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Abstract

While many Bayesian state-space models for infectious disease processes focus on

population infection dynamics (e.g., compartmental models), in this work we exam-

ine the evolution of infection processes and the complexities of the immune responses

within the host using these techniques. We present a joint Bayesian state-space model

to better understand how the immune system contributes to the control of Leish-

mania infantum infections over the disease course. We use longitudinal molecular

diagnostic and clinical data of a cohort of dogs to describe population progression

rates and present evidence for important drivers of clinical disease. Among these

results, we find evidence for the importance of co-infection in disease progression.

We also show that as dogs progress through the infection, parasite load is influenced

by their age, ectoparasiticide treatment status, and serology. Furthermore, we present

evidence that pathogen load information from an earlier point in time influences its

future value, and that the size of this effect varies depending on the clinical stage of

the dog. In addition to characterizing the processes driving disease progression, we

predict individual and aggregate patterns of Canine Leishmaniasis progression. Both

our findings and the application to individual-level forecasting are of direct clinical

relevance, presenting possible opportunities for application in veterinary practice and

motivating lines of additional investigation to better understand and predict disease

progression. Finally, as an important zoonotic human pathogen, these results may

support future efforts to prevent and treat human Leishmaniosis.
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1 AUTHOR SUMMARY

The immune system is a complex network which involves organs, cells, and proteins working together with the main purpose
of protecting the body against harmful microorganisms such as bacteria, viruses, fungi, and toxins. To explore and study the
responses of the host immune system during the course of a disease, we modeled the interaction between pathogen load, antibody
responses, and the clinical presentation of this complex system. Specifically, we focused on Canine Leishmaniasis (CanL), a
vector-borne disease caused by a parasite, which affects internal organs of the body and is known to be fatal if patients remain
untreated. In addition, we also considered the impact of possible co-infections with other diseases, which could potentially
interact with many disease processes and contribute to different outcomes for infected subjects. With CanL specifically, we
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consider the presence of Borrelia, Anaplasma, Ehrlichia, and Heartworm. In general, one limitation in vaccination strategies
is a focus on neutralizing antibodies, without incorporating broader complexities of immune responses. Here, we explore this
complexity by jointly considering the interaction between pathogen and antibody development with the purpose of improving
our understanding of the processes of disease progression and natural immunity.

In this paper, we present a Bayesian Hierarchical Model (BHM) specification for immune responses to a Leishmania-tick
borne co-infection study. This model implementation is based on the general vector autoregressive (VAR) model, adapted to the
problem under study. We present evidence that pathogen load pathogen load information from an earlier point in time influences
its future value, and that the size of this effect varies depending on the CanL clinical stage of the dog. In addition to characterizing
evidence for the processes driving disease progression, we predict individual and aggregate patterns of CanL progression.

The structure of this paper starts in Section 2 with an introduction to CanL infection as well as a discussion of possible
co-infection with other pathogens. In Section 3, we include a description of the motivating prospective study along with the
measured individual level variables, a definition of the clinical signs of leishmaniosis infection, and a description of the available
data coming from the study. In addition, this section explains the dynamic process and corresponding model specification, via
Bayesian methodology. A summary of prior distributions for model parameters, model implementation details, and convergence
diagnostics are also included. In Section 4, we provide summary results from the posterior distribution as well as a summary
of the corresponding disease progression forecasts. In Section 5, we discuss the results and describe future considerations to
improve and extend the model.

2 INTRODUCTION: CANINE LEISHMANIASIS

Visceral Leishmaniasis (VL) is a life-threatening parasitic disease endemic in 98 countries, with an estimated 50,000 - 90,000
new cases annually according to the World Health Organization (WHO). Despite this widespread distribution, VL is considered
a neglected tropical disease. There is no approved human vaccine, and current treatments can have adverse side effects and do
not lead to clinical cure. This can lead to recrudescence of disease1. VL is caused by family of parasites in the Leishmania

(L.) donovani complex, including L. infantum. It is known that L. infantum is a zoonotic infectious disease with dogs as the
predominant reservoir. Spatial modeling has shown human VL incidence positively associates with prevalence of L. infantum

infection among dogs in an endemic area2. Therefore, limiting transmission among and from infected dogs is an important target
for preventing human infections. However, our understanding of CanL transmission dynamics is hampered by a lack of ability
to accurately predict clinical CanL progression within the canine reservoir.

In addition to helping understand L. infantum transmission, elucidating CanL clinical progression dynamics can give us
important pathophysiological insight into human VL, as the canine immune response to L. infantum closely mirrors human
disease3. In both humans and dogs, the majority of L. infantum infections are sub-clinical, controlled by a Type 1 immune
response. However, dogs can still be infectious to the insect vector during this time4,5. For reasons that are not well defined,
clinical progression occurs in a subset of dogs and people, where Type 1 immunity wanes and parasite load increases. Such
progression leads to increased transmission potential.

Diagnosis of CanL is based on a combination of molecular and clinical factors. Molecular diagnostics include serology, which
may indicate current infection or previous exposure, and Polymerase chain reaction (PCR) of Leishmania deoxyribonucleic acid
(DNA) from whole blood, which indicates current infection above the threshold of detection. Increasing parasitemia level is
associated with disease progression6. Anti-Leishmania antibodies produced during infection are generally non-protective, and
increasing serological titers are also associated with worsening disease status7. As infected dogs progress to early CanL, clinical
signs of disease are non-specific (i.e. weight loss, lymphadenopathy, lethargy) and molecular diagnostics may or may not be
positive. As disease progresses, anemia and hypergammaglobulinemia usually precede chronic kidney disease and ultimately
kidney failure if untreated7.

In this work, we prospectively followed a cohort of dogs with sub-clinical L. infantum infection and collected longitudinal
molecular diagnostic and clinical data to evaluate disease progression over 18 months. We used this data to develop a joint
Bayesian state-space model to predict progression kinetics based on continuous diagnostic data and discrete clinical stages. We
explore population progression rates, and present evidence for important dependencies among measured components of disease
status. In particular, we find further evidence for the importance of co-infection status in CanL progression. Furthermore, we
show that as dogs advance through the infection, their age, ectoparasiticide treatment indicator, and serology all impact parasite
load. We also show that pathogen load information from a previous time influences its future value, and that the magnitude of
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this effect varies depending on the dog’s clinical state, where the effects of these clinical drivers are being measured via the
model parameters. We also look into the model’s suitability as a tool for predicting clinical disease progression.

