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ABSTRACT  26 

Adoptive therapy with genetically engineered T cells offers potential for infectious disease 27 

treatment in immunocompromised persons. HIV/simian immunodeficiency virus (SIV) infected 28 

cells express phosphatidylserine (PS) early post-infection. We tested whether chimeric 29 

engulfment receptor (CER) T cells designed to recognize PS-expressing cells could eliminate 30 

SIV infected cells. Lentiviral CER constructs comprised of the extracellular domain of T-cell 31 

immunoglobulin and mucin domain containing 4 (TIM-4), the PS receptor, and engulfment 32 

signaling domains were transduced into primary rhesus macaque (RM) T cells. We measured 33 

PS binding and T-cell engulfment of RM CD4+ T cells infected with SIV expressing GFP. As 34 

chimeric antigen receptor (CAR) T cells induce PS and subsequent TIM-4 binding, we evaluated 35 

in vitro killing of CAR and CER T-cell combinations. We found that recombinant TIM-4 bound to 36 

SIV infected cells. In vitro, CER CD4+ T cells effectively killed SIV infected cells, which was 37 

dependent on TIM-4 binding to PS. Enhanced killing of SIV infected CD4+ T cells by CER and 38 

CAR T-cell combinations was observed. This installation of innate immune functions into T cells 39 

presents an opportunity to enhance elimination of SIV infected cells and offers potential to 40 

augment functional cure of SIV/HIV infection.   41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 
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INTRODUCTION 49 

Cell therapies are being investigated to treat a large variety of diseases. Chimeric antigen 50 

receptor (CAR) T cells are cells engineered to recognize and kill clinically relevant targets. CAR 51 

T-cell therapies are an example of successful cell therapy, especially to treat different types of 52 

hematologic malignancies1, 2. New cells therapies are being investigated to broaden the number 53 

of diseases where they might be applicable and explore the potential of other effector cell types 54 

such as macrophages and natural killer cells and other CAR3-6. The application of the 55 

knowledge resulting from in vivo studies and clinical trials with CAR T cells could lead to more 56 

successful cell therapies targeting HIV reservoirs that remain in HIV-infected patients and in 57 

controlling viral rebound7-9.  58 

A common feature displayed by cells that have become apoptotic because of viral or parasitic 59 

infections, aging, or altered metabolism is the redistribution of phosphatidylserine (PS) to the 60 

outer leaflet of their plasma membrane10. For example, HIV infection was shown to trigger the 61 

exposure of PS by activating scramblases11. The exposed PS was also shown to facilitate 62 

fusion between the viral and cell membrane11, 12. In addition, because HIV viruses are produced 63 

by apoptotic CD4 T cells, HIV virions contain PS in their envelope that stimulates clearance 64 

mechanisms and facilitate entry into other cell types such as macrophages12, 13.  65 

The exposure of PS on the surface of apoptotic cells is a key <eat me= signal triggering 66 

engulfment by phagocytes10. Several PS receptors have been identified, including the T-cell 67 

immunoglobulin and mucin domain containing 4 (TIM-4) receptor, and anti-TIM-4 antibodies can 68 

block this engulfment process by macrophages14, 15.  69 

In this study, we developed novel chimeric engulfment receptors (CER) that take advantage of 70 

TIM-4 binding PS 16. These CERs are composed of the extracellular TIM-4 domain and one or 71 

more intracellular signaling domains from receptors involved in innate immune responses to 72 
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pathogens; e.g., Toll-like receptors (TLR) 17. Addition of innate immune function such as 73 

phagocytosis, antigen presentation, and greater lytic and non-cytolytic killing offers the potential 74 

of enhancing immune responses to chronic HIV infection. These CERs expressed in T cells 75 

provided the capability of eliminating simian immunodeficiency virus (SIV) infected cells in vitro. 76 

This investigation provides the initial rationale for use of CER T cells in in vivo models of 77 

nonhuman primate lentiviral infection to determine if the addition of functional killing and other 78 

innate functions such as enhanced antigen presentation and reversal of endogenous T helper 79 

responses can be improved through adoptive transfer experiments of T cells with enhanced 80 

engulfment function. 81 

 82 

 83 

RESULTS 84 

TIM-4 binds to SIV infected CD4+ T cells  85 

Exposure of PS occurs when HIV infects CD4+ T cells 11. To visualize TIM-4 binding to PS 86 

exposed on the surface of SIV infected cells, we created a fluorescent SIVmac239 virus 18. The 87 

coding sequence for the enhanced green fluorescent protein (EGFP) was introduced between 88 

the matrix and capsid domains of the SIVmac239 Gag protein and flanked by SIV protease 89 

cleavage sites (SIVGAGGFP) (Figure S1).   90 

 91 

To test if TIM-4 bound to SIV infected cells, we used a TIM-4 Fc chimera composed of the TIM-92 

