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Abstract

Aims and methods: Our aim was to characterise the methylation level of a polymorphically
imprinted gene, VTRNA2-1/nc886, in human populations and somatic tissues. We utilised 48

datasets, consisting of >30 different tissues and >30 000 individuals.

Results: We show that the nc886 methylation status is associated with twin status and ethnic
background, but the variation between populations is limited. Monozygotic twin pairs present
concordant methylation, while ~30% of dizygotic twin pairs present discordant methylation
in the nc886 locus. The methylation levels of nc886 are uniform across somatic tissues,

except in cerebellum and skeletal muscle.

Conclusion: We hypothesize that the nc886 imprint is established in the oocyte and that after

implantation, the methylation status is stable, excluding a few specific tissues.

Keywords: non-coding 886, nc886, VTRNA2-1, polymorphic imprinting, metastable
epiallele, imprinting, DNA methylation, Developmental Origins of Health and Disease

hypothesis, population studies
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Introduction

Genomic imprinting can be defined as the expression of a gene only from the maternal or the
paternal allele, while the corresponding allele in the other chromosome is silenced via
epigenetic mechanisms, including DNA methylation (1). The epigenetic profiles maintaining
the imprinted status are established during gametogenesis when first the DNA methylation
pattern is erased, after which the parent-of-origin-related DNA methylation pattern is created.
For males, the DNA methylation profile of the sperm, including imprints, is completed in the
primordial germ cells, before the birth of the male child. In oocytes, on the other hand, de novo
DNA methylation will begin only after the birth of the female child, during the follicular growth
phase, with gene-specific timepoints for imprinting reported (2—4). Canonically imprinted
genes, approximately 130 of which exist in humans, retain the parent-of-origin-related
expression pattern throughout an individuals” life in all of their somatic tissues, although tissue
or developmental stage-specific imprinting can be seen, for example, in the placenta (5—7). The
significance of intact genetic imprints is highlighted by the severe disorders caused by

imprinting defects (8).

In humans, the locus harbouring non-coding 886 (nc886, also known as VTRNA2-1) is
polymorphically imprinted, with approximately 75% of individuals having a methylated
maternal allele, i.e. imprinted nc886 locus, and the remaining approximately 25% having both
maternal and paternal nc886 allele unmethylated (9—11). According to current literature, this
pattern is not due to genetic variation (9,12,13). We have also previously identified individuals
who escape this bimodal methylation pattern. We found they present either intermediate
methylation levels (methylation beta value 0.20-0.40 i.e. methylation level of 20-40%, in
approximately 1-5% of the population) or methylation beta values over 0.60 (methylation level
of over 60%), indicating that also the paternal allele has gained methylation in somatic tissues

(in approximately 0.1% of the population) (11). The nc886 locus codes for a 102nt long non-
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coding RNA, which might then be cleaved into miRNA-like short non-coding RNAs, although

the nature of these RNAs is still widely debated (14,15).

The establishment of the nc886 imprint has been suggested to be an early event in the zygote,
happening between four and six days after fertilization (13). Recently, it was suggested that the
methylation pattern of nc886 is already established in the preconceptional oocyte (10). Early
establishment of nc886 methylation status is supported by the fact that it has been shown to be
uniform across analysed somatic tissues (10,16,17). As the methylation pattern of nc886 had
been reported to be concordant in monozygotic twin pairs (MZ) but not in dizygotic twin pairs
(DZ), genetic factors were hypothesized to influence the methylation pattern (9), which was
later shown not to be the case (10,11,18). Once established, the methylation status of nc886 is

stable from childhood to adolescence (16) and from adolescence to adulthood (11).

Changes in the proportion of individuals with methylated or unmethylated maternal nc886
allele have been associated with maternal age (9,11), maternal socioeconomic status (11) and
maternal alcohol consumption (10), as well as the season of conception in rural Gambia (9,16).
Furthermore, the methylation level or status of nc886 or level of nc886 RNAs transcribed from
the locus have been associated with childhood BMI (19), adiposity and cholesterol levels (11),
as well as allergies (20), asthma (21), infections (22) and inflammation (23). Interestingly, the
nc886 methylation status and the level of nc886 RNAs have also been associated with
indicators of glucose metabolism (11,24). These findings suggest that the methylation status of
nc886 is a potential molecular mediator of the Developmental Origins of Health and Disease

(DOHaD) hypothesis (also known as the Barker hypothesis) (25).

Detailed understanding of the determinants and functions of the methylation status of nc886 is
still lacking. In vitro methods are of limited feasibility, as both carcinogenesis (13) and

pluripotency induction (11) have an effect on the methylation pattern at the nc886 locus.
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Currently, no animal models are available to study nc886, as most species, including mice and
rats, do not harbour the gene, and in species harbouring the nc886 gene, the locus is not
polymorphically imprinted (26). Thus, we wanted to utilise available resources, the numerous
existing DNA methylation datasets from humans, to gain insight on the methylation of nc886,

a unique polymorphically imprinted gene and a potential molecular mediator of DOHaD.

