

1 **Tunnel dynamics of quinone derivatives and its coupling to protein**
2 **conformational rearrangements in respiratory complex I**

3

4 Jonathan Lasham^{1,*}, Outi Haapanen¹, Volker Zickermann^{2,3}, Vivek Sharma^{1,4,*}

5

6 ¹ Department of Physics, University of Helsinki, 00014 Helsinki, Finland.

7 ² Institute of Biochemistry II, University Hospital, Goethe University, 60438 Frankfurt
8 am Main, Germany.

9 ³ Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry,
10 Goethe University, 60438 Frankfurt am Main, Germany.

11 ⁴ HiLIFE Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.

12

13 * jonathan.lasham@helsinki.fi

14 * vivek.sharma@helsinki.fi

15

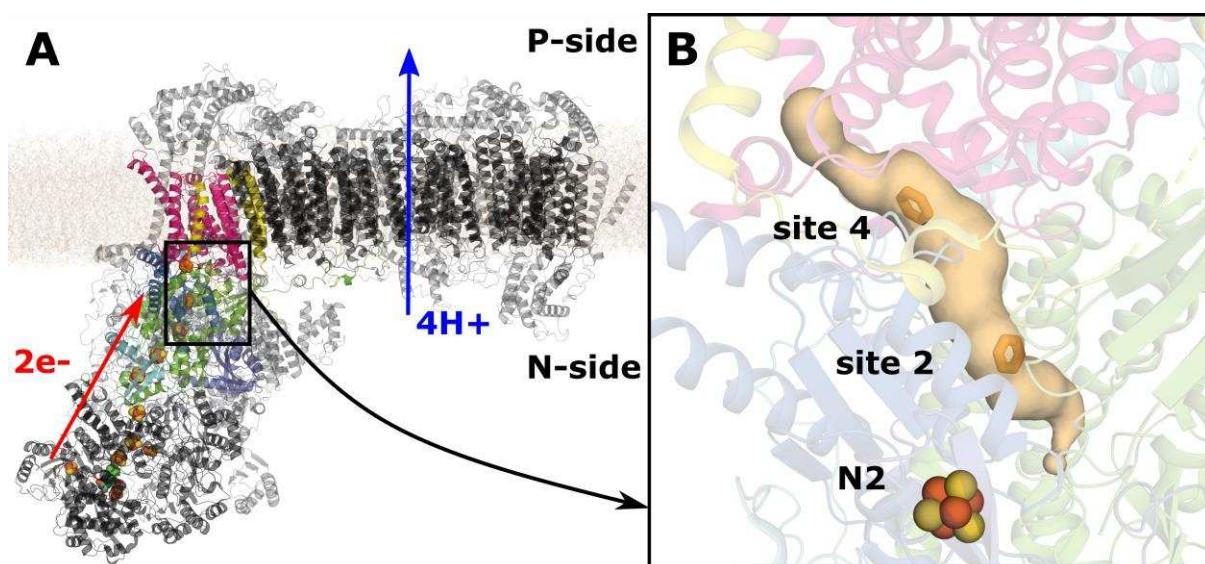
16 **Abstract**

17 Respiratory complex I in mitochondria and bacteria catalyzes the transfer of electrons
18 from NADH to quinone (Q). The free energy available from the reaction is used to
19 pump protons and to establish a membrane proton electrochemical gradient, which
20 drives ATP synthesis. Even though several high-resolution structures of complex I
21 have been resolved, how Q reduction is linked with proton pumping, remains unknown.
22 Here, microsecond long molecular dynamics (MD) simulations were performed on
23 *Yarrowia lipolytica* complex I structures where Q molecules have been resolved in the
24 ~30 Å long Q tunnel. MD simulations of several different redox/protonation states of Q
25 reveal the coupling between the Q dynamics and the restructuring of conserved loops
26 and ion pairs. Oxidized quinone stabilizes towards the N2 FeS cluster, a binding mode
27 not previously described in *Yarrowia lipolytica* complex I structures. On the other hand,
28 reduced (and protonated) species tend to diffuse towards the Q binding sites closer to
29 the tunnel entrance. Mechanistic and physiological relevance of these results are
30 discussed.

31

32 **Introduction**

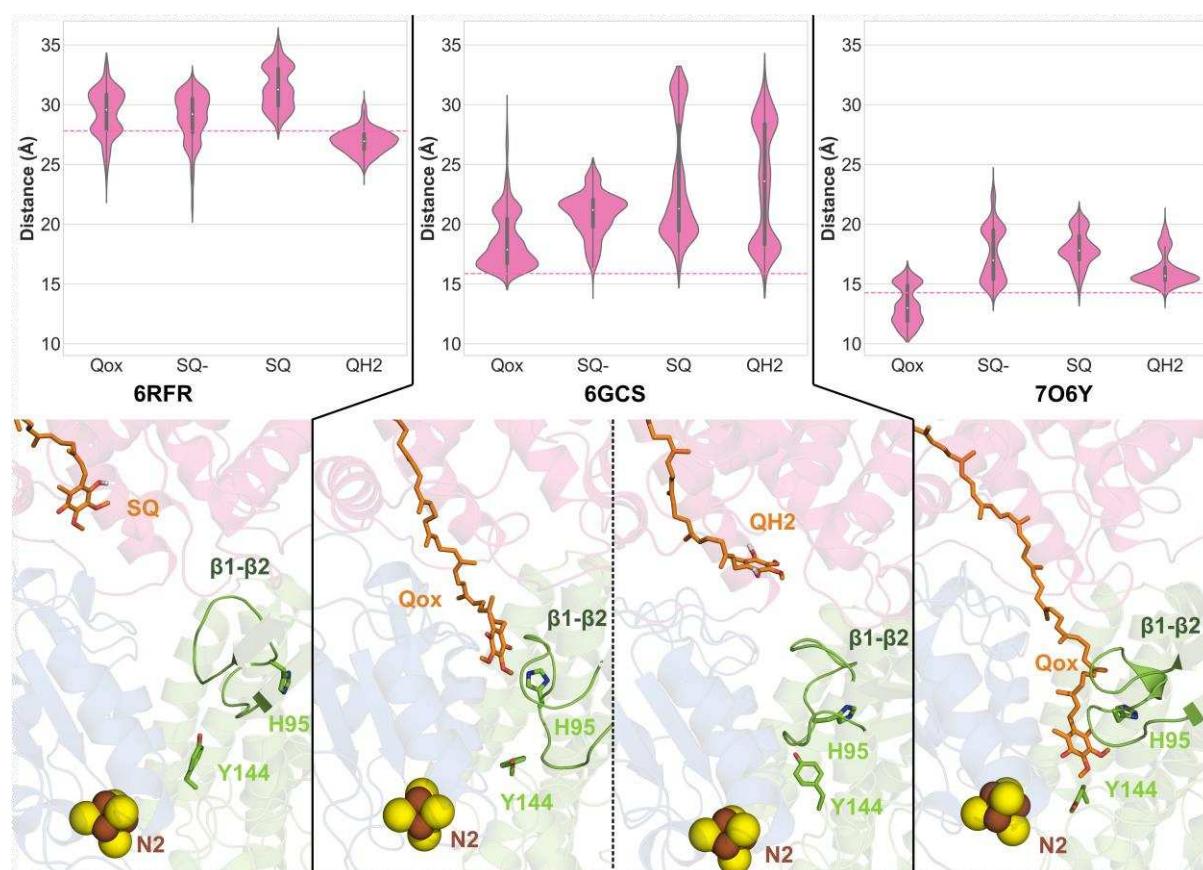
33 Respiratory complex I is the first electron acceptor in many bacterial and mitochondrial
34 electron transport chains, and its catalytic mechanism involves the reduction of
35 quinone (Q) from NADH. The energy gain from Q reduction is used to pump protons
36 across the inner mitochondrial membrane leading to the formation of an
37 electrochemical gradient (Fig. 1A), which powers ATP generation (Agip, Blaza, Fedor,
38 & Hirst, 2019; Kaila, 2018; Sazanov, 2015; Yoga, Angerer, Parey, & Zickermann,
39 2020). How exactly the reactions at the active site of complex I are coupled to proton
40 pumping some 200 Å away remains a mystery. Computational studies have indicated
41 the role of electrostatics and conformational dynamics, protein hydration and Q binding
42 in the long-range electron-proton coupling in complex I (Galemon Yoga, Schiller, &
43 Zickermann, 2021; Haapanen, Reidelbach, & Sharma, 2020; Haapanen & Sharma,
44 2021). Recent high resolution structural data from cryo electron microscopy (Chung et
45 al., 2022; Grba & Hirst, 2020; Gu, Liu, Guo, Zhang, & Yang, 2022; Kampjut & Sazanov,
46 2020; Parey et al., 2018; Parey et al., 2019; Parey et al., 2021; Yoga, Parey, et al.,
47 2020) have provided new insights into the role of Q binding, loop dynamics and water
48 molecules in proton pumping by complex I.


