, 2009;
748  Houghton et al., 2021) and the fatty acid hypoxia model (Del Portillo et al., 2019). In
749  addition to being expressed from its own promoter, F6/SfdS has been proposed to be co-
750  transcribed with the upstream gene fadA2 (Rv0243), a probable acetyl-CoA
751  acyltransferase; however, fadAZ2 is clustered in a different module from SfdS, one
752  associated with iron acquisition (‘violet, see below). One of the predicted sRNAs in the
753  module hubs is antisense transcript ncRv2489/putative_srna:p2801108_2801678 with a
754  TSS at 2801108. This overlaps the 3’ end of PE-PGRS43 (Rv2490c) (Figure 7). There is a
755  short reading frame (30 nucleotides, 10 amino acids) initiating from a Methionine at this
756  TSS that suggests a possible dual-function sSRNA or sORF with independent function. The
757  TSS for the predicted sRNA overlaps the 5’ end of Rv2489c, a short, hypothetical ‘alanine-
758  rich protein’. The TSSs for these convergently overlapping transcripts are 42 nts apart
759  (Rv2489c appears to be a leaderless transcript based on dRNA-seq and position of TSS)
760 and may involve RNAP collision if both are transcribed simultaneously. Therefore,
761  transcription of the predicted sRNA could impact either Rv2489¢ and/or PE-PGRS43
762  expression through two different mechanisms. Other hub sRNAs in Zightcyan’include
763  ncRv1450/putative_sRNA:p1630466_1631246, which has a TSS at 1630466 and is
764  antisense to the 3’ end of PE-PGRS27 (Rv1450c) and putative_sRNA:p3936733_3936893
765  / ncRv3509 which includes a predicted TSS at 3936720 which overlaps the 3’ end (and
766  predicted 3 UTR) of Rv3509¢ (i/v.X), a probable acetolactate synthase (found in the ‘violet’
767  module).

768

769 Figure 7. Antisense sRNA, ncRv2489/putative_srna:p2801108_2801678, (magenta bar) overlaps two
770 transcripts and may encode a short peptide. TSS for sRNA indicated in red and corresponding amino acid
771 highlighted in pink. Sample SRR5689230 from PRJNA390669, exponential growth on cholesterol and fatty
772 acid media. Strand coverage using the ‘second’ read of each pair mapping to the transcript strand, visualised
773  using Artemis genome browser (Carver et al., 2012).
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774
775

776

777  The module best correlated with the low iron condition includes genes related to metal
778  ion and fatty acid homeostasis

779  Another module that is positively correlated to the low iron condition is the ‘violet’'module
780  (bicor=0.61, pasi=6e-05, Figure 3). This module contains most of the ESX-3 genes (Rv0282-
781  Rv0292) related to siderophore-mediated iron (and zinc) uptake in Mtb (Serafini et al.,
782  2013; L. Zhang et al., 2020), with two of these representing hubs in the module. The gene
783  preceding the ESX-3 genes, Rv0281, a possible S-adenosylmethionine-dependent
784  methyltransferase involved in lipid metabolism (though its position in the genome would
785  suggest regulation could be linked to ESX-3 (Lunge et al., 2020)), is in the module, as well
786  as an ESX-5 gene, Rv1797 (eccE5). The module also contains another Zur-regulated gene,
787  Rv0106, which is a potential zinc-ion transporter (Zondervan et al., 2018). Among the
788  hubs of the module are several genes related to lipid metabolism and fatty acid synthesis,

789  including: probable triglyceride transporter, Rv1410; the operon consisting of Rv0241c
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790  (AtdX), Rv0242c (fabG4), and Rv0243 (fadA2) (Dutta, 2018); and a gene involved in the
791  pentose phosphate pathway, zwf2 (Rv1447c).

792

793  There are some well-connected ncRNAs in the “violet’ module, including a predicted
794  antisense RNA to Rv0281, ‘ncRv0281c¢’. This putative sSRNA has a predicted TSS at the 5’
795  end and is transcribed divergently from Rv0282 (eccA3). This is one of the rarer cases
796  where the antisense transcript and cognate protein-coding gene (Rv0281) are clustered in
797  the same module. The prevailing direction of transcription at this locus may be a result of
798  competition for RNAP binding at a bi-directional promoter in the predicted 5° UTR of
799  Rv0282 which also clusters in the module. Another predicted sRNA in the module,
800 ncRv3508/putative_sRNA:m3932046_3932369 has a predicted TSS at 3932369 and
801  transcribed opposite to a central region of Rv3508c, PE_PGRS54, a gene in the
802  ‘darkolivegreen’ module which is enriched for PE/PPE genes (padj = 4.12e-09).