More precisely, we wanted to investigate 1) the prevalence of nc886 DNA methylation status
groups in a large number of human populations (with a total n > 30 000) with divergent
historical and geographical origins in order to identify the factors associating with the existing
variation, 2) the nc886 methylation status in MZ and DZ twin pairs to elucidate the contribution
of shared gametes vs unique gametes in shared prenatal environment to the establishment of
nc886 methylation pattern, and finally 3) the nc886 methylation patterns in a larger variety of
tissues, including brain regions and placenta, which have been shown to express a multitude of
imprinted genes, as well as present dynamic imprinting (5,27,28) to have insights on the

potential function of nc886 and the stability of this polymorphic imprint in human tissues.


https://doi.org/10.1101/2022.06.21.496995
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.21.496995; this version posted June 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Materials and Methods

Datasets

In this study, we utilized 48 DNA methylation datasets, including DILGOM, FTC, ERMA,
KORA, LURIC, NELLI, SATSA and YFS as well as 39 datasets available in Gene Expression
Omnibus (GEO) (29) consisting of >30 different tissues and >30 000 individuals.
(Supplementary Table 1). These datasets were used to study the methylation of nc886 locus
across populations, in twin pairs and across different tissues, with some datasets utilized in

multiple settings.

For the population analysis, we included 32 datasets, with the number of individuals ranging
from 131 to 2711 (total n = 30 347). In these datasets, the DNA methylation data was available
from blood (11,30-48), separated peripheral blood cells (49-51), blood spots (19), umbilical
cord buffy coats (52), foetal cord tissue (53) or buccal swabs (52). Association of zygosity (MZ

vs DZ pairs) with nc886 methylation was analysed in 5 datasets (36,47,48,54,55).

To analyse the methylation of nc886 across different tissues, 17 datasets were utilized. These
included a dataset consisting of 30 tissues from a 112-year-old female (56), as well as datasets
consisting of different brain regions ((57), GSE134379), adipose tissue (54,58), muscle (46,55—
57, GSE142141, GSE171140), liver (58), buccal swabs (52,61), skin (62), sperm (63,64) and

placenta (65-68). All utilized datasets are described in detail in Supplementary Table 1.

DILGOM (the Dietary, Lifestyle, and Genetic Determinants of Obesity and Metabolic
Syndrome) (44) has been collected as an extension of the FINRISK 2007 survey. FINRISK
surveys consist of cross-sectional, population-based studies conducted to monitor the risk of

chronic diseases in Finland (69). The data used for the research were obtained from the THL

biobank (study number THLBB2021_22).


https://doi.org/10.1101/2022.06.21.496995
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.21.496995; this version posted June 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

FTC (the Finnish Twin Cohort) study includes three longitudinal cohorts (70,71) - the Older
Twin cohort (71), FinnTwinl6 (FT16) (72), and FinnTwin12 (FT12) (73). In this study, we
included two subsets of FT16 and FT12 cohorts - a smaller subset of individuals for whom
DNA methylation data was available from muscle, adipose tissue and blood (60) and a larger
subset with methylation data only available from blood (54). For 49 MZ twin pairs, the
information on whether they were dichorionic and diamniotic (DCDA, 22 pairs),
monochorionic and diamniotic (MCDA, 9 pairs), or monochorionic and monoamniotic

(MCMD, 18 pairs) was available. Participants of FTC were born before 1987 in Finland.

ERMA (Estrogenic Regulation of Muscle Apoptosis) study was a prospective cohort study
designed to reveal how hormonal differences over the menopausal stages affect the
physiological and psychological functioning of middle-aged women (74). The original ERMA
cohort includes 47- to 55-year-old women living in the city of Jyviskyld or neighbouring
municipalities in Finland. For this study, a subset of 47 individuals with both whole blood and

muscle tissue samples available were included (60).

KORA (Kooperative Gesundheitsforschung in der Region Augsburg/the Cooperative Health
Research in the Region Augsburg cohort) is a population-based health survey that collected
both clinical and genetic data from the general population in the region of Augsburg and two
surrounding counties in Germany (75). Data utilized here is from KORA F4 (collected in 2006-

2008) and KORA FF4 (collected in 2013-2014) cohorts.

LURIC (the LUdwigshafen RIsk and Cardiovascular Health study) consists of patients of
German ancestry who underwent coronary angiography between 1997 and 2000 at a tertiary
care centre in Southwestern Germany (76). For this study, we utilized 2423 individuals with

DNA methylation data available.
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NELLI (Neuvonta, ELintavat ja Llikunta neuvolassa) cohort consists of pregnant mothers
participating in an intervention study aimed at preventing gestational diabetes from 14
municipalities in the southern part of Finland (77). Included in this study is data from children
of these mothers, collected at a 7-year follow-up (61). The children participating in this study

were born in 2007/2008 in Finland

SATSA (the Swedish Adoption/Twin Study of Aging) is a population-based study drawn from
the Swedish Twin Registry that includes same-sex pairs of twins reared together and pairs
separated before the age of 11, collected between 1984 and 2014 (78), 478 of whom had DNA

methylation data available.

YFS (Young Finns Study) is a multicentre follow-up study on cardiovascular risk from
childhood to adulthood, launched in 1980 (79). DN A methylation data utilized here is from the
30-year follow-up in 2011, including 1714 individuals. The participants in this study were born

between 1962 and 1977 in Finland.

