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Abstract  

Aims and methods: Our aim was to characterise the methylation level of a polymorphically 

imprinted gene, VTRNA2-1/nc886, in human populations and somatic tissues. We utilised 48 

datasets, consisting of  >30 different tissues and >30 000 individuals. 

Results: We show that the nc886 methylation status is associated with twin status and ethnic 

background, but the variation between populations is limited. Monozygotic twin pairs present 

concordant methylation, while ~30% of dizygotic twin pairs present discordant methylation 

in the nc886 locus. The methylation levels of nc886 are uniform across somatic tissues, 

except in cerebellum and skeletal muscle.  

Conclusion: We hypothesize that the nc886 imprint is established in the oocyte and that after 

implantation, the methylation status is stable, excluding a few specific tissues. 

 

Keywords: non-coding 886, nc886, VTRNA2-1, polymorphic imprinting, metastable 

epiallele, imprinting, DNA methylation, Developmental Origins of Health and Disease 

hypothesis, population studies  
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Introduction 

Genomic imprinting can be defined as the expression of a gene only from the maternal or the 

paternal allele, while the corresponding allele in the other chromosome is silenced via 

epigenetic mechanisms, including DNA methylation (1). The epigenetic profiles maintaining 

the imprinted status are established during gametogenesis when first the DNA methylation 

pattern is erased, after which the parent-of-origin-related DNA methylation pattern is created. 

For males, the DNA methylation profile of the sperm, including imprints, is completed in the 

primordial germ cells, before the birth of the male child. In oocytes, on the other hand, de novo 

DNA methylation will begin only after the birth of the female child, during the follicular growth 

phase, with gene-specific timepoints for imprinting reported (234). Canonically imprinted 

genes, approximately 130 of which exist in humans, retain the parent-of-origin-related 

expression pattern throughout an individuals´ life in all of their somatic tissues, although tissue 

or developmental stage-specific imprinting can be seen, for example, in the placenta (537). The 

significance of intact genetic imprints is highlighted by the severe disorders caused by 

imprinting defects (8). 

In humans, the locus harbouring non-coding 886 (nc886, also known as VTRNA2-1) is 

polymorphically imprinted, with approximately 75% of individuals having a methylated 

maternal allele, i.e. imprinted nc886 locus, and the remaining approximately 25% having both 

maternal and paternal nc886 allele unmethylated (9311). According to current literature, this 

pattern is not due to genetic variation (9,12,13). We have also previously identified individuals 

who escape this bimodal methylation pattern. We found they present either intermediate 

methylation levels (methylation beta value 0.20-0.40 i.e. methylation level of 20-40%, in 

approximately 1-5% of the population) or methylation beta values over 0.60 (methylation level 

of over 60%), indicating that also the paternal allele has gained methylation in somatic tissues 

(in approximately 0.1% of the population) (11). The nc886 locus codes for a 102nt long non-
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coding RNA, which might then be cleaved into miRNA-like short non-coding RNAs, although 

the nature of these RNAs is still widely debated (14,15).  

The establishment of the nc886 imprint has been suggested to be an early event in the zygote, 

happening between four and six days after fertilization (13). Recently, it was suggested that the 

methylation pattern of nc886 is already established in the preconceptional oocyte (10). Early 

establishment of nc886 methylation status is supported by the fact that it has been shown to be 

uniform across analysed somatic tissues (10,16,17). As the methylation pattern of nc886 had 

been reported to be concordant in monozygotic twin pairs (MZ) but not in dizygotic twin pairs 

(DZ), genetic factors were hypothesized to influence the methylation pattern (9), which was 

later shown not to be the case (10,11,18). Once established, the methylation status of nc886 is 

stable from childhood to adolescence (16) and from adolescence to adulthood (11).  

Changes in the proportion of individuals with methylated or unmethylated maternal nc886  

allele have been associated with maternal age (9,11), maternal socioeconomic status (11) and 

maternal alcohol consumption (10), as well as the season of conception in  rural Gambia (9,16). 

Furthermore, the methylation level or status of nc886 or level of nc886 RNAs transcribed from 

the locus have been associated with childhood BMI (19), adiposity and cholesterol levels (11), 

as well as allergies (20), asthma (21), infections (22) and inflammation (23). Interestingly, the 

nc886 methylation status and the level of nc886 RNAs have also been associated with 

indicators of glucose metabolism (11,24). These findings suggest that the methylation status of 

nc886 is a potential molecular mediator of the Developmental Origins of Health and Disease 

(DOHaD) hypothesis (also known as the Barker hypothesis) (25). 

Detailed understanding of the determinants and functions of the methylation status of nc886 is 

still lacking. In vitro methods are of limited feasibility, as both carcinogenesis (13) and 

pluripotency induction (11) have an effect on the methylation pattern at the nc886 locus. 
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Currently, no animal models are available to study nc886, as most species, including mice and 

rats, do not harbour the gene, and in species harbouring the nc886 gene, the locus is not 

polymorphically imprinted (26). Thus, we wanted to utilise available resources, the numerous 

existing DNA methylation datasets from humans, to gain insight on the methylation of nc886, 

a unique polymorphically imprinted gene and a potential molecular mediator of DOHaD. 

More precisely, we wanted to investigate 1) the prevalence of nc886 DNA methylation status 

groups in a large number of human populations (with a total n > 30 000) with divergent 

historical and geographical origins in order to identify the factors associating with the existing 

variation, 2) the nc886 methylation status in MZ and DZ twin pairs to elucidate the contribution 

of shared gametes vs unique gametes in shared prenatal environment to the establishment of 

nc886 methylation pattern, and finally 3) the nc886 methylation patterns in a larger variety of 

tissues, including brain regions and placenta, which have been shown to express a multitude of 

imprinted genes, as well as present dynamic imprinting (5,27,28) to have insights on the 

potential function of nc886 and the stability of this polymorphic imprint in human tissues. 
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Materials and Methods 

 

Datasets 

In this study, we utilized 48 DNA methylation datasets, including DILGOM, FTC, ERMA, 

KORA, LURIC, NELLI, SATSA and YFS as well as 39 datasets available in Gene Expression 

Omnibus (GEO) (29) consisting of >30 different tissues and >30 000 individuals.  

