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Abstract22

Predicting the adaptation of populations to a changing environment is crucial to assess23

the impact of human activities on biodiversity. Many theoretical studies have tackled this24

issue by modeling the evolution of quantitative traits subject to stabilizing selection around25

an optimum phenotype, whose value is shifted continuously through time. In this context,26

the population fate results from the equilibrium distribution of the trait, relative to the27

moving optimum. Such a distribution may vary with the shape of selection, the system of28
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reproduction, the number of loci, the mutation kernel or their interactions. Here, we de-29

velop a methodology that provides quantitative measures of population maladaptation and30

potential of survival directly from the entire profile of the phenotypic distribution, without31

any a priori on its shape. We investigate two different models of reproduction (asexual and32

infinitesimal sexual models of inheritance), with general forms of selection. In particular,33

we recover that fitness functions such that selection weakens away from the optimum lead34

to evolutionary tipping points, with an abrupt collapse of the population when the speed of35

environmental change is too high. Our unified framework furthermore allows highlighting36

the underlying mechanisms that lead to this phenomenon. More generally, it allows dis-37

cussing similarities and discrepancies between the two reproduction models, the latter being38

ultimately explained by different constraints on the evolution of the phenotypic variance.39

We demonstrate that the mean fitness in the population crucially depends on the shape of40

the selection function in the sexual infinitesimal model, in contrast with the asexual model.41

In the asexual model, we also investigate the effect of the mutation kernel and we show that42

kernels with higher kurtosis tend to reduce maladaptation and improve fitness, especially in43

fast changing environments.44

1 Introduction45

Rapid environmental changes resulting from human activities have motivated the devel-46

opment of a theory to understand and predict the corresponding response of populations.47

Efforts have specially been focused on identifying conditions that allow populations to adapt48

and survive in changing environments [e.g. Lynch et al., 1991, Lynch and Lande, 1993,49

Burger and Lynch, 1995, for pioneering work]. To this aim, most theoretical studies have50

modeled the evolution of polygenic quantitative traits subject to stabilizing selection around51

some optimal phenotype, whose value is shifted continuously through time [see Kopp and52

Matuszewski, 2014, Walters et al., 2012, Alexander et al., 2014]. A major prediction of53

these early models is that when the optimal phenotype changes linearly with time, it will54

be tracked by the mean phenotype in the population with a lag that eventually stabilizes55

over time. This evolutionary lag, which quantifies the maladaptation induced by the envi-56

ronmental change, is predicted to depend on the rate of the change, on the genetic standing57

variance for the phenotypic trait and on the strength of stabilizing selection on the trait.58

The maladaptation of the population due to the environmental change, also decreases the59

mean fitness of the population, which is commonly defined as the lag load orevolutionary60

load [Lynch and Lande, 1993, Lande and Shannon, 1996]. Thus, above a critical rate of61

change of the optimal phenotype with time, the evolutionary lag is so large that the lag-load62

of the population will rise above the value that allows its persistence and the population will63

be doomed to extinction.64

These predictions have typically been derived under the assumptions of (i) a particular65

form of selection, (ii) a constant genetic variance for the evolving trait, (iii) a Gaussian66

distribution of phenotypes and breeding values in the population. The selection function,67

describing how the Malthusian fitness declines away from the optimum, has typically a68

quadratic shape in many models [Bürger, 1999, Kopp and Matuszewski, 2014]. However,69

the shape of selection functions is difficult to estimate and some studies suggest that it70

strongly deviates from a quadratic shape in the case of phenological traits involved in cli-71

mate adaptation [Gauzere et al., 2020]. Moreover, the dynamics of adaptation become more72

complex when the shape of selection deviates from the quadratic form and few theoretical73

studies have addressed this issue. Recently, [Osmond and Klausmeier, 2017, Klausmeier74
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et al., 2020] have shown that “evolutionary tipping points” occur when the strength of selec-75

tion weakens away from the optimum. In this situation, the population abruptly collapses76

when the speed of environmental change is too large. In this paper, we aim to investigate77

in a general setting the effects of the shape of selection functions on the adaptation of the78

population under environmental changes.79

The genetic standing variance also plays a key role in the adaptation to changing envi-80

ronments and the determination of the critical rate of change. In many quantitative genetic81

models, this variance is assumed to be constant. Although it is approximately true at a82

short time scale, over a longer time scale the variance in the population is also subject to83

evolutionary change. More generally, obtaining mathematical predictions for the dynam-84

ics and the equilibrium value of the variance remains a notoriously difficult issue for many85

theoretical population genetics models [Barton and Turelli, 1989, Bürger, 2000, Barton and86

Keightley, 2002, Johnson and Barton, 2005, Hill, 2010]. How the genetic variance evolves87

in a changing environment has therefore been explored mostly through simulations [Jones88

et al., 2012, Bürger, 1999, Waxman and Peck, 1999]. In our paper, we overcome this problem89

by modeling the evolution of the entire phenotype distribution, which in particular provides90

insights on the effect of maladaptation, induced by environmental changes, on the evolution91

of genetic standing variance.92

Many theoretical works assumed that the phenotype distribution is Gaussian [Lynch93

et al., 1991]. In the absence of environmental change, there are indeed many circumstances94

where the phenotypic distribution in the population is well captured by Gaussian distribu-95

tions in quantitative genetics models. For example, in asexual populations, the distribution96

of a polygenic trait is Gaussian at mutation-selection equilibrium, providing that mutation97

effects are weak and selection is quadratic [Kimura, 1965, Lande, 1975, Fleming, 1979]. In98

the case of sexual reproduction, similar outcomes are expected with the celebrated Fisher in-99

finitesimal model of inheritance introduced by Fisher [1918]. In this model, quantitative traits100

are under the control of many additive loci and each allele has a relatively small contribution101

on the character [Fisher, 1918]. Within this framework, offspring are normally distributed102

within families around the mean of the two parental trait values, with fixed standing vari-103

ance [Turelli and Barton, 1994, Turelli, 2017, Barton et al., 2017, and references therein].104

As a result, the phenotype distribution of the full population is a Gaussian under various105

assumptions on the selection function (see Turelli and Barton 1994 under truncation selec-106

tion, or see [Raoul, 2021] and [Calvez et al., 2019] for a wider class of selection functions).107

In the process of adaptation to environmental change, since the mean phenotype is lagging108

behind the optimum, selection however may induce a skew in the distribution [Jones et al.,109

2012]. The distribution of the mutational effects can also have a strong influence on the dis-110

tribution as well, in particular when the evolutionary lag is large [Waxman and Peck, 1999].111

The Gaussian approximation of the phenotypic distribution should therefore naturally be112

questioned for both model of inheritance (asexual and sexual infinitesimal model).113

The main objective of our work is to derive signatures of maladaptation at equilibrium,114

e.g. the evolutionary lag, the mean fitness and the genetic standing variance, depending on115

some general shape of selection and features of trait inheritance. Those three components116

are linked by two generic identities describing the demographic equilibrium and the genetic117

equilibrium. Would the genetic variance be known, it would be possible to identify both118

the evolutionary lag and the mean fitness [Kopp and Matuszewski, 2014]. In the general119

case, a third relationship is, however, needed. To this aim, we shall compute accurate120

approximations of the phenotypic distribution. Several methodological alternatives have121

been developed to unravel the phenotypic distribution, without any a priori on its shape.122
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First methods attempted to derive the equations describing the dynamics of the mean, the123

variance and the higher moments of the distribution [Lande, 1975, Barton and Turelli, 1987,124

Turelli and Barton, 1990, Frank and Slatkin, 1990]. Then in his pioneering work, Burger125

[1991] derived relationships between the cumulants of the distribution, which are functions of126

the moments. However this system of equations is not closed, as the cumulants influence each127

other in cascade. More recently, Martin and Roques [2016] analyzed a large class of integro-128

differential models where the trait coincides with the fitness, through the partial differential129

equation (PDE) satisfied by the cumulant generating function (CGF). They applied their130

approach to the adaptation of asexual populations facing environmental change, using the131

Fisher Geometric Model for selection and specific assumptions on trait inheritance (diffusion132

approximation for the mutational effects) [Roques et al., 2020]. However, the extension of133

their method to different models of selection or trait inheritance (general mutational kernel)134

seems difficult mainly because it relies on specific algebraic identities to reduce the complexity135

of the problem.136

Here, we use quantitative genetics models based on integro-differential equations to handle137

various shapes of stabilizing selection, and trait inheritance mechanisms. While we deal with138

a large class of mutational kernels (including thin- and fat-tailed kernels) in the asexual139

model, we consider the Fisher infinitesimal model as a mechanism of trait inheritance in140

sexually reproducing populations. We assume that the environment is changing linearly141

with time, as in the classical studies reviewed in [Kopp and Matuszewski, 2014]. In order142

to provide quantitative results, we assume that very little variance in fitness is introduced143

in the population through either mutation or recombination events during reproduction.144

It allows some flexibility about the trait inheritance process as well as the shape of the145

selection function. Under this assumption of small variance regime, a recent mathematical146

methodology had been developed to derive analytical features in models of quantitative147

genetics in asexual populations in fixed phenotypic environment [Diekmann et al., 2005,148

Perthame and Barles, 2008, Lorz et al., 2011, Mirrahimi and Roquejoffre, 2016, Mirrahimi,149

2017, Calvez and Lam, 2020]. This asymptotic method was first introduced by Diekmann150

et al. [2005] and Perthame [2007] in the context of evolutionary biology as an alternative151

formulation of adaptive dynamics, when the mutational effects are supposed to be small, but152

relatively frequent. Recently, this methodology has been also applied to the infinitesimal153

model for sexual reproduction in a stationary fitness landscape [Calvez et al., 2019, Patout,154

2020]. In the present paper, we apply this methodology to the case of a moving optimum.155

In this context, the extension to the infinitesimal model for sexual reproduction is new to156

the best of our knowledge.157

From a mathematical perspective, the assumption of small variance regime is analogous158

to some asymptotic analysis performed in mathematical physics, such as the approximation159

of geometric optics for the wave equation at high frequency [Evans, 2010, Rauch, 2012], semi–160

classical analysis for the Schrödinger equation in quantum mechanics [Dimassi and Sjostrand,161

1999, Zworski, 2012], and also the large deviation principle for stochastic processes [Fleming,162

1977, Evans and Ishii, 1985, Friedlin and Wentzell, 2012].163

Conversely to previous methods focusing on the moments of the phenotypic distribution,164

our approach focuses on the entire phenotypic distribution and it provides an accurate ap-165

proximation of the phenotypic distribution even if it deviates significantly from the Gaussian166

distribution. As a result, our method allows deriving analytical formulas for biologically167

relevant quantities, that is for instance the evolutionary lag measuring maladaptation, the168

genetic standing variance of the population, the lag-load depressing the population mean169

fitness and critical rates of environmental changes in a gradually changing environment,170
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without solving the complete profile of the distribution and for a general class of selection171

functions and reproduction models. We are consequently able to answer the following issues172

• What is the effect of the shape of selection on the adaptation of a population to con-173

tinuously changing environment?174

• How does the distribution of mutational effects affect the adaptation dynamics?175

• Does the choice of a particular reproduction model influence predictions about the176

adaptation dynamics of a population?177

2 Models and methodology178

Equilibrium distribution and mean fitness (λ, F )

λ F (z) = B(F )(z) + c∂zF (z) − µ(z)F (z), z ∈ R

Reproduction Changing environment Selection

Small variance parameter – ε

ε2 :=
σ2α

β

Ratio between genetic scale σ2 and selection scale
β

α

Distribution transformation – Rescaling U

Asexual Reproduction

Standard deviation:

∼

p

"

Phenotypical trait

F(z)

U(z) = �" logF(z)

Sexual Reproduction

Standard deviation:

∼ "

Phenotypical trait

F(z)

U(z) = −"
2 logF(z)

Small variance Limit – ε → 0

U(z) ≈ U0(z) U(z) ≈ U0(z) + ε2U1(z)

λ0 = mean fitness

z∗

0
= evolutionary lag

Var(F ) = standing variance.

Macroscopic properties

Global description

Full distribution

Figure 1: Schematic description of our methodology. To describe the equilibrium F we need the
following steps: (1) Identify the scaling parameter ε and rescale the equation satisfied by the
distribution F ; (2) Transform the distribution F into U. The transformed distribution U is the
logarithmic of the density F , normalized by the ratio ε in the asexual reproduction case and by
ε2 in the infinitesimal sexual reproduction case; (3) Identify the limit equation for U as ε → 0
(orange boxes) and deduce macroscopic properties (green box) such as the mean fitness λ0, the
evolutionary lag z∗0 in the population or the phenotypic variance at equilibrium Var(F ).

First, we describe in detail our general model of mutation-selection under changing en-179

vironment with two different reproduction models (asexual and infinitesimal sexual) (Sec-180

tion 2.1). Then, we introduce the rescaled model including the variance parameter ε (Sec-181

tion 2.2) and we describe our methodology to investigate the regime of small variance (see182
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Figure 1 for a sketch of the methodology). It is based on the asymptotic analysis with respect183

to this small parameter (Section 2.3). In Section 3, we provide, in the regime of small vari-184

ance, analytical formula for the different characteristic quantities of the evolving population185

— mean fitness, evolutionary lag or standing variance — for the two different reproduction186

models: asexual model (Section 3.1) and infinitesimal sexual model (Section 3.2). After187

scaling back our results in the original units, we can compare the two reproduction regimes188

and discuss the effect of changing environment on different characteristics of the population:189

the lag (Section 4.1), the mean fitness (Section 4.2) and the standing variance (Section 4.3).190

Furthermore, we discuss the persistence of the population according to the speed of the191

changing environment (Section 4.4) and we describe numerically the whole distribution of192

the population (Section 4.5).193

2.1 The general model under changing environment194

We consider a continuously growing population with overlapping generations and density195

dependence. The population is structured by a one–dimensional phenotypic trait, denoted196

by x ∈ R. The density of individuals with trait x is f(t,x) at time t > 0. For the sake197

of simplicity, the birth rate β(x) = β is a positive constant. Selection acts through the198

intrinsic mortality rate µ(x), by means of stabilizing selection around some optimal value.199

In order to capture the dynamics of the population under a gradual environmental change,200

we assume that the optimal trait x = 0 is shifted at a constant speed c > 0. We define the201

phenotypic lag as the difference between the phenotypic value x and the optimal value at202

time t: z = x−ct. It quantifies the maladaptation of an individual of trait x in the changing203

environment. The intrinsic mortality rate µ is decomposed as follows204

µ(z) = µ0 +m(z) , (2.1)

where µ0 is the basal mortality rate at the optimum at low density. We assume that β > µ0 to205

ensure that the population at the optimum will not go extinct in the absence of environmental206

change. The function m(z) = m(x−ct) is the increment of mortality due to maladaptation.207

The function m ⩾ 0 attains its unique minimum value at z = 0 where m(0) = 0, and it is208

increasing with respect to |z|: m is decreasing on (−∞, 0) and increasing on (0,∞). The209

strength of stabilizing selection is captured by the positive parameter210

α = µ′′(0) = m′′(0) > 0 . (2.2)

The dynamics of the density f(t,x) is given by the following equation:211

∂tf(t,x) +
(

µ(x− ct) + (β − µ0)ρ(t)
)

f(t,x) = βB(f(t, ·))(x) , (2.3)

where the term ρ(t) =
∫

R
f(t,x′)dx′ corresponds to the size of the population. This nonlinear212

term introduces density–dependent mortality in the model.213

The operator B describes how new individuals with phenotype x are generated depending214

on the whole phenotypic density. For simplicity, we assume no environmental effects on the215

expression of the phenotype and phenotypic values equal to breeding values. We consider216

the two following scenarios for the reproduction operator B:217

Asexual genetic model of reproduction with mutations. We first consider the218

case of asexual reproduction where the phenotype of an offspring x is drawn randomly around219

the phenotype of its single parent x′. The mutation kernel K describes the distribution of220
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the effects of mutations. The reproduction operator has then the following expression:221

B(F)(x) = 1

σ

∫

R

K

(

x− x′

σ

)

F(x′) dx′ , (2.4)

where σ2 is the mutational variance and K is a symmetric normalized probability density222

function. We furthermore assume that K decays faster than some exponential function for223

large |y|. This is usually called a thin–tailed kernel. This corresponds to the scenario where224

the mutations with large effect on phenotypic traits are rare.225

The extremal case corresponding to accumulation of infinitesimal effects of mutations is226

referred to as diffusion approximation. This translates into the following formula227

B(F)(x) = F(x) +
σ2

2
∂2
x
F(x) , (2.5)

In this case, the shape of the mutation kernel does not matter and only the variance remains.228

In the absence of selection, the standing variance of the phenotypic distribution thus229

increases indefinitely in this model. This asexual model does not impose any strong constraint230

on the standing variance of the phenotypic distribution of the population, contrary to the231

next case we consider (see below).232

Infinitesimal model of sexual reproduction. Secondly, we consider the case where233

the phenotype of the offspring x is drawn randomly around the mean trait of its parents234

(x1,x2), following a Gaussian distribution G
σ

2 with a given variance σ2/2. This is known as235

the Fisher infinitesimal model [Fisher, 1918, Bulmer, 1980, Turelli and Barton, 1994, Tufto,236

2000, Barton et al., 2017]. The reproduction operator has then the following expression:237

B(F)(x) =
∫∫

R2

G
σ

2

(

x− x1 + x2

2

)

F(x1)

(

F(x2)
∫

R
F(x′

2) dx
′
2

)

dx1dx2 , (2.6)

where G
σ

2 denotes the centered Gaussian distribution with variance σ2/2. Here the pa-238

rameter σ2 corresponds to the genetic variance at linkage equilibrium in the absence of239

selection [Bulmer, 1971, Lange, 1978, Bulmer, 1974, Santiago, 1998, Turelli and Barton,240

1994]. We can observe that, conversely to the previous asexual model, the infinitesimal241

model generates a finite standing variance in the absence of selection. Thus the dynamics242

of the standing variance are more constrained in the infinitesimal model than in the asexual243

model. However, the genetic variance at linkage equilibrium σ2/2 plays an analogous role244

in our analysis, as the variance of the mutation kernel σ2 from the asexual model (that is245

why we use the same notation). In particular, they both determine the phenotypic vari-246

ance among offspring born to the same parents and therefore scale the input of phenotypic247

diversity through reproduction in the population.248

Equilibrium in a changing environment In this paper, we focus on the asymptotic249

behavior of the model, studying whether the population will persist or go extinct in the long250

term. In order to mathematically address the problem, we seek special solutions of the form251

f(t,x) = F(x−ct). These solutions correspond to a situation where the phenotypic distribu-252

tion F has reached an equilibrium, which is shifted at the same speed c as the environmental253

change. This distribution of phenotypic lag z := x − ct quantifies maladaptation. One can254

easily observe from equation (2.3) that the trivial solution, which corresponds to F = 0,255

always exists. Our aim is first to decipher when non trivial equilibrium F exists. Secondly,256

we characterize in detail the distribution F when it exists.257
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A straightforward computation implies that a non trivial equilibrium F is the solution to258

the following eigenvalue problem,259

λF(z)− c∂zF(z) + µ(z)F(z) = βB(F)(z) (2.7)

with260

λ = (β − µ0)ρ = (β − µ0)

∫

R

F(z′)dz′, (2.8)

such that the eigenvalue λ > 0 . The backward transport term −c∂zF corresponds to the

effect of the moving optimum on the phenotypic distribution F at equilibrium. A formal

integration of equation (2.7) shows that

λ =

∫

R

(β − µ(z))
F(z)

∫

R
F(z′)dz′

dz.