49

50 The Q molecule consists of a polar aromatic head and a long hydrophobic tail, and it
51 binds in a ~30 Å long cavity known as the Q tunnel in complex I. The head, which
52 undergoes redox reactions at the reaction site near the N2 FeS cluster (Fig. 1), can
53 exist in several different redox and protonation states. The tail consists of multiple
54 isoprene units of varying lengths depending on the species and helps in anchoring
55 and guiding the Q within the long tunnel (Fedor, Jones, Di Luca, Kaila, & Hirst, 2017).
56 Based on umbrella sampling and unbiased MD simulations, five distinct Q binding sites
57 were proposed (Haapanen, Djurabekova, & Sharma, 2019; Teixeira & Arantes, 2019;
58 Warnau et al., 2018). Out of the five sites, two were identified at the interface of the
59 membrane and the peripheral arms of complex I (called sites 4 and 5). Latest high-
60 resolution cryo EM data confirmed the existence of these sites (Kampjut & Sazanov,
61 2020; Parey et al., 2019). However, their functional meaning remains unclear, either
62 they represent transient halts for Q upon its travel to and from the active site near N2
63 FeS cluster or they have a role in coupling Q-tunnel redox reactions to proton pumping
64 in the membrane arm of complex I (Djurabekova et al., 2022; Haapanen & Sharma,
65 2021; Wikstrom, Sharma, Kaila, Hosler, & Hummer, 2015).

66
67 In addition, the two Q binding sites (1 and 2) closer to the N2 FeS center are found at
68 the interface of NDUFS2 and NDUFS7 subunits. At these sites Q is expected to be
69 reduced by electron transfer(s) from N2. Both sites have been confirmed by structural
70 data (Chung et al., 2022; Gu et al., 2022; Gutiérrez-Fernández et al., 2020; Kampjut
71 & Sazanov, 2020; Parey et al., 2021) as well as MD simulations (Haapanen et al.,
72 2019; Warnau et al., 2018).
73
74 At the Q binding site 1, Q head group makes a hydrogen bond to Tyr144 of NDUFS2
75 subunit, which is known to be functionally important for Q redox reactions from
76 mutagenesis studies (Tocilescu et al., 2010). Computational work suggests redox-
77 coupled proton transfer reaction of Q bound at site 1 converts it to QH2 (or anionic
78 QH-)(Sharma et al., 2015), which diffuses to site 2 upon conformational changes in
79 the site, in particular in the β 1- β 2 loop of NDUFS2 subunit (Haapanen et al., 2019;
80 Tocilescu et al., 2010; Warnau et al., 2018). The site 2 corresponds to a position where
81 a Q molecule is not making a direct hydrogen bond to Tyr144.
82
83 The journey between these tunnel-bound Q sites, and in and out of the Q tunnel, is
84 thought to be dependent on Q-tail length (Fedor et al., 2017; Haapanen et al., 2019),
85 changes in protein environment, including sidechain movements (Haapanen et al.,
86 2019; Yoga et al., 2019) as well as on changes in tunnel hydration (Teixeira & Arantes,
87 2019). However, how exactly these different aspects drive dynamics of different Q
88 species in practice remains unclear. In particular, the role of protein-Q interactions and
89 protein-protein interactions is poorly understood.
90
91 In the present work, we use long time-scale atomistic MD simulations on *Y. lipolytica*
92 complex I, where Q has been structurally resolved at sites 2 and 4 (Fig. 1B), to
93 investigate how different redox states of Q behave in the Q tunnel, and how this is
94 coupled to changes in the protein conformation. Three different cryo-EM structures
95 from *Y. lipolytica* were simulated (see methods): PDB 6RFR (Parey et al., 2019), which
96 has a Q resolved at site 4 (setup S1), PDB 6GCS (Parey et al., 2018) with Q modeled
97 at site 2 (setup S2), and finally PDB 7O6Y (Parey et al., 2021) which also has Q at site
98 2, although positioned slightly closer to the N2 cluster (setup S3). Each of these
99 structures was simulated with four different states of Q: fully oxidized quinone (Qox),

100 anionic semiquinone (SQ-), neutral semiquinone (SQ), and reduced and doubly
101 protonated quinol (QH2). The simulations show dependence of Q state on its binding
102 within in the Q tunnel, and that its diffusion between tunnel-bound sites is coupled to
103 both loop dynamics and the formation and dissociation events of conserved ion pairs.


104

118 **Results**

119 **Dynamics of Q in its different redox and protonation states**

120 Figure 2 shows the distance of the Q head group from the N2 cluster during different
121 simulations, with the starting positions marked by a pink dotted line. The simulations
122 from setup S1, where Q was modeled at site 4, show a lot of similarity between the
123 different Q species. However, it is notable that Qox shows two stable positions at 28
124 and 31 Å from N2 cluster, while QH2 only shows one stable position at ~27 Å,
125 remarkably close to the structural position (PDB 6RFR). This raises the possibility that
126 in structure a higher fraction of Q observed at site 4 may be the reduced and
127 protonated quinol. The two radical SQ species (anionic and neutral) both show overall
128 similar binding distances to Qox, however there are some notable instances where
129 anionic SQ moves briefly towards the N2 cluster (Fig. S1).

130 **Fig. 2:** Violin plots showing the distance between the Q head group and N2 cluster for
131 four different Q species. The three plots show simulation data from three separate
132 structures: 6RFR (S1) where Q is modeled at site 4, 6GCS (S2) where Q is modeled
133

134 at site 2, and 7O6Y (S3) where Q is also modelled at site 2. The pink dotted line
135 represents the position of the Q head group observed in the structures. The lower
136 panels show snapshots from various simulations. The Q molecule is shown in licorice,
137 and the $\beta 1$ - $\beta 2^{NDUFS2}$ loop position is highlighted. Key conserved residues associated
138 with Q binding, Y144^{NDUFS2} and H95^{NDUFS2}, are shown in licorice.