DNA methylation data processing

The majority of datasets in GEO were available as processed data, and these datasets were
utilized as such. Datasets GSE61454, GSE71678, GSE134379, and GSE157896 were
downloaded as raw idat-files, extracted with minfi package function read.metharray.exp and
quantile normalized with default settings (80). For DILGOM (44), FTC (54,60), ERMA (60),
KORA (11,45), LURIC (46), SATSA (47) and YFS (11), the processing of DNA methylation
data has been described in detail in previous publications referenced here. For all datasets,
information on sample material, Illumina array type (Illumina Infinium MethylationEPIC or
Methylation450K BeadChip), and the used processing methods are provided in Supplementary

Table 1.
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For NELLI, genomic DNA from buccal swabs was extracted with Gentra Buccal Cell Kit
(QIAGEN, cat.no: 158845) and stored at -20°C. Aliquots of 1 pg of DNA were subjected to
bisulphite conversion, and a 4-ul aliquot of bisulphite-converted DNA was subjected to whole-
genome amplification, followed by enzymatic fragmentation and hybridization onto an
[lumina Infinium MethylationEPIC BeadChip at Helmholtz Zentrum, Munich, Germany. The
arrays were scanned with the iScan reader (Illumina). All the analysed samples had a sum of
detection p-values across all the probes less than 0.01. Logged (log2) median of methylated
and unmethylated intensities of the analysed samples clustered well visually except for one
outlier which was excluded from the analysis. Samples were checked for discrepancies between
the reported and the predicted sex and none failed the test. Normalization was done with a
stratified quantile normalization method implemented in preprocessQuantile function in minfi
R/Bioconductor package (80,81). Probes with a detection p-value of more than 0.01 in 99% of
the samples were filtered out. Similarly, cross-reactive probes and probes with SNPs were
excluded from the analysis (82,83). All pre-processing steps were performed using functions

implemented in the minfi R/Bioconductor package (80).

Clustering of individuals according to nc886 locus methylation level

For all datasets utilised, we retrieved the methylation values for 14 CpGs - cg07158503,
cg04515200, cg13581155, cg11978884, cg11608150, cg06478886, cg04481923, cg18678645,
cg06536614, cg25340688, cg26896946, cg00124993, cg08745965, and cgl18797653, shown
to display bimodal DNA methylation pattern in the nc886 locus, which is indicative of
polymorphic imprinting (9,11). For some datasets, the methylation data was not available from

all 14 CpGs as, depending on the quality control steps performed, some probes had been
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omitted from the data. The number of probes available for each dataset is provided in

Supplementary Table 1.

Based on the methylation levels of the 14 CpGs, individuals were clustered into 3 groups by k-
means clustering. Based on the median methylation level of the cluster, nc886 methylation
status groups were defined as imprinted (typical methylation  value > 0.40, indicative of
monoallelic methylation), non-methylated (typical methylation B value < 0.15, indicative of
two unmethylated alleles), and intermediately methylated (typical methylation  value 0.15-
0.40). Data was visualized to verify that the clustering had identified the groups as expected.
The intermediately methylated individuals could not be detected in all datasets. In the datasets

they were identified, the proportion ranged from 2% to 6%.

To verify that the clustering is reproducible across different datasets, we compared the
clustering results within one dataset processed with different methods. We established that
while the imprinted group could be reliably identified across different normalization methods,
there were some inconsistencies between intermediately methylated individuals and non-
methylated individuals (Supplementary data 1). Therefore, for analyses where proportions of
nc886 status groups were investigated across datasets, we combined the intermediately
methylated and non-methylated clusters, i.e. nc886 status is described as ‘imprinted’ or as
‘other’, the latter group including both intermediately methylated and non-methylated
individuals. Only when comparing individuals within a dataset, namely in the case of MZ twin

pairs, we have kept all three status groups in the analyses.

Comparison to established imprinted genes

When analysing different tissues, we also examined the methylation level of six known

imprinted genes (DIRAS3, KCNQI10T1, MEG3, MEST, NAPILS5, PEGI0, and ZNF597) (84).
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This was done in tissues not presenting bimodal nc886 pattern, to ensure imprinted genes, in

general, do not display atypical methylation patterns in these tissues.

Statistical analyses

Differences in the proportion of individuals with imprinted nc886 locus between sexes or in a
case-control setting (depression (GSE125105), assisted reproductive technologies
(GSE157896), rheumatoid arthritis (GSE42861), gestational diabetes mellitus (GSE141065),
schizophrenia (GSE80417, GSE84727), inflammatory bowel disease (GSE87648), childhood
abuse (GSE132203), and Parkinson’s disease (GSE111629)) were investigated with y*-test,
with a threshold for significance set at p < 0.05 (Supplementary Table 2). For DZ twin pairs,
the mathematically estimated proportion of miss-matched pairs (i.e. one twin imprinted, one
intermediately methylated or non-methylated) was calculated. The difference between the
observed number of miss-matched pairs and the estimated numbers was then investigated with

the y-test, with a threshold for significance set at p < 0.05.

In tissues not presenting bimodal nc886 methylation pattern, the difference in methylation
levels between imprinted and other groups (as clustered according to a tissue presenting the
expected methylation pattern from the same individuals) were analysed, with Mann-Whitney
U-test with the threshold for significance set at p < 0.05. The median methylation levels in the
nc886 locus were correlated between different tissues with Spearman correlation, with the

threshold for significance set at p <0.05.
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Results

Methylation status of nc886 across population cohorts

We characterized the methylation status of the nc886 locus in 32 cohorts, including both
population-based and case-control settings, consisting of 30 347 individuals in total. In the
majority of the cohorts, the participants were described as being of European descent, white or
Caucasian, hereafter referred to as white. In the datasets utilized, DNA methylation data was
from whole blood, blood cells or blood cell subtypes, buccal swabs or foetal cord tissue
(Supplementary Table 2). In these tissues, the methylation level of the nc886 locus followed
the expected bimodal pattern, and thus the individuals could be clustered into nc886
methylation status groups (Supplementary Figure 1). Across all datasets, the proportion of
imprinted individuals (individuals with the methylation level indicative of monoallelic
methylation) varied between 65.8% and 83.5%, with an average percentage of 75.3% (Figure
1, Supplementary Table 2). When considering only cohorts consisting of white singletons, the
proportion of imprinted individuals varied less, and was between 72.6% and 77.6% (Figure 1,

Supplementary Table 2).