(Supplementary Table 1). These datasets were used to study the methylation of nc886 locus 

across populations, in twin pairs and across different tissues, with some datasets utilized in 

multiple settings. 

For the population analysis, we included 32 datasets, with the number of individuals ranging 

from 131 to 2711 (total n = 30 347). In these datasets, the DNA methylation data was available 

from blood (11,30348), separated peripheral blood cells (49351), blood spots (19), umbilical 

cord buffy coats (52), foetal cord tissue (53) or buccal swabs (52). Association of zygosity (MZ 

vs DZ pairs) with nc886 methylation was analysed in 5 datasets (36,47,48,54,55). 

To analyse the methylation of nc886 across different tissues, 17 datasets were utilized. These 

included a dataset consisting of 30 tissues from a 112-year-old female (56), as well as datasets 

consisting of different brain regions ((57), GSE134379), adipose tissue (54,58), muscle (46,553

57, GSE142141, GSE171140), liver (58), buccal swabs (52,61), skin (62), sperm (63,64) and 

placenta (65368). All utilized datasets are described in detail in Supplementary Table 1. 

DILGOM (the Dietary, Lifestyle, and Genetic Determinants of Obesity and Metabolic 

Syndrome) (44) has been collected as an extension of the FINRISK 2007 survey. FINRISK 

surveys consist of cross-sectional, population-based studies conducted to monitor the risk of 

chronic diseases in Finland (69). The data used for the research were obtained from the THL 

biobank (study number THLBB2021_22). 
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FTC (the Finnish Twin Cohort) study includes three longitudinal cohorts (70,71) - the Older 

Twin cohort (71), FinnTwin16 (FT16) (72), and FinnTwin12 (FT12) (73). In this study, we 

included two subsets of FT16 and FT12 cohorts - a smaller subset of individuals for whom 

DNA methylation data was available from muscle, adipose tissue and blood (60) and a larger 

subset with methylation data only available from blood (54). For 49 MZ twin pairs, the 

information on whether they were dichorionic and diamniotic (DCDA, 22 pairs), 

monochorionic and diamniotic (MCDA, 9 pairs), or monochorionic and monoamniotic 

(MCMD, 18 pairs) was available. Participants of FTC were born before 1987 in Finland. 

ERMA (Estrogenic Regulation of Muscle Apoptosis) study was a prospective cohort study 

designed to reveal how hormonal differences over the menopausal stages affect the 

physiological and psychological functioning of middle-aged women (74). The original ERMA 

cohort includes 47- to 55-year-old women living in the city of Jyväskylä or neighbouring 

municipalities in Finland. For this study, a subset of 47 individuals with both whole blood and 

muscle tissue samples available were included (60). 

KORA (Kooperative Gesundheitsforschung in der Region Augsburg/the Cooperative Health 

Research in the Region Augsburg cohort) is a population-based health survey that collected 

both clinical and genetic data from the general population in the region of Augsburg and two 

surrounding counties in Germany (75). Data utilized here is from KORA F4 (collected in 2006-

2008) and KORA FF4 (collected in 2013-2014) cohorts. 

LURIC (the LUdwigshafen RIsk and Cardiovascular Health study) consists of patients of 

German ancestry who underwent coronary angiography between 1997 and 2000 at a tertiary 

care centre in Southwestern Germany (76). For this study, we utilized 2423 individuals with 

DNA methylation data available. 
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NELLI (Neuvonta, ELintavat ja LIikunta neuvolassa) cohort consists of pregnant mothers 

participating in an intervention study aimed at preventing gestational diabetes from 14 

municipalities in the southern part of Finland (77). Included in this study is data from children 

of these mothers, collected at a 7-year follow-up (61). The children participating in this study 

were born in 2007/2008 in Finland 

SATSA (the Swedish Adoption/Twin Study of Aging) is a population-based study drawn from 

the Swedish Twin Registry that includes same-sex pairs of twins reared together and pairs 

separated before the age of 11, collected between 1984 and 2014 (78), 478 of whom had DNA 

methylation data available. 

YFS (Young Finns Study) is a multicentre follow-up study on cardiovascular risk from 

childhood to adulthood, launched in 1980 (79). DNA methylation data utilized here is from the 

30-year follow-up in 2011, including 1714 individuals. The participants in this study were born 

between 1962 and 1977 in Finland. 

 

DNA methylation data processing 

The majority of datasets in GEO were available as processed data, and these datasets were 

utilized as such. Datasets GSE61454, GSE71678, GSE134379, and GSE157896 were 

downloaded as raw idat-files, extracted with minfi package function read.metharray.exp and 

quantile normalized with default settings (80). For DILGOM (44), FTC (54,60), ERMA (60), 

KORA (11,45), LURIC (46), SATSA (47) and YFS (11), the processing of DNA methylation 

data has been described in detail in previous publications referenced here. For all datasets, 

information on sample material, Illumina array type (Illumina Infinium MethylationEPIC or 

Methylation450K BeadChip), and the used processing methods are provided in Supplementary 

Table 1. 
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For NELLI, genomic DNA from buccal swabs was extracted with Gentra Buccal Cell Kit 

(QIAGEN, cat.no: 158845) and stored at -20°C. Aliquots of 1 μg of DNA were subjected to 

bisulphite conversion, and a 4-μl aliquot of bisulphite-converted DNA was subjected to whole-

genome amplification, followed by enzymatic fragmentation and hybridization onto an 

Illumina Infinium MethylationEPIC BeadChip at Helmholtz Zentrum, Munich, Germany. The 

arrays were scanned with the iScan reader (Illumina). All the analysed samples had a sum of 

detection p-values across all the probes less than 0.01. Logged (log2) median of methylated 

and unmethylated intensities of the analysed samples clustered well visually except for one 

outlier which was excluded from the analysis. Samples were checked for discrepancies between 

the reported and the predicted sex and none failed the test. Normalization was done with a 

stratified quantile normalization method implemented in preprocessQuantile function in minfi 

R/Bioconductor package (80,81). Probes with a detection p-value of more than 0.01 in 99% of 

the samples were filtered out. Similarly, cross-reactive probes and probes with SNPs were 

excluded from the analysis (82,83). All pre-processing steps were performed using functions 

implemented in the minfi R/Bioconductor package (80).   