139 Conversely, the simulations of setup 2 (PDB 6GCS) with Q modeled at site 2 show a
140 much clearer dependence of redox state on Q-N2 distance during simulations than
141 setup 1. Here, Qox is quite stable at site 2, with a major population close to the starting
142 position, whereas QH2 is much more dynamic. In 2 out of 3 simulation replicas, QH2
143 moved away from site 2 and stabilized close to site 4 (Fig. S1). The Q-N2 distance at
144 site 4 measured in these simulations is around 28 Å, which is remarkably close to the
145 stable position from the setup S1 simulations. It is to emphasize that this is also in
146 agreement with earlier estimates from umbrella sampling simulations of QH2 being
147 stable (more than Qox) at site 4 of the Q tunnel (Warnau et al., 2018).

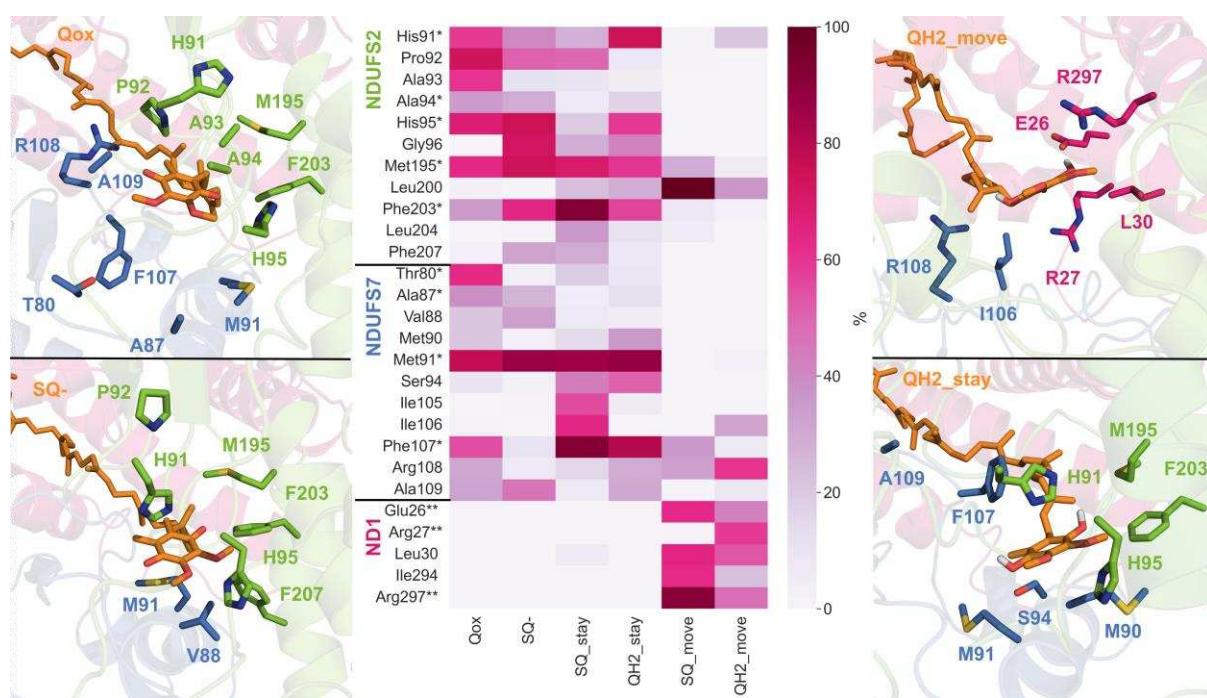
148 The subsequent site 2 simulations using the higher-resolution structure, PDB 7O6Y
149 (setup S3), reveal differing behavior for Qox and QH2 compared to the setup S2
150 simulations. Overall, all Q species show higher stability at site 2, and there are no
151 instances of Q moving towards site 4. In 2 out of 3 replicas, however, Qox moves
152 closer to the N2 cluster towards site 1 (Fig. 2). This position of Q has previously been
153 observed in bacterial and mammalian complex I structures (Chung et al., 2022; Gu et
154 al., 2022; Gutiérrez-Fernández et al., 2020), but not in *Y. lipolytica* complex I structural
155 data. Here, our MD simulations show that oxidized Q (Qox) can indeed bind closer to
156 the N2 FeS cluster also in *Yarrowia* complex I, which may enhance efficiency of
157 electron transfer from N2 to Q (Moser, Farid, Chobot, & Dutton, 2006).

158 In the S2 simulations, the radical semiquinone species (anionic) modelled at site 2
159 tend to move from the starting position of 16 Å to a position around 20 Å from the N2
160 cluster. Interestingly, the neutral SQ species diffuses even further towards the
161 entrance of the Q tunnel and shows stable binding at ~31 Å, closer to the Q binding
162 sites 4 and 5. This indicates that the neutral SQ species is much more mobile in the Q
163 tunnel compared to anionic SQ-. Simulations on the higher resolution structure, PDB
164 7O6Y (setup S3), also show that the radical SQ species shifts slightly from the site 2

165 position to around 20 Å distance from N2. However, neutral SQ did not move further
166 from this position towards site 4, reflecting relative stability of neutral SQ (and also
167 QH2) in S3 simulations.

168

169 We next analyzed the possible source of this differing behavior of the Q species in the
170 two different MD setups S2 and S3. We find that the position of the conserved β 1-
171 β 2^{NDUFS2} loop (Figure 2, opaque green loop) is central factor deciding for Q dynamics
172 in two setups (Figure S2). In the S2 runs based on PDB 6GCS, the loop is modelled
173 (see Materials and methods) with His95 positioned in front of the Q head, meaning
174 access to site 1 is blocked. On the other hand, in PDB 7O6Y, the loop is resolved with
175 His95 pointing to the side of the Q headgroup, which means Q can more readily access
176 site 1, as seen in the Qox state simulations. In addition, His95 blocking site 1 triggers
177 Q movement away from site 2, as seen in the SQ and QH2 state simulations in setup
178 S2. This also explains the lack of movement of neutral SQ and QH2 from site 2 to site
179 4 in the S3 simulations. An analysis of all S2 and S3 simulations show higher
180 fluctuations of the β 1- β 2 loop to be coupled with Q movement (Figure S2). Overall,
181 our data indicate that the movement of Q species is tightly coupled to β 1- β 2 loop
182 position and dynamics.


183

184 **Interactions between quinone and protein (Q-protein interactions)**

185 The heatmap in Fig. 3 shows percentage of the simulation time that different residues
186 were in contact with the different Q states from the S2 simulations. Only three residues
187 show consistently strong Q-protein interactions with each of the redox/protonation
188 state studied (Met195^{NDUFS2}, Phe203^{NDUFS2} and Met91^{NDUFS7}). We point out that
189 hydrophobic Met91^{NDUFS7} is well-known to be a residue central for Q binding and
190 dynamics (Angerer et al., 2012; Fendel, Tocilescu, Kerscher, & Brandt, 2008;
191 Haapanen et al., 2019; Parey et al., 2021). Interestingly, Qox retains the most contacts
192 with the residues that were in contact at the beginning of the simulation, while the other
193 states make newer and more transient interactions. This reflects the Q-N2 distances
194 from Fig 2, which showed Qox to be most stable at site 2 in S2 simulations based on
195 PDB 6GCS. The stability of Qox is partly explained by a hydrogen bond between the
196 Q head group and His95 from the β 1- β 2 loop, which was observed for 28% of the total
197 simulation time. Interactions in the S3 simulations were similar to this in all redox

198 states, however hydrogen bonds to H95 were not observed due to its different
199 orientation in the structure. (Figure S3B).