The lowest proportion of imprinted individuals was observed in datasets GSE157896 and
GSES55763, with 68.2% and 65.8% of imprinted individuals, respectively (Figure 1,
Supplementary Table 2). GSE157896 consists of new-borns whose mothers were Singaporean
citizens or permanent residents, with self-reported homogenous Chinese, Indian or Malay
ancestry (53), while GSE55763 consists of individuals with Indian Asian ancestry living in the

UK (85).

In contrast, datasets consisting primarily of African American individuals (GSE117859 and
GSE132203), had the third- and fourth-highest proportions of imprinted individuals - 79.1%

and 78.7%, respectively. A third cohort consisting primarily of African American individuals
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(GSE117860), did not stand out in this regard, with 76.8% of imprinted individuals. As these
three datasets consist of other ethnicities in addition to African Americans, we tested whether
there is a difference in the proportion of imprinted individuals across ethnic groups. In two of
the datasets - GSE117859 and GSE117860, the proportion of imprinted individuals was
significantly higher in African Americans than in white individuals (y2-test p-value < 0.05,

Supplementary Figure 2).

The highest proportion of imprinted individuals was observed in datasets GSE121633 and
GSES56105, with 83.5% and 79.5% of imprinted individuals respectively. Both GSE121633
and GSE56105 consist of twins. Dataset GSE100227, also consisting of twins, has the fifth-
highest percentage of imprinted individuals with 78.7%. However, some datasets consisting of
twins had an average proportion of imprinted individuals (74.3% in GSE105018, 75.5% in FTC

and 74.5% in SATSA, Figure 1 and Supplementary Table 2).

We found no difference ()*-test p-value > 0.05) in the proportion of imprinted individuals
between males and females in 26 datasets (Supplementary Table 2). The only exception was
the dataset GSE82273, where the proportion of imprinted individuals was 73.3% (total n=505)
in males and 80.7% (total n=384) in females (y>-test p-value = 0.009). This dataset consists of
individuals born in Norway with a facial cleft, and unaffected controls matched for the time of
birth (33,86). In addition, we found no statistically significant differences in the proportion of
imprinted individuals in any of the case-control settings reported (y>-test p-value > 0.05,
Supplementary Table 2) and no bias was seen according to the array type utilized (EPIC vs

450K).

The methylation of nc886 in MZ and DZ twin pairs

15
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We investigated the concordance of the nc886 methylation level and status between twin pairs.
In five datasets, almost all MZ pairs were concordant regarding the nc886 locus methylation
level, whereas a large proportion of DZ twins were discordant for the nc886 locus methylation

level (Table 1, Supplementary Figures 3-6).

Of the total of 1250 MZ twin pairs investigated, we identified 17 pairs (1.3%), that were
clustered to different nc886 methylation status groups, when individuals were classified as
imprinted and other (Table 1). For the datasets in which we could identify the intermediately
methylated individuals (GSE61496, GSE105018), we were able to refine the analysis and to
include the intermediately methylated and non-methylated groups as well. When considering
all three nc886 status groups (imprinted, intermediately methylated, non-methylated), of the
total of 582 MZ pairs investigated, 13 (2.2%) were clustered to different nc886 status groups.
Of these discordant pairs, one co-twin was intermediately methylated while the other co-twin
was either imprinted or non-methylated in all cases, i.e. we identified no twin pairs where one

co-twin was imprinted while the other was non-methylated (Supplementary Table 3).

Across all twin pair datasets, the absolute difference in the nc886 methylation level between
MZ co-twins was below 0.05 for 88.2% of the pairs. Only 1.0% of pairs had a methylation beta
value difference larger than 0.20. Only one MZ pair across all datasets presented a methylation
beta value difference over 0.30 (Table 1). For this pair, the methylation beta values for nc886
locus were 0.38 and 0.71, suggesting that one twin was imprinted and the other had gained
methylation also in the paternal allele of nc886. These results are in line with our finding that

there were no imprinted/non-methylated MZ twin pairs.

We also investigated the absolute difference in the nc886 methylation level in MZ twin pairs
for whom we had information on chorionicity and amnionicity. In DCDA (separated between

days 1-3 after fertilization, 22 pairs) and MCDA (separated after day 3, but prior to
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implantation, 9 pairs) twin pairs, we observed that in 64.5% of the twin pairs the within-pair
difference in their median methylation beta values was below 0.025. For the remaining twin
pairs, the within-pair difference was 0.025-0.05 in 19.4% of the pairs and above 0.05 in 16.1%
of the pairs. In contrast, in MCMA twin pairs (18 pairs), which are separated only after
implantation, the within-pair difference in median methylation value was below 0.025 for all

pairs.

Four of the five twin cohorts also contained DZ twin pairs. Of these, 30.3%, 35.0%, 29.0%,
and 32.1% were nc886 methylation status (imprinted/other) discordant pairs (Table 1). Given
the proportions of the nc886 methylation status groups in these four datasets, with random
pairings, the expected proportion of discordant pairs would be 39.8%, 37.7%, 35.7%, and
38.8%, respectively (details on proportions and expected proportions in Supplementary Table
4). For all four datasets, the proportion of identified discordant pairs was lower than expected,
and for FTC, the largest of the available cohorts, the difference was statistically significant

(29.0% vs 35.7%, y2-test p-value = 0.02).