The eigenvalue λ can thus be interpreted as a measure of the mean fitness of the population,261

or its mean intrinsic rate of increase, where β−µ(z) is the contribution to population growth262

rate of an individual with phenotypic lag z at low density. Thus a precise description of λ263

will provide a precise analytical formula for the critical speed of environmental change above264

which extinction is predicted corresponding to the case where λ is negative. The value λ also265

informs us on the size of the population at equilibrium in presence of a changing environment,266

ρ (see equation (2.8)).267

Our aim is to describe accurately the couple solutions (λ,F) in presence of a moving268

optimum with constant speed c in both reproduction scenarios. To do so, we compute formal269

asymptotics of (λ,F) at a weak selection or slow evolution limit when little variance in fitness270

is generated by mutation or sexual reproduction per generation. Note that the shape of F271

is not prescribed a priori and our methodology presented here can handle significantly large272

deviations from Gaussian distributions.273

Noteworthy, the equation (2.7) with asexual reproduction operators defined by (2.4) or274

(2.5) admits solutions under suitable conditions. Cloez and Gabriel [2020] proved that solu-275

tions exist for any speed c if the selection function µ goes to ∞ when |z| → ∞. Furthermore,276

Coville and Hamel [2019] proved that solutions also exist for more general selection func-277

tions µ as soon as the speed c remains below a critical threshold. For the infinitesimal278

operator (2.6), Patout [2020] proved the existence of solutions without changing environ-279

ment and in the special regime of small variance described below. The existence of a pair280

(λ,F) for positive speed c will be the topic of a future mathematical paper.281

2.2 Rescaling the model282

In order to compute asymptotics of the solution of our model, we first need to rescale the283

model with dimensionless parameters (see Table 1 for the relationship between original vari-284

ables and their values after rescaling and Appendix B for mathematical details).285

Time scale. All rates (and in particular fitness) have been rescaled so that time is ex-286

pressed in the number of generations. We divide the equations by the generation time 1/β.287

Phenotypic scale. All measures depending on phenotypic units have been rescaled to288

be dimensionless. We divide the equations by a phenotypic scale inversely related to the289

strength of stabilizing selection around the optimal phenotype α (see Table 1), such that the290

8

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.22.497192doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497192
http://creativecommons.org/licenses/by-nc-nd/4.0/


Parameters Description Rescaled parameters

z phenotypic lag z = z
√

α/β

F (z) phenotypic density F (z) = F (z)

β fertility rate 1

m(z) increment of mortality rate m(z) = m(z)/β

α strength of stabilizing selection 1

λ mean fitness λ = (λ+ µ0)/β

c speed of environmental change c =



























c/(σβ) (asexual)

c/(σ2
√

αβ) (infinitesimal sexual)

σ2 phenotypic variance parameter ε2 = σ2α/β j 1

Table 1: Biological parameters and their formula after rescaling for both the asexual and in-
finitesimal sexual model. Our methodology relies on the assumption that the adimentional
parameter ε is small, ε j 1, while the other rescaled parameters can be chosen of order 1.
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strength of selection in the rescaled system is equal to unity:291

m′′(0) = m′′(0)/α = 1 . (2.9)

Input of phenotypic variance through reproduction. Similarly, in both asexual292

and infinitesimal sexual models, the parameter describing how much phenotypic variance is293

introduced in the population by either mutation or recombination during reproduction has294

been rendered dimensionless. This phenotypic variance parameter σ2 is divided by the same295

(squared) phenotypic scale β/α, inversely related to the strength of stabilizing selection (see296

Table 1). The ratio ε2 = σ2α/β appears naturally in the expression of the reproduction297

operator B in the scaled variables:298

B(F )(z) =



















1

ε

∫

R

K

(

z − z′

ε

)

F (z′) dz′ (asexual)

1

ε
√
π

∫∫

R2

exp

(

− 1

ε2

(

z − z1 + z2
2

)2
)

F (z1)
F (z2)

∫

R
F (z′2) dz

′
2

dz1dz2 (infinitesimal sexual)

(2.10)

Note that the parameter ε2 has a form similar to the standing load depressing mean fitness,299

as defined for instance by [Lande and Shannon, 1996].300

Speed of environmental change. The rescaling of the speed of environmental change301

however differs in the asexual and infinitesimal sexual versions of our model. In both models,302

the ability to evolve fast enough to track the moving optimum depends critically on the input303

of phenotypic variation fueling evolutionary change. It therefore makes sense that we may304

want to scale the speed of environmental change with respect to a measure of phenotypic305

diversity. However, we found that the scaling allowing analytical insights in the limit of small306

scaled genetic variance (see next section) differs in the two models. We introduce the speed307

parameter c so that the speed c is scaled to, either ε in the scenario of asexual reproduction,308

or to ε2 in the scenario of infinitesimal sexual reproduction (see Table 1).309

Rescaled model. Using these rescaled variables, we obtain the following equations:310

Asexual reproduction311

λF (z)− εc∂zF (z) +m(z)F (z) =
1

ε

∫

R

K

(

z − z′

ε

)

F (z′) dz′ . (2.11)

Infinitesimal sexual reproduction

λF (z)− ε2c∂zF (z) +m(z)F (z) =

1

ε
√
π

∫∫

R2

exp

(

− 1

ε2

(

z − z1 + z2
2

)2
)

F (z1)
F (z2)

∫

R
F (z′2) dz

′
2

dz1dz2 . (2.12)

2.3 Small variance asymptotics312

In the following, we further assume that the parameter ε is small, which means that very little313

variance in fitness is introduced in the population through either mutation or recombination314

during reproduction. This is what we call the small variance regime. This situation may315

happen either when the input of phenotypic variation is small or because stabilizing selection316

is weak. In other words, we can deal with relatively strong selection in amplitude as soon317

as the mean effect of mutations is assumed to be relatively small. Under such a regime318
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(ε j 1), we expect the equilibrium F to be concentrated around a mean value for the319

rescaled phenotypic lag z∗, the evolutionary lag, meaning that the rescaled standing variance320

at equilibrium is small. The core of our approach consists in the accurate description of the321

phenotypic distribution F in the limit of small standing variance, that is ε j 1.322

The main ingredient is a suitable transformation of the phenotypic distribution F . As323

mentioned above, F is expected to concentrate around a mean value, the evolutionary lag z∗324

with standing variance depending on the ratio ε. Then, it is natural to take the logarithm325

of the density F , multiplied by a small parameter related to the expected standing variance326

(this would be straightforward if the distribution would be Gaussian, actually). Accordingly,327

the following quantities are introduced, depending on the scenario:328







U = −ε logF (asexual)

U = −ε2 logF (infinitesimal sexual)
(2.13)

Again, the discrepancy between the two scenarios is an outcome. This is the only possible329

scaling that gives rise to a non trivial limit in the regime ε j 1.330

In order to describe U , we expand it with respect to ε as follows:331

{

U(z) = U0(z)+εγU1(z) + o(εγ)

λ = λ0+εγλ1 + o(εγ)
where γ =

{

1 (asexual)

2 (infinitesimal sexual)
(2.14)

and (λ0, U0) is the limit shape as ε → 0, and (λ1, U1) is the correction for small ε > 0. In332

the next sections 3.1 and 3.2, we show, by formal arguments, that the function U and the333

mean fitness λ converge towards some non trivial function U0 and some value λ0 as ε → 0.334

The main advantage of our methodology is to bypass the resolution of the limit equation335

solved by (λ0, U0), in order to compute directly relevant quantitative features, such as the336

mean fitness λ0, the evolutionary lag z∗0 , and the standing variance Var(F ), which is related337

to U0 by the following formula (derived in Appendix C):338

Var(F ) =
εγ

∂2
zU0(z∗0)

+ o(εγ) . (2.15)

3 Results in the regime of small variance339

3.1 The asexual model340

Using the the logarithmic transformation (2.13) to reformulate our problem (2.11) and the341

Taylor expansion of the pair (λ, U) with γ = 1, we show that the limit shape (λ0, U0) satisfies342

the following problem (see appendix D.1):343

λ0 + c∂zU0(z) +m(z) = 1 +H (∂zU0(z)) , (3.1)

where the Hamiltonian function H is the two-sided Laplace transform of the mutation kernel344

K up to a unit constant:345

H(p) =

∫

R

K (y) exp (yp) dy − 1 . (3.2)

It is a convex function that satisfies H(0) = H ′(0) = 0, and H ′′(0) = 1 from hypothesis (2.4)346

on the mutation kernel K.347

We can remark that the shape of the equation also holds true for the diffusion approxima-348
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tion model where the reproduction operator is approximated by a diffusion operator (2.5).349

For the diffusion approximation, we find that the Hamiltonian satisfies H(p) = p2/2 (see350

appendix D.1.1)351

Computation of the mean fitness λ0. We find that (see Appendix D.1.3 for details)352

λ0 = 1− L(c) , (3.3)

where the Lagrangian function L known as the Legendre transform of the Hamiltonian353

function H, is defined as:354

L(v) = max
p∈R

(pv −H(p)) . (3.4)

It is a convex function satisfying L(0) = L′(0) = 0, and L′′(0) = 1. Moreover, we always355

have L(v) ⩽ |v|2/2 where L(v) = |v|2/2 corresponds to the diffusion approximation case.356

Since the mean fitness λ0 = 1 in absence of environmental change, the quantity L(c)357

represents the lag-load in the rescaled units, which is induced by the moving optimum [Lynch358

and Lande, 1993, Lande and Shannon, 1996]. Moreover, if we push the expansion to the359

higher order we are able to compute the following mean fitness360

λ = 1− L(c)−ε

2

(

1

L′′(c)

)1/2

+ o(ε) (3.5)

The new term of order ε can be seen as the standing load, i.e. a reduction in mean fitness due361

to segregating variance for the trait in the population, which has been introduced in [Lynch362

and Lande, 1993, Burger and Lynch, 1995, Kopp and Matuszewski, 2014].363

Computation of the evolutionary lag z∗0. We obtain from the main equation (3.1),364

evaluated at z = z∗0 , that λ0 +m(z∗0) = 1. Thus, combining with equation (3.3), we deduce365

that z∗0 is a root of366

m(z∗0) = L(c) (3.6)

with the appropriate sign, that is ∂zm(z∗0) and c have opposite signs: z∗0 < 0 if c > 0 and367

vice-versa.368

Computation of the standing variance. From equation (2.15), we need to compute369

the second derivative of U0 at the evolutionary lag z∗0 .We can derive it from the differentiation370

of equation (3.1) evaluated at z∗0 (recall that H ′(0) = 0 by symmetry of the mutation kernel371

K):372

∂2
zU0(z

∗
0) +

m′(z∗0)

c
= 0 . (3.7)

We deduce the following first order approximation of the standing variance:373

Var(F ) = − εc

m′(z∗0)
+ o(ε) . (3.8)

Remark 1. The expressions obtained in this section are still valid when c = 0. A direct374

evaluation gives that λ0 = 1 and z∗0 = 0. Moreover, we show in Appendix D.5 that in the375

limit c → 0, the previous formula (3.7) becomes376

∂2
zU0(0) = 1 . (3.9)

We will discuss the biological implications of these predictions after expressing them in377
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the original units in the section 4.378

3.2 The infinitesimal model of sexual reproduction in the regime of379

small variance380

The limiting problem formulation. Remarkably enough, a similar mathematical

analysis can be performed when the convolution operator is replaced with the infinitesimal

model for reproduction (2.10). However, the calculations are slightly more involved than

the former case, but the final result is somewhat simpler. Here, the suitable logarithmic

transformation of the phenotypic distribution F is U = −ε2 log(F ). The equation for the

new unknown function U is:

λ+ c∂zU(z) +m(z) =

1

ε
√
π

∫∫

R2

exp

(

− 1

ε2

[

(

z − z1 + z2
2

)2

+ U(z1) + U(z2)− U(z)−minU

])

dz1dz2

∫

R

exp

(

−U(z′)−minU

ε2

)

dz′
, (3.10)

where minU has been subtracted both in the numerator and the denominator. The specific381

form of the right-hand-side characterizes the shape of U . Indeed, the quantity between382

brackets must remain non negative, unless the integral takes arbitrarily large values as ε → 0.383

Moreover, its minimum value over (z1, z2) ∈ R
2 must be zero, unless the integral vanishes.384

As a consequence, the function U must be a quadratic function of the form 1
2 (z− z∗0)

2 where385

the evolutionary lag of the distribution z∗0 will be determined aside (see Appendix F.1 for386

details). To describe z∗0 , we expand the pair (λ, U), in a power series with respect to ε2:387











U(z) =
1

2
(z − z∗0)

2
+ ε2U1(z)+ε4U2(z) + o(ε4)

λ = λ0 + ε2λ1+ε4λ2 + o(ε4)

(3.11)

Plugging this expansion into (3.10), we obtain the following equation on the corrector U1:388

λ0 + c(z − z∗0) +m(z) = exp

(

U1(z
∗
0)− 2U1

(

z + z∗0
2

)

+ U1(z)

)

, (3.12)

which contains as a by–product the value of some quantities of interest, such as the mean389

fitness λ0, and the evolutionary lag z∗0 . Moreover, we can solve this equation only if λ0 and390

z∗0 takes specific values that we identify below.391

Computation of macroscopic quantities. Let us first observe that equation (3.12)392

is equivalent to the following one:393

log (λ0 + c(z − z∗0) +m(z)) = U1(z
∗
0)− 2U1

(

z + z∗0
2

)

+ U1(z) . (3.13)

The key observation is that the expression on the right hand side vanishes at z = z∗0 , and so394

does its first derivative with respect to z at z = z∗0 . This provides two equations for the two395
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unknowns λ0, z
∗
0 , without computing the exact form of U1:396











λ0 +m(z∗0) = 1

c+m′(z∗0) = 0 .

(3.14)

These two relationships are necessary and sufficient conditions, meaning that they guarantee397

that equation (3.12) admits at least one solution U1 (see Appendix F.1 for mathematical398

details). In addition, we can push the expansion further and we can gain access to the399

higher order of approximation for the quantities of interest (see Appendix F.2).400

Evolutionary lag z∗ = z∗0−ε2
(

m′′′(z∗0)

2m′′(z∗0)
+ 2c

)

+ o(ε2) , such that m′(z∗0) = −c

Mean fitness λ = 1−m(z∗0)−ε2
(

2c2 + c
m′′′(z∗0)

2m′′(z∗0)
+

1

2
m′′(z∗0)

)

+ o(ε2)

Standing variance Var(F ) =
ε2

1+2ε2m′′(z∗0) + o(ε2)
(3.15)

4 Comparison of predictions of the asexual and infinites-401

imal models402

To discuss our mathematical results from a biological perspective, we need to scale back the403

results in the original units (see Table 1 for the link between the scaled parameters and the404

parameters in the original units). Our general predictions for macroscopic quantities in the405

original units are shown in Table 2. For ease of comparison with previous literature, which406

has generally assumed a quadratic form for the selection function, we present our predictions407

in Table 3 under this special assumption and with the diffusion approximation.408

Numerical simulations. To illustrate our discussion, we also perform numerical sim-409

ulations. The simulated stationary distribution is obtained through long time simulations410

of a suitable numerical scheme for (2.3) (details in Appendix G). Using this numerical ex-411

pression, we compute the lag, the mean fitness and the standing variance of the distribution.412

In the asexual model, the function U0 is obtained from the direct resolution of the ordinary413

differential equation (3.1) using classical integration methods – see Appendix D.7. In the414

infinitesimal model, the correction U1 is computed directly from its analytical expression415

given in Appendix F.2.4. The macroscopic quantities in the regime of small variance are416

directly computed from their analytical expressions given in the Table 2 and 3.417
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Macroscopic

quantities
Asexual model Infinitesimal sexual model

Evolutionary
lag

z∗ ≈ z∗0

with m(z∗0) = βL
(

c

σβ

)

z∗ ≈ z∗0−σ2 m
′′′(z∗0)

2m′′(z∗0)
− 2

c

β

with m′(z∗0) = − c

σ2

Mean fit-
ness

λ ≈ β − µ0 − βL
(

c

σβ

)

−1

2

(

σ2αβ

L′′

(

c

σβ

)

)1/2

λ ≈ β − µ0 −m(z∗0)

−
(

2c2

σ2β
+ c

m′′′(z∗0)

2m′′(z∗0)
+

σ2
m

′′(z∗
0
)

2

)

Standing
variance

Var(F) ≈ − c

m′(z∗0)
Var(F) ≈ σ2

1+2
σ2

β
m′′(z∗0)

Table 2: Analytical predictions for the evolutionary lag z∗, the mean fitness λ and the standing
variance Var(F) for both the asexual and infinitesimal sexual model in the original variable. In
the asexual model, L is the Lagrangian defined by (3.4) and it is associated to the mutation
kernel K.