200

201

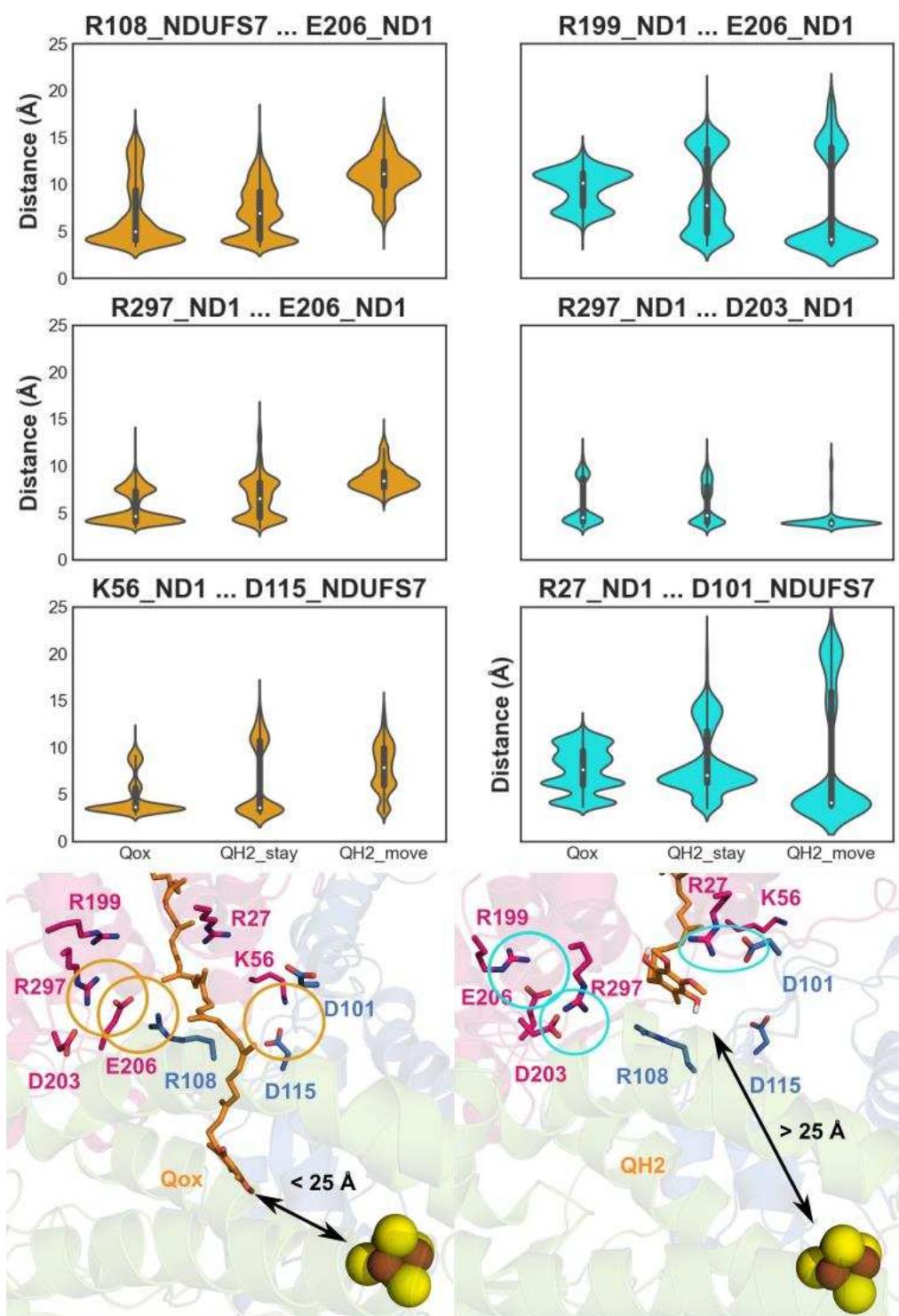
202 **Fig. 3:** Interactions of protein residues within 5 Å of Q head group in S2 MD
203 simulations. The color gradient from white to dark purple indicates the percentage of
204 the trajectory data where the interaction is present. The heatmap is shown for Q
205 redox/protonation states studied in this work. Here, 'stay' refers to selected frames of
206 the trajectory where Q head group is less than 25 Å from N2, while 'move' refers to
207 frames where the distance is more than 25 Å. A single asterisk (*) represents
208 interactions present in the structure with Q resolved at site 2, while a double asterisk (**)
209 indicates an interaction present in the structure with Q at site 4.

210 The Q-protein interactions of anionic SQ- in S2 simulations are partly similar to Qox,
211 however SQ- makes additional contacts with Gly96^{NDUFS2} and Phe207^{NDUFS2}, as well
212 as Val88^{NDUFS7}, indicating it binds in a slightly different way to Qox, which is reflected
213 in the different Q-N2 distances (Fig. 2). Interestingly, both residues Phe207^{NDUFS2} and
214 Val88^{NDUFS7} upon mutation are known to affect complex I activity (Angerer et al., 2012;
215 Fendel et al., 2008). Moreover, many of the original interactions are maintained in the
216 SQ- simulations, even when Q moves from its original position, resulting from many
217 interacting residues being located on flexible loops facing Q tunnel.

218

219 Since QH2 and neutral SQ are most mobile in the S2 simulations, the contact analysis
220 was broken down into two groups: when the Q-N2 distance is less than 25 Å, and
221 when the Q-N2 distance is more than 25 Å. This roughly corresponds to Q staying at
222 site 2 and Q leaving site 2 towards site 4 towards the tunnel entrance, respectively.
223 When QH2 stays at site 2, the Q-protein interactions overall resemble Qox, with many
224 of the interactions that were present in the beginning being stable. In addition, stable
225 hydrogen bonds are seen between QH2 and His91^{NDUFS2} and His95^{NDUFS2} of the β1-
226 β2^{NDUFS2} loop, when it stays at site 2. In contrast, neutral SQ shows some clear
227 differences, and it has a relatively weak interaction to His91 and His95 of the β1-β2
228 loop based on contact analysis (Fig. 3). Neutral SQ's inability to make stable
229 interactions to these catalytically important histidine residues may be the reason for
230 its instability at site 2 and explain its movement away from the structural binding
231 position. In contrast, the anionic SQ- species is seen to anchor to site 2 by forming a
232 stable hydrogen bond with His95 (ca. 35 %).

233
234 When both neutral SQ and QH2 move towards site 4, new contacts are established
235 with protein residues from the membrane-bound ND1 subunit. Many of these contacts
236 are also seen in the structurally resolved site 4 position from PDB 6RFR (denoted by
237 double asterisk ** in the heatmap in Fig. 3). Significantly, some hydrophobic residues
238 from the NDUFS7 loop (Ile106^{NDUFS7}, Phe107^{NDUFS7}) interact with different Q species
239 at both site 2 and site 4, which indicates they may be of functional relevance. These
240 two residues have indeed been identified in prior biochemical and computational
241 studies to be important (Yoga et al., 2019). Another key residue which shows
242 interactions at both site 2 and site 4 is Arg108^{NDUFS7}. In Qox simulations, these
243 interactions occur when Q is close to site 2, however SQ and QH2 do not form a stable
244 interaction with Arg108^{NDUFS7} until they are moving towards site 4. The interactions
245 between Q and Arg108^{NDUFS7} have been observed in both structures and simulations
246 at site 4/5 (Haapanen et al., 2019; Kampjut & Sazanov, 2020; Parey et al., 2019), and
247 mutation of arginine to glutamate is known to stall Q dynamics in the Q tunnel (Yoga
248 et al., 2019). In addition, interactions with conserved Leu200^{NDUFS2} are also present
249 when SQ and QH2 move towards site 4, which suggests this residue may also play
250 an important functional role.