 

Clustering of individuals according to nc886 locus methylation level 

For all datasets utilised, we retrieved the methylation values for 14 CpGs - cg07158503, 

cg04515200, cg13581155, cg11978884, cg11608150, cg06478886, cg04481923, cg18678645, 

cg06536614, cg25340688, cg26896946, cg00124993, cg08745965, and cg18797653, shown 

to display bimodal DNA methylation pattern in the nc886 locus, which is indicative of 

polymorphic imprinting (9,11). For some datasets, the methylation data was not available from 

all 14 CpGs as, depending on the quality control steps performed, some probes had been 
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omitted from the data. The number of probes available for each dataset is provided in 

Supplementary Table 1. 

Based on the methylation levels of the 14 CpGs, individuals were clustered into 3 groups by k-

means clustering. Based on the median methylation level of the cluster, nc886 methylation 

status groups were defined as imprinted (typical methylation β value > 0.40, indicative of 

monoallelic methylation), non-methylated (typical methylation β value < 0.15, indicative of 

two unmethylated alleles), and intermediately methylated (typical methylation β value 0.15-

0.40). Data was visualized to verify that the clustering had identified the groups as expected. 

The intermediately methylated individuals could not be detected in all datasets. In the datasets 

they were identified, the proportion ranged from 2% to 6%.  

To verify that the clustering is reproducible across different datasets, we compared the 

clustering results within one dataset processed with different methods. We established that 

while the imprinted group could be reliably identified across different normalization methods, 

there were some inconsistencies between intermediately methylated individuals and non-

methylated individuals (Supplementary data 1). Therefore, for analyses where proportions of 

nc886 status groups were investigated across datasets, we combined the intermediately 

methylated and non-methylated clusters, i.e. nc886 status is described as 8imprinted9 or as 

8other9, the latter group including both intermediately methylated and non-methylated 

individuals. Only when comparing individuals within a dataset, namely in the case of MZ twin 

pairs, we have kept all three status groups in the analyses. 

 

Comparison to established imprinted genes 

When analysing different tissues, we also examined the methylation level of six known 

imprinted genes (DIRAS3, KCNQ10T1, MEG3, MEST, NAP1L5, PEG10, and ZNF597) (84). 
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This was done in tissues not presenting bimodal nc886 pattern, to ensure imprinted genes, in 

general, do not display atypical methylation patterns in these tissues. 

 

Statistical analyses 

Differences in the proportion of individuals with imprinted nc886 locus between sexes or in a 

case-control setting (depression (GSE125105), assisted reproductive technologies 

(GSE157896), rheumatoid arthritis (GSE42861), gestational diabetes mellitus (GSE141065), 

schizophrenia (GSE80417, GSE84727), inflammatory bowel disease (GSE87648), childhood 

abuse (GSE132203), and Parkinson9s disease (GSE111629)) were investigated with χ2-test, 

with a threshold for significance set at p < 0.05 (Supplementary Table 2). For DZ twin pairs, 

the mathematically estimated proportion of miss-matched pairs (i.e. one twin imprinted, one 

intermediately methylated or non-methylated) was calculated. The difference between the 

observed number of miss-matched pairs and the estimated numbers was then investigated with 

the χ2-test, with a threshold for significance set at p < 0.05.  

In tissues not presenting bimodal nc886 methylation pattern, the difference in methylation 

levels between imprinted and other groups (as clustered according to a tissue presenting the 

expected methylation pattern from the same individuals) were analysed, with Mann-Whitney 

U-test with the threshold for significance set at p < 0.05. The median methylation levels in the 

nc886 locus were correlated between different tissues with Spearman correlation, with the 

threshold for significance set at p <0.05.  
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Results 

Methylation status of nc886 across population cohorts 

We characterized the methylation status of the nc886 locus in 32 cohorts, including both 

population-based and case-control settings, consisting of 30 347 individuals in total. In the 

majority of the cohorts, the participants were described as being of European descent, white or 

Caucasian, hereafter referred to as white. In the datasets utilized, DNA methylation data was 

from whole blood, blood cells or blood cell subtypes, buccal swabs or foetal cord tissue 

(Supplementary Table 2). In these tissues, the methylation level of the nc886 locus followed 

the expected bimodal pattern, and thus the individuals could be clustered into nc886 

methylation status groups (Supplementary Figure 1). Across all datasets, the proportion of 

imprinted individuals (individuals with the methylation level indicative of monoallelic 

methylation) varied between 65.8% and 83.5%, with an average percentage of 75.3% (Figure 

1, Supplementary Table 2). When considering only cohorts consisting of white singletons, the 

proportion of imprinted individuals varied less, and was between 72.6% and 77.6% (Figure 1, 

Supplementary Table 2). 

The lowest proportion of imprinted individuals was observed in datasets GSE157896 and 

GSE55763, with 68.2% and 65.8% of imprinted individuals, respectively (Figure 1, 

Supplementary Table 2).  GSE157896 consists of new-borns whose mothers were Singaporean 

citizens or permanent residents, with self-reported homogenous Chinese, Indian or Malay 

ancestry (53), while GSE55763 consists of individuals with Indian Asian ancestry living in the 

UK (85). 