The methylation level of nc886 differs in the cerebellum and in skeletal muscle

Dataset GSE64491 consists of DNA methylation data for 30 tissues from a 112-year-old
female, with tissues analysed in duplicates or quadruplicates. As seen in Figure 2 and
Supplementary Figure 7, the methylation level of the nc886 locus was higher in the cerebellum
as compared to other tissues, with the methylation beta value above 0.70 for most probes in
this locus. In addition, muscle and diaphragm showed slightly higher methylation beta values
as compared to other tissues. For other tissues in dataset GSE64491, variation in the level of
methylation at the nc886 locus between tissues was similar in magnitude to what can be

observed between the replicates in the data (Supplementary Table 5). Interestingly, unlike
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skeletal muscle and diaphragm, the nc886 methylation level of heart was not elevated, but was
comparable to other tissues in the dataset (Supplementary Figure 7). As a reference, we
examined the methylation level of six known imprinted genes and did not observe a marked
difference in the methylation level between the cerebellum or muscle and other tissues
(Supplementary Figure 8). For these six genes, variation in the methylation level between
tissues and between the replicates was smaller as compared to the nc886 locus (Supplementary

Table 5).

To verify the methylation level of the nc886 locus in the cerebellum, dataset GSE134379,
containing methylation data from the cerebellum and middle temporal gyrus (MTG), and
GSE72778, containing data from the cerebellum and five other brain regions (frontal lobe,
hippocampus, midbrain, occipital lobe and temporal lobe) were investigated. In both data-sets,
regions of the cerebrum and midbrain present a bimodal nc886 methylation pattern, while in
the cerebellum, the median methylation level follows a unimodal distribution and is higher,

close to 0.70 (Figure 3, Supplementary Figure 9).

The methylation level of the nc886 locus in the cerebellum was high both in individuals with
an imprinted and a non-methylated nc886 (clustered according to the methylation levels in the
cerebrum or MTG) in both datasets studied (Figure 4 and Supplementary Figure 10). Despite
the unimodal distribution of the nc886 methylation level in the cerebellum, we observed a
difference in the methylation level of the nc886 locus in the cerebellum between imprinted and
non-methylated individuals (p-value < 0.001 in both datasets). The six known imprinted genes
analysed did not present differences in the methylation level between the cerebellum and other

brain regions (Supplementary Figure 11).

To further investigate the methylation level of the nc886 locus in muscle, we investigated six

additional datasets, three of which consisted only of muscle samples (GSE142141,
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GSE151407, GSE171140), and three for which other tissues were also available (GSE61454 -
skeletal muscle, visceral and subcutaneous fat, as well as liver; ERMA - muscle tissue and
blood; FTC - muscle tissue, adipose tissue, and blood). In all of the datasets, the methylation
level of the nc886 locus in muscle presented a unimodal distribution, centred slightly above
0.50 (Figure 3, Supplementary Figures 12-14). In GSE61454, ERMA and FTC, other tissues
presented the expected bimodal methylation distribution at the nc886 locus (Supplementary
Figures 13 and 14). Despite the unimodal methylation level observed in muscle, there was a
difference in the methylation level at the nc886 locus in muscle between imprinted and non-
methylated individuals (as clustered based on the nc886 methylation levels in other tissues) in
FTC and GSE61454 (Mann-Whitney U-test p-value < 0.001) (Figure 5, Supplementary Figure
15). Moreover, in FTC, the median methylation levels correlated well across all three tissues
(adipose tissue, muscle, blood; p<2*107'?). Individuals presenting intermediately methylated

nc886 in blood also had intermediate methylation levels in other tissues (Supplementary Figure

16).

We also investigated other available datasets for potential atypical methylation patterns in the
nc886 locus. Skin (GSE90124) and buccal swabs (NELLI, GSE128821) displayed the expected
bimodal distribution and the expected level of methylation at the nc886 locus (Supplementary
Figure 17). For the placenta (Figure 3, Supplementary Figures 18 and 19), we observed a slight
downward shift in the methylation level at the nc886 locus in four datasets (GSE167885,
GSE75248, GSE71678, GSE115508). While the methylation pattern in the placenta followed
a bimodal distribution, a clustering analysis could not establish a clear division between
imprinted and non-methylated individuals, as compared to the majority of other tissues studied.
In dataset GSE115508, we did not observe a corresponding downward shift in the methylation

values in amnion or chorion (Supplementary Figure 19). Similarly, foetal cord tissue
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(GSE157896) did not display a downward shift in the nc886 methylation level (Supplementary

Figure 1).

In sperm, we observed a methylation level close to 0 at the nc886 locus, as is expected for a
maternally imprinted gene (Supplementary Figure 20). In addition to methylation data from
sperm, dataset GSE149318 also contained methylation data from blood of the same individuals.
We did not observe a difference in the sperm nc886 methylation level between blood-derived

imprinted and non-methylated individuals (Mann-Whitney U-test p-value > 0.05).

20


https://doi.org/10.1101/2022.06.21.496995
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.21.496995; this version posted June 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Discussion

Here, we confirm that the proportion of individuals with an imprinted nc886 locus is
approximately 75% in majority of populations and show in 32 datasets from variable historic
and geographic origins, that the variation in this proportion is very limited, especially in
populations consisting of white singletons. More varying proportions can be observed in
populations consisting of other ethnicities, and in twins. We show that in MZ twin pairs, the
methylation level of the nc886 locus is highly similar, especially in MCMA twin pairs. Finally,
we confirm that the nc886 methylation pattern is stable in the majority of somatic tissues, but
also describe two exceptions — the cerebellum and skeletal muscle. These findings allow us to
refine the hypotheses on timing and determinants of the polymorphically imprinted nc886 and
how the methylation in this locus varies in tissues and individuals originating from the same

zygote.