One of the primary non-time-varying predictors of interest within the study is the output of the IDEXX 4Dx Plus SNAP test,
which is a combined in vitro test for the detection of antigen to Dirofilaria immitis, antibodies to Borrelia burgdorferi, Anaplasma

phagocytophilum, Anaplasma platys, Ehrlichia canis, and Ehrlichia ewingii in canine serum, plasma, or anticoagulated whole
blood. It is known that previous or simultaneous infections of a host by multiple pathogen species (spp.) can complicate CanL
clinical outcomes8. Some studies have shown that the presence of additional interacting pathogens can modify the immune
response of affected host9. This phenomena of co-infection is of great importance in the progression of CanL10. By studying
the effect of this predictor, we aim to measure the strength of its effect during the course of infection and identify different
possible clinical outcomes for co-infected subjects. Within our CanL cohort, we specifically considered the effects of Borrelia

burgdorferi, Anaplasma spp., Ehrlichia spp., and Heartworm exposure.

3 MATERIALS AND METHODS

3.1 Cohort Selection and Diagnostics

A prospective study was performed using a cohort of naturally L. infantum exposed, client-owned hunting dogs from the United
States. Dogs were screened for CanL clinical signs by board certified veterinarians, tick-borne bacteria serology by IDEXX 4Dx
Plus SNAP test, and Leishmania diagnostics: Real Time quantitative PCR (RT-qPCR) of whole blood and Dual Path Platform
® (DPP) Canine Visceral Leishmaniasis serological test11,12. The inclusion criteria is IDEXX 4Dx Plus SNAP test seronegative
and positive on one Leishmania diagnostic test or having a Leishmania diagnostic positive dam or full sibling. On the other
hand, exclusion criteria is more than 2 clinical signs of CanL or DPP reader value greater than 200 or IDEXX 4Dx Plus SNAP
test seropositive. A total of fifty dogs were enrolled in the study and followed over the course of 18 months. The cohort was
equally randomized into a tick prevention ectoparasiticide treatment or placebo group under a double-blind setting, and where
the age range of dogs was from 0 to 11 years old.

3.2 Variables

During the data collection period, diagnostic variables and clinical disease were assessed at three month intervals. This included
RT-qPCR for parasite quantification in the blood of subjects. Pathogen load is then presented as the number of parasite
equivalents per mL of blood, calculated from a standard curve of canine blood spiked with a known number of L. infantum pro-
mastigotes11. Relative quantification of anti-Leishmania antibody levels in subject sera was performed using an indirect Enzyme
linked immunoassay (ELISA) against soluble Leishmania antigen (SLA). Wells of ELISA plates were coated with 200 ng/mL
SLA obtained by repeated freeze-thaw of L. infantum promastigotes and probed with canine serum samples diluted 1:500. The
optical density (OD) measured at 450 nm on a plate reader is shown as a ratio to a cut-off OD (average of control sample ODs
+ 3 standard deviations). OD ratios >1 indicate positive serology. Complete blood count and serum chemistry panels were
performed by IDEXX Reference Labs.

The SNAP variable presents dichotomous results from the IDEXX 4Dx Plus SNAP test, which tests for serologic reactivity
to tick-borne bacterial antigen from Borrelia burgdorferi, Anaplasma spp. , and Ehrlichia spp., indicating previous exposure to
these pathogens. Although all dogs were negative by 4Dx Plus SNAP test at enrollment, we observed that 44% of the dogs tested
positive on the 4Dx Plus SNAP test at some point during the study period, which indicates co-infection between L. infantum

and a tick-borne pathogen occurred during the study period. In addition, we considered results from the DPP serological test,
which detects anti-Leishmania antibodies. DPP is similar to SLA ELISA, but more specific as it detects antibodies specific for
recombinant chimeric k28 protein and results measured with a digital intensity reader. The mean and standard deviation in DPP
results are 25.20 and 41.56, respectively. However, the DPP test was only performed at enrollment, while the SLA ELISA was
performed at three month intervals. Finally, treatment with the ectoparasiticide medication sarolaner (Zoetis Inc.) or placebo
was included. We have that 50% (n = 25) of the cohort was randomly assigned to each treatment group at enrollment.
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3.3 Model Specification

The clinical signs of Leishmania infection are known to vary widely as a consequence of several pathogenic mechanisms.
Depending on the subject, different organs can be affected, and there is a diverse range of immune responses built by individual
hosts. This variability and non-specificity of clinical manifestations makes diagnosis and treatment challenging. The diagnosis
of CanL is performed based on clinicopathological manifestations and by confirmation of infection by using mainly serological
and additional molecular techniques. In response to these challenges, Solano-Gallego et al.7 proposed a system, identified as
LeishVet score, that uses serological results, clinical signs, and laboratory findings to differentiate and categorize patients with
CanL into stages. Stage 1 is used for a case of mild disease, Stage 2 for moderate disease, Stage 3 for severe disease, and Stage 4
to identify very severe, end stage disease. LeishVet is a group that proposed guidelines and recommendations designed primarily
to help the veterinary clinician in the management of canine leishmaniosis. This LeishVet score system is helpful because it
assists clinicians and veterinarians in determining the appropriate therapy, to predict prognosis, and implementing adequate
follow-up steps required to help patients with CanL. In this study, physical exam findings, complete blood count, and serum
chemistry values were used to stage CanL severity based on the LeishVet staging guidelines proposed by Solano-Gallego et al.7.
We have modified the staging system slightly to include a Stage 0 representing no signs of disease.

When it comes to CanL studies, determining course of treatments is not an easy task, particularly when many unknown rela-
tionships between Leishmania infection and the immune system still remain unanswered. While various laboratory techniques
are beneficial for answering questions pertaining a particular disease, it is always critical to have in mind that qPCR data should
not be separated from data collected from other sources, such as clinicopathological and serological examinations7,13, for deter-
mining clinical decision. Thus, rather than focusing on infectious agent transmission between individuals, the Bayesian model
presented in this work is thought to be dynamic and interactive within the host.

To assess CanL disease progression of subjects over time, we took into account the LeishVet stages, pathogen load, and level
of anti-Leishmania antibodies as explained in the previous section. Each dog was classified based on the scoring proposed by
Solano-Gallego et al.7. We further aggregate this scoring into the qualitative categories described in Equation 1, for the ith dog
at time t+1, where we defined disease status Di,t+1 for the corresponding indexes. This categorization was encoded as separate
indicator variables for each stage over time for each dog.