Macroscopic

quantities

Asexual model

(quadratic selection / diffusive ap-
prox)

Infinitesimal sexual model

(quadratic selection)

Evolutionary
lag

z∗ ≈ − c

σ (αβ)1/2
z∗ ≈ − c

σ2α
−2

c

β

Mean fit-
ness

λ ≈ β − µ0 −
c2

2σ2β
−σ (αβ)1/2

2
λ ≈ β − µ0 −

c2

2σ4α
−
(

2c2

σ2β
+

σ2α

2

)

Standing
variance

Var(F) ≈ σ

(

β

α

)1/2 Var(F) ≈ σ2

1+2
σ2α

β

Table 3: Analytical predictions for the evolutionary lag z∗, the mean fitness λ and the standing
variance Var(F) for both the asexual and infinitesimal sexual model in the original variable when
assuming a quadratic form of selection m(z) = α|z|2/2. In the asexual model, we are under the
diffusion approximation: L(v) = |v|2/2.
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Figure 2: Influence of the mutational kernel K, described in panel (a), on (b) the mean fitness
λ, (c) the evolutionary lag z∗ and (d) the standing phenotypic variance Var(F ) at equilibrium in
an environment changing at rate c ranging in (0, 0.5). We compare the diffusion approximation
(blue curves) with four different mutation kernels with the same variance σ = 0.1: the Uniform
distribution (red curves), the Gaussian distribution (orange curves), Exponential distribution
(purple curves) and Gamma distribution (green curves). Other parameters are: α = 1; β =
2. For each case we compare our analytical results (dashed lines) with the simulation results
(marked symbol).

4.1 Evolutionary lag418

The lag is defined as the absolute value of the difference between the optimal trait (here set419

to 0) and the evolutionary lag of the population z∗, thus the lag is equal to |z∗|.420

The lag increases with the speed of environmental change. In both the421

asexual model and infinitesimal model, we recover the classic result that the lag |z∗0| is an422

increasing function of c (as illustrated by Fig. 2 and Fig. 3).423

In the asexual model, the evolutionary lag at equilibrium is such that the mortality rates424

equals βL
(

c

σβ

)

(see Table 2). The latter quantity increases with the rate of environmental425

change. As the mortality rate m increases when we move away from the optimal trait, the426

lag |z∗0| must also increase with respect to c.427

In the infinitesimal model of sexual reproduction,the evolutionary lag at equilibrium is428

found where the gradient of selection (m′) equals − c

σ2 , which increases in absolute value429

with the rate of environmental change c (see Table 2). In the convex neighborhood of the430
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Figure 3: Influence of the speed of environmental change c for three different selection function
m: quadratic function m(z) = αz2/2 (blue curves), super–quadratic m(z) = αz2/2 + z6/64
(red curves) or bounded m(z) = m∞(1− exp(−αz2/(2m∞)) (orange curves). Other parameters
are: α = 1, β = 1, σ = 0.1 and m∞ = 0.5 in the asexual model and m∞ = 1 in the
infinitesimal sexual model. In the asexual model, the mutation kernel is Gaussian. We compare
our analytical results (first approximation dashed lines and second approximation plain lines)
with the numerical simulations of the stationary distribution of (2.7) (marked symbols) for both
asexual and sexual infinitesimal model.
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Figure 4: Graphical illustration of the two ways to characterize the evolutionary lag z∗ (in
original units). (a) In the asexual model, the evolutionary lag is found where the mortality rate
m equals a specific value βL( c

σβ
). In this case we only have one possible lag z∗ because m′(z∗)

and c should have opposite signs. (b) In the sexual infinitesimal model, the evolutionary lag z∗

is found where the selection gradient m′ equals a specific value −c

σ2 . In this case, we may obtain
two possible values, a stable point z∗s in the convex part of m and an unstable point z∗u in its
concave part.
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Figure 5: Effect of the mean initial lag in the persistence of the population with various rates
of environmental change c. We compute numerically, the solutions of the time–dependent prob-
lem (2.3) with Gaussian initial conditions centered on various evolutionary lags z∗init, depicted by
crosses in the figures. We repeated this exploration for various speeds c ranging in (0, 1.5 c∗tip).
For each case, we plot the evolutionary lag z∗ at the final time of computations (blue circles)
and the analytical evolutionary lags given by the first line of Table 2 (black lines): the plain lines
corresponds to the stable trait (z∗ in asexual model and z∗s in infinitesimal sexual model) while
the dashed lines corresponds to the unstable trait z∗u occurring in the infinitesimal sexual model.
The light blue crosses correspond to initial data such that the final evolutionary lag is finite
while the red crosses correspond to initial data such that the final evolutionary lag diverges. In
the asexual simulations, the mutation kernel is Gaussian.

optimal trait, the gradient of selection (m′) is increasing with deviation from the optimum,431

hence the lag |z∗0| is increasing with respect to c. However, if the fitness function has both432

a convex and a concave part (as in the yellow curves in Fig. 3), there may be multiple433

equilibria fulfilling the condition in Table 2 (see Fig. 4(b)). In the concave part of the fitness434
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function, the selection gradient is decreasing when c increases, and so would the lag (see435

dashed curve in Fig. 5(b)). However, heuristic argument and numerical simulations suggest436

that equilibrium points in the concave part of the fitness function are unstable (see Fig. 5(b)437

and more detailed discussion of this scenario below).438

The lag increases faster or slower than the speed of environmental change.439

Our analytical predictions suggest that a linear relationship between the rate of environmen-440

tal change and the evolutionary lag is expected only under special circumstances. We indeed441

show that the rate of increase of the lag according to the speed of change c crucially depends442

on the shape of the selection in both the infinitesimal and asexual models (Fig. 3).443

In addition, in the asexual model, this rate of increase will crucially depend on the444

shape of the mutation kernel through the Lagrangian function L. Indeed, we can show445

from our formula in Table 2 that the lag increases linearly with the speed of change c as446

soon as the function c 7→ m−1(L(c)) is linear. Thus, both the shape of selection and that447

of the mutation kernel interact to determine how the evolutionary lag responds to faster448

environmental change. If the selection function is quadratic (i.e. m(z) = z2/2,), we can449

show from the convexity of the Lagrangian function L that the lag increases linearly with c450

only in the diffusion approximation L(c) = c2/2 (see Table 3 and blue curve in Fig. 2), while451

it increases sub–linearly for any other mutation kernels (see red, orange, purple and green452

curves in Fig. 2). We can further show that the lag in this scenario increases more slowly453

with the rate of environmental change when the kurtosis of the mutation kernel is higher454

(see Appendix D.4 for mathematical details). In Fig. 2, we compare four different mutation455

kernels with increasing kurtosis: uniform distribution kernel (red), Gaussian kernel (orange),456

double exponential kernel (purple) and Gamma kernel (green). In the asexual model, a fat457

tail of the mutation kernel thus tends to reduce the lag, even though this effect is most visible458

when the environment changes fast (Fig. 2) .459

To examine the effect of the selection function on how the evolutionary lag increases in460

faster changing environment, we now focus on the case of diffusion approximation in the461

asexual model (L(c) = c2/2), for the sake of simplicity, and compare it to the results in the462

infinitesimal model. In both cases, we can exhibit a simple criteria to decipher the nature of463

this increase. Let us first observe that, in those cases, the lag increases linearly with c if the464

selection function is quadratic (see Table 3 and the blue curves in Fig. 3). The lag however465

accelerates with c if m is sub-quadratic in the following senses (see orange curves in Fig. 3):466

m′′m

(m′)2
<

1

2
(asexual) , m′′′ > 0 (infinitesimal sexual) . (4.1)

Conversely, the lag decelerates with c if m is super-quadratic in the following senses (see red467

curves in Fig. 3):468

m′′m

(m′)2
>

1

2
(asexual) , m′′′ < 0 (infinitesimal sexual) . (4.2)

The criteria are of different nature depending on the model of reproduction (asexual versus469

infinitesimal). However, they coincide in the case of a homogeneous selection functionm(z) =470

|z|p (p > 1). Indeed, selection is super-quadratic in both cases if and only if p > 2. More471

generally, the lag is reduced when the selection function has a stronger convexity in the sense472

of (4.2). This behavior is illustrated in Fig. 3.473
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The lag can diverge for a faster speed of environmental change. As observed474

by Osmond and Klausmeier [2017], we also find that the lag may diverge, i.e. grow infinite for475

some finite threshold in the speed of environmental change, when the selection function is too476

weak away from the optimum. Such ”evolutionary tipping point” are predicted, both for the477

infinitesimal model and in the asexual model, for some shapes of the selection function. The478

underlying mechanisms are however qualitatively different in the two models, as explained479

below.480

In order to illustrate this phenomenon, we consider a bounded selection function depicted481

in Fig. 3 (orange curve). We find the following critical speed c∗tip,482

c∗tip =

√

2σ2β

(

max
z∈(−∞,0)

m(z)

)

(asexual)

c∗tip = σ2

(

max
z∈(−∞,0)

|m′(z)|
)

(infinitesimal sexual)

, (4.3)

so that the lag is finite if and only if c < c∗tip, while the lag diverges if c > c∗tip and the483

population cannot keep pace with the environmental change. The difference between the two484

formulas can be understood through graphical arguments (see Fig. 4). In the asexual model,485

the lag at equilibrium is found where the mortality rate equals a specific value, which increases486

with the speed of change c. This point is found where the selection function intersects an487

horizontal line, of higher elevation as c increases in Fig. 4. With a bounded mortality488

function, there is thus a finite value of c for which this critical quantity equals the maximal489

mortality rate, the latter being reached for an infinitely large lag. In the infinitesimal model,490

the equilibrium lag is found where the selection gradient equals a specific value increasing491

with c. Graphically, this point is found where the local slope of the selection function equals492

such a critical value. With a bounded mortality function such as in Fig. 4, there are in493

general two equilibrium points characterized by such local slope, one stable in the convex494

part and one unstable in the concave part. As the speed of environmental change increases,495

so does the local slope at the two equilibria, which gradually converge towards the inflection496

point of the mortality function with the maximal local slope. This point characterizes the497

maximal speed of environmental change for which there is a finite evolutionary lag. Above498

that critical speed of change, the lag grows without limit. We illustrate this phenomenon of499

severe maladaptation in Fig. 3 (see the orange curves).500

Despite the existence of tipping points in both cases, the transition from moderate501

(c < c∗tip) to severe maladaptation (c > c∗tip) have different signatures depending on the502

reproduction model. In the asexual model, the lag becomes arbitrarily large as the speed c503

becomes close to the maximal sustainable speed c∗tip. Conversely, in the infinitesimal model,504

the lag remains bounded by the value of the inflexion point until it drops to infinity when505

the speed becomes larger than c∗tip.506

We can also see a major difference between the two reproduction models when we look507

at the time dynamics (Fig. 5). We run simulations of the density dynamics described by the508

equation (2.3) and starting from various initial data centered at different traits (see crosses509

in Fig. 5). In the infinitesimal model, when the initial lag is beyond the unstable point z∗u,510

defined in Fig. 4(b), the lag diverges, whereas it converges to the stable point z∗s , also defined511

in Fig. 4(b), if the lag is initially moderate. We see that the long term adaptation of the512

population to a changing environment does not only depend on the speed of change, but513

also on the initial state of the population. In the asexual model, the initial configuration514

of the population does not play a significant role in the long term dynamics of adaptation:515

we observe that the population can adapt whatever the initial lag is, if the speed of change516
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is below c∗tip (see Fig. 5). We can expect such difference because the lag at equilibrium is517

uniquely defined in the asexual model while it can take multiple values in the infinitesimal518

model if the function has an inflexion point, which is the case for the bounded selection519

function (see Fig 4).520

4.2 The mean fitness521

We now investigate the effect of the changing environment on the mean fitness of the popu-522

lation.523

The mean fitness decreases with increasing speed of environmental change524

c. In both scenarios the lag load △λ, defined as the difference between the mean fitness525

without changing environment (λ0 = β − µ0) and the mean fitness under changing envi-526

ronment, is (unsurprisingly) given by the increment of mortality at the evolutionary lag527

m(z∗0)528

△λ = β − µ0 − λ = m(z∗0).

Since m is symmetric increasing and the lag |z∗0| is increasing with respect to c, we deduce529

that the mean fitness decreases with respect to c. It is illustrated in Fig. 3 for different530

selection functions.531

In the asexual model, the lag-load takes the following form532

△λ = βL

(

c

σβ

)

.

which is exactly the expression (3.4) in the original units with a speed c. Since L increases533

with the kurtosis of the mutation kernel, we deduce that higher kurtosis of the mutation534

kernel increases the mean fitness (see Fig. 2).535

The shape of selection affects the lag load in the infinitesimal model, but536

not in the asexual model. In the asexual model, the lag load only depends, at the537

leading order, on the speed of environmental change and the mutation kernel through the538

Lagrangian function L (see Table 2). In particular, for a given speed c, a fertility rate β539

and a given mutation kernel, we predict that the lag load is constant (see dashed line in540

Fig. 6(a)). At the next order of approximation, the mean fitness however depends on the541

local shape of the selection function around the optimal trait: α = m′′(0). The mean fitness542

is then predicted to decline as the strength of stabilizing selection around the optimum α543

increases (see Fig. 6(a)), due to increasing standing load.These predictions are confirmed by544

our numerical simulation see Fig. 3(a) and 6(a).545

In contrast, the influence of the selection pattern is more intricate in the case of the546

infinitesimal model of reproduction. The lag load depends strongly on the global shape of m547

(see Fig. 3(b) and 6(b)). In particular, we see that for low strength of selection α, the mean548

fitness crucially depends on the shape of selection. Mean fitness is higher in the scenario549

with super–quadratic selection than with quadratic selection, and lowest when selection is550

sub-quadratic in Fig. 3(b) and 6(b)). Moreover, the mean fitness increases with increasing551

strength of selection in the quadratic case, while it initially decreases for the super–quadratic552

case. However, for stronger strength of selection, the shape of selection has less importance.553

Our approximation allows us to capture those differences. For instance, in the quadratic554

case (blue curves in Fig. 6 and 3), we can see from Table 3 that the mean fitness increases555

with the strength of selection α at the leading order, which corresponds to small value of556

21

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.22.497192doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497192
http://creativecommons.org/licenses/by-nc-nd/4.0/


α. However, when the strength of selection becomes stronger, antagonistic effects occur at557

the next order so that the fitness may decrease due to standing load, defined in (3.5) [Lynch558

and Lande, 1993, Lande and Shannon, 1996, Kopp and Matuszewski, 2014]. This effect is559

illustrated in Fig. 6(b).560

4.3 The standing variance561

In both asexual diffusion approximation and the infinitesimal model, the standing variance562

does not depend on the speed of change c when the selection function is quadratic (see blue563

curves in Fig. 3). The standing variance however increases with c if the selection function564

is sub-quadratic in the sense of (4.1) (see orange curves in Fig. 3). Conversely, the standing565

variance decreases with c if the selection function is super-quadratic in the sense of (4.2) (see566

red curves in Fig. 3) – see details in appendix E.567

The standing variance is less variable in the infinitesimal model than in the asexual model.568

It was expected from our analysis (see formula of Table 2) because the infinitesimal model569

tends to constrain the variance of the phenotypic distribution. Indeed, we know from previous570

analysis [Mirrahimi and Raoul, 2013, Barton et al., 2017], that in the absence of selection,571

the infinitesimal model generates a Gaussian equilibrium distribution with variance σ2. Our572

analysis shows that under the small variance assumption, the standing variance is close to573

this variance σ2 and our numerical analysis shows that standing variance slowly deviates574

from the genetic variance without selection σ2, when either the speed of change increases or575

the strength of selection increases. This pattern is observed whatever the shape of selection.576