In contrast, datasets consisting primarily of African American individuals (GSE117859 and 

GSE132203), had the third- and fourth-highest proportions of imprinted individuals - 79.1% 

and 78.7%, respectively. A third cohort consisting primarily of African American individuals 
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(GSE117860), did not stand out in this regard, with 76.8% of imprinted individuals. As these 

three datasets consist of other ethnicities in addition to African Americans, we tested whether 

there is a difference in the proportion of imprinted individuals across ethnic groups. In two of 

the datasets - GSE117859 and GSE117860, the proportion of imprinted individuals was 

significantly higher in African Americans than in white individuals (χ2-test p-value < 0.05, 

Supplementary Figure 2). 

The highest proportion of imprinted individuals was observed in datasets GSE121633 and 

GSE56105, with 83.5% and 79.5% of imprinted individuals respectively. Both GSE121633 

and GSE56105 consist of twins. Dataset GSE100227, also consisting of twins, has the fifth-

highest percentage of imprinted individuals with 78.7%. However, some datasets consisting of 

twins had an average proportion of imprinted individuals (74.3% in GSE105018, 75.5% in FTC 

and 74.5% in SATSA, Figure 1 and Supplementary Table 2). 

We found no difference (χ2-test p-value > 0.05) in the proportion of imprinted individuals 

between males and females in 26 datasets (Supplementary Table 2). The only exception was 

the dataset GSE82273, where the proportion of imprinted individuals was 73.3% (total n=505) 

in males and 80.7% (total n=384) in females (χ2-test p-value = 0.009). This dataset consists of 

individuals born in Norway with a facial cleft, and unaffected controls matched for the time of 

birth (33,86). In addition, we found no statistically significant differences in the proportion of 

imprinted individuals in any of the case-control settings reported (χ2-test p-value > 0.05, 

Supplementary Table 2) and no bias was seen according to the array type utilized (EPIC vs 

450K). 

 

The methylation of nc886 in MZ and DZ twin pairs 
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We investigated the concordance of the nc886 methylation level and status between twin pairs. 

In five datasets, almost all MZ pairs were concordant regarding the nc886 locus methylation 

level, whereas a large proportion of DZ twins were discordant for the nc886 locus methylation 

level (Table 1, Supplementary Figures 3-6). 

Of the total of 1250 MZ twin pairs investigated, we identified 17 pairs (1.3%), that were 

clustered to different nc886 methylation status groups, when individuals were classified as 

imprinted and other (Table 1). For the datasets in which we could identify the intermediately 

methylated individuals (GSE61496, GSE105018), we were able to refine the analysis and to 

include the intermediately methylated and non-methylated groups as well. When considering 

all three nc886 status groups (imprinted, intermediately methylated, non-methylated), of the 

total of 582 MZ pairs investigated, 13 (2.2%) were clustered to different nc886 status groups. 

Of these discordant pairs, one co-twin was intermediately methylated while the other co-twin 

was either imprinted or non-methylated in all cases, i.e. we identified no twin pairs where one 

co-twin was imprinted while the other was non-methylated (Supplementary Table 3). 

Across all twin pair datasets, the absolute difference in the nc886 methylation level between 

MZ co-twins was below 0.05 for 88.2% of the pairs. Only 1.0% of pairs had a methylation beta 

value difference larger than 0.20. Only one MZ pair across all datasets presented a methylation 

beta value difference over 0.30 (Table 1). For this pair, the methylation beta values for nc886 

locus were 0.38 and 0.71, suggesting that one twin was imprinted and the other had gained 

methylation also in the paternal allele of nc886. These results are in line with our finding that 

there were no imprinted/non-methylated MZ twin pairs. 

We also investigated the absolute difference in the nc886 methylation level in MZ twin pairs 

for whom we had information on chorionicity and amnionicity. In DCDA (separated between 

days 1-3 after fertilization, 22 pairs) and MCDA (separated after day 3, but prior to 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.21.496995doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.496995
http://creativecommons.org/licenses/by/4.0/


17 
 

implantation, 9 pairs) twin pairs, we observed that in 64.5% of the twin pairs the within-pair 

difference in their median methylation beta values was below 0.025. For the remaining twin 

pairs, the within-pair difference was 0.025-0.05 in 19.4% of the pairs and above 0.05 in 16.1% 

of the pairs. In contrast, in MCMA twin pairs (18 pairs), which are separated only after 

implantation, the within-pair difference in median methylation value was below 0.025 for all 

pairs. 

Four of the five twin cohorts also contained DZ twin pairs. Of these, 30.3%, 35.0%, 29.0%, 

and 32.1% were nc886 methylation status (imprinted/other) discordant pairs (Table 1). Given 

the proportions of the nc886 methylation status groups in these four datasets, with random 

pairings, the expected proportion of discordant pairs would be 39.8%, 37.7%, 35.7%, and 

38.8%, respectively (details on proportions and expected proportions in Supplementary Table 

4). For all four datasets, the proportion of identified discordant pairs was lower than expected, 

and for FTC, the largest of the available cohorts, the difference was statistically significant 

(29.0% vs 35.7%, χ2-test p-value = 0.02). 

 

The methylation level of nc886 differs in the cerebellum and in skeletal muscle 

Dataset GSE64491 consists of DNA methylation data for 30 tissues from a 112-year-old 

female, with tissues analysed in duplicates or quadruplicates. As seen in Figure 2 and 

Supplementary Figure 7, the methylation level of the nc886 locus was higher in the cerebellum 

as compared to other tissues, with the methylation beta value above 0.70 for most probes in 

this locus. In addition, muscle and diaphragm showed slightly higher methylation beta values 

as compared to other tissues. For other tissues in dataset GSE64491, variation in the level of 

methylation at the nc886 locus between tissues was similar in magnitude to what can be 

observed between the replicates in the data (Supplementary Table 5). Interestingly, unlike 
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skeletal muscle and diaphragm, the nc886 methylation level of heart was not elevated, but was 

comparable to other tissues in the dataset (Supplementary Figure 7). As a reference, we 

examined the methylation level of six known imprinted genes and did not observe a marked 

difference in the methylation level between the cerebellum or muscle and other tissues 

(Supplementary Figure 8). For these six genes, variation in the methylation level between 

tissues and between the replicates was smaller as compared to the nc886 locus (Supplementary 

Table 5).  