Variation of the nc886 methylation status group proportions is limited across populations

It has previously been reported that, based on individual cohorts, the proportion of individuals
with an imprinted nc886 locus is approximately 75%, with the remaining 25% presenting a
non-methylated nc886 locus (9—11). Here, utilizing 32 cohorts and over 30 000 individuals, we
can confirm that the average proportion of imprinted individuals is 75%. Especially in white
singletons, the variation in the proportion of individuals with an imprinted nc886 locus is
limited. The lowest proportion of individuals with an imprinted nc886 is observed in cohorts
of East Asian origin, while the highest proportion of individuals with an imprinted nc886 is
observed in cohorts consisting of African American individuals or twins. Previously, in a
cohort of 82 Korean women, the proportion of individuals with methylation levels indicating

an imprinted nc886 locus was reported to be 65.9% (87), comparable to our findings here
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(Figure 1, Supplementary Table 2). We, and others, have previously shown that genetic
variation is not associated with the establishment of the nc886 methylation pattern (10,11,18),
but, as these results are based on mainly white populations, we can’t rule out the possibility
that other ethnic groups would present genetic variation that would affect the establishment of
the nc886 imprint. Another explanation for these findings is that the lifestyle or environmental
conditions of these populations are affecting the proportions of imprinted individuals.
However, dataset GSE157896 consists of individuals born in Singapore (53) and dataset
GSES55763 consists of individuals of East Asian origin, some of whom have been born in the
UK and others in Asia (29), suggesting that, at least in this case, shared genetics, rather than
shared environmental conditions, may affect the proportion of imprinted individuals. Our
results again highlight the need to include more diverse populations in genetic association

studies (88).

The methylation status of nc886 is not associated with sex

We identified no difference in the proportion of imprinted individuals between males and
females, with the exception of one dataset - GSE82273. This dataset consists of individuals
born with a facial cleft and unaffected controls matched for the time of birth (33,86). In a
previous study, facial clefts were associated with hypomethylation of the nc886 region (89).
However, in this study, the nc886 methylation was analysed as a continuous variable instead
of categorical. The prevalence of facial clefts has also been reported to vary according to sex,
whether it is female- or male-biased depending on the type of the cleft (90). Unfortunately, the
information on the case/control status was not included in dataset GSE82273, and thus we were
unable to test whether the observed difference in proportions is due to the sex bias of facial

clefts. As we observed no difference in the proportion of imprinted individuals between males
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and females in 26 other datasets (in a total of 27 362 individuals), we assume that the observed
difference in this one dataset is due to the bias caused by the case/control setting of the dataset

and conclude that the nc886 methylation status is not associated with sex.

nc886 imprint is stable across majority of somatic tissues

Previous studies have shown that the nc886 methylation status is stable within one individual
in all tissues analysed (10,16), and we have previously shown this in different blood cell
subtypes (11). Here, we confirm these findings in over 30 somatic tissues but also report
exceptions to this pattern, namely cerebellum and skeletal muscle. In both cerebellum and
skeletal muscle, visual inspection revealed a unimodal DNA methylation pattern at the nc886
locus, with a methylation level of approximately 0.70 in the cerebellum and approximately
0.50 in skeletal muscle. Despite the unimodal methylation pattern in these tissues, there was a
slight difference in the methylation level of nc886 between individuals who were imprinted
and non-methylated (according to clustering analysis on other tissues). This suggests that the
methylation pattern established in early development in these tissues is not completely reset
and established anew, but that the methylation level is built upon the existing methylation state.
This is further corroborated by our finding that the methylation level of nc886 in muscle is
strongly correlated with the methylation level in other somatic tissues. It is not known what
mechanism is responsible for this increase in methylation at the nc886 locus in these tissues.
In contrast to the cerebellum and skeletal muscle, in the placenta, the methylation level of the
nc886 locus was slightly decreased as compared to other analysed tissues. Placenta has been
previously described to have aberrant profiles of imprinted genes and also present a multitude
of secondary differentially methylated regions (91). In line with previous studies (9,13), we

also show here that the nc886 locus is non-methylated in sperm and see no difference in the
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methylation levels between men who present either imprinted or non-methylated nc886 locus

in other tissues.

We, and others, have previously shown that the nc886 methylation is tightly associated with
the level of nc886 RNAs (11,12,92), with the imprinted individuals having lower levels of these
RNAs as compared to the non-methylated individuals. Therefore, we can speculate that the
cerebellum and skeletal muscle have lower levels of these RNAs as compared to other tissues,
while the placenta has higher levels of these RNAs. As the function of these RNAs is not known
(14,15), different regulation patterns in these specific tissues might offer possibilities to further

hypothesize their role.

In addition to being stable across tissues, the methylation level of nc886 has been shown to be
stable through follow-up, from childhood to adolescence (16) and from adolescence to
adulthood (11). However, in granulosa cells, the methylation level of the nc886 locus has been
shown to be affected by age, with women over the age of 40 showing higher methylation values
as compared to women under the age of 30 (93). Granulosa cells are the somatic cell
compartment in the follicle and are crucial for oogenesis (94,95). As it has been previously
shown that maternal age is associated with the nc886 methylation status of the offspring (9,11),
it is interesting to speculate whether the altered methylation status of the granulosa cells is

associated with this phenomenon.