251

252 The interactions between Q and protein are also quite stable in the simulations with Q
253 modeled at site 4 (setup S1, Figure S3A). Stable interactions with Ile106^{NDUFS7} and
254 Arg27^{ND1} are seen with all four of the quinone species. However, many unique
255 interactions are also present for each of the species, and this mirrors the difference
256 seen in Q-N2 distances. Qox, SQ, and SQ- are all able to make stable interactions to
257 Arg108^{NDUFS7}, Phe224^{ND1} and Phe228^{ND1}. Although not explicitly modelled in MD,
258 transient π–π stacking-like interactions are also seen in the simulations between the
259 head group of Qox and Phe228^{ND1}. In a recent study, similar stacking interactions have
260 been reported to form between the conserved Phe228^{ND1} residue and benzene ring of
261 artificial quinone compounds, highlighting the importance of aromatic residues in
262 trapping Q in the tunnel (Uno et al., 2022). In addition, SQ and SQ- make additional
263 interactions to Trp77^{NDUFS7} and Leu57^{ND1}. Interestingly, SQ is the only species found
264 to interact with Tyr232^{ND1}, by forming a stable hydrogen bond with Tyr232^{ND1} via
265 Thr23^{ND1}. Overall, the interaction analysis presented here highlights the role of several
266 amino acid residues that interacts with Q upon its binding and dynamics in the Q tunnel
267 (Table S1).

268 **Ion-pair dynamics coupled to Q movement**

269 In addition to protein-Q interactions discussed above, several protein-protein
270 interactions were also identified, which appear to depend on the binding position of
271 the Q molecule. Trajectory data was analyzed from the S2 simulations, and data from
272 Qox and QH2 simulations where Q was stable at site 2 were compared to data from
273 QH2 simulations where Q moved towards site 4. Fig. 4 shows the sidechain distance
274 of various ion pairs for these three data sets. The plots indicate that there is preference
275 for certain ion pairs when Q stays at site 2 (left orange panels), with the other ion pairs
276 preferentially forming when Q migrates towards site 4 (right cyan panels). Snapshots
277 representative of the two situations are also shown.

278

Fig. 4: Sidechain distance of various ion pairs throughout trajectories shown as violin plots. Qox refers to site 2 simulations where oxidized Q (Qox) was modeled and simulated (setup S2). QH2_stay refers to frames from site 2-based MD simulations where the Q-N2 distance was less than 25 Å, while QH2_move refers to those simulations where Q-N2 distance was over 25 Å. Distances were measured between Arg:CZ, Lys:NZ, Glu:CD, and Asp:CG atoms. The orange shaded plots and circles

286 represent ion pairs which are closed when Q stays at site 2, while the cyan shaded
287 plots and circles represent ion pairs closed when Q moves towards site 4.

288

289 Arg108^{NDUFS7}, which was identified to be in contact with Q at both sites 2 and 4 (Fig.
290 3), makes an ion pair with Glu206^{ND1} when Q resides at site 2. However, when QH2
291 moves towards site 4, the ion pair breaks, coinciding with Arg108^{NDUFS7} making a
292 strong interaction to the headgroup. Simultaneously, Glu206^{ND1} establishes a new ion
293 pair with Arg199^{ND1}. This agrees with the recent high resolution structural data on
294 complex I which shows the Arg108^{NDUFS7} - Glu206^{ND1} ion pair distance to increase
295 significantly between the turnover and native structures, equivalent to site 2 and site
296 4 Q binding, respectively (Parey et al., 2021). In addition, complex I structures from
297 *Ovis aries* show the ion pair to be closed when the decylubiquinone is bound at site 1,
298 and open when it is bound at site 4 (Kampjut & Sazanov, 2020).

299

300 Glu206^{ND1} also makes an ion pair with Arg297^{ND1} when Q is close to site 2, but when
301 it diffuses towards site 4, Arg297^{ND1} displaces to form a relatively stable ion pair with
302 Asp203^{ND1}. While this interaction is also present when Q is close to site 2, the ion pair
303 appears to be stabilized by QH2 moving to site 4 (56% vs. 92% occupancy).
304 Interestingly, Asp203 has been proposed to be a key residue for redox coupled proton
305 pumping based on both experiments and simulations (Nuber et al., 2021; Parey et al.,
306 2021; Sharma et al., 2015; Yoga et al., 2019).

307

308 Another ion pair which appears to have a higher occupancy when Q is stable at site 2
309 is between Lys56^{ND1} and Asp115^{NDUFS7}. These residues, which are known to be
310 important for the activity of complex I (Garofano, Zwicker, Kerscher, Okun, & Brandt,
311 2003; Zickermann, Barquera, Wikström, & Finel, 1998), are positioned away from the
312 Q binding sites. Despite this, the ion pair dissociation appears to coincide very well
313 with the Q movement, suggesting that long range conformational changes may also
314 be important for Q diffusion. Conversely, Arg27^{ND1} and Asp101^{NDUFS7} ion pair forms
315 when Q diffuses to site 4. Interestingly, this ion pair is not observed in the PDB 6GCS
316 with Q modeled at site 2, but is seen in the PDB 6RFR where Q is resolved at site 4.
317 We also point out that mutation of Asp101^{NDUFS7} to an alanine residue leads to a drastic
318 drop in activity (Yoga et al., 2019), highlighting the potential importance of Asp101-
319 associated ion pair in Q dynamics.

320

321 Overall, here we have identified central elements in the form of charged residues that
322 rearrange as Q moves in the Q tunnel. The open/closed dynamics of ion-pairs
323 observed in our MD simulations is also in excellent agreement with existing structural
324 and biochemical data. Additionally, the ion pairs identified to be linked with Q
325 movement were further analyzed in the S3 simulations where Q movement was not
326 seen (Fig. 2). Overall, the ion pairs in the S3 simulations match the states when Q was
327 stable at site 2 (Table S2), even when QH2 is modelled. This further explains why QH2
328 does not diffuse from site 2 towards site 4 in S3 simulations.

329

330 **Discussion**

331 Here, microseconds long MD simulations are performed on the *Y. lipolytica* complex I
332 structures in which quinone molecules have been proposed to bind in the Q tunnel.
333 Simulation data based on PDB 6GCS reveal Qox binds in a stable conformation at site
334 2, while QH2 tends to move - from this position towards site 4. For Q site
335 nomenclature, see (Haapanen et al., 2019). This suggests that an oxidized Q (Qox)
336 molecule at site 2 waits for electron transfer from N2 FeS cluster, whereas QH2,
337 formed after redox-coupled proton transfer (Sharma et al., 2015), departs the site.
338 Upon one electron transfer from N2 FeS cluster, semiquinone species may form. Our
339 MD data show semiquinone molecules are also mobile in the Q tunnel, but it is the
340 neutral semiquinone (SQ) species that diffuses maximally, from site 2 towards the
341 entrance of the Q tunnel (sites 4/5). Anionic SQ on the other hand is more trapped
342 within the Q tunnel, and would eventually convert to double reduced double protonated
343 quinol (QH2) before exiting the site. Overall, our data suggests that Qox prefers to
344 reside at sites 1 and 2, whereas reduced (and protonated) species such SQ and QH2
345 prefer to diffuse away towards entrance sites (4 and 5).