To verify the methylation level of the nc886 locus in the cerebellum, dataset GSE134379, 

containing methylation data from the cerebellum and middle temporal gyrus (MTG), and 

GSE72778, containing data from the cerebellum and five other brain regions (frontal lobe, 

hippocampus, midbrain, occipital lobe and temporal lobe) were investigated. In both data-sets, 

regions of the cerebrum and midbrain present a bimodal nc886 methylation pattern, while in 

the cerebellum, the median methylation level follows a unimodal distribution and is higher, 

close to 0.70 (Figure 3, Supplementary Figure 9).  

The methylation level of the nc886 locus in the cerebellum was high both in individuals with 

an imprinted and a non-methylated nc886 (clustered according to the methylation levels in the 

cerebrum or MTG) in both datasets studied (Figure 4 and Supplementary Figure 10). Despite 

the unimodal distribution of the nc886 methylation level in the cerebellum, we observed a 

difference in the methylation level of the nc886 locus in the cerebellum between imprinted and 

non-methylated individuals (p-value < 0.001 in both datasets). The six known imprinted genes 

analysed did not present differences in the methylation level between the cerebellum and other 

brain regions (Supplementary Figure 11). 

To further investigate the methylation level of the nc886 locus in muscle, we investigated six 

additional datasets, three of which consisted only of muscle samples (GSE142141, 
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GSE151407, GSE171140), and three for which other tissues were also available (GSE61454 - 

skeletal muscle, visceral and subcutaneous fat, as well as liver; ERMA - muscle tissue and 

blood; FTC - muscle tissue, adipose tissue, and blood). In all of the datasets, the methylation 

level of the nc886 locus in muscle presented a unimodal distribution, centred slightly above 

0.50 (Figure 3, Supplementary Figures 12-14). In GSE61454, ERMA and FTC, other tissues 

presented the expected bimodal methylation distribution at the nc886 locus (Supplementary 

Figures 13 and 14). Despite the unimodal methylation level observed in muscle, there was a 

difference in the methylation level at the nc886 locus in muscle between imprinted and non-

methylated individuals (as clustered based on the nc886 methylation levels in other tissues) in 

FTC and GSE61454 (Mann-Whitney U-test p-value < 0.001) (Figure 5, Supplementary Figure 

15). Moreover, in FTC, the median methylation levels correlated well across all three tissues 

(adipose tissue, muscle, blood; p<2*10-12). Individuals presenting intermediately methylated 

nc886 in blood also had intermediate methylation levels in other tissues (Supplementary Figure 

16). 

We also investigated other available datasets for potential atypical methylation patterns in the 

nc886 locus. Skin (GSE90124) and buccal swabs (NELLI, GSE128821) displayed the expected 

bimodal distribution and the expected level of methylation at the nc886 locus (Supplementary 

Figure 17). For the placenta (Figure 3, Supplementary Figures 18 and 19), we observed a slight 

downward shift in the methylation level at the nc886 locus in four datasets (GSE167885, 

GSE75248, GSE71678, GSE115508). While the methylation pattern in the placenta followed 

a bimodal distribution, a clustering analysis could not establish a clear division between 

imprinted and non-methylated individuals, as compared to the majority of other tissues studied. 

In dataset GSE115508, we did not observe a corresponding downward shift in the methylation 

values in amnion or chorion (Supplementary Figure 19). Similarly, foetal cord tissue 
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(GSE157896) did not display a downward shift in the nc886 methylation level (Supplementary 

Figure 1). 

In sperm, we observed a methylation level close to 0 at the nc886 locus, as is expected for a 

maternally imprinted gene (Supplementary Figure 20). In addition to methylation data from 

sperm, dataset GSE149318 also contained methylation data from blood of the same individuals. 

We did not observe a difference in the sperm nc886 methylation level between blood-derived 

imprinted and non-methylated individuals (Mann-Whitney U-test p-value > 0.05). 
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Discussion 

Here, we confirm that the proportion of individuals with an imprinted nc886 locus is 

approximately 75% in majority of populations and show in 32 datasets from variable historic 

and geographic origins, that the variation in this proportion is very limited, especially in 

populations consisting of white singletons. More varying proportions can be observed in 

populations consisting of other ethnicities, and in twins. We show that in MZ twin pairs, the 

methylation level of the nc886 locus is highly similar, especially in MCMA twin pairs.  Finally, 

we confirm that the nc886 methylation pattern is stable in the majority of somatic tissues, but 

also describe two exceptions 3 the cerebellum and skeletal muscle. These findings allow us to 

refine the hypotheses on timing and determinants of the polymorphically imprinted nc886 and 

how the methylation in this locus varies in tissues and individuals originating from the same 

zygote. 

 

Variation of the nc886 methylation status group proportions is limited across populations  

It has previously been reported that, based on individual cohorts, the proportion of individuals 

with an imprinted nc886 locus is approximately 75%, with the remaining 25% presenting a 

non-methylated nc886 locus (9311). Here, utilizing 32 cohorts and over 30 000 individuals, we 

can confirm that the average proportion of imprinted individuals is 75%. Especially in white 

singletons, the variation in the proportion of individuals with an imprinted nc886 locus is 

limited. The lowest proportion of individuals with an imprinted nc886 is observed in cohorts 

of East Asian origin, while the highest proportion of individuals with an imprinted nc886 is 

observed in cohorts consisting of African American individuals or twins. Previously, in a 

cohort of 82 Korean women, the proportion of individuals with methylation levels indicating 

an imprinted nc886 locus was reported to be 65.9% (87), comparable to our findings here 
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(Figure 1, Supplementary Table 2). We, and others, have previously shown that genetic 

variation is not associated with the establishment of the nc886 methylation pattern (10,11,18), 

but, as these results are based on mainly white populations, we can9t rule out the possibility 

that other ethnic groups would present genetic variation that would affect the establishment of 

the nc886 imprint. Another explanation for these findings is that the lifestyle or environmental 

conditions of these populations are affecting the proportions of imprinted individuals. 