4 extracellular domain fused to the N-terminus of the human IgG Fc region. When CD4+ T cells 93 

were infected with SIVGAGGFP, strong binding of TIM-4 Fc to SIVGAGGFP+ cells was 94 

detected 1 hour post infection while no binding was observed on SIVGAGGFP- gated cells 95 

(Figure 1A). Binding of the labeled anti-IgG antibodies to SIVGAGGFP+ cells was not observed 96 

in the absence of TIM-4 incubation, thus confirming interaction of TIM-4 to SIV infected cells 97 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2022. ; https://doi.org/10.1101/2022.06.21.495546doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.495546
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 

 

(Figure 1B). As a positive control, TIM-4 bound to cells undergoing apoptosis triggered by 98 

treatment with camptothecin (Figure 1C). 99 

The CCR5 coreceptor is necessary for SIV infection of CD4+ T cells. CCR5 antagonist TAK-779 100 

blocks the interaction between CCR5 and SIV and inhibits PS exposure induced by R5-tropic 101 

virions 11, 19, 20. Incubation of SIVGAGGFP with CD4+ T cells in the presence of TAK-779 102 

decreased virion binding to target cells and also decreased TIM-4 binding to infected T cells 103 

(Figure 1D). These results indicate that TIM-4 detects PS exposed on the surface of SIV 104 

infected cells. 105 

CER T cells can kill SIV infected cells upon infection 106 

We initially constructed a series of prototype CER in order to evaluate if differences in signaling 107 

domains altered functional activity in vitro. All DNA constructs used the TIM-4 extracellular 108 

domain. As TLRs are known to enhance endosomal transfer and trafficking, some of the 109 

constructs tested contained a TLR signaling domain (Figure 2A). The DNA constructs included 110 

a truncated version of the epidermal growth factor receptor (EGFR), which can be detected on 111 

the cell surface using an anti-EGFR monoclonal antibody, to assess the efficiency of lentiviral 112 

transduction into T cells. We also introduced a membrane anchored fusion inhibitory peptide 113 

derived from gp41 (C46) to protect the CD4+ CER T cells against SIV infection 21, 22. We first 114 

investigated if CD4+ or CD8+ CER T cells would be efficient in eliminating SIV infected T cells. 115 

Transduction of RM CD4+ and CD8+ T cells with CER21 or EGFR lentivirus led to high levels of 116 

EGFR expression (Figure 2B). We developed a real-time fluorescence assay to evaluate CER 117 

T-cell potency against freshly SIVGFP infected target cells expressing surface-exposed PS 23. A 118 

significant decrease in the number of GFP+ infected T cells were detected over time in the 119 

presence of CD4+ CER T cells but not CD8+ CER T cells or EGFR T cells, indicating the 120 

potency of CD4 CER T cells in killing SIV-infected cells (Figure 2C). To direct CER T cells to 121 

major sites of SIV/HIV persistence, the cDNA encoding RM CXCR5, a homing receptor shown 122 
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to promote cell trafficking to B-cell follicles in lymph nodes, was added to the lentiviral vector 24-123 

28. About 16% of the EGFR+ transduced T cells expressed both EGFR and CXCR5 (Figure 124 

2D). CD4+ CER T cells transduced with the CER21-CXCR5 lentivirus were efficient in killing 125 

SIV infected targets (Figure 2E). 126 

CER composed of a TLR8 signaling domain and CD3 activation domain is the most 127 

potent in killing SIV infected cells 128 

We designed 8 additional CERs by linking the extracellular domain of TIM-4 to various 129 

intracellular signaling domains with either the TIM-4 or CD28 transmembrane domain. The 130 

intracellular domain was composed of one or multiple engulfment signaling domains of TLR2, 131 

TLR8, tumor necrosis factor receptor associated factor 6 (TRAF6), DAP10, DAP12, and/or 132 