Di,t+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 (Healthy), if LeisℎV et = 0 or 1

2 (Asymptomatic), if LeisℎV et = 2

3 (Symptomatic), if LeisℎV et = 3 or 4

4 (Removed), if removed due to severe

case of Leishmaniasis,

(1)

Once an individual is infected with the parasite L. infantum, a replication process takes place. At the same time, the host immune
mounts a response against the parasite. Therefore, parasitemia may fluctuate as these opposing processes occur, but systematic
variation over time may indicate future trajectory of disease. One way to measure the pathogen status component of the overall
dynamic process is through pathogen burden. For Leishmania, let us define Pi,t+1 to denote the pathogen load for the ith dog at
time t + 1, measured as the number of parasites per mL of blood. Further, let Ai,t+1 denote the anti-Leishmania antibody level
measured by ELISA SLA OD ratio for the same indexes. As indicated in the previous section, disease status was assessed by
the proposed variable Di,t+1 as defined in Equation 1.

In Figure 1, we illustrate the model’s temporal dependence structure with time index t and subject index i, which is constructed
sequentially and dynamically. This diagram shows how each model component can either directly or indirectly influence each
proximal state component. To capture the evolution of state over time, we assume that the future state for each model compo-
nent is dependent on the full current state of the host (pathogen load, antibody levels, and disease state progression) via some
functions, denoted by fD, fA, and fP , describing the expected state at the next time point for each of the three main model
components. In addition, the case history or any other fixed effects for the host was also considered to affect future state, which
are encoded by Xi, a subject-specific row-vector containing non-time-varying predictors of progression characteristics. This
structure could be considered a generalized vector-autoregressive model, though it has been tailored to the expected dependence
structure of CanL progression. In general, we have a function fD describing the disease progression in terms of clinical signs as
depending on current immunopathogenic state, while the functions fA and fP describe the antibody levels and pathogen load
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FIGURE 1 Dynamic Process. Graphical display of how the disease state (D), immune responses (A), and pathogen load (P)
components are related to predict the future value of each state.

also as functions of previous or current state. In addition, these components can incorporate individual specific error compo-
nents, capturing measurement error and individual level heterogeneity, which could be caused by clinical differences associated
with the disease. Then, in general, the future state of these components are determined by these update functions, random errors,
and parameters associated with the dynamic system, all of this under some distributional assumptions, as shown in Equation 3.

The precise specification of the update functions shown in Figure 1 could be as simple as linear functions of the three state
components, in which case the model would reduce exactly to a VAR process. In addition, expansions could be considered
(e.g., interactions, non-linear terms, basis expansions, or non-linear link functions coupled to the distribution of subsequent
components). We propose to use a simple formulation with Gaussian distributions for pathogen load and antibody response, and
a multinomial-logit link for disease status, where functional forms fD, fA and fP are defined as shown in Equation 2.

fD(Di,t, Pi,t, Ai,t, Xi) =
[
�
(1)

i,t
, �

(2)

i,t
, �

(3)

i,t
, �

(4)

i,t

]

�
(k)

i,t
=

exp

[
M

D(k)

i,t
�
(k)

D
+Xi�D

]

1 +
∑

g=1,2,3 exp

[
M

D(g)

i,t
�
(g)

D
+Xi�D

]

�
(4)

i,t
= 1 − �

(1)

i,t
− �

(2)

i,t
− �

(3)

i,t

fA(Di,t, Pi,t, Ai,t, Xi) = MA
i,t
�A +Xi�A

fP (Di,t, Pi,t, Ai,t, Xi) = MP
i,t
�P +Xi�P

(2)

For N = 50 dogs, and T = 7 time points, we have then a conditional layout on dependence structures, where each model
component is distributed independently according to Equation 3. In the multinomial distribution, �(k)

i,t
defines the probability

that the ith dog at time t is classified with disease status k. The primary components of the model, which are denoted as P , A,
and D, have design row vectors that change over study-time, denoted by MP

i,t
, MA

i,t
, and MD

i,t
, respectively. Non-time-varying

predictors are captured in a subject-specific row vector Xi (intercept, age, SNAP, DPP, and an indicator for treatment).
For the evolution of pathogen load, MP

i,t
captures current pathogen load, an interaction between disease stage and pathogen

load, an interaction between disease stage and prior changes in pathogen load, and an interaction between disease stage and prior
changes in antibody levels. On the other hand, the antibodies are modeled as dependent on current pathogen load and antibody
levels as well as in the previously indicated interaction terms. In order to interpret whether a host response to an infection seems
appropriate at a particular time point, it needs to be assessed in relation to the pathogen load that triggered the response. By using
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current value of pathogen load and its interaction with disease stage, we are able to understand one of the most fundamental
questions, which is the relationship between pathogen load and the severity of the disease. We explore this relationship in more
detail by including interaction terms and prior information.

The main difference between the two row vectors MP
i,t

and MA
i,t

is the assumption that the production of antibodies depends on
the production of pathogen load and current value of antibodies, but the pathogen load is not directly dependent on antibodies,
which are generally non-neutralizing. For the qualitative disease stage, MD

i,t
considers current disease stage and the interaction

of the disease stage with current pathogen load, and interaction of the disease stage with current antibody levels. For this model
specification, notice that the update functions from Figure 1 are defined to be the mean structures of the distribution.

The dimensions of the different subject-specific row vectors, denoted by Mi,t, vary by model components. For example, MP
i,t

is a 1×10 matrix (or row vector), while MA
i,t

and MD
i,t

are a 1×8 and 1×3 row vectors, respectively. Each entry within these row
vectors are scalars, representing different possible drivers of the model dependence. In the case of the subject-specific row vector
Xi, which includes non-time-varying predictors and an intercept, its dimension is 1×5, which includes age group, dichotomous
results from SNAP test, DPP results, and an indicator for treatment group. The elements in Xi are also scalars.