We can thus conclude that for the infinitesimal model under the small variance hypothesis,577

the standing variance is not very sensitive to either selection (strength of selection or shape578

of selection) or the speed of environmental change.579

Conversely, in the asexual model, the standing variance is quite sensitive to the selection580

function. This is emphasized in the case of a bounded selection function. The standing581

variance dramatically increases as the speed of change becomes close to the critical speed582

c∗tip because the selection gradient becomes flat (see Table 2).583

In the asexual model, the standing variance is moreover sensitive to the shape of the584

mutation kernel. We see from Fig. 2(c) that the standing variance generally increases with585

a fatter tail of the mutation kernel. There are however exceptions to this pattern (see for586

instance the Gamma mutation kernel at low speed of environmental change, green curves587

in Fig. 2). This situation, unexpected by our approximation, might be due to the fact that588

when the speed of change is low, the mutations with large effects are quickly eliminated by589

selection, which in turn reduces the standing variance.590

4.4 Persistence of the population: the critical speed c∗591

The final outcome of our analysis is to compute the speed c∗ beyond which the population592

cannot keep pace with the environmental change (λ < 0). In the general case, we can obtain593

the following approximation formula:594











c∗ = σβL−1

(

β − µ0

β

)

(asexual model)

c∗ = σ2m′
(

m−1(β − µ0)
)

(infinitesimal model)

(4.4)

We can first observe that, in the small variance regime, the critical speed in the asexual model595

does not depend on the shape of the selection m, but on the mutation kernel through the596
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Figure 6: Influence of the strength of selection α on the mean fitness λ, the evolutionary lag
z∗ and the standing phenotypic variance Var(F ) at equilibrium in an environment changing
at rate c = 0.05 and with three different selection patterns: quadratic (blue curves), super–
quadratic (red curves) or bounded (orange curves). Other parameters are: β = 1, σ = 0.1
and the intensity of selection α ranges from 10−2 to 4. We compare our analytical results
(first approximation dashed lines and second approximation plain lines) with the numerical
simulations of the stationary distribution of (2.3) (marked symbol) for both asexual and sexual
infinitesimal model. In the asexual model, we only consider a Gaussian mutation kernel.
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Lagrangian L. Thus, for any selection function, the critical speed is the same. Conversely,597

for the infinitesimal model, the critical speed crucially depends on the shape of the selection598

m. Moreover, we can mention that the discussion of the dependency of λ with respect to599

various parameters also holds naturally for c∗.600

When we consider the diffusion approximation for the asexual model (L(v) = v2/2) and601

the quadratic selection function m(z) = αz2/2, we obtain the following formula:602































c∗ =
√
2σ

√
β

(
β − µ0−

σ(αβ)1/2

2

)1/2

(asexual model)

c∗ =
√
2

σ2

(
1+4σ2

α

β

)1/2

√
α

(
β − µ0−

σ2α

2

)1/2

(infinitesimal model)
(4.5)

The formula (4.5) is in agreement with previous results where it was assumed that the603

phenotypic lag z is normally distributed in the population, which corresponds in our frame-604

work to assuming that the equilibrium distribution F is Gaussian (see for instance Eq. [A6]605

in [Kopp and Matuszewski, 2014]). There, the formula is given with the standing phenotypic606

variance as a parameter by:607

c∗ ≈ Var(F)
√

2αλ(0) . (4.6)

where λ(0) corresponds to the mean fitness in absence of environmental change (c = 0), and608

it is given by formula of Table 3 with c = 0. This is perfectly consistent with the formula for609

the variance obtained in both scenarios. However, the formulation (4.6) might be misleading,610

as it omits some possible compensation, such as the selection strength α, which disappears611

in the case of asexual reproduction because it also affects Var(F).612

4.5 Numerical predictions for the whole distribution of phenotypes613

Quality of approximation. For the asexual model, we only compare the simulation614

results with our first order approximation stated in Table 2 (black colored), except for the615

variation of the mean fitness with respect to the strength of selection, where we need to take616

into account the standing load that appears at the second order of approximation (see gray617

colored formula in Table 2). We can first observe from Fig. 6 that our first approximations618

are accurate when ε = σ
√
α/β is small (see value of α < 0.5 in Fig. 6). The scale of Fig. 6(a)619

is of order ε, which is why the first order approximation seems less accurate than the second620

order approximation. This was expected since the standing load, which increases with the621

strength of selection, occurs at the second order of approximation. The approximation of622

z∗ and λ remain efficient even when ε increases (see Fig. 2 and 3 for small value of c).623

However, we see that the approximations deviate from the simulations when the speed of624

change increases and reaches the critical value c∗ (see Fig. 2 and 3) or when the mutation625

kernel becomes leptokurtic (see green curves of Fig. 2). The approximation of the standing626

variance is more sensitive to the parameter ε. When c and ε are small it is accurate (see627

Fig. 2). However, when the speed increases, the approximation diverges from the simulations628

even if ε is small (see Fig. 2 and 3).629

For the infinitesimal model, we have compared our simulations to our first order approxi-630

mation, as well as the second order approximation stated in Table 2 (first order approximation631

is black colored and second order approximation is gray colored). The first order approxima-632

tion of z∗ and λ are efficient only when ε is really small, while the first order approximation633

of the standing variance may deviate from the simulation value even for small ε (see red634

curve Fig. 6(f)). However, the second approximations are really precise for small value of ε635
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(see Fig. 6) and they remain efficient when ε increases and c increases (see Fig. 6 and 3).636

Comparing simulations to the approximation for the entire distribution.637

We compare the simulated equilibrium distribution F with our analytical approximations638

(Fig. 7): the first order approximation corresponds to F0 = exp(−U0/ε
γ), where U0 sat-639

isfies respectively the differential equation (3.1) (asexual model) or U0(z) = (z − z∗0)
2/2640

(infinitesimal sexual model), and γ is respectively equal to 1 in the asexual model and 2 in641

the infinitesimal case; and the second order approximation F1 = exp(−U0/ε
γ − U1), where642

U1 satisfies respectively equation (D.12) (asexual model) or the non–local functional equa-643

tion (3.12) (infinitesimal model). Our simulations are performed with an εγ = 0.1, which is644

not that small.645

In the asexual model, we can observe that the first order analytical approximation is646

really efficient at tracking the shape of the entire distribution for both super-quadratic and647

quadratic selection, even if ε is not that small (Fig. 7). For the bounded selection, our first648

order approximation fails to fit the left tail of the distribution, mainly because the speed of649

environmental change is close to the critical speed.650

In the infinitesimal model, we can observe that the first order Gaussian approximation651

is not precise enough to track the entire distribution (Fig. 7). We need the second order652

approximation to fit the distribution. This is a direct consequence of our analysis, where we653

observe that we need the second order approximation to define the first order approximation654

of the lag z∗0 .655

What me normal? To go further in understanding the effect of a changing environment,656

we now look at the skewness and the kurtosis of the distributions. Those two indicators allow657

us to test whether the distribution F can be well approximated by the Gaussian distribution.658

In the asexual model, we can observe from Fig. 8 that, even for the quadratic selection,659

the distributions differ from a Gaussian distribution: they are skewed and leptokurtic, which660

means that their kurtosis are higher than the kurtosis of the Gaussian distribution with661

same mean and variance. So the Gaussian distribution fails to track the exact distribution662

of the trait around the evolutionary lag of the population in a changing environment. This663

phenomenon is enhanced when the selection function differs from the quadratic function (see664

Fig. 8 diamond curves and 7). In addition, we see that, when the selection function is super–665

quadratic, the distribution has a positive skew, while, for a bounded selection function, it666

has a negative skew.667

Conversely, in the infinitesimal case, the Gaussian distribution well approximates the668

equilibrium distribution in general. This was already described by our approximation for-669

mula (3.11) in the section 3.2. We can see that the kurtosis of the equilibrium distribution670

remains close to zero for any speeds of change and any selection functions.However, when671

the selection function is either super quadratic or bounded, we can observe from Fig. 7 and 8672

that the distribution of phenotypes in the infinitesimal model also becomes skewed as the673

speed increases. The skew of the distribution corresponds to regions where the gradient of674

selection is low, with the same pattern as in the asexual model.675
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Figure 7: Mutation-selection equilibria F for a speed of environment change of c = 0.09 in the
asexual model and c = 0.05 in the infinitesimal sexual model, with different selection functions:
(a)-(b) quadratic selection m(z) = αz2/2 (blue circled marked curves); (c)-(d) super-quadratic
selection m(z) = α(z2/2 + 64z6) (blue star marked curves); (e)-(f) bounded selection function
m(z) = m∞(1 − exp(−αz2/(2m∞)) (orange dimaond marked curves). Other parameters are:
α = 1, β = 1, σ = 0.1 andm∞ = 0.5 in the asexual model andm∞ = 1 in the infinitesimal sexual
model. We compare simulated equilibria distribution F (marked curves) with our analytical
results (first order results dashed curves and second order results plain curves). For the asexual
scenario, we used the Gaussian kernel.
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Figure 8: Influence of the speed of environmental change c for three different selection function
m: quadratic function m(z) = αz2/2 (blue curves), super–quadratic m(z) = αz2/2 + z6/64
(red curves) or bounded m(z) = m∞(1− exp(−αz2/(2m∞)) (orange curves). Other parameters
are: α = 1, β = 1, σ = 0.1 and m∞ = 0.5 in the asexual model and m∞ = 1 in the
infinitesimal sexual model. In the asexual model, the mutation kernel is Gaussian. We compare
our analytical results (dashed lines) with the numerical simulations of the stationary distribution
of (2.3) (marked symbols) for both asexual and sexual infinitesimal model. It appears that our
analytical results are able to catch interesting features even for relatively large speed of change
c.

5 Discussion676

We have pushed further a recent methodology aimed at describing the dynamics of quantita-677

tive genetics models in the regime of small variance, without any a priori knowledge on the678

shape of the phenotype distribution. This methodology combines an appropriate rescaling679

of the equation with Taylor expansions on the logarithmic distribution.680

Our approach differs from the previous studies based on the cumulant generating func-681

tion (CGF), which is the logarithm of the Laplace transform of the trait distribution, here682

C(t, p) = log
(∫

epzf(t, z) dz
)
. In his pioneering work, Burger [1991] derived equations for683

the so-called cumulants, which are the coefficients of the Taylor series of the CGF C(t, p) at684

p = 0. However this system of equations is not closed, as the cumulants influence each other685

in cascade. This analysis was revisited in [Martin and Roques, 2016] in the asexual model,686
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using PDE methods. They derived an analytical formula for the CGF itself, but restricted687

it to a directional selection, when the trait represents the fitness itself. This was further688

extended to a moving optimum in [Roques et al., 2020]. However, they made the crucial689

assumption of the Fisher Geometric Model for selection, which is analogous to our quadratic690

case, and diffusion for mutations, for which it is known that Gaussian distributions are par-691

ticular solutions. The common feature with our present methodology is the PDE framework.692

Nevertheless, we focus our analysis on the logarithm of the trait distribution itself, as it is693

commonly done in theoretical physics to reformulate the wavefunction in terms of its action694

(see Appendix D.3 for heuristics on this approach). This strategy is well-suited to provide695

precise approximations with respect to a small parameter, for instance the wavelength in696

wave propagation (geometric optics) and the Planck constant in quantum mechanics (semi-697

classical analysis), and the standing variance in our theoretical biology setting.698

Here, the small variance regime corresponds either to relatively small effect of mutation, or699

to weak stabilizing selection. Under this regime, very little variance in fitness is introduced700

in the population through either mutation or recombination events during reproduction.701

However, the variance in fitness in the population can be relatively large depending on702

the shape of the selection. This regime can differ from the weak selection approximation703

classically used in quantitative genetics theory, corresponding to small variation in fitness in704

the population.705

Under the small variance regime, we could describe analytically the phenotype distribu-706

tion (see Table 7), and assess the possible deviation from the Gaussian shape. We further707

gave analytical approximations of the three main descriptors of the steady state: the evolu-708

tionary lag, the mean fitness, and the standing phenotypic variance (see Table 2).709

Noticeably, two different models of reproduction, assuming either asexual reproduction,710

or infinitesimal sexual reproduction with an infinite number of freely recombining loci (the711

infinitesimal model), could be handled in a unified framework. This allows discussing sim-712

ilarities and discrepancies between the two models, which are frequently used in analytical713

models of adaptation to changing and/or heterogeneous environments.714

Relaxing the Gaussian distribution assumption. Our analytical framework al-715

lows us to relax the assumption of a Gaussian distribution of phenotypic values, commonly716

made by many quantitative genetics models of adaptation to a changing environment with717

a moving optimum, both in the case of sexually [e.g. Burger and Lynch, 1995, Osmond and718

Klausmeier, 2017] and asexually reproducing organisms [e.g. Lynch et al., 1991]. Consis-719

tently with previous simulations and analytical results [Turelli and Barton, 1994, Bürger,720

1999, Jones et al., 2012], our results show that we expect stronger deviations from a Gaus-721

sian distribution of phenotypes if the selection function departs from a quadratic shape, if722

the mutation model departs from a simple diffusion, if reproduction is asexual rather than723

well described by the infinitesimal model, and/or if the environment changes relatively fast.724

We in particular recover the observation made by Jones et al. [2012] in their simulations725

that the skew of the phenotypic distribution is greater in absolute value in faster changing726

environments, but we further predict that the sign of this skew critically depends on the727

shape of the selection function away from the optimum, an observation that could not be728

made by their simulations that only considered quadratic selection.729

Universal relationships. Interestingly, despite deviations from the Gaussian distribu-730

tion, our predictions in the regime of small variance for the evolutionary lag, or the critical731

rate of environmental change, are consistent with predictions of past quantitative genetics732
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models that have assumed a constant phenotypic variance and a Gaussian distribution of733

phenotypes. We discuss below the links between the present results and those past pre-734

dictions and how they provide new insights. As a direct consequence of the small variance735

assumption, the two following relationships, linking the three main descriptors of the popu-736

lation (the evolutionary lag, mean fitness and phenotyoic variance), hold true, whatever the737

model of reproduction (either asexual or infinitesimal):738





λ ≈ 1−m(z∗)

Var(F ) ≈ − εγc

m′(z∗)

(5.1)

The first relationship corresponds to the demographic equilibrium, when the mean fitness is739

the balance between (constant) fecundity and mortality at the evolutionary lag. The second740

one corresponds to the evolutionary equilibrium, when the speed of evolutionary change (as741

predicted by the product of phenotypic variance and the selection gradient) equals the speed742

of change in the environment. Note that our model assumes for simplicity that the phenotypic743

variance is fully heritable. Those relationships are better visualized in adimensional units.744

They can be deduced directly from equations (2.11)-(2.12). Although the reproduction model745

does not affect the demographic relationship, it influences the evolution relationship through746

the scaling exponent γ (γ = 1 for asexual reproduction and γ = 2 for infinitesimal sexual747

reproduction). Similar equations appear in quantitative genetics models assuming a Gaussian748

phenotypic distribution and a constant phenotypic variance. In particular, with quadratic749

selection, the second relationship allows us to recover the following results of Burger and750

Lynch [1995] and Kopp and Matuszewski [2014]:751

|z∗| ≈ c

αVar(F)
. (5.2)

However, the relationships in 5.1 are not enough to compute the three descriptors, if752

one does not consider the standing phenotypic variance Var(F ) as a fixed parameter, as753

previous studies often did. Our small variance approximations allows us to predict the value754

of the phenotypic variance in a changing environment in the two models, where previous755

studies have generally used simulations [e.g. Bürger, 1999] to examine how the evolution of756

the phenotypic variance affects the adaptation of sexual and asexual organisms in a changing757

environment. Many of our results are ultimately explained by the fact that the evolution of758

the phenotypic variance is under very different constraints under the asexual model and the759

infinitesimal model.760

In the asexual model, the evolution of the phenotypic variance is not strongly constrained761

and has in particular no upper bound. The mean fitness λ does not depend on the shape762

of the selection function at the leading order (see (3.3) and Table 2), but only on the speed763

of environmental change and on the mutation kernel. Once the mean fitness is determined,764

the evolutionary lag z∗ and the standing variance Var(F ) are deduced from respectively765

the first and the second relationship in (5.1). The standing variance then strongly depends766

on the shape of the selection in the asexual model. In contrast, in the sexual infinitesimal767

model, we found that the standing variance Var(F ) does not depend on the shape of the768

selection function at the leading order (see (3.11) and Table 2). The infinitesimal model769

sets an upper bound to the phenotypic variance. Once the maximum variance σ is set, the770

evolutionary lag z∗ and the mean fitness λ are deduced from respectively the second and771

the first relationship (5.1). Therefore, in the infinitesimal model, constraints on the variance772

determines the value of the lag, and thus the mean fitness, while in the asexual model, the773
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evolution of the variance allows reaching a demographic equilibrium where the increased774

loss of fitness due to a changing environment is compensated by the gain of fitness due to775

beneficial mutations. In the asexual model, it is the mean fitness that determines the value of776

the lag and in turn the value of the phenotypic variance. Most of our predictions (discussed777

below) are a consequence of this core discrepancy between the two models.778

Mean fitness weakly depends on selection in the asexual model, but not779

in the infinitesimal model. In the asexual model, λ depends on m only at the second780

order through the second derivative around the optimal trait α = m′′(0) (2.2). Hence,781

up to a reasonable accuracy, the mean fitness depends (weakly) on the local shape of the782

selection pattern around the optimal trait, even if the population can be localized around783

an evolutionary lag far from the optimal trait. This happens because, in a gradually moving784

environment, the asexual population is constantly regenerated by the fittest individuals.785

This phenomena is apparent when tracing back lineages in the population at steady state:786

it was proven independently by Patout et al. [2020] and Calvez et al. [2021] that the typical787

trajectories of ancestors of individuals sampled uniformly in the population converge to the788

optimal trait backward in time. In contrast, the mean fitness strongly depends on the shape789

of the selection function in the infinitesimal sexual model. It appears clearly in the quadratic790

case where α enters into the formula for the mean fitness at the leading order (Table 3). In791

particular, we recover the previous finding that weak selection represents a ”slippery slope”792

in a changing environment, leading to a lower mean fitness, when effects of selection on the793

evolution of standing variance are neglected [Kopp and Matuszewski, 2014]. Again, it is794

interesting to link this finding to the behavior of the typical trajectories of the ancestors in795

the infinitesimal model, which converge to the evolutionary lag backward in time [Patout,796