CD28. Some CERs also included TLR signaling domains together with the CD3 activation 133 

domain (Figure 3A). High expression of the EGFR marker was observed for all 9 CER-134 

transduced RM CD4+ T cells (Figure 3B). When comparing the effector functions of these CER 135 

T cells in the real-time fluorescence assay, we found diverse killing potency, with CER131 136 

(TLR8-CD3) and CER29 (TRAF6) exhibiting the greatest effector functions towards SIV 137 

infected cells (Figure 3C).  138 

Mutations in the PS binding site of TIM-4 impair CER T-cell effector function  139 

In the immunoglobulin domain of TIM-4, a hydrophobic phenylalanine-glycine (FG) loop is 140 

located in a cavity important for metal ion interaction and PS binding 29. Mutations of 4 amino 141 

acids, tryptophan, phenylalanine, asparagine and aspartic acid (WFND), present in this cavity 142 

result in loss of phagocytosis of apoptotic cells 14. In order to determine whether CER effector 143 

functions are triggered upon specific recognition of PS by TIM-4, we generated CER constructs 144 

with alanine mutations or deletion of all 4 WFND residues (Figure 4A). After assessment of the 145 

transduction rate of CER T cells (Figure 4B), CER mutants were tested in the real-time killing 146 
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assay. Both mutants were impaired in their ability to eliminate SIV infected CD4+ T cells 147 

compared with wild-type CER131 (Figure 4C).  148 

Additive killing activity of CER T cells and anti-SIV CAR T cells against SIV infected cells 149 

As cytotoxic T-cell killing has been shown to elicit surface exposed PS on target cells, we 150 

evaluated potential additive effects between CER T cells and CAR T cells directed at SIV 151 

infected CD4+ T cells. For these experiments, we utilized two previously constructed lentivirus 152 

directed CAR T cells 30. The first, ITS06, contains an scFv directed at the V1 region of SIV 153 

envelope and the second, VRC26, contains a V2 loop-directed scFv, which cross-reacts with 154 

HIV-1 in vitro and is representative of lower avidity but greater breadth. We evaluated 155 

combinations of CD4+ CER T cells with CD8+ and/or CD3+ anti-SIV CAR T cells in killing 156 

potency against SIV infected CD4+ RM cells. CD4+ CER T cells co-incubated with CD8+ ITS06 157 

CAR T cells induced additive killing of SIV infected target cells (Figure 5A). A dose response 158 

cytotoxic effect was observed using a E:T ratio of 5:1 for CER T cells and various E:T ratios of 159 

ITS06 CAR T cells; most readily seen at a low E:T ratio of 1:20 CAR T cells. A similar 160 

concentration dependent effect was seen in experiments using a combination of VRC26 CAR T 161 

cells with CER T cells (Figure 5B). These latter experiments used a 40-fold higher 162 

concentration of the VRC26 CAR T cells (E:T of 2:1) due to its reduced potency compared to 163 

ITS06 CAR T cells. These data suggest additive in vitro killing between CER and CAR T cells. 164 

DISCUSSION 165 

Although CAR T-cell therapies have shown some efficacy in controlling viral replication, anti-166 

HIV/SIV CAR T cells have not reached the potential shown by CAR T cells targeting cancer 167 

cells. Some success in delaying and reducing SHIV or HIV viremia has been primarily achieved 168 

with CAR T cells based on the extracellular domain of the human CD4 receptor, while T cells 169 

expressing CARs engineered with the scFv of broadly neutralizing antibodies were not 170 
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successful likely because of anti-SIV antibodies blocking the interaction between the CAR scFv 171 

and its epitope 22, 31-33. As such, development of novel chimeric receptors targeting different 172 

surface proteins and signaling through different immune pathways might lead to improved 173 

elimination of HIV infected cells.  174 

Here, we investigated the potential of receptors triggering engulfment signals for the clearance 175 

of SIV infected cells. Phagocytes sense PS, the eat me signal, exposed at the surface of 176 

apoptotic T cells such as cancer or infected cells, which leads to phagocytic engulfment 10. 177 