However, dataset GSE157896 consists of individuals born in Singapore (53) and dataset 

GSE55763 consists of individuals of East Asian origin, some of whom have been born in the 

UK and others in Asia (29), suggesting that, at least in this case, shared genetics, rather than 

shared environmental conditions, may affect the proportion of imprinted individuals.  Our 

results again highlight the need to include more diverse populations in genetic association 

studies (88). 

 

The methylation status of nc886 is not associated with sex 

We identified no difference in the proportion of imprinted individuals between males and 

females, with the exception of one dataset - GSE82273. This dataset consists of individuals 

born with a facial cleft and unaffected controls matched for the time of birth (33,86). In a 

previous study, facial clefts were associated with hypomethylation of the nc886 region (89). 

However, in this study, the nc886 methylation was analysed as a continuous variable instead 

of categorical.  The prevalence of facial clefts has also been reported to vary according to sex, 

whether it is female- or male-biased depending on the type of the cleft (90). Unfortunately, the 

information on the case/control status was not included in dataset GSE82273, and thus we were 

unable to test whether the observed difference in proportions is due to the sex bias of facial 

clefts. As we observed no difference in the proportion of imprinted individuals between males 
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and females in 26 other datasets (in a total of 27 362 individuals), we assume that the observed 

difference in this one dataset is due to the bias caused by the case/control setting of the dataset 

and conclude that the nc886 methylation status is not associated with sex. 

 

nc886 imprint is stable across majority of somatic tissues 

Previous studies have shown that the nc886 methylation status is stable within one individual 

in all tissues analysed (10,16), and we have previously shown this in different blood cell 

subtypes (11). Here, we confirm these findings in over 30 somatic tissues but also report 

exceptions to this pattern, namely cerebellum and skeletal muscle. In both cerebellum and 

skeletal muscle, visual inspection revealed a unimodal DNA methylation pattern at the nc886 

locus, with a methylation level of approximately 0.70 in the cerebellum and approximately 

0.50 in skeletal muscle. Despite the unimodal methylation pattern in these tissues, there was a 

slight difference in the methylation level of nc886 between individuals who were imprinted 

and non-methylated (according to clustering analysis on other tissues). This suggests that the 

methylation pattern established in early development in these tissues is not completely reset 

and established anew, but that the methylation level is built upon the existing methylation state. 

This is further corroborated by our finding that the methylation level of nc886 in muscle is 

strongly correlated with the methylation level in other somatic tissues.  It is not known what 

mechanism is responsible for this increase in methylation at the nc886 locus in these tissues. 

In contrast to the cerebellum and skeletal muscle, in the placenta, the methylation level of the 

nc886 locus was slightly decreased as compared to other analysed tissues. Placenta has been 

previously described to have aberrant profiles of imprinted genes and also present a multitude 

of secondary differentially methylated regions (91). In line with previous studies (9,13), we 

also show here that the nc886 locus is non-methylated in sperm and see no difference in the 
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methylation levels between men who present either imprinted or non-methylated nc886 locus 

in other tissues.  

We, and others, have previously shown that the nc886 methylation is tightly associated with 

the level of nc886 RNAs (11,12,92), with the imprinted individuals having lower levels of these 

RNAs as compared to the non-methylated individuals. Therefore, we can speculate that the 

cerebellum and skeletal muscle have lower levels of these RNAs as compared to other tissues, 

while the placenta has higher levels of these RNAs. As the function of these RNAs is not known 

(14,15), different regulation patterns in these specific tissues might offer possibilities to further 

hypothesize their role. 

In addition to being stable across tissues, the methylation level of nc886 has been shown to be 

stable through follow-up, from childhood to adolescence (16) and from adolescence to 

adulthood (11). However, in granulosa cells, the methylation level of the nc886 locus has been 

shown to be affected by age, with women over the age of 40 showing higher methylation values 

as compared to women under the age of 30 (93). Granulosa cells are the somatic cell 

compartment in the follicle and are crucial for oogenesis (94,95). As it has been previously 

shown that maternal age is associated with the nc886 methylation status of the offspring (9,11), 

it is interesting to speculate whether the altered methylation status of the granulosa cells is 

associated with this phenomenon.  

 

Establishment of nc886 imprint 

Current literature suggests that periconceptional conditions affect the establishment of the 

nc886 methylation pattern (9311,16) and that the imprinting of nc886 is an early embryonic 

event happening between days four and six after fertilization (13). This notion is in slight 

conflict with the finding that the variation in the proportion of imprinted individuals is limited 
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across populations. If periconceptional conditions would have a substantial role in the 

establishment of the methylation of the nc886 locus, one would expect to see more differences 

between cohorts from different countries or between different birth cohorts and, in contrast, 

fewer differences between DZ twin pairs. For example, we see only minor differences in the 

prevalence of imprinted individuals in Finnish cohorts born in the 1960s and 1970s (YFS; 

73.5%), the 1950s through 1980s (FTC;75.7%) or in 2007/2008 (NELLI; 74.1%), even though 

the nutritional status of Finnish expecting mothers has drastically changed during this time 

(96,97). Furthermore, if the non-methylated status would be caused by adverse pregnancy 

conditions, such as lack of energy or certain nutrients, one could expect that the proportion of 

non-methylated individuals would be significantly decreased in populations with good 

nutritional status. For example, if the lack of folate would be causal in the establishment of the 

non-methylated nc886 methylation pattern (16,98), the number of these individuals should 

have been more drastically diminished in cohorts born after the folate supplementation 

recommendations (97,99). For DZ twins, who share the pregnancy but originate from different 

zygotes, we showed that approximately 1/3 of pairs are discordant regarding the nc886 

methylation status. While this was slightly fewer pairs than would be expected by chance, the 

difference was subtle and statistically significant only in one dataset studied. 