Di,t+1 ∼ Multinomial
(
1; fD(Di,t, Pi,t, Ai,t, Xi)

)

Ai,t+1 ∼ 
(
fA(Di,t, Pi,t, Ai,t, Xi), �

2
A

)

Pi,t+1 ∼ 
(
fP (Di,t, Pi,t, Ai,t, Xi), �

2
P

) (3)

As disease progression for Leishmaniasis depends on both pathogen and immunological behavior7,14, we included in the row
vectors, both components as well as interaction terms with the disease status. To measure the strength of the effects of changing
pathogen burden and antibody levels, we computed lag-1 differences for these quantities (dP

i,t
and dA

i,t
). The row vectors also

include the interaction of these lag-1 differences with clinical stage. Shang et al. showed15 that age and external clinical status
of dogs are associated with prevalence of Leishmania infection. In their study, dogs that were +1 year old had higher prevalence
of L. infantum infection than younger dogs (≤ 1 year old), resulting from most likely longer exposure to infective sand fly bites.
We therefore included age group and clinical information (e.g. SNAP and DPP results at baseline, treatment group) in our row
vector Xi. Notice that Xi is included in the three distributions in Equation 3. Finally, as shown by the second to last equation,
the components of the row vector MD

i,t
will contribute to the probability that a dog will be classified into a particular disease

status. This term is important for measuring the transitions between the four different qualitative categories as described in
Equation 1. Overall, this specification is a special case of the well studied VAR model, which has been applied in fields as diverse
as immunology and econometrics16,17,18. In this case, we augment the model with a latent component for disease stage, and
carefully constrain the temporal dependence structure to encode structural information about the problem, such as the varying
effects of shifting antibody levels by disease stage.

Using the model definition as described by Equations 2 and 3, the joint likelihood can be defined by the product of the
each probability density (or probability mass) function corresponding to each model components. In this case, we have two
continuous outcomes (pathogen load and antibody levels) and one categorical (disease status). To facilitate the definition of
the likelihood presented in Equation 4, let us define �P = (�P ,�P , �

2
P
)′ as the set of vectors associated with pathogen load.

Similarly, we can define the set of parameters associated with the antibody levels and disease status as �A = (�A,�A, �
2
A
)′ and

�D = (�
(1)

D
, �

(2)

D
, �

(3)

D
�D)

′, respectively.

(�P , �A, �D|P ,A,D) =

N∏
i=1

[
f (Pi,1) ⋅ f (Ai,1) ⋅ f (Di,1) ⋅

T∏
t=2

{
f (Pi,t|Pi,t−1, �P ) ⋅ f (Ai,t|Ai,t−1, �A) ⋅ f (Di,t|Di,t−1, �D)

}]

∝

N∏
i=1

[
f (Pi,1) ⋅ f (Ai,1) ⋅ f (Di,1)

T∏
t=2

{(
1

�P
exp

{
−

1

2�2
P

(Pi,t − �P
i,t−1

)2
})

⋅

(
1

�A
exp

{
−

1

2�2
A

(Ai,t − �A
i,t−1

)2
})

⋅

(
�
(1)

i,t−1

D
(1)

i,t−1
⋅ �

(2)

i,t−1

D
(2)

i,t−1
⋅ �

(3)

i,t−1

D
(3)

i,t−1
⋅ �

(4)

i,t−1

1−
∑3

g=1
D

(g)

i,t−1

)}]
(4)

Here we have that the mean expressions for each normal density distribution are defined as �P
i,t−1

= MP
i,t
�P + Xi�P , and

�A
i,t−1

= MA
i,t
�A +Xi�A, respectively. The expressions for the �

(k)

i,t−1
are presented in the last two formulas of Equation 3, while

D
(k)

i,t−1
for k = 1, 2, 3 are defined as indicators, where equals 1 if D(k)

i,t−1
= k and 0 otherwise, which are defined based in Equation

1. Note that a proportionality notation is used being in the second line of the likelihood, which helps on factoring out all of
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the constants or fixed quantities. In addition, notice that we defined our baseline category in the multinomial distribution as
D

(4)

i,t−1
= 1 −

∑3

g=1
D

(g)

i,t−1
.

3.4 Disease Progression Forecasting

Although the structure of a posterior predictive distribution can sometimes be calculated analytically, simulations are frequently
used to obtain such forecasts. In this work, disease progression forecasts were obtained using a sampling process (simulations)
from the posterior distributions, following these steps:

(i) Sample a value from the posterior distributions of each parameter,

(ii) Obtain the estimated model components (predicted outcomes) from the Bayesian model specification in Equation 3, and

(iii) Repeat steps (i) and (ii) for S = 1000 times (s = 1, 2, 3… , S), where S represent the number of simulations performed.

3.5 Computation and Model Diagnostics

To fit the Bayesian hierarchical model presented in this work, we coded and implemented a Metropolis-Hastings within Gibbs
algorithm in R19,20, to obtain posterior samples of model parameters and latent quantities. A general description of this Markov
Chain Monte Carlo (MCMC) approach is provided by Liu21 and Carlin22.

We employed proper prior distributions to impose penalties for large regression weights in order to promote model stability
and computational tractability. Standard independent normal prior distributions,  (0, 1), were used for the conditional and
unconditional effects (�’s) as well as for the parameters associated with non-time-varying predictors (�’s), in order to shrink
these effects towards zero. A gamma prior distribution, Γ(1, 1), was used for variance terms (�2’s). Posterior results are based
on a set of 3 chains of 25, 000 iterations each.

To assess the convergence of the parameters, a Gelman-Rubin diagnostic was computed using the coda package in R23. The
Gelman-Rubin criterion evaluates convergence by comparing within and between chain variability, which requires at least two
MCMC chains to be calculated. As a rule to assess convergence, we used a value of 1.1 as a threshold. We say that a factor
below 1.1 indicates that the parameter has reached convergence, which was achieved by all parameters in the model. The code
implementing the sampler and associated full conditional distributions that were derived are linked in the supplemental material:
https://github.com/fpabonrodriguez/Research-Project-BHM.

4 RESULTS

The trajectories of observed pathogen loads and antibody levels over each of the seven time points, each separated by three
months, are shown in Figure 2. The black line shows the mean trajectory of the subjects. This cohort enrolled dogs with
asymptomatic CanL, therefore while most subject’s parasitemia and antibody level trajectories illustrate a steady state or slow
progression of the disease, we also observe several examples indicative of rapid changes to the immunopathogenic state, since
the loss of immune control over pathogen replication is known to occur as disease progresses. This low production of antibodies
agrees with previous findings in dogs with subclinical or early disease. Increasing antibody levels are seen in a subset of dogs,
which has been shown to occur in dogs experiencing clinical progression.

The number of dogs classified into each disease stage over time is shown in Table 1. At the beginning of the study, most of
the dogs were classified as either healthy or asymptomatic; the remaining two categories are symptomatic and removed. Due to
unforeseen circumstances, the disease status for the second time point (month 6) was not able to be collected, and some other
missing values were also reported in different time points for pathogen load and antibody levels due to random external events
unrelated to the status of the dogs. Since these entries were not directly observed, they were considered as latent variables and
imputed within the Bayesian analysis. The last two rows of the table indicates the number of unobserved entries at each time
point, and the total number of subjects at each time point, which is 50, respectively.