Although multiple PS receptors have been identified, TIM-4 has been shown to be necessary for 178 

apoptotic cell engulfment by macrophages 14, 15. In this study, we demonstrated that TIM-4 can 179 

bind PS exposed on the surface of SIV infected cells and is thus a good candidate for 180 

engineering new receptors against SIV.  181 

The TIM-4 PS binding protein in combination with other apoptotic cell clearance pathways led to 182 

a range of increased killing by the CER T cells. TLRs, a family of pattern recognition receptor 183 

proteins that recognize pathogen-associated molecular patterns and lead to activation of 184 

immune signaling pathways, have also been used to boost the immune response against 185 

cancer cells and tested as part of CAR T cells 6, 34, 35. The TLR8 signaling pathway, including 186 

MyD88 and TRAF6, results in NF-κB expression and protection against RNA viruses 36. DAP10 187 

and DAP12 are involved in kinase signaling cascades for a variety of immune response 188 

receptors 37, 38. The CD28 costimulatory domain together with the CD3 domain of the T-cell 189 

receptor triggers T-cell activation upon antigen recognition, and has been extensively used as 190 

signaling component of CAR T cells to promote cytokine production and cytolysis 39, 40. We 191 

found that out of all the innate signaling constructs we tested, the TLR8-CD3 combination and 192 

TRAF6 CER T cells killed target cells most efficiently. PS binding by TIM-4 on the surface of 193 

CER T cells was essential for killing and mutation in the PS binding pocket abolished activity.  194 
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The process triggered by the CER T cells to eliminate SIV infected cells has not been 195 

investigated. Prior studies suggest that killing by T cells engineered to express chimeric antigen 196 

receptors for phagocytosis (CAR-Ps) appears to be related to the cell’s ability to nibble plasma 197 

membrane fragments of other target cells (i.e., trogocytosis) 3, 41-43. CERs with diverse signaling 198 

domains provide new functionality to CD4+ T cells, and it is possible that different processes are 199 

triggered by each receptor 16. For example, CER131 that includes a CD3 activation domain 200 

might also trigger the activation of natural T-cell effector functions. Although no receptors similar 201 

to the CERs described in this study have been investigated and tested in T cells, CAR-Ps are 202 

another type of engulfment receptor composed of a specific scFv fused to intracellular signaling 203 

domains that contain immunoreceptor tyrosine-based activation motifs. These CAR-Ps when 204 

expressed in macrophages induce engulfment of specific targets, including cancer cells 3, 44. 205 

However, for cell therapy, gene transfer into primary macrophages as well as manufacturing 206 

primary macrophages for infusion would likely be more complex and expensive than for T cells.  207 

While our data showing such an approach to eliminate SIV infected cells are provocative, 208 

several limitations exist. Whether SIV infected T cells are inhibited and put into endosomal 209 

pathways and <directed= are not yet known, although evidence for this has been seen with tumor 210 

cell lines 16. Similarly, whether elimination is achieved by the CD4+, CD8+ or both populations of 211 

T cells remains to be determined. In ongoing experiments, most engulfment activity appears 212 

restricted to the CD4+ T-cell populations45. While a high safety profile has been shown in small 213 

animal models, whether off target effects will occur in NHP remains to be seen46.  214 

In conclusion, we engineered novel types of chimeric receptors that provide CD4+ T cells the 215 

ability to eliminate SIV infected cells in vitro. These genetically engineered CER T cells 216 

enhanced in vitro cellular damage caused by high and low affinity CAR T cells, suggesting the 217 

approach could be evaluated in vivo. Lastly, in vivo studies will be required to define if the 218 

potency and ability of engulfment to enhance antigen presentation and endogenous immune 219 
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responses will occur in vivo with limited toxicity. To date, extensive animal model experiments in 220 

mice in tumor models have shown no evidence of hematologic or systemic toxicity45, 46.  221 

 222 

MATERIALS AND METHODS 223 

Enrichment of CD4+ and CD8+ RM T lymphocytes 224 

Frozen peripheral blood mononuclear cells (PBMCs) from Indian genetic background RM 225 

(Macaca mulatta) were obtained from the Oregon National Primate Research Center in 226 

accordance with standards of the Center’s Institutional Animal Care and Use Committee and 227 

the National Institutes of Health Guide for the Care and Use of Laboratory Animals. 228 

Immunomagnetic negative selection (Easy Sep NHP, STEMCELL Technologies, Cambridge, 229 