346

347 The behavior of the Q species is different in the simulations of higher resolution
348 structure PDB 7O6Y simulations, even though Q has been predicted to bind in similar
349 location in lower resolution structure (PDB 6GCS). Interestingly, Qox is found to be
350 less stable at site 2 in simulations of high-resolution structure PDB 7O6Y, instead it
351 moves closer to the N2 cluster to bind at site 1. This position, which has previously not
352 been characterized in *Y. lipolytica* complex I structure, is important, as the proximity
353 to the N2 cluster likely enhances the efficiency of electron transfer. In addition, QH2 in
354 these simulations is extremely stable at the structural site 2 position, and does not
355 travel to site 4 as in simulations based on PDB 6CGS. Similarly, the neutral SQ species
356 diffuses away from site 2, but not as far as in 6GCS-based simulations. This is likely
357 due to the difference in the position of the conserved and conformationally mobile β 1-
358 β 2^{NDUFS2} loop, which appears to be in a conformation that allows access to site 1, but
359 blocks access to site 4 in PDB 7O6Y, while in PDB 6GCS the opposite conformation
360 is observed. Our data support an important role of β 1- β 2^{NDUFS2} loop, in particular
361 His95, in coupling Q dynamics in the tunnel. In addition, we identify amino acid
362 residues that are central for Q dynamics (Table S1).

363

364 We also note that the two structures of complex I obtained under turnover conditions
365 (PDBs 6GCS and 7O6Y) have vastly different resolutions, 4.3 Å and 3.4 Å,
366 respectively. This, along with the differently modeled conformations of amino acid
367 residues in the vicinity of Q (and its position) are also likely the contributing factors for
368 differing Q behavior observed in simulations of these complexes.

369

370 Q binding site 4, which is located at the interface of the ND1 and NDUFS7 subunits,
371 is in close proximity to the E channel, an area of highly-conserved charged residues
372 which leads to the membrane interior and ultimately the antiporter-like subunits
373 (Baradaran, Berrisford, Minhas, & Sazanov, 2013). It has been suggested that this
374 area is important for the coupling of redox reaction to proton pumping (Galemu Yoga
375 et al., 2021; Gutiérrez-Fernández et al., 2020; Haapanen & Sharma, 2021; Kaila,
376 2018) and several different Q species have been modeled and simulated at this site
377 with multiscale computational approaches (Haapanen et al., 2019; Haapanen &
378 Sharma, 2017; Röpke et al., 2021). It is thus noteworthy that both QH2 and SQ are
379 seen to move to this position, suggesting that the movement of reduced Q species
380 towards site 4 may be a part of the proton pumping mechanism. Movement of QH2 is
381 accompanied by changes in the structure of the protein surrounding the Q tunnel, in
382 particular rearrangement of several charge-charged interactions involving conserved
383 loops of ND1, PSST and 49 kD subunits. These data indicate that it is not only the
384 redox state of Q which is important in Q binding and dynamics, but also the changes
385 in the protein structure, in particular conserved ion pairs, that occur concurrently. This
386 is also supported by the simulations in which ion-pair interactions do not reassemble,
387 as a result of which, the quinone molecule remains immobile and stable at its original
388 binding location, notably in S3 simulations with QH2 modelled (see Table S2). The
389 changes in charge-charge interactions have also been observed in the recent high-
390 resolution structures of complex I in native and turnover conditions (Parey et al., 2021),
391 and have been suggested to be related to the proton pumping mechanism of complex
392 I. Overall, the ion-pair rearrangements seen in our simulations, which drive Q
393 dynamics in the Q tunnel, can be considered to be central component of the proton
394 pumping mechanism of complex I.

395

396 Previous EPR studies on *E. coli* complex I revealed EPR signals of semiquinone
397 species that have been suggested to be central to the proton pumping mechanism

398 (Narayanan, Leung, Inaba, Elguindy, & Nakamaru-Ogiso, 2015). The EPR signal
399 corresponding to the semiquinone species observed at ~35 Å from the N2 cluster is in
400 close agreement with neutral SQ population observed in our MD simulations. Even
401 though there are suggestions that SQ species are extremely short lived and not
402 relevant for the redox-coupled proton pumping mechanism of complex I (Wright,
403 Fedor, Hirst, & Roessler, 2020), it is possible that under certain conditions neutral SQ
404 forms and escapes the binding sites near N2 (sites 1/2) to the entrance binding sites
405 (sites 4/5). Due to the proximity of neutral SQ bound to the lipid bilayer, it may react
406 with the oxygen solubilized in the membrane and lead to the formation of reactive
407 oxygen species (ROS). Such an electron leak to oxygen would be minimized in case
408 of anionic semiquinone (SQ-), which is better trapped in the Q tunnel of complex I.
409

410 **Materials and methods**

411 All-atom molecular dynamics simulations were performed using three structures of
412 complex I from *Yarrowia lipolytica* (PDBs 6GCS (Parey et al., 2018), 6RFR (Parey et
413 al., 2019) and 7O6Y (Parey et al., 2021)). Small model systems were constructed with
414 only subunits close to the Q binding tunnel included (ND3, ND1, NDUFS2, NDUFS3,
415 NDUFS7, NDUFS8). Missing backbone atoms were modelled using Modeller software
416 (Šali & Blundell, 1993) (ND3 residues 35 to 48 in PDB 6GCS; ND3 residues 45 to 59
417 and 114 to 119 in PDB 7O6Y) and missing sidechain atoms were added using VMD
418 PSFGEN tool (Humphrey, Dalke, & Schulten, 1996). Note several sidechains in PDB
419 6GCS $\beta 1$ - $\beta 2$ ^{NDUFS2} loop were modelled due to being unresolved in the structure. The
420 protein was placed in a POPC lipid bilayer using CHARMM-GUI (Jo, Kim, Iyer, & Im,
421 2008), and TIP3P water was added along with 100 mM concentration of Na^+ / Cl^- ions.
422 The head group of quinone molecule with nine isoprene units (Q9) was placed at site
423 2 in 6GCS- and 7O6Y-based setups. In 6GCS based setups, the Q9 headgroup was
424 placed to overlap with the position of DBQ head group, coordinates of which are
425 provided separately in (Parey et al., 2018). In the 7O6Y simulations, we placed the Q
426 head group at the structurally resolved DBQ position. Similarly, a Q9 molecule was
427 placed based on structurally resolved quinone binding site (site 4) in 6RFR-based
428 setups. In all simulations, the Q9 tail was placed in the tunnel and allowed to relax with
429 constrains on all other atoms. All components were treated with CHARMM force field
430 (MacKerell Jr et al., 1998), (Klauda et al., 2010). The parameters of quinone and iron
431 sulfur clusters were obtained from previous studies (Galassi & Arantes, 2015), (Chang
432 & Kim, 2009). All amino acids were modeled in their standard protonation states;
433 histidine residues were kept neutral with δ nitrogen protonated and all lysine, arginine,
434 glutamic acid, and aspartic acid residues were charged, except for Asp67 and Glu69
435 of ND3 subunit to prevent unnatural hydration at the boundary of protein truncation.
436 To relax the long Q9 tail and remove any steric clashes, a steepest descent energy
437 minimization with NAMD was carried out, with all heavy protein atoms fixed. All
438 subsequent simulations were performed with GROMACS software (Abraham et al.,
439 2015). First the systems were minimized, followed by a 100 ps NVT simulation and 1
440 ns NPT simulation, all performed with constraints on heavy protein atoms. Next, the
441 constraints were removed and a subsequent minimization and 100 ps NVT were
442 performed, followed finally by a 10 ns NPT simulation. The production runs were then
443 initiated using the Nosé-Hoover thermostat (Nosé, 1984), (Hoover, 1985) and

444 Parrinello-Rahman barostat (Parrinello & Rahman, 1981), with LINCS algorithm
445 (Hess, 2008) implemented and electrostatic interactions calculated by PME (Darden,
446 York, & Pedersen, 1993). Production runs were extended to the microseconds
447 timescale, and several simulations replicates were performed. All trajectory analysis
448 was performed using Visual Molecular Dynamics (Humphrey et al., 1996). Table 1
449 shows a list of all simulations performed in this study and their lengths. Our smaller
450 model systems are found to be stable despite system truncation, as shown by RMSD
451 of protein with respect to time (see Fig. S4 and also ref. (Yoga, Parey, et al., 2020)).
452 It is noteworthy that simulations on higher resolution structure show smaller RMSD
453 values.
454

455 **Table 1:** List of molecular dynamics setups presented in this study.