803

804  There are several UTRs in the module hubs, including a 3° UTR for the gene Rv1133c,
805  metFE’ the gene is found in another module, grey60. This might be an example of a SRNA
806  differentially transcribed or cleaved from the 3° UTR of a protein-coding gene. This UTR
807  was also identified as abundantly expressed in exponential culture (Arnvig et al., 2011).
808  Thereis a 3 UTR for Rv0292 (eccE3, also a hub in the ‘violet’module) that is antisense to
809  alarge part of the 3’ end of Rv0293c which has a converging orientation to Rv0292 (Supp
810  figure S12). Rv0293c is found in a different module (‘furquoise) and has a 3’ UTR in the
811  ‘lightsteelbluel’ module. The overlapping 3’ ends of the genes could function to regulate
812  transcription, possibly to facilitate bi-directional termination brought about by RNAP

813  collision.

814

815
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st6 CONCLUSION

817  This paper presents a large-scale network analysis of over 7000 transcripts expressed by
818  Mtb under a variety of conditions. The modules group together clusters of co-expressed
819  protein-coding genes, as well as ncRNA transcripts predicted from RNA-Seq signals. The
820 ncRNAs are unevenly distributed among modules; modules with the highest proportion
821  of sSRNAs correlated negatively to exponential growth and correlated positively to hypoxia
822 and the extended hypoxia model (turquoise, ®blue, ‘skyblue) (Figures 3 and 4),
823  supporting the observation that high levels of ncRNA are associated with Mtb’s response
824  to hypoxic stress (Arnvig et al., 2011; Ignatov et al., 2015; Martini et al., 2019). The
825  prevalence of antisense RNA in the hubs of these and other modules, and the fact that the
826  complementary ORF is usually excluded, implicates antisense transcription as part of a
827  regulation strategy through mechanisms of divergent transcription or in order to regulate
828  mRNA stability (Vargas-Blanco & Shell, 2020; Warman et al., 2021); strategies that may
829  differ among the members of the MTBC (Dinan, Adam M. et al., 2014). 3 UTR transcripts
830  in modules distinct from their upstream ORF implies independent function from the ORF.
831 sRNAs generated from 3’ UTRs have been reported in other prokaryotes and evidence
832  points to widespread mRNA processing that could release independent transcripts at the
833 3 end (Dar & Sorek, 2018; Desgranges et al., 2021; Updegrove et al., 2019; Wang et al.,
834  2019). In compact bacterial genomes, 3 UTRs are also found to overlap other 3> UTRs in
835 a converging transcription pattern which may provide a mechanism for regulating the
836  expression or stability of either transcript.

837

838  The gene modules presented here are somewhat ‘blunt-force instruments’ applied to
839  transcripts that are part of overlapping, coordinated responses to various environmental
840  cues, but restricted to a single module grouping. Recent work exploring differentially

841  expressed genes in response to various environmental conditions have revealed highly
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842  integrated adaptation responses. In other words, a single environmental change, e.g.
843  hypoxia or growth on fatty acids or cholesterol, stimulates transcriptomic remodelling
844  across diverse cellular functions, perhaps acting as cues to stimulate anticipatory
845  pathways and ready the pathogen for the next challenge (Aguilar-Ayala et al., 2017; Eoh
846 et al., 2017; Gerrick et al., 2018). Confounders such as dual-function, ‘moonlighting’,
847  proteins may weaken the correlation of a module with a specific condition and may create
848  noise in otherwise well-connected modules. However, focussing on the best connected
849  transcripts in various modules can uncover the unexpected connections between genes of
850  diverse pathways.

851

852  Other methods of network analysis, such as those using deconvolution methods, allow
853  genes to be members of more than one module and are considered less ‘noisy’ than
854  clustering methods, such as WGCNA. However, these methods require extremely large
855 numbers of samples to perform well, may be subject to batch effect issues between
856  experimental datasets and characterise a limited proportion of the protein-coding
857  transcripts expressed by Mtb (Saelens et al., 2018; Yoo, et al., 2022). Predicting ncRNA
858 from different datasets involves a significant degree of quality control, parameter
859  adjustment and manual curation, limiting the number of datasets that could be included
860  in our analysis. Including more data would most likely strengthen the correlations with
861  certain conditions and improve the overall specificity of the modules. However, the work
862  presented here confirms that ncRNA are important players in adaptation responses, and
863  their associations with the protein-coding genes in their assigned modules provides
864  context for their activity.

865

866  The few modules discussed in depth in this paper represent a very limited snapshot of

867  this extensive co-expression network. Modules of interest can be identified by correlations
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to experimental conditions, associated GO terms, functional categories, or gene group
enrichment. The supplementary tables provide information about the module association,
membership values, TSSs and for UTRs, the module membership of the adjacent ORF's
for each predicted ncRNA. This analysis can add context to the circumstances of
expression of previously identified ncRNAs and conserved hypothetical proteins by
associating their expression with functionally-characterised protein-coding genes in the
same module, as well as identifying novel ncRNA candidates for further investigation

such as structural analysis, target prediction and ultimately, experimental validation.
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