MA) was used to enrich in CD4+ or CD8+ T cells from PBMCs that were cultured in X-vivo 15 230 

media (Lonza) supplemented with 10% FBS, 100 U/ml Pen/Strep, 1 x glutamax and 50 IU/ml 231 

human recombinant IL-2 (Peprotech, Cranbury, NJ). Enriched CD4+ and CD8+ T cells were 232 

activated with ImmunoCult NHP CD2/CD3/CD28 T-cell activator (STEMCELL Technologies) 233 

and incubated 3 days at 37°C in humidified 5% CO2. 234 

 235 

Production of SIVGAGGFP and SIVGFP and CD4 T-cell infection  236 

To generate the fluorescent SIVmac239 virus (SIVGAGGFP), we introduced cDNA encoding 237 

enhanced green fluorescent protein (EGFP) together with protease cleavage sites and 238 

restriction sites between the matrix and capsid domains of Gag of the full-length 239 

SIVMAC239 proviral DNA using PCR and the NEBuilder HiFi DNA Assembly (New England 240 

Biolabs, Ipswich, MA) and used the same strategy as Hubner et al to generate the HIV Gag-241 

iGFP 18. The junction between MA and EGFP is as follows: 5’-242 

CCATCTAGCGGCAGAGGAGGAAATTACCCAGTACAACAAACGCGTATGGCTAGCAAGGGC243 

-3’ where the MA coding sequence is underlined, the protease cleavage site is in italics, the MluI 244 
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restriction site is in underlined italics and followed by the EGFP sequence. The junction between 245 

EGFP and CA is as follows: 5’-246 

GACGAGCTGTACAAGTCTAGAGGAGGAAATTACCCAGTACAACAAATAGGTGGTAACTAT-247 

3’ where the EGFP coding sequence is followed by the XbaI restriction site in underlined italics, 248 

the protease cleavage site in italics and the underlined CA coding sequence. Virus production 249 

for SIVGAGGFP and SIVGFP, a recombinant SIVmac239 virus with an IRES-EGFP cassette 250 

downstream of the nef gene illustrated in our previous work, was performed as previously 251 

described 23. Briefly, HEK293T cells were transfected with 20 g of the SIVGAGGFP or SIVGFP 252 

plasmid using the calcium phosphate method. The fluorescent viral supernatant was collected 253 

48 hours later, cleared by centrifugation, filtered, and concentrated. Stocks of SIVGAGGFP or 254 

SIVGFP viruses were titrated using TZM-bl cells as described by Wei et al 47. Infection of CD4 255 

targets was performed by adding ~ 20l of concentrated fluorescent SIV viruses to 105 CD4 256 

cells (MOI:0.5) or control Jurkat 76 cells 48 plated on retronectin-coated 96-well plates followed 257 

by spinoculation for 2 hours at 1,200 x g. The SIV-infected cells were assessed for infection 258 

using flow cytometry after gating on lymphocytes and single cells.  259 

 260 

TIM-4 binding assays 261 

Binding of TIM-4 to infected cells was tested using a TIM-4 Fc chimera composed of the 262 

extracellular domain of TIM-4 fused to the N-terminus of the Fc region of human IgG (Abcam, 263 

Waltham, MA). One g of TIM-4 in PBS containing 1% BSA was incubated on ice for 30 264 

minutes with 105 washed CD4 T cells infected as indicated above with SIVGAGGFP. After 265 

washing, the cells were incubated for 15 minutes on ice with an Alexa Fluor 647-anti-IgG 266 

antibody (clone M1301G05, Biolegend, San Diego, CA). Control experiments were performed 267 

by skipping the incubation with TIM-4. Binding of TIM-4 to SIVGAGGFP infected cells was 268 

analyzed by flow cytometry after gating on lymphocytes, single cells and GFP+ cells. When 269 
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indicated, the CD4 T cells were incubated with 10 m TAK-779 (Medchemexpress, Monmouth 270 

Junction, NJ) for 15 minutes before adding the SIVGAGGFP virus and infection of cells. Control 271 

apoptotic cells were prepared by incubating CD4 T cells with 2 M camptothecin (Sigma-272 

Aldrich, St. Louis, MO) overnight at 37°C.  273 

Generation of lentiviral transfer plasmids and transduction into RM T cells 274 

All CER constructs were generated by standard PCR cloning techniques and the PCR products 275 

were assembled using the NEBuilder HiFi DNA Assembly (New England Biolabs). CER21 was 276 

generated by linking the extracellular and transmembrane domain of human TIM-4 (GenBankTM 277 

accession number AAH08988.1, residues 1 to 335) with the signaling domain of the human toll-278 

like receptor 8 (TLR8) (GenBankTM accession number AAQ88663.1, residues 849 to 1041). The 279 