Structure used / setup name	Binding site where Q9 molecule modeled	Q state	Length of simulations
6RFR / S1	site 4	Qox	2045 ns 2022 ns 2042 ns
		SQ-	2018 ns 2029 ns 1308 ns
		SQ	2108 ns 2025 ns 1001 ns
		QH2	2042 ns 2046 ns 2063 ns
6GCS / S2	site 2	Qox	2227 ns 2044 ns 2039 ns
		SQ-	2035 ns 2025 ns 2065 ns
		SQ	2060 ns 2088 ns 2065 ns
		QH2	3034 ns 2097 ns 2931 ns
7O6Y / S3	site 2	Qox	1089 ns 1082 ns 1056 ns

	SQ-	1010 ns 968 ns 999 ns
	SQ	971 ns 985 ns 987 ns
	QH2	1062 ns 1361 ns 1112 ns

456

457

458 **Acknowledgements**

459 VS is thankful to Academy of Finland, Sigrid Jusélius Foundation, Jane and Aatos
460 Erkko Foundation, Magnus Ehrnrooth Foundation and University of Helsinki for
461 financial support. Center for Scientific Computing (CSC) Finland is acknowledged for
462 high performance computing time.

463 **Author contributions**

464 JL performed simulations, analyzed data, drew figures, and wrote the manuscript.
465 OH performed simulations and contributed to manuscript writing. VZ analyzed data
466 and wrote the manuscript. VS designed the project, analyzed data, and wrote the
467 manuscript.

468

469 **Competing interests**

470 The authors declare no competing interests.

471

472

473 **References**

474

475 Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015).
476 GROMACS: High performance molecular simulations through multi-level parallelism
477 from laptops to supercomputers. *SoftwareX*, 1, 19-25.

478 Agip, A.-N. A., Blaza, J. N., Fedor, J. G., & Hirst, J. (2019). Mammalian Respiratory
479 Complex I Through the Lens of Cryo-EM. *Annual review of biophysics*, 48, 165-184.

480 Angerer, H., Nasiri, H. R., Niedergesäß, V., Kerscher, S., Schwalbe, H., & Brandt, U. (2012).
481 Tracing the tail of ubiquinone in mitochondrial complex I. *Biochimica et Biophysica
482 Acta (BBA)-Bioenergetics*, 1817(10), 1776-1784.

483 Baradaran, R., Berrisford, J. M., Minhas, G. S., & Sazanov, L. A. (2013). Crystal structure of
484 the entire respiratory complex I. *Nature*, 494(7438), 443-448.

485 Chang, C. H., & Kim, K. (2009). Density functional theory calculation of bonding and charge
486 parameters for molecular dynamics studies on [FeFe] hydrogenases. *Journal of
487 chemical theory and computation*, 5(4), 1137-1145.

488 Chung, I., Wright, J. J., Bridges, H. R., Ivanov, B. S., Biner, O., Pereira, C. S., . . . Hirst, J.
489 (2022). Cryo-EM structures define ubiquinone-10 binding to mitochondrial complex I
490 and conformational transitions accompanying Q-site occupancy. *Nature
491 Communications*, 13(1), 2758. doi:10.1038/s41467-022-30506-1

492 Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N· log (N) method for
493 Ewald sums in large systems. *The Journal of chemical physics*, 98(12), 10089-10092.

494 Djurabekova, A., Galemou Yoga, E., Nyman, A., Pirttikoski, A., Zickermann, V., Haapanen,
495 O., & Sharma, V. (2022). Docking and molecular simulations reveal a quinone-
496 binding site on the surface of respiratory complex I. *FEBS Letters*. doi:10.1002/1873-
497 3468.14346

498 Fedor, J. G., Jones, A. J., Di Luca, A., Kaila, V. R., & Hirst, J. (2017). Correlating kinetic and
499 structural data on ubiquinone binding and reduction by respiratory complex I.
500 *Proceedings of the National Academy of Sciences*, 201714074.

501 Fendel, U., Tocilescu, M. A., Kerscher, S., & Brandt, U. (2008). Exploring the inhibitor
502 binding pocket of respiratory complex I. *Biochimica et Biophysica Acta (BBA)-
503 Bioenergetics*, 1777(7), 660-665.

504 Galassi, V. V., & Arantes, G. M. (2015). Partition, orientation and mobility of ubiquinones in
505 a lipid bilayer. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 1847(12), 1560-
506 1573.

507 Galemou Yoga, E., Schiller, J., & Zickermann, V. (2021). Ubiquinone Binding and
508 Reduction by Complex I—Open Questions and Mechanistic Implications. *Frontiers
509 in Chemistry*, 9, 266.

510 Garofano, A., Zwicker, K., Kerscher, S., Okun, P., & Brandt, U. (2003). Two aspartic acid
511 residues in the PSST-homologous NUKM subunit of complex I from *Yarrowia
512 lipolytica* are essential for catalytic activity. *Journal of Biological Chemistry*, 278(43),
513 42435-42440.

514 Grba, D. N., & Hirst, J. (2020). Mitochondrial complex I structure reveals ordered water
515 molecules for catalysis and proton translocation. *Nature Structural & Molecular
516 Biology*, 27(10), 892-900.

517 Gu, J., Liu, T., Guo, R., Zhang, L., & Yang, M. (2022). The coupling mechanism of
518 mammalian mitochondrial complex I. *Nature Structural & Molecular Biology*, 29(2),
519 172-182. doi:10.1038/s41594-022-00722-w

520 Gutiérrez-Fernández, J., Kaszuba, K., Minhas, G. S., Baradaran, R., Tambalo, M., Gallagher,
521 D. T., & Sazanov, L. A. (2020). Key role of quinone in the mechanism of respiratory
522 complex I. *Nature Communications*, 11(1), 1-17.

523 Haapanen, O., Djurabekova, A., & Sharma, V. (2019). Role of Second Quinone Binding Site
524 in Proton Pumping by Respiratory Complex I. *Frontiers in chemistry*, 7, 221.

525 Haapanen, O., Reidelbach, M., & Sharma, V. (2020). Coupling of quinone dynamics to
526 proton pumping in respiratory complex I. *Biochimica et Biophysica Acta (BBA)-*
527 *Bioenergetics*, 148287.

528 Haapanen, O., & Sharma, V. (2017). Role of water and protein dynamics in proton pumping
529 by respiratory complex I. *Scientific Reports*, 7(1), 7747. doi:10.1038/s41598-017-
530 07930-1

531 Haapanen, O., & Sharma, V. (2021). Redox-and protonation-state driven substrate-protein
532 dynamics in respiratory complex I. *Current Opinion in Electrochemistry*, 100741.

533 Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation.
534 *Journal of Chemical Theory and Computation*, 4(1), 116-122.

535 Hoover, W. G. (1985). Canonical dynamics: equilibrium phase-space distributions. *Physical*
536 *review A*, 31(3), 1695.

537 Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. *Journal*
538 *of molecular graphics*, 14(1), 33-38.