Another plausible hypothesis explaining the shown associations between nc886 and 

periconceptional conditions is that the methylation status is determined already in the oocyte, 

as suggested also by Carpenter et al. (10), and that the slight variation observed in the nc886 

status proportions at the population level is due to either epigenotype offering a survival 

advantage in specific pregnancy conditions. The establishment of the nc886 methylation status 

already in the oocyte is also supported by the fact that in line with results by Carpenter et al. 

(9), we observed no MZ twin pairs with one co-twin being imprinted and the other non-

methylated. This is also true in the subgroup of twins from FTC, who have been reported to be 
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dichorionic, and thus have been separated 1-3 days after conception, indicating that the process 

leading to either non-methylated or imprinted nc886 loci was completed before this time point.  

Our results also suggest that the process that leads to individuals presenting intermediate nc886 

methylation pattern is over before implantation. In MZ twins reported to be separated after 

implantation, the median methylation in nc886 is nearly identical (difference less than 2.5%). 

Furthermore, individuals who present intermediate methylation levels in their blood also 

present very similar levels in their adipose tissue, in line with previous findings in different 

blood cell populations (11), suggesting stability of the methylation level, including the 

intermediate state, through tissue differentiation. When taken together with the temporal 

stability of also the intermediate methylation levels (11), we can suggest that the ratio of cells 

with an imprinted or a non-methylated maternal allele of nc886 in individuals presenting 

intermediately methylated nc886 status is established before implantation, concurrently to the 

global de- and re-methylation waves in the embryo (100) and is then reflected on the individual 

for the rest of their life. 

Previous reports on the association of periconceptional conditions and the nc886 methylation 

status (9311,16) could be explained by selective survival in certain pregnancy conditions, 

instead of these conditions directly affecting the establishment of the methylation status. As 

shown by our results, an example of pregnancy conditions where certain nc886 status might be 

advantageous/disadvantageous is twin pregnancy. In the population cohorts studied, twin 

cohorts had high proportions of imprinted individuals, and in DZ twins the number of pairs 

with discordant nc886 methylation status was slightly lower than would be expected by chance. 

This suggests that twin pregnancy might be favourable to foetuses with imprinted nc886 loci 

or, in the case of DZ twins, to pairs with concordant nc886 methylation status. 
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Limitations of the study 

Our results are descriptive in nature, and thus need to be interpreted as hypothesis-generating 

rather than conclusive. Clustering of individuals into nc886 methylation status groups is, to 

some extent, affected by different data pre-processing methods, but we have tried to mitigate 

this by carefully comparing different pre-processing methods. The paucity of datasets 

consisting of individuals of multiple ethnicities limits our possibilities to draw firm conclusions 

on the effect of ethnicity on nc886 methylation status proportions. 

 

Conclusion 

Current literature suggests that the polymorphic imprinting of nc886 is not due to genetic 

variation in white populations, but as our results show more variation in the proportion of 

individuals with an imprinted nc886 in non-white cohorts, the genetic analyses should be 

repeated in more diverse populations. Based on our results and current literature, we 

hypothesize that DNA methylation of the nc886 locus is established in the growing oocyte and 

that the variation in the proportion of imprinted individuals in a population could be due to 

survival advantage/disadvantage in certain pregnancy conditions, illustrated in Supplementary 

Figure 21. After implantation, the methylation level of nc886 is preserved across studied 

somatic tissues, with the exception of cerebellum and skeletal muscle. In all individuals, nc886 

locus gains methylation in these tissues, even though the methylation levels still associate with 

the nc886 status established earlier in the development.  
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Summary points 

• Variation in the proportion of individuals with an imprinted nc886 is very modest, 

with approximately 75% of individuals being imprinted across populations 

• The observed variation is mainly limited to non-white ethnic groups and twin cohorts 

• Methylation status of nc886 was not associated with sex or any of the case/control 

setting investigated 

• Methylation level of nc886 is increased in cerebellum and in skeletal muscle, but is 

uniform in other somatic tissues 

• Placenta presents lower methylation levels than majority of somatic tissues, but 

binomial methylation pattern can still be detected 

• Monozygotic twins show highly similar nc886 methylation levels, which is even more 

pronounced on twins separated at a later date in development 

• Approximately 30% of dizygotic twin pairs are discordant for nc886 methylation 

status 

• We suggest that methylation status of nc886 is established in the oocyte, and that the 

slight variation observed across populations could be due to selective survival 

advantage of the foetus in certain conditions 
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Figure/Table legends 

 

Figure 1. Proportion of imprinted individuals across cohorts utilized in this study. Individuals 

were clustered as imprinted and other (including non-methylated and intermediately 

methylated). Ethnicity was not specified for all cohorts utilized. Details of each cohort can be 

found from Supplementary Tables 1 and 2. 
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Figure 2. Methylation level of nc886 locus in 30 tissues of a 112 year-old woman. Cerebellum 

has considerably higher level of methylation as compared to other tissues. Muscle and 

diaphragm also show slightly elevated levels of methylation as compared to other tissues. For 

a figure with all tissues presented in colour, see Supplementary Figure 7. 
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Figure 3. Histograms of nc886 locus methylation median in different tissues. A) Blood, 

GSE55763, n = 2664, B) middle temporal gyrus (MTG), GSE134379, n=404, C) cerebellum, 

GSE134379, n= 404 (same individuals as in B), D) placenta, GSE167885, n = 411, and E) 

muscle, GSE61454, n = 60. As compared to blood and MTG, cerebellum shows a unimodal 

distribution with elevated methylation levels in nc886 locus. Also in muscle (E) nc886 

methylation showed a unimodal distribution. In placenta the methylation level at nc886 locus 

presented a bimodal distribution, but the overall methylation level was lower as compared to 

blood. 
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Figure 4. Methylation level of nc886 in cerebellum and in five other brain regions (GSE72778). 