CER are fused to a truncated EGFR as a marker to identify transduced cells via a Thosea 280 

asigna virus 2A (T2A) self-cleavage peptide. The C46 inhibitory peptide preceded by a T2A self-281 

cleavage peptide and a signal peptide and linked through an IgG2 hinge to the membrane 282 

spanning domain of CD34 49 was also added as a PCR product to the CER construct. When 283 

indicated, a cDNA encoding the rhesus CXCR5 (Sino Biological, GenBankTM accession number 284 

XP_001100017.2) preceded by a porcine teschovirus-1 2A (P2A) cleavage site was also added 285 

downstream of the C46 to build the CER-CXCR5. Control EGFR and EGFR-CXCR5 were 286 

generated by removing the CER from the above construct using the NEBuilder HiFi DNA 287 

Assembly (New England Biolabs). CER 104 and CER 131 were generated by adding the human 288 

DAP 12 signaling domain (GenBankTM accession number NP_001166985, residues 51 to 102) 289 

or the human CD3z activation domain (GenBankTM accession number NP_932170.1, residues 290 

52 to 164), respectively, downstream of the TLR8 domain in CER21. CER132 was constructed 291 

by adding the human DAP 10 signaling domain (GenBankTM accession number NP_055081, 292 

residues 70-93) downstream of the TLR8 and DAP12 signaling domains in CER104. The CER 293 

133 is composed of the human TLR2 signaling domain (GenBankTM accession number 294 
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AAY85648, residues 610 to 784) and CD3z activation domain. CER 129 is composed of the 295 

signaling domain of the human TNF receptor-associated factor 6 (TRAF6) (GenBankTM 296 

accession number AAH31052, residues 1 to 274). CER140 and CER137 were generated by 297 

linking the extracellular domain of TIM-4 (GenBankTM accession number AAH08988.1 residues 298 

1 to 314) to the transmembrane domain and signaling domain of human CD28 with or without 299 

the CD28 hinge, respectively (GenBankTM accession number NP_006130.1, residues 114 to 300 

220 (with hinge) or residues 153 to 220 (without hinge). These CER or control EGFR constructs 301 

were cloned together with a woodchuck hepatitis virus posttranscriptional regulatory element 302 

(WPRE) into a SIV-based lentiviral vector (a generous gift from Dr. Nienhuis, St June Children’s 303 

Research hospital, Memphis, TN and Dr. Miyazaki, Osaka University, Japan) 50, 51. The 304 

production of recombinant lentiviruses was performed as previously described 23. Briefly, Lenti-305 

XTM 293T cells (Takara Bio) in DMEM media containing 10% FBS and 100 U/ml Pen/Strep 306 

were transfected using the standard calcium phosphate method with 15 g of the CER transfer 307 

vector, 6 g of the pCAG-SIVgprre (gag/pol and rev responsive element [RRE]), 4 g of the 308 

rev/tat expression plasmid pCAG4-RTR-SIV and 3 g of the pMD2.CocalG (glycoprotein G of 309 

the cocal virus) 52. After overnight incubation, cells were washed and added fresh media. One 310 

and 2 days later, lentivirus-containing media was collected, cleared by centrifugation at 1,000 x 311 

g for 5 minutes followed by filtration on a 0.45 m Millipore filter, and concentrated (50 X) by 312 

ultracentrifugation at 74,000xg for 2 hours at 4°C. The lentivirus stocks were titrated by 313 

transduction of Jurkat cells cultured in RPMI media supplemented with 10% FBS and 100 U/ml 314 

Pen/Strep using spinoculation for 2 hours at 1,200xg. The percentage of transduced Jurkat cells 315 

was quantified by flow analysis for EGFR using the anti-EGFR cetuximab mAb (Erbitux, PE-316 

conjugated at Juno Therapeutics, Seattle, WA).  317 

For the transduction of CD4+ or CD8+ T cells, cells were mixed on retronectin (Takara Bio)-318 

coated plates with CER lentivirus at a MOI of ~ 20 followed by spinoculation for 2 hours at 319 
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1,200xg. Cells were washed about 24 hours after transduction and expanded in fresh complete 320 