2019, Chapter 5].797

The shape of selection has strong effects on the evolution of the evolution-798

ary lag and phenotypic variance under both the asexual and infinitesimal799

models. In both models, however, the exact shape of the selection function away from800

the optimum has noticeable consequences for the evolution of the lag between the the mean801

phenotype in the population and the optimal moving phenotypic value, and for the evolution802

of the standing variance, especially in fast changing environments. There is unfortunately803

very scarce empirical evidence about the exact shape of fitness landscapes and how much804

they deviate from a quadratic, due to the difficulty to estimate precisely the shape of such805

fitness functions (see however the predictions of Gauzere et al. [2020] suggesting strong de-806

viations from a quadratic shape in the case of a trait involved in climate adaptation). Most807

models of adaptation to a moving optimum assume, for mathematical convenience and in808

the absence of strong empirical support for an alternative, a quadratic selection function.809

Our analysis allows considering a broad diversity of selection functions and also to draw810

general conclusions about how their shape may affect the evolution of the phenotypic dis-811

tribution. In both asexual and infinitesimal models, we found, consistently with previous812

predictions [reviewed in Kopp and Matuszewski, 2014], that the lag increases with the speed813

of environmental change: however there is a linear relationship between the two only when814

assuming a quadratic selection function. When the selection function is super-quadratic (and815

selection much stronger away from the optimum), this puts a brake on maladaptation and816

the evolutionary lag does not increase as fast when the environment changes more rapidly.817

For the same reason, the phenotypic variance then declines when the environment changes818

faster in the super-quadratic selection scenarios. Conversely, with a sub-quadratic selection819
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function, the weakening of selection away from the optimum results in larger lags, accelerat-820

ing maladaptation with increasing speed of environmental change and increasing phenotypic821

variance. There has been little discussion yet in the theoretical literature of the consequences822

of the exact shape of selection in changing environments (see however [Osmond and Klaus-823

meier, 2017, Klausmeier et al., 2020] and discussion of tipping-points below). In a constant824

or stationary environment with weak fluctuations, the mean phenotype value is never very825

far from the optimum and the quadratic selection is an adequate approximation. However,826

the present results suggest that further empirical investigation of the shape of the fitness827

landscape far from the optimum is critically needed to understand how much populations828

may depart from the optimal phenotypic value.829

Evolutionary tipping points. The case of sub-quadratic selection functions has re-830

cently attracted some interest, since it was discovered that the weakening of selection away831

from the optimum could lead to evolutionary tipping points: above some critical speed of832

environmental change, the evolutionary lag grows without limit and the population abruptly833

collapses without much warning signal [Osmond and Klausmeier, 2017, Klausmeier et al.,834

2020]. This behaviour is very different from the dynamics of the lag under classic models of835

quadratic selection on moving optimum. Osmond and Klausmeier [2017] assumed a Gaussian836

distribution of phenotypes and a constant phenotypic variance and compared their analytical837

results to simulations of a sexually reproducting population. Klausmeier et al. [2020] went838

on to show that non quadratic fitness function with inflection points, leading to such tipping839

points, could emerge from various realistic ecological feedbacks involving density-dependence840

or interactions with other species. Our analytical results in the infinitesimal model allow us841

to recover very similar patterns to these previous studies and to predict the critical speed at842

which such evolutionary tipping points occur. We furthermore show that evolutionary tip-843

ping points also emerge in the asexual model, but with a different signature. In the asexual844

model, there is only one possible equilibrium for each value of the speed of environmental845

change. Again, ultimately, this unique equilibrium is due to the fact that the variance evolves846

more freely in the asexual model. As the speed increases towards the critical value c∗tip, the847

lag diverges (Figure 4(a)-5(a)). As a result, the variance gets arbitrarily large and the skew-848

ness becomes negative, which shows that more individuals lag behind the evolutionary lag.849

Conversely, in the infinitesimal model, the variance is constrained to remain nearly constant,850

resulting in multiple equilibria, which determine several basins of stability, up to the criti-851

cal value c∗tip. The lag remains bounded in the vicinity of the tipping point, determining a852

characteristic range for the basin of attraction of the origin (Figure 4(b)-5(b)). The lag can853

diverge, even if c < c∗tip, for maladapted initial distributions concentrated far from the origin.854

This corresponds to a population that cannot keep pace with the environmental change.855

Effect of the mutation kernel. In the asexual model, our results also give analytical856

insights on the effect of the shape of the mutation kernel on the adaptation to a changing857

environment. Empirical data on the exact distribution of mutational effects on phenotypic858

traits are hard to get (even though there is more data on the fitness effects of mutations) [see859

e.g. Halligan and Keightley, 2009, Nei, 2014]. Most models therefore assume for mathematical860

convenience a Gaussian distribution of mutational effects. A few simulation studies have861

however explored marginally the consequences of a different, leptokurtic, mutation kernel862

[Keightley and Hill, 1988, Bürger, 1999, Waxman and Peck, 1999] : they found that a fatter863

tail for the distribution of mutational effects led to higher phenotypic variance, smaller864

evolutionary lag and greater fitness. The present analytical results are consistent with these865
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past simulation results and show that we may expect in general distributions of mutations866

with higher kurtosis to reduce maladaptation and improve fitness, especially in fast changing867

environments.868

The advantage of sex in changing environments. Previous studies [Charlesworth,869

1993, Bürger, 1999, Waxman and Peck, 1999] have used the Gaussian assumption and/or870

simulations to compare the dynamics of adaptation to a changing environment in sexual and871

asexual organisms. They all reached the conclusion that sex should provide a net advantage872

in a directionally changing environment, with a lower lag and greater fitness, which was873

ultimately due to the greater standing variance evolving in a sexually reproducing popula-874

tions. More precisely, Bürger [1999] and Waxman and Peck [1999] found that the standing875

variance in sexual organisms would increase significantly with the speed of environmental876

change, while it would have only moderate effects on the variance in the asexual popula-877

tion. These findings seem to contrast with our comparison of the asexual model and sexual878

infinitesimal model, with more constraints on the evolution of the phenotypic variance for879

the latter. However, we would warn against interpreting our comparison of the infinitesimal880

and asexual model as informing about the advantage of sex in a changing environment. We881

rather see this comparison as informing us about the consequences of some modeling choices,882

with various constraints on the evolution of the phenotypic variance. First, for the ease of883

comparison between models, we set the parameter sigma to determine the amount of new884

variation introduced through reproduction in the progeny of parents in both models: in the885

asexual model it describes the amount of variance introduced by mutation, while it describes886

variation due to segregation in the infinitesimal model. It is unclear whether these quantities887

would be comparable with an explicit genetic model, including mutation and segregation at888

a finite set of loci. Second, we note that both Bürger [1999] and Waxman and Peck [1999]889

used in their simulations parameter values for mutation and selection corresponding well to890

the regime of the House of Card approximation [Turelli, 1984], with rare mutations of large891

effects on fitness. These approximation regime is in sharp contrast with our assumption892

of small variance. In particular in the asexual model, we assume that the mean effect of893

mutation σ2 is small compared with the frequency of mutations, which may be captured by894

β.895

Conclusions and perspectives. One of the main conclusion of our study is that896

the genetic standing variance at equilibrium truly depends on the modelling choice of the897

mode of reproduction. To understand this relationship, the approximation of the pheno-898

type distribution appeared necessary. This approach is indeed robust, as shown by several899

studies following the same methodology in spatial structured population models: discrete900

patches ([Mirrahimi, 2017] in asexual model and [Dekens, 2020] in the infinitesimal sexual901

model); dispersal evolution ([Perthame and Souganidis, 2016, Lam and Lou, 2017, Lam, 2017,902

W Hao, 2021, Calvez et al., 2018] in the asexual case and [Dekens and Lavigne, 2021] in the903

infinitesimal sexual case). Moreover, this methodology is expected to be efficient to investi-904

gate other structured population models. Our next step will be to study the adaptation of905

an age–structured population to a changing environment, following [Cotto and Ronce, 2014].906

Other modes of reproduction with a more complicated genetic underlying architecture are907

also under investigation, [see for instance Dekens and Mirrahimi, 2021, Dekens et al., 2021].908
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F Patout. The cauchy problem for the infinitesimal model in the regime of small variance.1038

arXiv:2001.04682, 2020.1039

F Patout, R Forien, and J Garnier. Ancestral lineages in mutation-selection equilibria with1040

moving optimum, 2020.1041

B Perthame. Transport equations in biology. Frontiers in Mathematics. Birkhäuser Verlag,1042
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Supplementary material/Appendix1080

The following subsections gather mathematical analysis supporting the adimensional scaling,1081

numerical methods, Taylor expansions and formula derived in the main text. Although1082

some parts are standard methods (rescaling, numerics), some parts are original contributions1083

(dedicated Taylor expansions and formula involving the Lagrangian function), extending the1084

literature in multiple ways. Hence, this supplementary material can be read as the companion1085

mathematical paper of the main text.1086

Before we enter into the technical details, let us highlight some important observations1087

about the Taylor expansions:1088

• These expansions are more than moment closure methods, where one usually tries1089

to guess the higher moments of the distribution in order to derive a close system of1090

equations on some scalar quantities (first moments of the distribution, e.g. population1091

size, evolutionary lag value, etc). Here, the whole distribution is approximated, then1092

scalar quantities are deduced without any a priori assumptions on the shape of the1093

distribution.1094

• In contrast to classical expansions of the distribution F which are linear, e.g. F =1095

F0 + εF1 + . . . , we perform here a multiplicative Taylor expansion, meaning a linear1096

expansion of the logarithm of the density: U = U0 + εU1 + . . . . We claim this is1097

the natural expansion in the regime of small variance in order to discard the variance1098

from the asymptotic calculations. Nonetheless, intermediate computations may appear1099

heavy because of the nonlinear nature of the multiplicative expansion.1100

• We believe all these approximations can be theoretically justified, and error terms can1101

be controlled quantitatively up to some extent. Results in the literature so far cover the1102

case without environmental change (c = 0), see [Perthame and Barles, 2008, Mirrahimi1103

and Raoul, 2013] (Barles, Perthame, Mirrahimi et al) for the asexual model, and the1104

more recent [Calvez et al., 2019, Patout, 2020] for the infinitesimal sexual model.1105

A Derivation of generic formula1106

Let us consider the equilibrium of our model:1107

λF (z)− εγc∂zF (z) +m(z)F (z) = B(F )(z) , γ ∈ {1, 2} (A.1)

By integration over R, we find:1108

λρ+

∫

R

m(z)F (z) dz = ρ , ρ =

∫

R

F (z) dz . (A.2)

In the regime of small variance, we expect F to concentrate around the evolutionary lag z∗,1109

so as to get the following relationship1110

λ ≈ 1−m(z∗) , (A.3)

which corresponds to the demographic equilibrium. Next, we multiply by (z− z∗), where z∗1111

is the mean value of the distribution F . Then, we integrate over R to find:1112

εγcρ+

∫

R

(z − z∗)m(z)F (z) dz =

∫

R

(z − z∗)B(F )(z) dz . (A.4)
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For any operator B defined by (2.10), we find that the right-hand-side vanishes by definition1113

of z∗. The concentration of the distribution F motivates the Taylor expansion of the selection1114

function: m(z) ≈ m(z∗) + (z − z∗)∂zm(z∗) which implies the following:1115

εγc ≈ −∂zm(z∗)(Var(F )) . (A.5)

B Adimensional scaling1116

We present in this section the details of the scaling procedure which leads to equations (2.11)1117

and (2.12) in adimensional form. By convention, the variables and parameters in original1118

units are written in bold, whereas adimensional quantity are in normal font.1119

The stationary state (λ,F) satisfies

λF(z)− c∂zF(z) + µ(z)F(z) = βB(F)(z) .

where the mortality rate µ(z) = µ0+m(z) is decomposed as a basal rate µ0 (miminum value1120

of the mortality rate), and a mortality increase m(z) ⩾ 0 which is trait-dependent. Dividing1121

by the fertility rate β, (trait-independent) it becomes1122

λ+ µ0

β
F(z)− c

β
∂zF(z) +

1

β
m(z)F(z) = B(F)(z) . (B.1)

Around the optimum trait z = 0, the mortality per individual per generation m/β is equiv-

alent to
1

β
m(z) =

1

2

m′′(0)

β
z2 + o(z2) =

1

2

(
z

√
α

β

)2

+ o(z2)

It is natural to measure traits with this selection scale:

Z2
sel =

β

α
.

The mean fitness and the phenotypic distribution becomes in the scaled trait variable z =

z/Zsel:

λ =
λ+ µ0

β
and F (z) = F(Zselz) .

The mortality rate per individual becomes

m(z) =
1

β
m (Zselz) ,

so that the selection strength α around the optimum is scaled to a unit value:

m′′(0) = 1 .

Our main assumption is that there is a small variability with respect to the selection scale

Zsel. Denoting by Zdiv the standard deviation of offspring traits from the parental traits, we

define ε the scaling ratio:

ε =
Zdiv

Zsel
.

Then, our main assumption can be summarized as ε j 1, paving the way to suitable Taylor1123

expansions. In both models, the standard deviation Zdiv is denoted by the common param-1124

eter σ in the original units. However, we emphasize that it corresponds to mechanisms of1125

variability associated with very different genetical background.1126

39

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.22.497192doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497192
http://creativecommons.org/licenses/by-nc-nd/4.0/


The reproduction operators B are transformed as follows:1127

Asexual reproduction operator in scaled variables.

B(F)(Zselz) =
1

σ

∫

R

K

(
Zselz − z′

σ

)
F(z′) dz′ =

1

Zdiv

∫

R

K

(
Zsel

Zdiv

(
z − z′

Zsel

))
F(z′) dz′.

Using the change of variable z′ = z′/Zsel in the integral and the definitions of ε = Zdiv/Zsel

and F, we obtain

B(F)(Zselz) =
Zsel

Zdiv

∫

R

K

(
Zsel

Zdiv
(z − z′)

)
F(Zselz

′) dz′ =
1

ε

∫

R

K

(
z − z′

ε

)
F (z′) dz′.

Sexual reproduction operator in scaled trait.

B(F)(Zselz) =
1√
πσ2

∫∫

R2

exp

(
−
(
Zselz −

z1 + z2

2

)2
)
F(z1)

F(z2)∫
R
F(z′2) dz

′
2

dz1dz2

=
1√
π

1

Zdiv

∫∫

R2

exp

(
−
(
Zsel

Zdiv

)2(
z − 1

2

(
z1

Zsel
+

z2

Zsel

))2
)
F(z1)

F(z2)∫
R
F(z′2) dz

′
2

dz1dz2 .

Using the change of variable z1 = z1/Zsel, z2 = z2/Zsel, and z′2 = z′2/Zsel, in the integrals

and the definitions of ε = Zdiv/Zsel and F, we obtain

B(F)(Zselz) =
1√
π

1

Zdiv

∫∫

R2

exp

(
−
(
Zsel

Zdiv

)2(
z − z1 + z2

2

)2
)
F(Zselz1)

F(Zselz2)

Zsel

∫
R
F(Zselz′2) dz

′
2

Z2
seldz1dz2

=
1√
π

Zsel

Zdiv

∫∫

R2

exp

(
−
(
Zsel

Zdiv

)2(
z − z1 + z2

2

)2
)
F (z1)

F (z2)∫
R
F (z′2) dz

′
2

dz1dz2

=
1

ε
√
π

∫∫

R2

exp

(
− 1

ε2

(
z − z1 + z2

2

)2
)
F (z1)

F (z2)∫
R
F (z′2) dz

′
2

dz1dz2 .

The adimensional speed. It remains to express the adimensional speed c = c/C with1128

different choices of the typical speed C. This choice depends on the reproduction mode as1129

follows:1130

C =





σβ (asexual model)

σ2
√
αβ (infinitesimal sexual model)

. (B.2)

We thus deduce the adimensional the following expression of the advection term:1131

− c

β
∂zF(z) = −c

C

βZsel
∂zF (z) =





−c
σ

Zsel
∂zF (z) = −εc∂zF (z) (asexual model)

−c
σ2α1/2

Zselβ1/2
∂zF (z) = −ε2c∂zF (z) (infinitesimal sexual model)

.