In terms of the study’s findings, we found moderate to strong evidence of temporal dependence across pathogen load, antibody
levels, and illness status throughout CanL infection, meaning that previous behaviors of these components had a moderate to
strong influence on their future values. To summarize these effects, explanations and interpretations of the results from this
Bayesian analysis are presented, which pertains to Table 2. In general, this table shows a summary of the posterior results for
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FIGURE 2 Pathogen Load and Antibody Level Kinetics. (Left plot) Leishmania pathogen load over time, expressed as the
number of parasites per mL of blood. (Right plot) Anti-Leishmania antibody level over time expressed as the ratio to control
cut-off. In both plots, the black line represents mean population trajectories. Each line represents a single dog’s trajectory. Each
time point corresponds to 3 elapsed months.

TABLE 1 Disease Status Counts. Observed number of dogs in each category of the disease state component of the Bayesian
model.

Time Point

Disease Status 1 2 3 4 5 6 7

1 = Healthy 32 0 26 27 23 21 19
2 = Asymptomatic 16 0 21 18 22 19 19
3 = Symptomatic 2 0 0 1 0 4 2
4 = Removed 0 0 0 0 1 1 3
Missing (NA) 0 50 3 4 4 5 7

Total 50 50 50 50 50 50 50

all parameters in the model, including posterior means, standard deviation (SD), 95% credible intervals (Cr-I) and posterior
probabilities for each parameter of being positive, which are being used for assessing the strength of evidence for corresponding
parameters. The posterior probabilities of positive lag-1 dependence were 0.840 for pathogen load, and approximately 1 for
antibody levels, and disease status 1 and 2, respectively. In contrast, the coefficient for disease status 3 was negative (posterior
probability of negative lag-1 is 0.874). This last result could be due to the fact that dogs in clinical stage 3 (symptomatic)
have presumably developed regulatory responses against the infection at a given time, leading to the production of important
immunological cells such as CD4+ and CD8+ T cells, B cells, and macrophages24,25,26, which can cause a reduction and control
of pathogen production.

In addition, we found that pathogen load dependence on previous values varied by stage; the conditional interaction effect on
pathogen load of lag-1 change in pathogen load for stage 2 dogs had a posterior mean of −0.874 with 95% Cr-I [−1.110,−0.647]
and posterior probability 0.999 that the true parameter is less than zero. This result tells us that subjects in the asymptomatic
stage of the disease could show some decrease in the pathogen burden as time passes, which is consistent with the discussion
from Petersen et al.27, where it was shown that parasite load decreases once the inflammatory response from the immune system
is active. We find moderate evidence that co-infection status (measured via 4Dx SNAP test) and dog age were associated with
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increased parasite load overall (posterior probabilities of being positive are 0.740 and 0.828), as well as that the sarolaner treat-
ment group had lower overall parasite loads (posterior probability of being negative of 0.860). Consistent with expectation, we
also find compelling evidence that stronger DPP responses were associated with higher pathogen burden (posterior probability
of being positive of 0.921).

In terms of antibodies, several compelling effects emerge. First, we find strong evidence that co-infection status (4Dx SNAP
test) was associated with increased antibody levels, with a posterior probability of being positive of 0.981. This effect has a
posterior mean of 0.014 with 95% Cr-I [0.001, 0.027]. This is an important result, since testing for serologic reactivity to tick-
borne bacterial antigens can help us understand how the production of Leishmania-antibodies and the general inflammatory
response could be affected by the presence of other pathogens13. In addition, stronger DPP responses were associated with higher
antibody levels (posterior probability 0.975), which is expected since the DPP serological test also detects anti-Leishmania

antibodies similar to SLA ELISA. We also found that the conditional interaction effect on antibody levels of lag-1 change in
antibody levels for stage 1 dogs had a posterior mean of −0.392 with 95% Cr-I [−0.591,−0.198] and posterior probability
approximately 1 that the true parameter is less than zero.

In addition to characterizing evidence for the processes driving disease progression, we also investigated the degree to which
the presented Bayesian model can predict individual and aggregate patterns of CanL progression. Using posterior predictive
distributions based on parameters drawn from the converged MCMC samplers, we investigated different outcome patterns for
dogs decreasing, not changing, and increasing clinical status over time. For this context, we identified n∗ = 4 dogs within the
same cohort based on four different outcomes scenarios, but assuming that only the information from the first two time points
were available. The goal was to predict the pathogen load, antibody level and probabilities of the dogs to be classified in each
disease status for additional points in time, and compare estimated trajectories from the observed trajectories.

For pathogen load and antibody level, we plot the predicted trajectories over time for each of the subjects, as well as the
marginal probabilities of being in a particular disease state at each time point. We hypothesize that disease patterns can be
predicted using diagnostic parameters with six months between measurements. This configuration has direct clinical relevance;
veterinarian assessment of these or similar diagnostic variables for a given dog 6 months apart could be used to predict the
future change in clinical status for that patient. Our model was constructed in such a way that allows us to use available data
from the immediate past or present, and predict outcomes farther away in time. Since predictions in a 6 months interval were
preferred, we can still use the information on a 3-month basis and make the predictions. Clearly, the amount of available data
and the frequency of observed progression events will affect the predictive performance of the model.

Figures 3 and 4 show the predicted pathogen load and antibody level trajectories for the four subjects, based on different
outcome patterns, respectively. For each prediction, we considered 80% and 95% prediction intervals, and a line representing
the mean trajectories. In addition, we plotted the observed trajectories of the dogs. From this simple prediction setting, we were
able to capture some of the observed trajectories of the dogs for the antibody levels. For pathogen load, the mean trajectory of
the simulations was higher than the observed data for 3 out the 4 dogs, and close to the observed data for first dog.

In Figure 5, we present the posterior predicted marginal probabilities of the dogs being classified in a particular disease state
over time. From these plots, we observe that the probabilities of a severe case of Leishmaniasis (disease status 4) increases
from 0% to approximately 15% for all of these dogs, no matter their initial status. These four dogs started from a healthy or
asymptomatic state. In addition, the probabilities of staying healthy reduced to approximately 38% for dogs 2 and 4, but it
increases to around 35% for dogs 1 and 3. The presented model was able to capture several expected behaviors that were backed
up by research. Dogs treated with sarolaner, for example, had lower total parasite burdens, and DPP serological test findings were
linked to a higher pathogen burden. Our approach will benefit clinicians and veterinarians by allowing them to better understand
immune responses and Leishmania infection control throughout time.