Establishment of nc886 imprint

Current literature suggests that periconceptional conditions affect the establishment of the
nc886 methylation pattern (9—11,16) and that the imprinting of nc886 is an early embryonic
event happening between days four and six after fertilization (13). This notion is in slight

conflict with the finding that the variation in the proportion of imprinted individuals is limited
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across populations. If periconceptional conditions would have a substantial role in the
establishment of the methylation of the nc886 locus, one would expect to see more differences
between cohorts from different countries or between different birth cohorts and, in contrast,
fewer differences between DZ twin pairs. For example, we see only minor differences in the
prevalence of imprinted individuals in Finnish cohorts born in the 1960s and 1970s (YFS;
73.5%), the 1950s through 1980s (FTC;75.7%) or in 2007/2008 (NELLI; 74.1%), even though
the nutritional status of Finnish expecting mothers has drastically changed during this time
(96,97). Furthermore, if the non-methylated status would be caused by adverse pregnancy
conditions, such as lack of energy or certain nutrients, one could expect that the proportion of
non-methylated individuals would be significantly decreased in populations with good
nutritional status. For example, if the lack of folate would be causal in the establishment of the
non-methylated nc886 methylation pattern (16,98), the number of these individuals should
have been more drastically diminished in cohorts born after the folate supplementation
recommendations (97,99). For DZ twins, who share the pregnancy but originate from different
zygotes, we showed that approximately 1/3 of pairs are discordant regarding the nc886
methylation status. While this was slightly fewer pairs than would be expected by chance, the

difference was subtle and statistically significant only in one dataset studied.

Another plausible hypothesis explaining the shown associations between nc886 and
periconceptional conditions is that the methylation status is determined already in the oocyte,
as suggested also by Carpenter et al. (10), and that the slight variation observed in the nc886
status proportions at the population level is due to either epigenotype offering a survival
advantage in specific pregnancy conditions. The establishment of the nc886 methylation status
already in the oocyte is also supported by the fact that in line with results by Carpenter et al.
(9), we observed no MZ twin pairs with one co-twin being imprinted and the other non-

methylated. This is also true in the subgroup of twins from FTC, who have been reported to be
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dichorionic, and thus have been separated 1-3 days after conception, indicating that the process

leading to either non-methylated or imprinted nc886 loci was completed before this time point.

Our results also suggest that the process that leads to individuals presenting intermediate nc886
methylation pattern is over before implantation. In MZ twins reported to be separated after
implantation, the median methylation in nc886 is nearly identical (difference less than 2.5%).
Furthermore, individuals who present intermediate methylation levels in their blood also
present very similar levels in their adipose tissue, in line with previous findings in different
blood cell populations (11), suggesting stability of the methylation level, including the
intermediate state, through tissue differentiation. When taken together with the temporal
stability of also the intermediate methylation levels (11), we can suggest that the ratio of cells
with an imprinted or a non-methylated maternal allele of nc886 in individuals presenting
intermediately methylated nc886 status is established before implantation, concurrently to the
global de- and re-methylation waves in the embryo (100) and is then reflected on the individual

for the rest of their life.

Previous reports on the association of periconceptional conditions and the nc886 methylation
status (9-11,16) could be explained by selective survival in certain pregnancy conditions,
instead of these conditions directly affecting the establishment of the methylation status. As
shown by our results, an example of pregnancy conditions where certain nc886 status might be
advantageous/disadvantageous is twin pregnancy. In the population cohorts studied, twin
cohorts had high proportions of imprinted individuals, and in DZ twins the number of pairs
with discordant nc886 methylation status was slightly lower than would be expected by chance.
This suggests that twin pregnancy might be favourable to foetuses with imprinted nc886 loci

or, in the case of DZ twins, to pairs with concordant nc886 methylation status.
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Limitations of the study

Our results are descriptive in nature, and thus need to be interpreted as hypothesis-generating
rather than conclusive. Clustering of individuals into nc886 methylation status groups is, to
some extent, affected by different data pre-processing methods, but we have tried to mitigate
this by carefully comparing different pre-processing methods. The paucity of datasets
consisting of individuals of multiple ethnicities limits our possibilities to draw firm conclusions

on the effect of ethnicity on nc886 methylation status proportions.

Conclusion

Current literature suggests that the polymorphic imprinting of nc886 is not due to genetic
variation in white populations, but as our results show more variation in the proportion of
individuals with an imprinted nc886 in non-white cohorts, the genetic analyses should be
repeated in more diverse populations. Based on our results and current literature, we
hypothesize that DNA methylation of the nc886 locus is established in the growing oocyte and
that the variation in the proportion of imprinted individuals in a population could be due to
survival advantage/disadvantage in certain pregnancy conditions, illustrated in Supplementary
Figure 21. After implantation, the methylation level of nc886 is preserved across studied
somatic tissues, with the exception of cerebellum and skeletal muscle. In all individuals, nc886
locus gains methylation in these tissues, even though the methylation levels still associate with

the nc886 status established earlier in the development.
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Summary points

e Variation in the proportion of individuals with an imprinted nc886 is very modest,
with approximately 75% of individuals being imprinted across populations

e The observed variation is mainly limited to non-white ethnic groups and twin cohorts

e Methylation status of nc886 was not associated with sex or any of the case/control
setting investigated

e Methylation level of n¢886 is increased in cerebellum and in skeletal muscle, but is
uniform in other somatic tissues

e Placenta presents lower methylation levels than majority of somatic tissues, but
binomial methylation pattern can still be detected

e Monozygotic twins show highly similar nc886 methylation levels, which is even more
pronounced on twins separated at a later date in development

e Approximately 30% of dizygotic twin pairs are discordant for nc886 methylation
status

e We suggest that methylation status of nc886 is established in the oocyte, and that the
slight variation observed across populations could be due to selective survival