(B.3)

We obtain eventually the two rescaled problems as shown in (2.11) and (2.12). To conclude,1132

let us mention that the discrepancy between the two values of C (B.2) is due to the very1133

last step (B.3), where the adimensional speed must be of order ε in the asexual model, resp.1134

of order ε2 in the infinitesimal sexual model, in order to balance the other contributions. A1135

mismatch at this step (e.g. any other power of ε) would result in a severe unbalance between1136

the contributions, namely dramatic collapse of the population if the effective speed is too1137

large, or no clear effect of the change if the effective speed is too small.1138
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C Derivation of the variance1139

We compute below the formula of the standing variance Var(F ) in terms of U = −εγ logF ,1140

Var(F ) =

(∫

R

((z − z∗)
2
exp

(
−U(z)

εγ

)
dz

)/(∫

R

exp

(
−U(z)

εγ

)
dz

)
(C.1)

We assume that U reaches a non-degenerate minimum point at a unique z∗, such that1141

U(z) = U(z∗) + 1
2 (z − z∗)2∂2

zU(z∗) + o((z − z∗)2) as z → z∗. The denominator is equivalent1142

to1143

εγ/2√
2π
√
∂2
zU(z∗)

exp

(
−U(z∗)

εγ

)
(C.2)

whereas the numerator is equivalent to1144

εγ

∂2
zU(z∗)

εγ/2√
2π
√

∂2
zU(z∗)

exp

(
−U(z∗)

εγ

)
. (C.3)

Thus, the ratio is equivalent to (2.15):1145

Var(F ) ∼ εγ

∂2
zU(z∗)

. (C.4)

D Asexual type of reproduction (Details of Section 3.1)1146

This long section is devoted to the details of the Taylor expansion of U defined by (2.13). The1147

equations verified by the successive terms U0 and U1 are derived. The meaningful formula1148

are computed.1149

We can formally expand the pair (λ, U) with respect to ε as follows,1150




U(z) = U0(z)+εU1(z) + o(ε)

λ = λ0+ελ1 + o(ε)
(D.1)

where (λ0, U0) gives the limit shape as ε → 0, and (λ1, U1) is the correction for small ε > 0.1151

We focus on the leading order contribution in this work. The corrector is required to refine1152

our approximation in some part of the discussion.1153

D.1 Equations for (λ, U), (λ0, U0) and (λ1, U1)1154

We begin with the diffusion approximation for the sake of simplicity. This enables to present1155

the main ingredient, namely the completion of the square in the equation, that will be gen-1156

eralized next for a general mutation kernel.1157

D.1.1 The diffusion approximation1158

The equation for F (2.11), together with the logarithmic transformation F (z) = exp(−U(z)/ε),1159

is equivalent to the following one:1160

λ+ c∂zU(z) +m(z) = 1 +
1

2
(∂zU(z))

2
+

ε

2
∂2
zU(z) . (D.2)

Clearly, the limiting problem for (λ0, U0) is1161

λ0 + c∂zU0(z) +m(z) = 1 +
1

2
(∂zU0(z))

2
. (D.3)

41

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.22.497192doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497192
http://creativecommons.org/licenses/by-nc-nd/4.0/


It is instructive to gather all the ∂zU0 in the right hand side, then to complete the square:1162

m(z) +

[
λ0 − 1 +

c2

2

]
=

1

2
(∂zU0(z)− c)

2
. (D.4)

The key point is that there exist admissible solutions of this ODE if, and only if, the value1163

between brackets vanishes, i.e. λ0 = 1− c2

2 . The argument is as follows.1164

Completion of the square. On the one hand, evaluating (D.4) at z = 0, we find that1165

λ0 − 1 + c2

2 ⩾ 0 since m(0) = 0. On the other hand, if λ0 − 1 + c2

2 is positive, then ∂zU0 − c1166

does not change sign. Assuming without loss of generality that it is everywhere positive, we1167

find that U0(z) ⩾ cz + U0(0) for z ⩾ 0 and U0(z) ⩽ cz + U0(0) for z ⩽ 0. In particular,1168

we have U0(z) → −∞ as z → −∞, and U0(z) → +∞ as z → +∞, which is clearly not1169

admissible because F is a population density. Therefore, λ0 − 1 + c2

2 = 0.1170

Next, we can deduce the lag by evaluating (D.3) at z∗0 such that ∂zU0(z
∗
0) = 0,1171

m(z∗0) =
c2

2
, (D.5)

and also the value of the second derivative by differentiating once and evaluating at z∗0 :1172

c∂2
zU0(z

∗
0) + ∂zm(z∗0) = 0. (D.6)

Finally, we deduce the variance from (2.15)1173

Var(F ) = − εc

∂zm(z∗0)
+ o(ε) (D.7)

consistently with (5.1).1174

We can even provide a formula for the profile U0 by solving the ODE (D.4):1175

U0(z) = cz +

∣∣∣∣
∫ z

0

(2m(z′))
1/2

dz′
∣∣∣∣ . (D.8)

Notice that the environmental change acts here as a linear correction of the equilibrium profile1176

obtained in the case c = 0. However, this is a peculiarity of the diffusion approximation.1177

It is another peculiarity that a quadratic selection function m(z) = z2

2 results in a1178

quadratic profile U0(z) = cz + z2

2 (D.8), which corresponds to a Gaussian distribution func-1179

tion F with variance ε.1180

D.1.2 The case of a general mutation kernel1181

Again, we can reformulate the problem (2.11) in an equivalent form:1182

(λ+ c∂zU(z) +m(z)) exp

(
−U(z)

ε

)
=

1

ε

∫

R

K

(
z − z′

ε

)
exp

(
−U(z′)

ε

)
dz′ (D.9)

After the change of variables z′ = z − εy in the integral term, we obtain:

λ+ c∂zU(z) +m(z) =

∫

R

K (y) exp

(
U(z)− U(z − εy)

ε

)
dy

=

∫

R

K (y) exp
(
y∂zU(z)− ε

2
y2∂2

zU(z) + o(ε)
)
dy .

42

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.22.497192doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497192
http://creativecommons.org/licenses/by-nc-nd/4.0/


Injecting (D.1) into (2.11), but dropping terms of order higher than ε, we get

λ0 + ελ1 + c∂z (U0(z) + εU1(z)) +m(z) =

∫

R

K (y) exp
(
y∂z (U0(z) + εU1(z))−

ε

2
y2∂2

zU0(z) + o(ε)
)
dy

=

∫

R

K (y) exp (y∂zU0(z))
(
1 + εy∂zU1(z)−

ε

2
y2∂2

zU0(z)
)
dy + o(ε) .

(D.10)

By identification of the contributions having the same order in ε in equation (D.10), we

obtain the following equations for the pairs (λ0, U0) and (λ1, U1)

Limit problem: λ0 + c∂zU0(z) +m(z) = 1 +H (∂zU0(z)) , (D.11)

First correction problem: λ1 + (c− ∂pH(∂zU0(z))) ∂zU1(z) = −1

2
∂2
pH(∂zU0(z))∂

2
zU0(z) ,

(D.12)

where the Hamiltonian function H is the two-sided Laplace transform of K up to an additive

constant:

H(p) =

∫

R

K (y) exp (yp) dy−1 , ∂pH(p) =

∫

R

yK (y) exp (yp) dy , ∂2
pH(p) =

∫

R

y2K (y) exp (yp) dy .

D.1.3 Computation of the mean fitness1183

The argument of Section D.1.1 for computing λ0 can be extended to the general case.1184

Quadratic functions are replaced by convex ones, but the argument is essentially the same.1185

Again, let us reorganize (3.1) as follows, gathering the ∂zU0 in the right hand side,1186

m(z) + λ0 − 1 = − (c∂zU0(z)−H(∂zU0(z))) . (D.13)

The function p 7→ cp−H(p) reaches a maximum value, denoted as L(c) by definition (3.4).1187

Adding this value on each side, we find1188

m(z) + [λ0 − 1 + L(c)] = H(∂zU0(z))− c∂zU0(z) + L(c) . (D.14)

Completion of the generalized square. As in (D.4), the function p 7→ H(p)− cp+1189

L(c) in the right-hand-side is convex, nonnegative and touches zero. This is the analogous1190

computation of the completion of the square by means of adding L(c). The same reasoning as1191

above implies that the constant between brackets must vanish, i.e λ0 = 1−L(c). Otherwise,1192

the quantity H(∂zU0(z)) − c∂zU0(z) + L(c) would take positive values for z ∈ R, hence1193

the function ∂zU0(z) could take values only on one of the two branches of the function1194

p 7→ H(p) − cp + L(c), as depicted in Fig 9. As the function p 7→ H(p) − cp + L(c) is1195

invertible on each separate branch, we could determine unambiguously the value of ∂zU0(z)1196

for z ∈ R. In particular, it would have the same limiting value (possibly infinite) as z → −∞1197

and z → +∞ since m(−∞) = m(+∞). This would preclude the asymptotic behavior1198

U0(±∞) = +∞ which is equivalent to vanishing population density at infinity. Hence,1199

λ0 = 1− L(c) is the only possible value.1200
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H(p)− cp + L(c)

p

λ0 − 1 + L(c)

H(@zU0(z))− c@zU0(z) + L(c)

Figure 9: Completion of the generalized square H(p) − cp + L(c) ⩾ 0 (with zero minimum
value). It is a true quadratic expression in the case of the diffusion approximation. It is a
convex function in the general case.

D.2 Summary1201

So far we have obtained an analytical formula for the mean fitness,1202

λ0 = 1− L(c) , (D.15)

by means of the Lagrangian function which is the Legendre transform of the Hamiltonian1203

function,1204

L(c) = max
p

(pc−H(p)) , (D.16)

where H is the Laplace transform of the mutation kernel K.1205

The knowledge of the mean fitness enables deriving the lag load, which equilibrates birth1206

and death in the population concentrated at trait z∗0 : λ0 = 1−m(z∗0), or equivalently1207

m(z∗0) = L(c) . (D.17)

Note that the latter is equivalent to setting ∂zU0(z
∗
0) = 0 in (D.13) (critical point of the1208

density), which is another characterization of the lag load.1209

The variance can be completed subsequently by differentiating (D.13) with respect to1210

z and evaluating at z = z∗0 . It is found that the variance equilibrates the fitness gradient1211

and the speed of environmental change (i.e. the variations in the trait value in the moving1212

frame):1213

∂2
zU(z∗0) = −∂zm(z∗0)

c
. (D.18)

D.3 Conjugacy: Enlightening heuristics1214

There exists an alternative way to get some of the previous formula. The idea is to twist1215

the unknown distribution F by a well chosen exponential function, in order to remove the1216

transport part −c∂zF due to the environmental change. An enlightening example is the case1217
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of the diffusive approximation. Suppose the model is1218

λF (z)− εc∂zF (z)− ε2

2
∂2
zF (z) = (1−m(z))F (z) . (D.19)

Then, the twisted distribution F(z) = F (z)ecz/ε satisfies the following equation:1219

λF(z)− ε2

2
∂2
zF(z) =

(
1− c2

2
−m(z)

)
F(z) . (D.20)

Therefore, we are reduced to a simpler problem without environmental change, at the expense1220

of a global increase of mortality of value c2/2, consistently with the result of Section D.1.1.1221

However, the general case is based on heuristics rather than formal arguments. Starting1222

from equation (2.11), or equivalently:1223

λF (z)− εc∂zF (z)−
∫

R

Kε(z − z′) (F (z′)− F (z)) dz′ = (1−m(z))F (z) , (D.21)

the density F is replaced with F(z) = F (z)ep0z/ε, for some p0 ∈ R to be characterized later1224

on. The equation for F is:1225

λF(z) + cp0F(z)− εc∂zF(z)−
∫

R

Kε(z − z′)
(
ep0(z−z′)/εF(z′)− F(z)

)
dz′ = (1−m(z))F(z) ,

(D.22)

It is useful to rearrange the terms as follows:1226

λF(z)−εc∂zF(z)−
∫

R

Kε(z−z′)ep0(z−z′)/ε (F(z′)− F(z)) dz′ =

(
1− cp0 +

(∫

R

Kε(z
′)ep0z

′/ε dz′ − 1

)
−m(z)

)
F(z) ,

(D.23)

A natural way to choose p0 is to guarantee that the combination of transport and mutations1227

preserves the center of mass of the distribution. This is a way to remove artificially the1228

asymmetrical transport part. Thus, we propose the following characterization of p0: for any1229

distribution F,1230

∫

R

z

(
−εc∂zF(z)−

∫

R

Kε(z − z′)ep0(z−z′)/ε (F(z′)− F(z)) dz′
)

dz = 0 .

This is equivalent to:

εc

∫

R

F(z) dz =

∫∫
zKε(z − z′)ep0(z−z′)/εF(z′) dz′dz −

∫∫
zKε(z − z′)ep0(z−z′)/εF(z) dz′dz

=

∫∫
zKε(z − z′)ep0(z−z′)/εF(z′) dz′dz −

∫∫
z′Kε(z − z′)ep0(z−z′)/εF(z′) dz′dz

=

∫∫
(z − z′)Kε(z − z′)ep0(z−z′)/εF(z′) dz′dz

=

(∫
zKε(z)e

p0z/ε dz

)(∫

R

F(z) dz

)
.

Finally, the required condition is equivalent to the following one, which appears to be inde-1231

pendent of ε > 0:1232

c =

∫
yK(y)ep0y dy . (D.24)

With the notations of Section D.1, this is also c = ∂pH(p0). The right hand side of (D.23)1233

becomes:1234

(1− cp0 +H(p0)−m(z))F(z) = (1− L(c)−m(z))F(z) . (D.25)
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As a conclusion, we have shown that the combination of transport and mutations is equivalent1235

to an operator which preserves the center of mass, up to a global increase of mortality of1236

value L(c).1237

D.4 Some properties of the Hamiltonian and Lagrangian functions1238

We gather below some classical properties of the special functions that appeared useful in1239

the analysis above.1240

Diffusion approximation as an extremal case of the convolution case. By1241

symmetry of the kernel K, and its properties, the Hamiltonian function can be bounded1242

below:1243

H(p) =

∫

R

K(y)

(
exp(yp) + exp(−yp)

2
− 1

)
dy ⩾

|p|2
2

∫

R

K(y)y2dy =
|p|2
2

. (D.26)

The latter expression is realized by the so-called diffusion approximation, see Section D.1.1.1244

Indeed, the Hamiltonian function there was simply the square of the gradient (D.3). It is1245

a direct consequence of the formula L(c) = maxp pc − H(p) (completion of the generalized1246

square) that the Lagrangian function is bounded above:1247

L(c) ⩽
c2

2
. (D.27)

Hence, the maximum of lag load is realized for the diffusion approximation.1248

The Hamiltonian function contains all the moments of the mutation ker-

nel. By definition of the exponential function we have:

H(p) =

∫

R

K(y)

(
∞∑

k=0

(py)k

k!

)
dy − 1

=
∞∑

k=1

(∫

R

K(y)yk dy

)
pk

k!
.

Hence, the moments of K are successive derivatives of H at the origin.1249

Influence of the kurtosis of the mutation kernel. As an immediate consequence,1250

we see that the mean fitness λ0 = 1−L(c) crucially depends on the full shape of the mutation1251

kernel K. Indeed, the Lagrangian function L is related to the Laplace transform of the1252

mutation kernel K (3.2) via the Legendre transform (3.4). To investigate this relationship,1253

we investigate five kernels having the same variance, but different shapes, see Table 4. We1254

can show from the Taylor expansions that the Hamiltonian functions are ordered from top1255

to bottom as follows:1256

Hdiff ⩽ Hunif ⩽ Hgauss ⩽ Hexp ⩽ Hgamma . (D.28)

Accordingly, the Lagrangian functions are ordered in the opposite way, and the resulting1257

mean fitnesses are ordered as follows:1258

λdiff ⩽ λunif ⩽ λgauss ⩽ λexp ⩽ λgamma . (D.29)

Hence, the lag load is ordered with respect to the kurtosis of the kernel.1259
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Mutation kernel K(y) Hamiltonian function H(p)

Diffusion approximation
1

2
∂2
z

1

2
p2

Uniform distribution
1

2
√
3
1(−

√
3,
√
3)

sinh(
√
3p)√

3p
− 1

Gaussian distribution
1√
2π

exp

(
−y2

2

)
exp

(
p2

2

)
− 1

Exponential distribution
1√
2
exp

(
−
√
2|y|
) 1

1− p2

2

− 1

Gamma distribution |y|γ−1 exp
(
−
√

γ(γ + 1)|z|
) 1

2
((1− θp)−γ + (1 + θp)−γ)− 1

Table 4: (Left) Five examples of mutation kernels with same (unit) variance, ordered by in-
creasing kurtosis (from top to bottom). (Right) The associated Hamiltonian functions, with
analytical formula. The corresponding Lagrangian functions cannot be expressed with classical
functions, but the first one, up to our knowledge.

D.5 Consistency of the formula for ∂2
z
U0(z

∗
0) at c = 01260

Here, we justify Remark 1, meaning that the formula obtained for ∂2
zU0(z

∗
0) at c > 0 (D.18)1261

coincides with the formula at c = 0, namely ∂2
zU0(0) = 1. The latter is derived as follows.1262

Firstly, the mean fitness (D.15) is λ0 = 1, as L(0) = 0, and the evolutionary lag (D.17)1263

is naturally z∗0 = 0 at c = 0 by definition of the mortality rate, optimum at the origin.1264

Secondly, the expression of ∂2
zU0(0) can be obtained by two alternative ways.1265

By differentiating twice (D.11) with respect to z, yields1266

∂2
zm(z) = ∂2

pH (∂zU0(z))
(
∂2
zU0(z)

)2
+ ∂pH (∂zU0(z)) ∂

3
zU0(z) .

By evaluating this expression at z = 0, the last contribution vanishes because ∂pH (∂zU0(0)) =1267

∂pH (0) = 0. Hence, we get that1268

∂2
zU0(0) =

(
∂2
zm(0)

∂2
pH (∂zU0(0))

)1/2

= 1 ,

since ∂2
zm(0) = ∂2

pH(0) = 1.1269

Alternatively, performing suitable Taylor expansions in expressions of, respectively, z∗0
(3.6) and ∂2

zU0(z
∗
0) (3.7), as c → 0, yields:

z∗0 =
∂z∗0
∂c

c+ o(c) , and
1

2
∂2
zm(0)

(
∂z∗0
∂c

c

)2

=
1

2
∂2
vL(0)c

2 ,

∂2
zU0(0) = −∂2

zm(0)

c

(
∂z∗0
∂c

c

)
= ∂2

zm(0)

(
∂2
vL(0)

∂2
zm(0)

)1/2

=
(
∂2
zm(0)∂2

vL(0)
)1/2

= 1 .