Individuals have been grouped to imprinted and non-methylated based on data of the five brain 

regions where nc886 displayed a bimodal methylation pattern (frontal lobe, hippocampus, mid 

brain, occipital lobe and temporal lobe). As compared to other brain regions, cerebellum shows 

higher levels of methylation in both groups, but there is a statistically significant difference in 

the methylation between individuals clustered as imprinted and non-methylated. Similar 

pattern can be observed in dataset GSE134379 (Supplementary Figure 10). 
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Figure 5. Methylation level of nc886 locus in FTC in A) imprinted individuals (as clustered 

based on nc886 methylation levels in blood) and B) non-methylated individuals. Despite the 

unimodal methylation level in muscle (Supplementary Figure 13), we observed a difference in 

the methylation level of nc886 locus in muscle between imprinted and non-methylated 

individuals. 
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Table 1. Number of twin pairs discordant for nc886 methylation status and the absolute 

difference in the methylation level across twin pairs. 

 

  

SATSA GSE105018 GSE100227 GSE61496

All DCDA MCDA MCMA

Monozycotic twins

nc886 status of twin pairs

Imprinted-Imprinted 387 (74.6%) 18 (81.8%) 5 (55.6%) 16 (88.9%) 61 (73.5%) 313 (73.5%) 55 (83.3%) 127 (81.4%)

Other-Other 126 (24.3%) 4 (18.2%) 4 (44.4%) 2 (11.1%) 18 (21.7%) 109 (25.6%) 11 (16.7%) 26 (16.7%)

Imprinted-Other 6 (1.2%) 0 (0%) 0 (0%) 0 (0%) 4 (4.8%) 4 (1.0%) 0 (0%) 3 (1.9%)

Difference in median methylation between co-twins

<5% 459 (88.4%) 20 (90.0 %) 6 (66.7%) 18 (100%) 42 (50.6%) 403 (94.6%) 64 (97.0%) 134 (85.9%)

5-10% 42 (8.1%) 1 (4.5%) 2 (22.2%) 0 (0%) 23 (27.7%) 17 (4.0%) 1 (1.5%) 17 (10.9%)

10-20% 11 (2.1%) 1 (4.5%) 1 (11.1%) 0 (0%) 17 (20.5%) 5 (1.2%) 0 (0%) 2 (1.3%)

20-30% 7 (1.3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (0.2%) 1 (1.5%) 3 (1.9%)

>30% 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (1.2%) 0 (0%) 0(0%) 0 (0%)

Dizygotic twins

nc886 status of twin pairs

Imprinted-Imprinted 326 (62.2%) 90 (57.7%) 179 (58.5%) 45 (68.2%)

Other-Other 46 (8.8%) 16 (10.3%) 27 (8.8%) 1 (1.5%)

Imprinted-Other 152 (29.0%) 50 (32.1%) 100 (32.7%) 20 (30.3%)

FTC
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Reference annotations 

**of considerable interest 

** Carpenter BL, Zhou W, Madaj Z, DeWitt AK, Ross JP, Grønbæk K, et al. Mother-child 

transmission of epigenetic information by tunable polymorphic imprinting. Proc Natl Acad 

Sci U S A. 2018 Dec 18;115(51):E1197037. 

Describes how methylation status of nc886 is associated with prenatal environment, and that 

the methylation status is associated with the offspring’s phenotype. 

** Carpenter BL, Remba TK, Thomas SL, Madaj Z, Brink L, Tiedemann RL, et al. Oocyte 

age and preconceptual alcohol use are highly correlated with epigenetic imprinting of a 

noncoding RNA (nc886). Proc Natl Acad Sci U S A. 2021 Mar 23;118(12):e2026580118. 

Further confirms the association between periconceptional conditions and offspring’s nc886 

methylation status and describes that 75% of oocytes also present imprinted nc886 locus. 

** Silver MJ, Kessler NJ, Hennig BJ, Dominguez-Salas P, Laritsky E, Baker MS, et al. 

Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human 

epiallele responsive to periconceptional environment. Genome Biology. 2015 Jun 

11;16(1):118.  

Identifies nc886 as metastable epiallele, that is responsive to environmental conditions. 

** Marttila S, Viiri LE, Mishra PP, Kühnel B, Matias-Garcia PR, Lyytikäinen LP, et al. 

Methylation status of nc886 epiallele reflects periconceptional conditions and is associated 

with glucose metabolism through nc886 RNAs. Clin Epigenetics. 2021 Jul 22;13(1):143. 

Further confirms the association between periconceptional conditions and offspring’s nc886 

methylation status, describes the association with offspring’s phenotype. Describes the 

association of nc886 methylation and nc886 RNA levels. 
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*of interest 

* Kostiniuk D, Tamminen H, Mishra PP, Marttila S, Raitoharju E. Methylation pattern of 

polymorphically imprinted nc886 is not conserved across mammalia. PLOS ONE. 2022 Mar 

16;17(3):e0261481. 

Characterises nc886 methylation in primates, indicating that the locus is not polymorphically 

imprinted in other species than in humans 

* Romanelli V, Nakabayashi K, Vizoso M, Moran S, Iglesias-Platas I, Sugahara N, et al. 

Variable maternal methylation overlapping the nc886/vtRNA2-1 locus is locked between 

hypermethylated repeats and is frequently altered in cancer. Epigenetics. 2014 May 

6;9(5):783390. 

Describes how nc886 is a metastable epiallele, the establishment of which is an early 

embryonic event and shows that nc886 is maternally imprinted. 

* Treppendahl MB, Qiu X, Søgaard A, Yang X, Nandrup-Bus C, Hother C, et al. Allelic 

methylation levels of the noncoding VTRNA2-1 located on chromosome 5q31.1 predict 

outcome in AML. Blood. 2012 Jan 5;119(1):206316. 

Shows that in population 75% of individuals present imprinted nc886 loci, and that the 

expression of nc886 RNAs are associated with the methylation level in the locus. 
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