5 DISCUSSION

There are several competing statistical and mathematical modelling approaches which could be applied to this problem, and
to the best of our knowledge there is no single traditional approach which has universal acceptance in the proposed modelling
setting. In the case of Frequentist methods, we felt that relying on asymptotic arguments for the short longitudinal follow-
up would be sub-optimal. Moreover, we have a strong philosophical preference for Bayesian models, which are less likely to
make strong and incorrect conclusions regarding hypotheses of interest due to the shrinkage effect of prior distributions28, and
have a strong axiomatic foundation29. When considering mathematical models, we felt that Bayesian methods are preferable
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TABLE 2 Posterior Summary Results. Posterior summary of the three MCMC chains. In this summary, posterior means,
standard deviation, and 95% credible intervals are provided, organized by outcome model (pathogen, antibodies and disease
status). In addition, posterior probabilities of the parameters being positive are included in the last column. A brief description
of these parameters are presented in the second column. The symbol * represents interaction of the indicated model elements.

Parameter Interpretation Mean SD 95% Cr-I Prob > 0

Pathogen Load (P)

�P ,1 Pathogen Load 0.7049 0.7243 [-0.6768, 2.2512] 0.8433
�P ,2 Pathogen Load * (D=1) 0.1707 0.8839 [-1.5822, 1.8942] 0.5767
�P ,3 Pathogen Load * (D=2) 0.4538 0.7250 [-1.0940, 1.8612] 0.7506
�P ,4 Pathogen Load * (D=3) -0.0323 0.9391 [-1.8752, 1.7981] 0.4868
�P ,5 (D=1) * Difference in Pathogen Load 0.1183 0.9555 [-1.7628, 2.0052] 0.5483
�P ,6 (D=2) * Difference in Pathogen Load -0.8736 0.1237 [-1.1104, -0.6468] 0.0006
�P ,7 (D=3) * Difference in Pathogen Load -0.0102 0.9767 [-1.9241, 1.8926] 0.4942
�P ,8 (D=1) * Difference in Antibody Levels 0.0163 0.0406 [-0.0587, 0.0925] 0.6698
�P ,9 (D=2) * Difference in Antibody Levels -0.0030 0.0507 [-0.0822, 0.0754] 0.4644
�P ,10 (D=3) * Difference in Antibody Levels 0.0525 0.2307 [-0.3916, 0.5111] 0.5929
�2
P

Variance in Pathogen Load 0.0215 0.0058 [0.0194, 0.0231] -
�P ,1 Intercept -0.0005 0.0095 [-0.0160, 0.0144] 0.4813
�P ,2 Age group 0.0017 0.0056 [-0.0025, 0.0063] 0.8276
�P ,3 SNAP results 0.0020 0.0044 [-0.0037, 0.0074] 0.7409
�P ,4 DPP results 0.0103 0.0100 [-0.0041, 0.0250] 0.9211
�P ,5 Treatment group -0.0027 0.0050 [-0.0082, 0.0026] 0.1334

Antibodies Level (A)

�A,1 Pathogen Load -0.1662 0.3397 [-0.7823, 0.4588] 0.2894
�A,2 Antibody Levels 0.8976 0.0589 [ 0.7931, 1.0084] 0.9999
�A,3 (D=1) * Difference in Pathogen Load 0.6141 0.9863 [-1.3045, 2.5770] 0.7330
�A,4 (D=2) * Difference in Pathogen Load 0.4121 0.2532 [-0.0764, 0.8862] 0.9510
�A,5 (D=3) * Difference in Pathogen Load 0.0888 0.9938 [-1.8698, 2.0246] 0.5364
�A,6 (D=1) * Difference in Antibody Levels -0.3924 0.1008 [-0.5912, -0.1977] 0.0003
�A,7 (D=2) * Difference in Antibody Levels -0.1200 0.1137 [-0.3297, 0.0877] 0.1280
�A,8 (D=3) * Difference in Antibody Levels -0.1632 0.4645 [-1.1384, 0.7042] 0.3730
�2
A

Variance in Antibody Levels 0.0515 0.0039 [ 0.0473, 0.0560] -
�A,1 Intercept -0.0079 0.0179 [-0.0433, 0.0279] 0.3129
�A,2 Age group -0.0034 0.0079 [-0.0137, 0.0076] 0.2705
�A,3 SNAP results 0.0141 0.0067 [ 0.0009, 0.0267] 0.9811
�A,4 DPP results 0.0470 0.0229 [-0.0004, 0.0876] 0.9747
�A,5 Treatment group 0.0048 0.0077 [-0.0081, 0.0172] 0.7721

Disease Status (D)

�D1,1 (D=1) 1.8619 0.2182 [1.4430, 2.2855] 0.9999
�D1,2 (D=1) * Pathogen Load 0.0064 0.9901 [-1.9069, 1.9523] 0.5044
�D1,3 (D=1) * Antibody Levels -0.1016 0.9536 [-1.9728, 1.7355] 0.4633
�D2,1 (D=2) 1.7409 0.2527 [1.2549, 2.2433] 1
�D2,2 (D=2) * Pathogen Load 0.0469 0.9886 [-1.8529, 1.9786] 0.5105
�D2,3 (D=2) * Antibody Levels 0.3826 0.9035 [-1.4137, 2.1628] 0.6617
�D3,1 (D=3) -0.7736 0.6895 [-2.1861, 0.5285] 0.1263
�D3,2 (D=3) * Pathogen Load -0.0041 0.9991 [-1.9845, 1.9494] 0.4983
�D3,3 (D=3) * Antibody Levels 0.1259 0.9875 [-1.8258, 2.0582] 0.5521
�D,1 Intercept 0.6887 0.9354 [-1.1200, 2.5174] 0.7679
�D,2 Age group 0.9730 0.8063 [-0.5359, 2.6314] 0.8853
�D,3 SNAP results 0.9014 0.8253 [-0.6646, 2.5676] 0.8610
�D,4 DPP results 0.0473 0.9994 [-1.8891, 2.0141] 0.5183
�D,5 Treatment group 0.9217 0.8372 [-0.6550, 2.6156] 0.8682
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FIGURE 3 Posterior Predictive Trajectories of Pathogen Load. Posterior predicted pathogen load for four dogs. Time points
3 through 7 were predicted times.

where practical due to their ability to formally quantify uncertainty concerning model parameters, rather than relying on simple
optimization to provide a “best fit”. From the same Figure 1, we saw that at each time point, the observed and latent measures
which characterize the pathogen-host dynamics and their interactions comprise the state of the model. Using a hierarchical
structure under distributional assumptions is one way to model the evolution of a disease28,22, allowing us to draw conclusions
and quantify uncertainty about important variables related to immune response to infections. In addition, a hierarchical model
under the Bayesian setting also enables us to easily handle unobserved values as latent quantities and to estimate them from the
available data and model structure21.