By reciprocity of the derivatives of H and L, we have ∂2
vL(0) = 1/

(
∂2
pH(0)

)
= 1. Both1270

calculations coincide.1271
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D.6 Quantitative description of the first correction (λ1, U1)1272

We derive useful informations from the equation (D.12) about the pair (λ1, U1). The method-1273

ology goes as in Section D.1.1274

We give the formula for the correctors λ1, z
∗
1 , and the local shape around the minimal1275

value: ∂2
z (U0+ εU1)(z

∗
0 + εz∗1). However, only the former one (λ1) is meant to be used in the1276

main text, as it contains useful information about the mutation load in the population.1277

The formula are summarized in the following list, which completes those obtained in1278

Section (D.2) at the leading order:1279

Mean fitness λ = 1− L(c)− ε

2

(
1

∂2
vL(c)

)1/2

+ o(ε)

Evolutionary lag z∗ = z∗0 +
ε

2

(
1

∂zm(z∗0)

(
1

∂2
vL(c)

)1/2

+
1

c

)
+ o(ε)

Local shape ∂2
zU(z∗) = −∂zm(z∗0)

c
− ε

2

(
1

c

∂2
zm(z∗0)

∂zm(z∗0)

(
1

∂2
vL(c)

)1/2

+

(
∂zm(z∗0)

c2

)2
)

+ o(ε)

(D.30)

Description of the Mean fitness λ1. The equation (D.12) evaluated at the optimal1280

trait z = 0 yields λ1 = −∂2
pH(p0)∂

2
zU0(0)/2, where p0 = ∂zU0(0). To compute ∂2

zU0(0), we1281

differentiate (D.11) twice, and evaluate the expression at z = 0:1282

1 = ∂2
pH (p0)

(
∂2
zU0(0)

)2
. (D.31)

Recall that p0 = ∂vL(c). Moreover, since ∂pH and ∂vL are reciprocal functions, then the1283

second derivatives are inverse from each other. Therefore ∂2
pH(p0) =

(
∂2
vL(c)

)−1
. Thus, λ11284

is given by the following expression:1285

λ1 = −1

2

(
1

∂2
vL(c)

)1/2

. (D.32)

Description of the evolutionary lag z∗1. By pushing the computations further, it is

also possible to derive the first order correction of the lag z∗1 . It is defined such that z∗0 + εz∗1
is the critical point of U0 + εU1, that is ∂z(U0 + εU1)(z

∗
0 + εz∗1) = 0 . By expanding this

relation, but keeping only the first order terms, we obtain z∗1 = −∂zU1(z
∗
0)/∂

2
zU0(z

∗
0). On

the other hand, evaluating the equation (D.12) at z = z∗0 yields −∂zU1(z
∗
0)/∂

2
zU0(z

∗
0) =

λ1/(c∂
2
zU0(z

∗
0)) + 1/(2c). Using the expression (D.18) of ∂2

zU0(z
∗
0), we obtain:

z∗1 =
1

2∂zm(z∗0)

(
1

∂2
vL(c)

)1/2

+
1

2c
. (D.33)

Description of the local shape. We expand the second derivative of U0+ εU1 at the1286

lag point z∗0 + εz∗1 with respect to ε and we obtain1287

∂2
z (U0 + εU1)(z

∗
0 + εz∗1) = ∂2

zU0(z
∗
0) + ε

(
∂3
zU0(z

∗
0)z

∗
1 + ∂2

zU1(z
∗
0)
)
+ o(ε) . (D.34)

We aim at characterizing the term of order ε in this expansion. The first additional contri-1288

bution ∂3
zU0(z

∗
0) can be easily deduced from the equation (D.11) by differentiating it twice,1289
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and evaluating at z = z∗0 :1290

c∂3
zU0(z

∗
0) + ∂2

zm(z∗0) = ∂2
pH (0)

(
∂2
zU0(z

∗
0)
)2

=
(
∂2
zU0(z

∗
0)
)2

.

The second additional contribution ∂2
zU1(z

∗
0) is deduced from the equation (D.12) by differ-1291

entiating once and evaluating at z = z∗0 :1292

c∂2
zU1(z

∗
0) = ∂2

zU0(z
∗
0)∂zU1(z

∗
0)−

1

2
∂3
zU0(z

∗
0) .

Combining these two expressions with the expression (D.33) of z∗1 , and ∂zU1(z
∗
0), we get

∂3
zU0(z

∗
0)z

∗
1 + ∂2

zU1(z
∗
0)

= ∂3
zU0(z

∗
0)

(
z∗1 − 1

2c

)
+

1

c
∂2
zU0(z

∗
0)∂zU1(z

∗
0)

=
1

c

((
∂2
zU0(z

∗
0)
)2 − ∂2

zm(z∗0)
)( 1

2∂zm(z∗0)

(
1

∂2
vL(c)

)1/2
)

− 1

c
∂2
zU0(z

∗
0)

(
λ1

c
+

∂2
zU0(z

∗
0)

2c

)

=
1

c

((
∂zm(z∗0)

c

)2

− ∂2
zm(z∗0)

)(
1

2∂zm(z∗0)

(
1

∂2
vL(c)

)1/2
)

+
∂zm(z∗0)

c2

(
− 1

2c

(
1

∂2
vL(c)

)1/2

− ∂zm(z∗0)

2c2

)

= − ∂2
zm(z∗0)

2c∂zm(z∗0)

(
1

∂2
vL(c)

)1/2

− 1

2

(
∂zm(z∗0)

c2

)2

This concludes the analysis of the corrector problem at first order.1293

D.7 Numerical computation of the distributions U0 and U1 in the1294

asexual model1295

The equation for U0 (D.11) is a non linear Ordinary Differential Equation (ODE). It has a

singular point at z = 0, where the function p 7→ cp−H(p) cannot be inverted. It was solved

numerically in the following way: after differentiation with respect to z, equation (D.11)

becomes

(∂pH(∂zU0(z))− c) ∂2
zU0(z) = ∂zm(z) ô d

dz
(U ′

0(z)) =
m′(z)

∂pH(U ′
0(z))− c

.

This ODE on U ′
0(z) was solved using a classical solver (RK45), separately on the two branches1296

z > 0 and z < 0. The issue is to initialize appropriately the solver for z = 0+, and z = 0−.1297

The correct initialization was deduced from the analytical expressions of U ′
0(0) = p0 =1298

∂vL(c).1299

Next, the linear ODE for U1 (D.12) was computed along characteristic lines:

ż(s) = ∂pH(∂zU0(z(s)))− c =⇒ d

ds
(U1(z(s))) = λ1 +

1

2
∂2
pH(∂zU0(z(s)))∂

2
zU0(z(s))

= λ1 +
1

2

(
d

dz
∂pH(∂zU0)

)
(z(s)) .
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Integrating this formula with respect to s yields

U1(z(s))− U1(z(0)) = λ1s+
1

2

∫ s

0

(
d

dz
∂pH(∂zU0)

)
(z(s′)) ds′

= λ1s+
1

2

∫
z(s)

0

(
d

dz
∂pH(∂zU0)

)
(z)

(
1

∂pH(∂zU0(z))− c

)
dz

= λ1s+
1

2
log

∣∣∣∣
∂pH(∂zU0(z(s)))− c

∂pH(∂zU0(z(0)))− c

∣∣∣∣ .

Again, the delicate issue is to evaluate appropriately the value U1(z(0)) for a starting point1300

z(0) close to 0 (notice that 0 is an equilibrium point for the ODE: ż(s) = ∂pH(∂zU0(z(s)))−1301

c). The correct approximation is given by the analytical expression of ∂zU1(0) obtained by1302

differentiating equation (D.12) with respect to z and evaluating it at z = 0.1303

E Qualitative properties of the standing variance at equi-1304

librium Var(F)1305

In this appendix, we discuss in detail the behavior of the standing variance at equilibrium1306

with respect to the speed of change c in the scenario of asexual reproduction. Let us remind1307

that in this case the standing variance at equilibrium is well approximated by the following1308

expression at the leading order:1309

Var(F) ≈ − c

∂zm(z∗0)
.

It is convenient to introduce the positive lag |z∗0|, which is the distance to the optimal trait1310

located at z = 0, so that1311

Var(F) ≈ c

∂zm(|z∗0|)
.

Recall that the lag is deduced from the inversion of the increment of mortality m:1312

|z∗0| = m−1

(
βL

(
c

σβ

))
, (E.1)

where m−1 is the inverse of the function m on (0,∞). The differentiation of the lag |z∗0|1313

with respect to c goes as follows:1314

d|z∗0|
dc

(c) =
1

σ
∂vL

(
c

σβ

)
∂z(m

−1)

(
βL

(
c

σβ

))
, (E.2)

Since ∂z(m
−1) = 1/∂zm(m−1), the previous expression becomes1315

d|z∗0|
dc

(c) =
1

σ
∂vL

(
c

σβ

)
1

∂zm

(
m−1

(
βL

(
c

σβ

))) =
1

σ
∂vL

(
c

σβ

)
1

∂zm(|z∗0|)
, (E.3)

Reformulating this expression, we get an alternative expression for the variance:1316

Var(F) ≈ c

∂zm(|z∗0|)
=

d|z∗0|
dc

(c)× σc

(
∂vL

(
c

σβ

))−1

(E.4)
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Now let differentiate the latter expression with respect to c:1317

d

dc

(
c

∂zm(|z∗0|)

)
=

d2|z∗0|
dc2

(c)×σc

(
∂vL

(
c

σβ

))−1

+
d|z∗0|
dc

(c)×σ

(
∂vL

(
c

σβ

))−1

1− c

σβ

∂2
vL
(

c

σβ

)

∂vL
(

c

σβ

)




(E.5)

We shall establish that for all c > 0, the following inequality holds true:1318


1− c

σβ

∂2
vL
(

c

σβ

)

∂vL
(

c

σβ

)


 ⩾ 0 .

Indeed, it can be reformulated by means of p such that p = ∂vL (c/σβ), as follows:1319

1− c

σβ

∂2
vL
(

c

σβ

)

∂vL
(

c

σβ

) = 1− ∂pH(p)

p∂2
pH(p)

= 1−

∫

R

yK(y)epy dy

p

∫

R

y2K(y)epy dy

= 1−

∫

R+

yK(y) sinh(py) dy

p

∫

R+

y2K(y) cosh(py) dy

.

(E.6)

The conclusion follows from the pointwise inequality tanh(py) ⩽ py for p, y ⩾ 0, which is1320

equivalent to sinh(py) ⩽ py cosh(py).1321

On the other hand, we have shown that the lag increases with respect to the speed of1322

change c, thus d|z∗0|/dc ⩾ 0. Then, if the lag is convex with respect to the speed of change1323

c, that is d2|z∗0|/dc2 ⩾ 0, then the standing variance at equilibrium increases with respect to1324

the speed c.1325

However, the convexity of the lag depends on the convexity of the function c 7→ m−1(βL(c)).1326

If the selection is quadratic m(z) = αz2, this function is concave for any mutation kernel.1327

However, if the selection function is more than quadratic, we can find mutation kernels such1328

that the lag becomes convex.1329

In the diffusion approximation L(c) = c2/2, we can go further. In this case, we know1330

from equation (4.1) that the lag accelerates with c if m is sub-quadratic. Whereas it lag is1331

concave if m is super-quadratic in the sense of (4.2).1332

As a result, we have shown that the variance Var(F) increases with c if the function1333

c 7→ m−1(βL(c)) is convex. More precisely, in the diffusion approximation, the variance1334

increases with c if m is sub-quadratic in the sense of (4.1).1335

F Sexual type of reproduction (details of Section 3.2)1336

In this section we develop the computations required to describe U up to order ε2, as in1337

(3.11). We present arguments from convex analysis to characterize U0. We provide an1338

explicit formula for the first order correction U1 as an infinite series. Meanwhile, we present1339

tedious computations needed to identify the linear part of U1, and we derive the first order1340

correction of the mean fitness λ1 as a by-product.1341

Our starting point is the following relationship which is equivalent to finding a stationary
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density in the moving frame, expanded at first order in ε2:

λ0 + c∂zU0(z) +m(z) =

1

ε2
√
2π

∫∫

R2

exp

(
− 1

ε2

[(
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)− U0(z)

]
− U1(z1)− U1(z2) + U1(z)

)
dz1dz2

1

ε
√
2π

∫

R

exp

(
− 1

ε2
U0(z

′)− U1(z
′)

)
dz′

.

(F.1)

Note that the prefactors (involving ε, π have been arranged for the sake of normalizing1342

singular integrals).1343

The arguments below are formal computations. We refer to [Calvez et al., 2019] for a1344

rigorous analysis of this asymptotic analysis in the case c = 0, and to [Patout, 2020] for the1345

time marching problem.1346

F.1 The characterization of U0 by convex analysis1347

Recall that the identity satisfied by U0 is the following one, ensuring that the right hand side

of (F.1) does not get trivial as ε → 0:

∀z ∈ R min
(z1,z2)∈R2

[(
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)− U0(z)−minU0

]
= 0

⇐⇒ U0(z) + minU0 = min
(z1,z2)∈R2

((
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)

)
. (F.2)

The goal of this section is to prove that any solution of the functional equation (F.2) is1348

given by a member of the three parameters family1349

U0(z) = C +
(z − a)2−

2
+

(z − b)2+
2

, (F.3)

where the parameters a, b are such that a ⩽ b and C is an arbitrary constant. We denote by1350

z∗0 a minimum point of U0. We can restrict to minU0 = 0 without loss of generality (so that1351

the additive constant C is set to 0). The characterization of U0 is done in several steps.1352

Regularity and λ−concavity. Firstly, notice that U0(z) − z2 is a concave function,

as it can be written as

U0(z)− z2 = min
(z1,z2)∈R2

(
−z(z1 + z2) +

(
z1 + z2

2

)2

+ U0(z1) + U0(z2)

)

= min {affine functions with respect to z} .

We deduce that U0 is continuous, and that it admits left and right derivatives everywhere.1353

The convex conjugate. The trick is to introduce the convex conjugate Û0 (also called

the Legendre transform of U0):

Û0(y) = max
z∈R

((z − z∗0)y − U0(z)) ,

where z∗0 is a minimum point of U0. The basic properties of Û0 are listed below:1354
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• Û0 is convex, so it is continuous, and it admits left and right derivatives everywhere,1355

• Û0(0) = max (−U0) = −min (U0) = 0,1356

• for all y, Û0(y) ⩾ −U0(z
∗
0) = 0, thus min Û0 = 0.1357

We deduce from the functional identity (F.2), that

Û0(y) = max
z∈R


(z − z∗0)y − min

(z1,z2)

∈R
2

((
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)

)


= max
(z,z1,z2)∈R3

(
(z − z∗0)y −

(
z − z1 + z2

2

)2

− U0(z1)− U0(z2)

)

= max
(z1,z2)∈R2

(
max
z∈R

(
(z − z∗0)y −

(
z − z1 + z2

2

)2
)

− U0(z1)− U0(z2)

)

= max
(z1,z2)∈R2

(
y2

4
+

1

2
(z1 + z2) y − z∗0y − U0(z1)− U0(z2)

)

=
y2

4
+ max

z1∈R

(
1

2
(z1 − z∗0)y − U0(z1)

)
+max

z2∈R

(
1

2
(z2 − z∗0)y − U0(z2)

)
.

Finally, we end up with the following functional identity,1358

Û0(y) =
y2

4
+ 2Û0

(y
2

)
. (F.4)

We observe that Û0(y) = y2/2 is a solution to the latter identity. However, it is not the

only one. More generally, let a = Û ′
0(0

−) and b = Û ′
0(0

+) denote the left and the right

derivative at y = 0, respectively. By convexity, and optimality at the origin y = 0 (namely,

min Û0 = Û0(0) = 0), we have a ⩽ 0 ⩽ b. We deduce recursively from (F.4) the series

expansion

Û0(y) =
y2

4
+

y2

8
+

y2

16
+ · · ·+ 2n

(2−ny)2

4
+ 2n+1Û0

(
2−(n+1)y

)
,

=⇒ Û0(y) =
y2

2
+ Û ′

0(0
±)y . (F.5)

Obviously, the choice of the left or right derivative depends on the sign of y.1359

The convex bi-conjugate. Next, we define the convex bi-conjugate

Ŭ0(z) = max
y∈R

(
(z − z∗0)y − Û0(y)

)
.