539 Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: a web-based graphical user
540 interface for CHARMM. *Journal of computational chemistry*, 29(11), 1859-1865.

541 Kaila, V. R. (2018). Long-range proton-coupled electron transfer in biological energy
542 conversion: Towards mechanistic understanding of respiratory complex I. *Journal of*
543 *The Royal Society Interface*, 15(141), 20170916.

544 Kampjut, D., & Sazanov, L. A. (2020). The coupling mechanism of mammalian respiratory
545 complex I. *Science*, 370(6516).

546 Klauda, J. B., Venable, R. M., Freites, J. A., O'Connor, J. W., Tobias, D. J., Mondragon-
547 Ramirez, C., . . . Pastor, R. W. (2010). Update of the CHARMM all-atom additive
548 force field for lipids: validation on six lipid types. *The journal of physical chemistry*
549 *B*, 114(23), 7830-7843.

550 MacKerell Jr, A. D., Bashford, D., Bellott, M., Dunbrack Jr, R. L., Evanseck, J. D., Field, M.
551 J., . . . Ha, S. (1998). All-atom empirical potential for molecular modeling and
552 dynamics studies of proteins. *The journal of physical chemistry B*, 102(18), 3586-
553 3616.

554 Moser, C. C., Farid, T. A., Chobot, S. E., & Dutton, P. L. (2006). Electron tunneling chains
555 of mitochondria. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 1757(9), 1096-
556 1109.

557 Narayanan, M., Leung, S. A., Inaba, Y., Elguindy, M. M., & Nakamaru-Ogiso, E. (2015).
558 Semiquinone intermediates are involved in the energy coupling mechanism of *E. coli*
559 complex I. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 1847(8), 681-689.

560 Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics
561 methods. *The Journal of chemical physics*, 81(1), 511-519.

562 Nuber, F., Mérono, L., Oppermann, S., Schimpf, J., Wohlwend, D., & Friedrich, T. (2021). A
563 quinol anion as catalytic intermediate coupling proton translocation with electron
564 transfer in *E. coli* respiratory complex I. *Frontiers in Chemistry*, 9, 291.

565 Parey, K., Brandt, U., Xie, H., Mills, D. J., Siegmund, K., Vonck, J., . . . Zickermann, V.
566 (2018). Cryo-EM structure of respiratory complex I at work. *eLife*, 7, e39213.

567 Parey, K., Haapanen, O., Sharma, V., Köfeler, H., Züllig, T., Prinz, S., . . . Vonck, J. (2019).
568 High-resolution cryo-EM structures of respiratory complex I: Mechanism, assembly,
569 and disease. *Science Advances*, 5(12), eaax9484.

570 Parey, K., Lasham, J., Mills, D. J., Djurabekova, A., Haapanen, O., Yoga, E. G., . . .
571 Zickermann, V. (2021). High-resolution structure and dynamics of mitochondrial
572 complex I—Insights into the proton pumping mechanism. *Sci. Adv.*, 7(46),
573 eabj3221. doi:doi:10.1126/sciadv.abj3221

574 Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new
575 molecular dynamics method. *Journal of Applied physics*, 52(12), 7182-7190.

576 Pavelka, A. C., Benes, P., Strnad, O., Brezovsky, J., Kozlikova, B., Gora, A., . . .
577 Biedermannova, L. (2012). Damborsky J: CAVER 3. 0: A tool for analysis of
578 transport pathways in dynamic protein structures. *PLoS Comput Biol*, 8, e1002708.

579 Röpke, M., Riepl, D., Saura, P., Di Luca, A., Mühlbauer, M. E., Jussupow, A., . . . Kaila, V.
580 R. I. (2021). Deactivation blocks proton pathways in the mitochondrial complex I.
581 *Proceedings of the National Academy of Sciences*, 118(29), e2019498118.
582 doi:10.1073/pnas.2019498118

583 Šali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial
584 restraints. *Journal of molecular biology*, 234(3), 779-815.

585 Sazanov, L. A. (2015). A giant molecular proton pump: structure and mechanism of
586 respiratory complex I. *Nature Reviews Molecular Cell Biology*, 16(6), 375-388.

587 Sharma, V., Belevich, G., Gamiz-Hernandez, A. P., Rög, T., Vattulainen, I., Verkhovskaya,
588 M. L., . . . Kaila, V. R. (2015). Redox-induced activation of the proton pump in the
589 respiratory complex I. *Proceedings of the National Academy of Sciences*, 112(37),
590 11571-11576.

591 Teixeira, M. H., & Arantes, G. M. (2019). Balanced internal hydration discriminates substrate
592 binding to respiratory complex I. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*,
593 1860(7), 541-548.

594 Tocilescu, M. A., Fendel, U., Zwicker, K., Dröse, S., Kerscher, S., & Brandt, U. (2010). The
595 role of a conserved tyrosine in the 49-kDa subunit of complex I for ubiquinone
596 binding and reduction. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 1797(6-
597 7), 625-632.

598 Uno, S., Masuya, T., Zdorevskyi, O., Ikenishi, R., Shinzawa-Itoh, K., Lasham, J., . . .
599 Miyoshi, H. (2022). Diverse reaction behaviors of artificial ubiquinones in
600 mitochondrial respiratory complex I. *Journal of Biological Chemistry*, 102075.
601 doi:<https://doi.org/10.1016/j.jbc.2022.102075>

602 Warnau, J., Sharma, V., Gamiz-Hernandez, A. P., Di Luca, A., Haapanen, O., Vattulainen, I.,
603 . . . Kaila, V. R. (2018). Redox-coupled quinone dynamics in the respiratory complex
604 I. *Proceedings of the National Academy of Sciences*, 115(36), E8413-E8420.

605 Wikstrom, M., Sharma, V., Kaila, V. R., Hosler, J. P., & Hummer, G. (2015). New
606 perspectives on proton pumping in cellular respiration. *Chemical reviews*, 115(5),
607 2196-2221.

608 Wright, J. J., Fedor, J. G., Hirst, J., & Roessler, M. M. (2020). Using a chimeric respiratory
609 chain and EPR spectroscopy to determine the origin of semiquinone species
610 previously assigned to mitochondrial complex I. *BMC Biology*, 18(1), 54.
611 doi:10.1186/s12915-020-00768-6

612 Yoga, E. G., Angerer, H., Parey, K., & Zickermann, V. (2020). Respiratory complex I—
613 Mechanistic insights and advances in structure determination. *Biochimica et
614 Biophysica Acta (BBA)-Bioenergetics*, 1861(3), 148153.

615 Yoga, E. G., Haapanen, O., Wittig, I., Siegmund, K., Sharma, V., & Zickermann, V. (2019).
616 Mutations in a conserved loop in the PSST subunit of respiratory complex I affect
617 ubiquinone binding and dynamics. *Biochimica et Biophysica Acta (BBA)-
618 Bioenergetics*, 1860(7), 573-581.

619 Yoga, E. G., Parey, K., Djurabekova, A., Haapanen, O., Siegmund, K., Zwicker, K., . . .
620 Angerer, H. (2020). Essential role of accessory subunit LYRM6 in the mechanism of
621 mitochondrial complex I. *Nature Communications*, 11(1), 1-8.
622 Zickermann, V., Barquera, B., Wikström, M., & Finel, M. (1998). Analysis of the Pathogenic
623 Human Mitochondrial Mutation ND1/3460, and Mutations of Strictly Conserved
624 Residues in Its Vicinity, Using the Bacterium *Paracoccus denitrificans*. *Biochemistry*,
625 37(34), 11792-11796.
626
627