Through this statistical analysis, we were able to explore and characterize some evidence for the processes that drive CanL
progression and the host immune response to infection. We investigated the degree to which the presented Bayesian model can
predict individual and aggregate patterns of disease progression. We noticed that even when the observed data was collected
in 3 month intervals, making predictions in this time frame is not recommended since the disease progression pattern may not
yet be apparent. As it was shown with the forecasting scenarios, the presented model specification is still considered to be too
simple to fully understand the disease progression and immune responses, and further considerations need to be undertaken to
model this complex disease. For instance, considering CD4+ T proliferation over time, and information on different important
cytokine expression such as protective inferferon-gamma (IFN-gamma) or inhibitory interleukin 10 (IL-10) could improve the
model and its predictions3. Although the induction of CD4+ T helper 1 cell responses is considered essential for immunity
against Leishmania, B cells and the production of Leishmania-specific antibodies have also been proposed to play an important
role in disease progression13.

Therefore, an extended version of this model will consider additional important immunological parameters controlling CanL
disease presentation, such Leishmania-antigen specific CD4+ T cell proliferation, IL-10, and IFN-gamma production. Based
on Nylén and Gautam30, high levels of Leishmania specific antibodies are observed in subjects with VL and other severe forms
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FIGURE 4 Posterior Predictive Trajectories of Antibody Levels. Posterior predicted antibodies level for four dogs. Time
points 3 through 7 were predicted times.

of Leishmanial disease and there are accumulating evidence that B cells and antibodies correlate with pathology. Future work
incorporating these enhancements, and additional post-study longitudinal follow-up of the canine cohort should enable us to
better understand CanL progression, and to refine the predictive performance of the models to create a useful clinical tool.
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FIGURE 5 Posterior Marginal Probabilities of Disease Status. Posterior predicted (marginal) probabilities of four dogs of
being in a particular disease state over time. Time points 3 through 7 were predicted times. Time point 1 corresponds to observed
disease state and MCMC estimated latent values were used for time point 2.

8 DATA AVAILABILITY STATEMENT

The authors confirm that the data analyzed supporting the findings of this study are available within the article and supplementary
materials.

9 ORCID

Felix M. Pabon-Rodriguez https://orcid.org/0000-0003-3528-2354
Grant D. Brown https://orcid.org/0000-0002-7247-7313
Breanna M. Scorza https://orcid.org/0000-0002-3489-0270
Christine A. Petersen https://orcid.org/0000-0002-7285-4254

References

1. Burza S, Croft S, Boelaert M. Leishmaniasis. The Lancet 2018; 392(10151): 951–970.

2. Lima ÁL, Lima dID, Coutinho JF, et al. Changing epidemiology of visceral leishmaniasis in northeastern Brazil: a 25-
year follow-up of an urban outbreak. Transactions of the Royal Society of Tropical Medicine and Hygiene 2017; 111(10):
440–447.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 20, 2022. ; https://doi.org/10.1101/2022.06.20.496877doi: bioRxiv preprint 

https://orcid.org/0000-0003-3528-2354
https://orcid.org/0000-0003-3528-2354
https://orcid.org/0000-0002-7247-7313
https://orcid.org/0000-0002-7247-7313
https://orcid.org/0000-0002-3489-0270
https://orcid.org/0000-0002-3489-0270
https://orcid.org/0000-0002-7285-4254
https://orcid.org/0000-0002-7285-4254
https://doi.org/10.1101/2022.06.20.496877
http://creativecommons.org/licenses/by/4.0/


14 Pabon-Rodriguez ET AL.

3. Esch KJ, Juelsgaard R, Martinez PA, Jones DE, Petersen CA. Programmed Death 1–mediated T cell exhaustion during
visceral leishmaniasis impairs phagocyte function. The Journal of Immunology 2013; 191(11): 5542–5550.

4. Barbiéri CL. Immunology of canine leishmaniasis. Parasite immunology 2006; 28(7): 329–337.

5. Borja LS, Sousa dOMF, Silva Solcà dM, et al. Parasite load in the blood and skin of dogs naturally infected by Leishmania
infantum is correlated with their capacity to infect sand fly vectors. Veterinary Parasitology 2016; 229: 110–117.

6. Boggiatto PM, Ramer-Tait AE, Metz K, et al. Immunologic Indicators of Clinical Progression during Canine L eishmania
infantum Infection. Clinical and Vaccine Immunology 2010; 17(2): 267–273.

7. Solano-Gallego L, Miró G, Koutinas A, et al. LeishVet guidelines for the practical management of canine leishmaniosis.
Parasites & vectors 2011; 4(1): 1–16.

8. Baxarias M, Álvarez-Fernández A, Martínez-Orellana P, et al. Does co-infection with vector-borne pathogens play a role
in clinical canine leishmaniosis?. Parasites & vectors 2018; 11(1): 1–16.

9. Mabbott NA. The influence of parasite infections on host immunity to co-infection with other pathogens. Frontiers in

immunology 2018; 9: 2579.

10. Toepp AJ, Monteiro GR, Coutinho JF, et al. Comorbid infections induce progression of visceral leishmaniasis. Parasites &

vectors 2019; 12(1): 1–12.

11. Schaut RG, Grinnage-Pulley TL, Esch KJ, et al. Recovery of antigen-specific T cell responses from dogs infected with
Leishmania (L.) infantum by use of vaccine associated TLR-agonist adjuvant. Vaccine 2016; 34(44): 5225–5234.

12. Figueiredo FB, Vasconcelos TCBd, Madeira MdF, et al. Validation of the Dual-path Platform chromatographic immunoas-
say (DPP® CVL rapid test) for the serodiagnosis of canine visceral leishmaniasis. Memórias do Instituto Oswaldo Cruz

2018; 113.

13. Rossi M, Fasel N. How to master the host immune system? Leishmania parasites have the solutions!. International

immunology 2018; 30(3): 103–111.

14. Nylén S, Kumar R. Immunobiology of visceral leishmaniasis. Frontiers in immunology 2012; 3: 251.

15. Shang Lm, Peng Wp, Jin Ht, et al. The prevalence of canine Leishmania infantum infection in Sichuan Province,
southwestern China detected by real time PCR. Parasites & vectors 2011; 4(1): 1–5.