Standard results in convex analysis states that Ŭ0 and U0 coincide if U0 is convex. More1360

generally, Ŭ0 is the (lower) convex envelope of U0 [Rockafellar, 1970]. This is quite useful,1361

because the characterization (F.5) enables to compute the convex bi-conjugate:1362

Ŭ0(z) =
(z − z∗0 − a)2−

2
+

(z − z∗0 − b)2+
2

. (F.6)

We deduce that the latter function is the (lower) convex envelope of U0. The last (delicate)1363

step consists in proving that it coincides with U0.1364

From the convex envelope to the function. The idea is to use the functional

identity (F.2) iteratively. As z = z∗0 + a is an extremal point of the graph of Ŭ0, the values
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of U0 and Ŭ0 must coincide at this point. Hence, we have U0(z
∗
0 + a) = 0, and similarly

U0(z
∗
0 + b) = 0. Recall that U0(z

∗
0) = 0 by definition. As a consequence, we have for

z1 = z∗0 + a, z2 = z∗0 , and z = z∗0 + a/2 in (F.2):

U0

(
z∗0 +

a

2

)
⩽ 0 ,

from which we deduce that U0 vanishes at z = z∗0 +a/2 as well, and similarly at z = z∗0 +b/2.1365

The same argument shows that U0 vanishes at each middle point between two vanishing1366

points. So, it vanishes on a dense set of points in z∗0 +(a, b). By continuity of U0, it vanishes1367

everywhere on z∗0 +[a, b]. Finally, it coincides with its (lower) convex envelope (F.6) because1368

the latter is strictly convex outside the interval [a, b].1369

Finally, it is necessary that a = b = 0 in the present context. Otherwise F would not1370

correspond to a population density uniformly with respect to vanishing ε.1371

We have proved that U0 is necessary of the form1372

U0(z) =
(z − z∗0)

2

2
. (F.7)

However, we are not able at this point to characterize the evolutionary lag z∗0 . We need to1373

push the analysis beyond the first order and compute the profile U1, as done in the following1374

sections.1375

Discussion. There is an immediate interpretation of this result: we found that the equa-1376

tion is dominated by the reproduction term in the regime of small variance. Hence, the1377

stationary distribution at the leading order equilibrium is the Gaussian distribution with1378

prescribed variance (here, renormalized to a unit value), meaning a quadratic polynomial1379

after taking the logarithm. In fact, Gaussian distributions are known to be stationary distri-1380

butions of the Infinitesimal model in the absence of selection. As selection does not act on1381

reproduction, there is no way to find the evolutionary lag at equilibrium, and so z∗0 must be1382

unknown at this point of analysis. The situation is quite different from the case of asexual1383

reproduction, where no stationary distribution can be achieved without selection, and the1384

evolutionary lag is deduced from the knowledge of U0, accordingly.1385

F.2 Description of the corrector U11386

Next, we can rearrange the right hand side in (F.1) using the characterization of U0 (F.7).

It is instructive to begin with the denominator integral, which is a classical computation:

1

ε
√
2π

∫

R

exp

(
− (z′ − z∗0)

2

2ε2

)
exp

(
− U1(z

′)
)
dz′ =

1√
2π

∫

R

exp

(
−y′2

2

)
exp (−U1(z

∗
0 + εy′)) dy′

−→
ε→0

exp(−U1(z
∗
0)) .

Indeed, the function (ε
√
2π)−1 exp

(
−(z′ − z∗0)

2/(2ε2)
)
is the approximation of a Dirac mass1387

as ε → 0. Hence the integral concentrates on the evolutionary lag z∗0 : this yields the1388

convergence of the integral towards exp(−U1(z
∗
0)). An alternative way to say is that, in the1389

integral
∫
F (z′) dz′, most of the contribution comes from those z′ which are close to z∗0 .1390

F.2.1 What are the most representative parental traits?1391

The same kind of computation allows handling the numerator in (F.1). The key point is to1392

understand how the term inside the integral gets concentrated as ε → 0. In other words,1393
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we shall identify what are the most representative traits (z1, z2) of parents giving birth to1394

an offspring of trait z. Those will contribute mainly to the integral in the right hand side.1395

They will enable to derive the equation for U1.1396

A preliminary computation is required: the double integral gets concentrated at the1397

minimum points (with respect to variables (z1, z2)) of the quadratic form under brackets:1398

(
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)− U0(z) where U0(z) =
(z − z∗0)

2

2
. (F.8)

We know already that the minimum value is zero thanks to the characterization (F.2). The1399

values above the minimum will contribute very little to the integral as they will have size of1400

order exp(−δ/ε2), for δ > 0. Indeed, this decays to zero very fast as ε → 0.1401

Direct computation provides the unique minimum (z1, z2) = (z̄, z̄), with z̄ = (z + z∗0)/2.1402

This means that an offspring of trait z is very likely to be the combination of equal parental1403

traits z1 = z2, equal to the mid-value between z and the evolutionary lag z∗0 . This is the1404

result of an interesting trade-off: parents with phenotype close to the evolutionary lag value1405

z∗0 are more frequent but the chance of producing an offspring with phenotype z decreases1406

when their own phenotype departs from the latter value. As a compromise, the most likely1407

configuration is when both parents have the mid-point trait z̄, see Figure 10.1408

We thus define the following change of variable centered around this minimum point:1409




z1 = z̄ + εy1

z2 = z̄ + εy2
(F.9)

The quadratic form between brackets [· · · ] in the numerator of (F.1) is transformed into an1410

expression which does not depend on ε:1411

1

ε2

[(
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)− U0(z)

]
=

1

2
y1y2 +

3

4

(
y21 + y22

)
. (F.10)

And the numerator finally writes

1√
2π

∫∫

R2

exp

(
−
[
1

2
y1y2 +

3

4

(
y21 + y22

)]
− U1(z̄ + εy1)− U1(z̄ + εy2) + U1(z)

)
dy1dy2

−→
ε→0

1√
2π

(∫∫

R2

exp

(
−
[
1

2
y1y2 +

3

4

(
y21 + y22

)])
dy1dy2

)
exp (−U1(z̄)− U1(z̄) + U1(z))

= exp (−2U1(z̄) + U1(z))

Note that the prefactor (
√
2π)−1 is such that the integral in (y1, y2) has unit value.1412

F.2.2 Equation for the corrector U11413

We conclude that equation (F.1) converges as ε → 0 to the following equation on the corrector1414

U1:1415

λ0 + c(z − z∗0) +m(z) = exp (U1(z
∗
0)− 2U1(z̄) + U1(z)) , with z̄ =

z + z∗0
2

. (F.11)

This equation is simple enough to admit an explicit solution as an infinite series, as shown1416

below.1417

Note that the values of λ0 and z∗0 can be deduced readily from (F.12) as explained in the1418

main text (3.14).1419
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Figure 10: Sketch of the argument that underpins the estimation of the double integral in
(F.1). Recall that the infinitesimal model assigns to an offspring the trait z which is the mean
value of the parental traits plus a normal random variable with standard deviation 1/

√
2 (in

adimensional variables). Among the three scenarios A,B,C, the first one is by far the most
likely in the regime of small variance ε2 j 1. In scenario B, the parental traits (z1, z2) are close
to the evolutionary lag z∗0 : this is a likely event from the point of view of the parental trait
distribution. However, it is very unlikely to draw a random number Y so large resulting in z
at the next generation. In scenario C, the deviation is small, so that the mean parental trait
is close to z: this is a likely event from the point of view of the ”choice” of the offspring trait.
However, it is very unlikely to draw a parent with trait z2 from the phenotypic distribution F :
that one is too far from the evolutionary lag in the tail of the distribution. Scenario A is the
compromise between these two antagonistic effects.

F.2.3 Analytical expression of U11420

It is convenient to reformulate equation (F.11) as follows, by using the formula (3.14) for λ01421

and z∗0 ,1422

log
(
1 +G(z)

)
= U1(z

∗
0)− 2U1

(
z + z∗0

2

)
+ U1(z) (F.12)

where G(z) = m(z)− ∂zm(z∗0)(z − z∗0) is such that G(0) = ∂zG(0) = 0. Differentiating this

equation with respect to z, we obtain

∂zG(z)

1 +G(z)
= ∂zU1(z)− ∂zU1

(
z + z∗0

2

)
.

After the change of variable z = z∗0 + h, we get eventually the recursive relation where the

value at some z∗0 + h can be computed from the value at z∗0 + h/2,

∂zU1(z
∗
0 + h) = ∂zU1

(
z∗0 +

h

2

)
+

∂zG(z∗0 + h)

1 +G(z∗0 + h)
.

We deduce the following series expansion,1423

∂zU1(z
∗
0 + h) = ∂zU1(z

∗
0) +

∞∑

n=0

∂zG(z∗0 + 2−nh)

1 +G(z∗0 + 2−nh)
. (F.13)

This provides an expression for U1 after integration with respect to h,1424

U1(z
∗
0 + h) = U1(z

∗
0) + h∂zU1(z

∗
0) +

∞∑

n=0

2n log
(
1 +G(z∗0 + 2−nh)

)
. (F.14)
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There are two degrees of freedom in the above expression of U1. First, the constant part1425

U1(z
∗
0) cannot be determined, because U is defined up to an additive constant. Thus, we are1426

free to choose any value for U1(z
∗
0), say U1(z

∗
0) = 0 for instance. On the other hand, the value1427

p∗ = ∂zU1(z
∗
0) plays a key role in the shape of the distribution, related to the expansion of1428

the evolutionary lag, see (F.21) below, but its value cannot be elucidated at this stage. We1429

need to push the expansion up to order ε4 to get the following formula for p∗:1430

p∗ =
∂3
zm(z∗0)

2∂2
zm(z∗0)

+ 2c , (F.15)

see next section for the complete computation (see also [Calvez et al., 2019] for an alternative1431

path with limited expansions to the next order in the case c = 0).1432

We deduce the following expression for U1,1433

U1(z
∗
0 + h) =

(
∂3
zm(z∗0)

2∂2
zm(z∗0)

+ 2c

)
h+

∞∑

n=0

2n log
(
1 +G(z∗0 + 2−nh)

)
. (F.16)

F.2.4 The missing linear part: calculation of ∂zU1(z
∗
0)1434

Starting with the equation satisfied by U (3.10), and plugging the ansatz1435




U(z) = U0(z) + ε2U1(z) + ε4U2(z) + o(ε4)

λ = λ0 + ε2λ1 + ε4λ2 + o(ε4)
(F.17)

we obtain the following equation up to order ε2:

λ0 + ε2λ1 + c∂zU0(z) + ε2c∂zU1(z) +m(z)

=

1√
2π

∫∫

R2

exp

(
−
[
1

2
y1y2 +

3

4

(
y21 + y22

)]
− U1(z̄ + εy1)− U1(z̄ + εy2)− ε2U2(z̄ + εy1)− ε2U2(z̄ + εy2) + U1(z) + ε2U2(z)

)

1√
2π

∫

R

exp

(
−y′2

2
− U1(z

∗
0 + εy′)− ε2U2(z

∗
0 + εy′)

)
dy′

The integrals were subject to the same change of variables as in (F.9). After elimination of

higher order contributions, we obtain for the denominator, up to order ε2:

1√
2π

∫

R

exp

(
−y′2

2
− U1(z

∗
0 + εy′)− ε2U2(z

∗
0 + εy′)

)
dy′

=
1√
2π

∫

R

exp

(
−y′2

2
− U1(z

∗
0)− εy′∂zU1(z

∗
0)− ε2

y′2

2
∂2
zU1(z

∗
0)− ε2U2(z

∗
0)

)
dy′

=
1√
2π

∫

R

exp

(
−y′2

2
− U1(z

∗
0)

)(
1− εy′∂zU1(z

∗
0) +

ε2

2
y′2 |∂zU1(z

∗
0)|

2 − ε2

2
y′2∂2

zU1(z
∗
0)− ε2U2(z

∗
0)

)
dy′

= exp (−U1(z
∗
0))

(
1 +

ε2

2
|∂zU1(z

∗
0)|2 −

ε2

2
∂2
zU1(z

∗
0)− ε2U2(z

∗
0)

)
.

In an analogous way, we obtain for the numerator,

1
√
2π

∫∫

R2
exp

(

−
[

1

2
y1y2 +

3

4

(

y
2
1 + y

2
2

)

]

− U1(z̄ + εy1) − U1(z̄ + εy2) − ε
2
U2(z̄ + εy1) − ε

2
U2(z̄ + εy2) + U1(z) + ε

2
U2(z)

)

dy1dy2

=
1

√
2π

∫∫

R2
exp

(

−
[

1

2
y1y2 +

3

4

(

y
2
1 + y

2
2

)

]

− 2U1(z̄) + U1(z)

)

(

1 − ε [y1 + y2] ∂zU1(z̄) +
ε2

2
[y1 + y2]

2 |∂zU1(z̄)|2 +
ε2

2

[

y
2
1 + y

2
2

]

∂
2
z
U1(z̄) − 2ε

2
U2(z̄) + ε

2
U2(z)

)

dy

= exp (−2U1(z̄) + U1(z))

(

1 +
ε2

2
|∂zU1(z̄)|2 −

3ε2

4
∂
2
z
U1(z̄) − 2ε

2
U2(z̄) + ε

2
U2(z)

)
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Combining all these expansions, we obtain up to order ε2:

λ0 + ε2λ1 + c∂zU0(z) + ε2c∂zU1(z) +m(z)

= exp (U1(z
∗
0)− 2U1(z̄) + U1(z))

1 +
ε2

2
|∂zU1(z̄)|2 −

3ε2

4
∂2
zU1(z̄)− 2ε2U2(z̄) + ε2U2(z)

1 +
ε2

2
|∂zU1(z

∗
0)|2 −

ε2

2
∂2
zU1(z

∗
0)− ε2U2(z

∗
0)

= exp (U1(z
∗
0)− 2U1(z̄) + U1(z))

(

1 + ε2
(

1

2
|∂zU1(z̄)|2 −

1

2
|∂zU1(z

∗
0)|2 +

1

2
∂2
zU1(z

∗
0)−

3

4
∂2
zU1(z̄) + U2(z

∗
0)− 2U2(z̄) + U2(z)

))

By identifying contributions of order ε2 on both sides, we deduce the following equation for

the next order correction U2,

U2(z
∗
0)−2U2(z̄)+U2(z) =

1

2
|∂zU1(z

∗
0)|2−

1

2
|∂zU1(z̄)|2+

3

4
∂2
zU1(z̄)−

1

2
∂2
zU1(z

∗
0)+

λ1 + c∂zU1(z)

1 +G(z)
.

By evaluating, and differentiating at z = z∗0 , we deduce the following pair of identities,1436











0 =
1

4
∂2
zU1(z

∗
0) + λ1 + c∂zU1(z

∗
0)

0 = −1

2
∂2
zU1(z

∗
0)∂zU1(z

∗
0) +

3

8
∂3
zU1(z

∗
0) + c∂2

zU1(z
∗
0)

(F.18)

The second identity enables to compute p∗ = ∂zU1(z
∗
0):1437

p∗ =
3∂3

zU1(z
∗
0)

4∂2
zU1(z∗0)

+ 2c =
∂3
zm(z∗0)

2∂2
zm(z∗0)

+ 2c , (F.19)

where ∂2
zU1(z

∗
0) and ∂3

zU1(z
∗
0) are deduced straightforwardly from equation (F.12) after mul-1438

tiple differentiation, or directly from (F.13). This yields the missing part in (F.16).1439

F.2.5 Analytical expressions of the macroscopic corrections terms λ1 and1440

z∗11441

Description of Malthus rate λ1. The first identity in (F.19) provides λ1 = −∂2
zU1(z

∗
0)/4−1442

c∂zU1(z
∗
0). The expression (F.11) differentiated twice and evaluated at z = z∗0 , yields1443

∂2
zU1(z

∗
0) = 2∂2

zm(z∗0). We conclude from the expression of p∗ that1444

λ1 = −2c2 − c
∂3
zm(z∗0)

2∂2
zm(z∗0)

− 1

2
∂2
zm(z∗0). (F.20)

Description of the evolutionary lag correction z∗1. The first order correction of1445

the evolutionary lag z∗1 is defined such that z∗0 + εz∗1 is the critical point of U0 + ε2U1, that1446

is ∂z(U0 + εU1)(z
∗
0 + εz∗1) = 0 . Expanding this relation and keeping only the terms of order1447

ε2, we obtain using the expression of p∗,1448

z∗1 = −∂zU1(z
∗
0) = − ∂3

zm(z∗0)

2∂2
zm(z∗0)

− 2c . (F.21)

Description of the local shape. The second derivative of U0+ε2U1 at the evolution-

ary lag z∗ is equal to ∂2
z (U0 + ε2U1)(z

∗
0 + ε2z∗1) = ∂2

zU0(z
∗
0) + ε2

(

∂3
zU0(z

∗
0)z

∗
1 + ∂2

zU1(z
∗
0)
)

,

up to the order ε2. Since ∂3
zU0 is equal to 0, we can deduce from the expression of U1 that
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the local shape around z∗ is given by

∂2
z (U0 + ε2U1)(z

∗
0 + ε2z∗1) = 1 + 2ε2∂2

zm(z∗0) .

G Numerical computation of the equilibrium (λ,F)1449

In order to obtain numerical approximations of the pair (λ,F), we get back to the time1450

marching dynamics of the density f(t, z) which satisfies the following equation:1451

∂tf(t, z)− c∂zf(t, z) + µ(z)f(t, z) = βB(f(t, ·))(z) (G.1)

The density f(t, z) is expected to behave like exp(λt)F(z) for large time. It is preferable to1452

introduce the frequency of traits in population: p(t, z) = f(t, z)/
∫

f(t, z′) dz′. The equation1453

for p is:1454

∂tp(t, z) + (β − µ̄(t))− c∂zp(t, z) + µ(z)p(t, z) = βB(p(t, ·))(z) , (G.2)

where the additional µ̄(t) ensures that
∫

p remains constant:1455

µ̄(t) =

∫

µ(z′)p(t, z′) dz′ . (G.3)

We expect that the pair (β − µ̄(t),p) does converge to (λ,F) as t → +∞.1456

Classical numerical methods were used to approximate (G.2)-(G.3) for large time, until1457

some error threshold is reached for ∥∂tp(t, ·)∥∞. The transport term−c∂zp(t, z) was handled1458

using an upwind scheme. The convolutions involved in operator B were handled using the1459

function conv in MATLAB software. The grid mesh was adapted to the scales in Appendix1460

B in order to capture the appropriate phenomena at the correct scale.1461
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