X-vivo 15 media. Four days after transduction, T cells were analyzed for EGFR expression by 321 

flow cytometry using PE-anti-EGFR, BV421 anti-CD4 (OKT4, Biolegend) and APC-Cyanine7 322 

anti-CD8 (SK1, Biolegend). EGFR expression was analyzed using FlowJo and sequential gating 323 

on lymphocytes, single cells and then CD4+ or CD8+ T cells.  324 

Real-time monitoring of cell infection to assess CER T-cell potency in eliminating SIV-325 

infected CD4 326 

The targets were prepared at the time of the assay. A master mix was prepared by adding 327 

SIVGFP at a MOI of ~ 0.5 to 4. 105 CD4 T cells/ml. Fifty l/well of the mix (20,000 CD4 T cells + 328 

SIVGFP) were distributed into BioCoat poly-D-lysine coated flat bottom 96-well plate and 329 

spinoculated. CER T cells or control cells were then added at the effector:target (E:T ratio) of 330 

5:1 in triplicate wells. Plates were incubated at 37°C in the IncuCyte S3 LiveCell Analysis 331 

System (Sartorius) and five images of each well were recorded every 3 hours and analyzed with 332 

the IncuCyte image analysis software to determine the number of infected cells becoming 333 

fluorescent overtime.  334 

 335 

ITS06 CAR T-cell preparation 336 

The design and assembly of the ITS06 CAR and VRC26 CAR was previously described 30. The 337 

ITS06 CAR was composed to the ITS06 scFv in a VH-VL orientation and a medium spacer of 338 

119 amino acids linked to a CD28 transmembrane domain, a 4-1BB intracellular costimulatory 339 

domain, and a CD3z activation domain and was also fused via a T2A peptide to a truncated 340 

EGFR as a marker to identify transduced cells. The VRC26 CAR vector consisted of the scFv of 341 

the VRC26.25 bnAb and a short spacer of 12 amino acids linked to a CD28 transmembrane 342 

domain, a 4-1BB intracellular costimulatory domain, and a CD3z activation domain and fused to 343 
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a truncated EGFR via a T2A peptide.  Both the ITS06 CAR and the VRC26 CAR were also 344 

fused to a T2A-C46-peptide-P2A-CXCR5 cassette as described above for the CER vector. The 345 

production of recombinant lentiviruses for the CAR and the transduction of T lymphocytes with 346 

the CAR lentiviruses was performed as described above for the preparation of the CER T cells. 347 

Transduction efficiency was determined by flow cytometry analysis using PE-anti-EGFR.   348 

 349 

Real-time assay to assess the additive effect of CER T cells and CAR T cells against SIV-350 

infected cells 351 

The real time assay to monitor infection of RM CD4 T cells was performed as described above 352 

except that instead of CER T cells, a mix of CER T cells at a fixed ratio (E:T of 5:1) and various 353 

amounts of CAR T cells as indicated in the figures were added together to the SIV-infected 354 

targets.  355 

 356 

Statistics 357 

Data of the real time assays are presented as the mean ± standard error of the mean. Statistical 358 

significance was analyzed by Student’s t test at time indicated in the figure legend and 359 

compared to controls. 360 

 361 
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FIGURE LEGENDS 613 

 614 

Figure 1. TIM-4 binds to SIVGAGGFP infected CD4+ T cells. A) Flow analysis of recombinant 615 

human TIM-4 binding to cells infected with SIVGAGAGFP for 15 minutes (red), 1 hour (blue), or 616 

2 hours (orange). Lower plots show binding when gated on uninfected (SIVGAGGFP-) cells 617 

(left) or infected (SIVGAGGFP+) cells (right). B) Same experiment as in A without addition of 618 

TIM-4. Uninfected (SIVGAGGFP-) cells (left) or infected (SIVGAGGFP+) cells (right). C) TIM-4 619 

binding to CD4+ T cells incubated in the presence (blue) or absence (red) of 2 M camptothecin 620 

for 24 hours. D) Overlaid flow cytometry histograms of SIVGAGGFP infected CD4+ T cells in 621 

the presence (blue) or absence (red) of TAK779; uninfected CD4+ T cells are shown in orange 622 

(upper panel). Lower plots show binding when gated on uninfected (SIVGAGGFP-) cells (left) or 623 

infected (SIVGAGGFP+) cells (right).  624 

Figure 2. Assessment of CER T-cell potency in killing SIV infected cells. A) Schematic 625 

diagram of the CER construct with the extracellular domain of TIM-4 linked to the TLR8 626 

signaling domain (CER21), CER21 with CXCR5 (CER21-CXCR5), the EGFR control vector 627 