advantage of the foetus in certain conditions
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Figure/Table legends
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Figure 1. Proportion of imprinted individuals across cohorts utilized in this study. Individuals
were clustered as imprinted and other (including non-methylated and intermediately
methylated). Ethnicity was not specified for all cohorts utilized. Details of each cohort can be

found from Supplementary Tables 1 and 2.
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Figure 2. Methylation level of nc886 locus in 30 tissues of a 112 year-old woman. Cerebellum
has considerably higher level of methylation as compared to other tissues. Muscle and
diaphragm also show slightly elevated levels of methylation as compared to other tissues. For

a figure with all tissues presented in colour, see Supplementary Figure 7.
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Figure 3. Histograms of nc886 locus methylation median in different tissues. A) Blood,
GSES55763, n = 2664, B) middle temporal gyrus (MTG), GSE134379, n=404, C) cerebellum,
GSE134379, n= 404 (same individuals as in B), D) placenta, GSE167885, n = 411, and E)
muscle, GSE61454, n = 60. As compared to blood and MTG, cerebellum shows a unimodal
distribution with elevated methylation levels in nc886 locus. Also in muscle (E) nc886
methylation showed a unimodal distribution. In placenta the methylation level at nc886 locus

presented a bimodal distribution, but the overall methylation level was lower as compared to

blood.
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Figure 4. Methylation level of nc886 in cerebellum and in five other brain regions (GSE72778).
Individuals have been grouped to imprinted and non-methylated based on data of the five brain
regions where nc886 displayed a bimodal methylation pattern (frontal lobe, hippocampus, mid
brain, occipital lobe and temporal lobe). As compared to other brain regions, cerebellum shows
higher levels of methylation in both groups, but there is a statistically significant difference in
the methylation between individuals clustered as imprinted and non-methylated. Similar

pattern can be observed in dataset GSE134379 (Supplementary Figure 10).

32


https://doi.org/10.1101/2022.06.21.496995
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.21.496995; this version posted June 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Tissue
~o- Adipose
-~ Muscle
A 0] B 100/
~e= White blood cells
0.751 0.751
Q (]
= =
§050 gOSO
© @
B0 B
Q ()
o o
0.25 1 0.251
) o
0.00 1 G 0.001
N O N T © © M OV T W0 © M WU M M O U ¢ O W M WU ¥ O © M WU M
QO O 0N O W N F v 0 F O © W O O W W W O N T v~ OO s O © W
N AN v~ 0O v 0O O W ©W © O O ;O O N N v~ O v~ 0 W © © ©W O O O ©
W W v™ 0 0 W v 0O © O O < WU I~ W D v~ O O W v W © O © ¥ WUV N~
N~ O NN O O NN M T O N T O W v~ O N O O OO F OO N S O
- 0N W0 O O© v < © 1O M O «~ & N~ = U0 0 O © <& ¥ © VUM © ~ N~ N~
N M0 «~ v~ © g 0 © OB © O ® © N M «~ « © F 0 © U © © O ©
@0 = o @ QOO N N O O O Q. v 3 v« O Q ™ O N N O . Q =
O DD OO0 DD DD O OD O O O DD OO0 OO0 ODODDDODDD D
O 0O 0O 0O 0O 0O 0O O 0O 0O O 0O O © O 0O 0O 0O 0O 0O 0O 0O 0 0O O O 0 O

Figure 5. Methylation level of nc886 locus in FTC in A) imprinted individuals (as clustered
based on nc886 methylation levels in blood) and B) non-methylated individuals. Despite the
unimodal methylation level in muscle (Supplementary Figure 13), we observed a difference in
the methylation level of nc886 locus in muscle between imprinted and non-methylated

individuals.
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Table 1. Number of twin pairs discordant for nc886 methylation status and the absolute

difference in the methylation level across twin pairs.

FTC SATSA GSE105018 GSE100227  GSE61496
All DCDA MCDA MCMA

Monozycotic twins
nc886 status of twin pairs
Imprinted-Imprinted 387 (74.6%) 18(81.8%) 5(55.6%) 16(88.9%) 61(73.5%) 313(73.5%) 55(83.3%) 127(81.4%)
Other-Other 126 (24.3%) 4(18.2%) 4(44.4%) 2(11.1%) 18(21.7%) 109(25.6%) 11(16.7%) 26(16.7%)
Imprinted-Other 6(1.2%) 0(0%) 0(0%) 0(0%) 4(4.8%) 4(1.0%) 0(0%) 3(1.9%)

Difference in median methylation between co-twins

<5% 459 (88.4%) 20(90.0%) 6(66.7%) 18(100%) 42(50.6%) 403 (94.6%) 64(97.0%) 134 (85.9%)
5-10% 42(8.1%)  1(4.5%) 2(22.2%)  0(0%) 23(27.7%) 17(4.0%)  1(1.5%)  17(10.9%)
10-20% 11(2.1%)  1(4.5%) 1(11.1%)  0(0%) 17(20.5%) 5(1.2%) 0(0%) 2(1.3%)
20-30% 7(1.3%) 0(0%) 0(0%) 0(0%) 0(0%) 1(0.2%) 1(1.5%)  3(1.9%)
>30% 0(0%) 0(0%) 0(0%) 0(0%)  1(1.2%) 0(0%) 0(0%) 0(0%)

Dizygotic twins
nc886 status of twin pairs

Imprinted-Imprinted 326 (62.2%) 90(57.7%) 179 (58.5%) 45 (68.2%)
Other-Other 46 (8.8%) 16 (10.3%) 27(8.8%) 1(1.5%)
Imprinted-Other 152 (29.0%) 50(32.1%) 100(32.7%) 20(30.3%)
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