16. Rao Kadiyala K, Karlsson S. Forecasting with generalized bayesian vector auto regressions. Journal of Forecasting 1993;
12(3-4): 365-378.

17. LeSage JP, Krivelyova A. A Spatial Prior for Bayesian Vector Autoregressive Models. Journal of Regional Science 1999;
39(2): 297-317.

18. Holden K. A comparison of forecasts from UK economic models and some Bayesian vector autoregressive models. Journal

of Economic Studies 1997.

19. R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna,
Austria: 2022.

20. RStudio Team . RStudio: Integrated Development Environment for R. RStudio, PBC; Boston, MA: 2022.

21. Liu JS, Liu JS. Monte Carlo strategies in scientific computing. 10. Springer . 2001.

22. Carlin BP, Louis TA. Bayesian methods for data analysis. CRC Press . 2008.

23. Plummer M, Best N, Cowles K, Vines K. CODA: convergence diagnosis and output analysis for MCMC. R news 2006;
6(1): 7–11.

24. Corthay A. How do regulatory T cells work?. Scandinavian journal of immunology 2009; 70(4): 326–336.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 20, 2022. ; https://doi.org/10.1101/2022.06.20.496877doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.20.496877
http://creativecommons.org/licenses/by/4.0/


Pabon-Rodriguez ET AL. 15

25. Mauri C, Bosma A. Immune regulatory function of B cells. Annual review of immunology 2012; 30: 221–241.

26. Sompayrac LM. How the immune system works. John Wiley & Sons . 2019.

27. Petersen CA. Leishmaniasis, an emerging disease found in companion animals in the United States. Topics in companion

animal medicine 2009; 24(4): 182–188.

28. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. Chapman and Hall/CRC . 1995.

29. De Finetti B. Theory of probability: A critical introductory treatment. 6. John Wiley & Sons . 2017.

30. Nylen S, Gautam S. Immunological perspectives of leishmaniasis. Journal of global infectious diseases 2010; 2(2): 135.

31. Cragg JG. Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods.
Econometrica 1971; 39(5): 829–844.

How to cite this article: Pabon-Rodriguez, F., Brown, G., Scorza, B., and Petersen, C. (2022), Bayesian Hierarchical Model
for Immune Responses to Leishmania-tick borne Co-Infection Study, Statistics in Medicine, 2022;??:?–?.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 20, 2022. ; https://doi.org/10.1101/2022.06.20.496877doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.20.496877
http://creativecommons.org/licenses/by/4.0/


��,�
��,�
��,�

��,�+�
��,�+�
��,�+�

��

��(���, ���, ���, ��)
��(���, ���, ���, ��)
��(���, ���, ���, ��)

…

…

…

https://doi.org/10.1101/2022.06.20.496877
http://creativecommons.org/licenses/by/4.0/


0
5
0
0

0
1
0
0
0
0

1
5
0
0
0

Pathogen Load Over Time

Time Point

P
C

R
 L

o
a
d

1 2 3 4 5 6 7

0
1

2
3

4

Antibody Levels Over Time

Time Point

A
n
ti
b
o
d
y
 L

e
v
e
ls

1 2 3 4 5 6 7

https://doi.org/10.1101/2022.06.20.496877
http://creativecommons.org/licenses/by/4.0/


1 2 3 4 5 6 7

0
e

+
0

0
4

e
+

0
4

8
e

+
0

4
Predicted Pathogen Load for Subject 1

Time Point

P
a

th
o

g
e

n
 L

o
a

d

Mean
Observed
80% CI Bounds
95% CI Bounds

1 2 3 4 5 6 7

0
e

+
0

0
4

e
+

0
4

8
e

+
0

4

Predicted Pathogen Load for Subject 2

Time Point

P
a

th
o

g
e

n
 L

o
a

d

Mean
Observed
80% CI Bounds
95% CI Bounds

1 2 3 4 5 6 7

0
e

+
0

0
4

e
+

0
4

8
e

+
0

4

Predicted Pathogen Load for Subject 3

Time Point

P
a

th
o

g
e

n
 L

o
a

d

Mean
Observed
80% CI Bounds
95% CI Bounds

1 2 3 4 5 6 7

0
e

+
0

0
4

e
+

0
4

8
e

+
0

4

Predicted Pathogen Load for Subject 4

Time Point

P
a

th
o

g
e

n
 L

o
a

d

Mean
Observed
80% CI Bounds
95% CI Bounds

https://doi.org/10.1101/2022.06.20.496877
http://creativecommons.org/licenses/by/4.0/


1 2 3 4 5 6 7

0
5

1
0

1
5

2
0

2
5

Predicted Antibody Levels for Subject 1

Time Point

A
n

ti
b

o
d

y
 L

e
v
e

ls

Mean
Observed
80% CI Bounds
95% CI Bounds

1 2 3 4 5 6 7

0
5

1
0

1
5

2
0

2
5

Predicted Antibody Levels for Subject 2

Time Point

A
n

ti
b

o
d

y
 L

e
v
e

ls

Mean
Observed
80% CI Bounds
95% CI Bounds

1 2 3 4 5 6 7

0
5

1
0

1
5

2
0

2
5

Predicted Antibody Levels for Subject 3

Time Point

A
n

ti
b

o
d

y
 L

e
v
e

ls

Mean
Observed
80% CI Bounds
95% CI Bounds

1 2 3 4 5 6 7

0
5

1
0

1
5

2
0

2
5

Predicted Antibody Levels for Subject 4

Time Point

A
n

ti
b

o
d

y
 L

e
v
e

ls

Mean
Observed
80% CI Bounds
95% CI Bounds

https://doi.org/10.1101/2022.06.20.496877
http://creativecommons.org/licenses/by/4.0/


1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Marginal probabilities of disease status (DS) for Subject 1

Time Point

P
ro

b
a

b
ili

ty

DS=1
DS=2
DS=3
DS=4

1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Marginal probabilities of disease status (DS) for Subject 2

Time Point

P
ro

b
a

b
ili

ty

DS=1
DS=2
DS=3
DS=4

1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Marginal probabilities of disease status (DS) for Subject 3

Time Point

P
ro

b
a

b
ili

ty

DS=1
DS=2
DS=3
DS=4

1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Marginal probabilities of disease status (DS) for Subject 4

Time Point

P
ro

b
a

b
ili

ty

DS=1
DS=2
DS=3
DS=4

https://doi.org/10.1101/2022.06.20.496877
http://creativecommons.org/licenses/by/4.0/