(EGFR), and EGFR with CXCR5 (EGFR-CXCR5). B) Flow cytometry analysis of CD4+ and 628 

CD8+ T cells transduced with either CER21 or EGFR gated on expression of EGFR. Numbers 629 

in plots indicate the percentage of EGFR+ cells after gating on lymphocytes and singlets. 630 

Control untransduced CD4+ T cells are also shown. C) SIVGFP infected CD4+ T cells were 631 

mixed with CER T cells (green) or control EGFR T cells (green) at t=0. The E:T ratio was 5:1 for 632 

both CD4 (left) and CD8 (right) assays. Five images were taken in triplicate wells every 3 hours. 633 

The error bars indicate the standard error to the mean. D) Flow cytometry analysis of CD4+ T 634 

cells transduced with CER21-CXCR5 or EGFR-CXCR5 for expression of EGFR and CXCR5. E) 635 

Assessment of CER21-CXCR5 T-cell potency in killing SIV infected cells as described in C.  636 
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Figure 3. Comparison of effector functions of diverse CERs. A) Schematic diagram of 8 637 

CER constructs with the extracellular domain of TIM-4 linked to one or multiple intracellular 638 

signaling domains (ICD) originating from TLR8, TLR2, DAP10, DAP12, TRAF6, CD28 or CD3z; 639 

and negative controls without ICD (TIM-4–no ICD) or EGFR-CXCR5. B) CD4+ T cells 640 

transduced with CER lentiviruses. C) Assessment of CER T-cell potency in killing SIV infected 641 

cells as described. Five images were taken in triplicate wells every 3 hours. The error bars 642 

indicate the standard error to the mean. P values <0.05 for CER29, CER131, CER140, CER132 643 

and CER21 T cells compared with EGFR-CXCR5 T cells (Student’s t-test). P values <0.05 for 644 

CER29, CER131, CER140 and CER132 T cells compared with TIM-4-no ICD T cells.  645 

Figure 4. CER131 containing TIM-4 PS binding site (PSBS) mutations lose ability to kill 646 

SIV infected CD4+ T cells. A) Amino acid sequence of the wild-type TIM-4 FG loop including 647 

four residues important for PS binding (green). Residues replaced by alanine (brown) in CER-648 

4A or deleted (blue) in CER–∆BS. B) Flow cytometry analysis of CD4+ T cells transduced with 649 

CER131 WT and CER131 mutants for EGFR expression. C) Comparison of the potency of 650 

CD4+ T cells expressing CER131 WT (green), CER-4A (black) and CER–∆BS (blue) in killing 651 

SIV infected cells as described in Figure 2C. The E:T ratio was 6:1. 652 

Figure 5. Additive killing activity of CER T cells and SIV directed CAR T cells against SIV 653 

infected CD4+ T cells. A) Killing of SIV infected RM T cells by different ratios of CD4 CER and 654 

CD8 CAR T cells: EGFR CER with EGFR CAR T cells (red), CER21 with EGFR CAR T cells 655 

(green), CER21 with ITS06 CAR T cells (blue), and EGFR CER with ITS06 CAR T cells (gray) 656 

at E:T ratios indicated. Five images were taken in triplicate wells every 3 hours for all time 657 

points. B) Killing of SIV infected RM CD4+ T cells by the combination of CD4+ CER21 T cells 658 

and VRC26 CD3+ CAR T cells.  659 

 660 

 661 
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Supplemental Material 662 

Supplemental Figure 1. Generation of a fluorescent SIVmac239 virus.  663 

 664 
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Figure 5. Additive killing activity of CER T cells and SIV directed CAR T cells against SIV infected CD4+ T cells. A) Killing of SIV infected 
RM T cells by different ratios of CD4 CER and CD8 CAR T cells: EGFR CER with EGFR CAR T cells (red), CER21 with EGFR CAR T cells
(green), CER21 with ITS06 CAR T cells (blue), and EGFR CER with ITS06 CAR T cells (gray) at E:T ratios indicated. Five images were taken in 
triplicate wells every 3 hours for all time points. B) Killing of SIV infected RM CD4+ T cells by the combination of CD4+ CER21 T cells and 
VRC26 CD3+ CAR T cells. 
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