

1 An S1 subunit vaccine and combination adjuvant (COVAC-1) elicits robust 2 protection against SARS-CoV-2 challenge in African green monkeys

3
4 Lauren Garnett^{1,2}, Kaylie N Tran¹, Mable Chan¹, Kevin Tierney¹, Zachary Schiffman^{1,2}, Jonathan
5 Audet¹, Jocelyne M. Lew³, Courtney Meilleur¹, Michael Chan¹, Kathy Manguiat², Nikesh Tailor¹,
6 Robert Vendramelli¹, Yvon Deschambault¹, Guillaume Beaudoin-Bussières^{4,5}, Catherine
7 Bourassa⁵, Jonathan Richard^{4,5}, Andrés Finzi^{4,5}, Rick Higgins⁶, Sylvia van Drunen Littlel-van den
8 Hurk^{3,7}, Volker Gerdts^{3,8}, James E Strong^{1,2,9*}, Darryl Falzarano^{3,8*}
9

10 ¹Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of
11 Canada, Winnipeg, MB Canada

12 ²Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine,
13 University of Manitoba, Winnipeg, MB Canada

14 ³Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon,
15 SK Canada

16 ⁴Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal,
17 QC Canada

18 ⁵Centre de Recherche du CHUM, Montreal, QC Canada

19 ⁶Department of Paediatrics and Child Health, Max Rady College of Medicine, University of
20 Manitoba, Winnipeg, MB Canada

21 ⁷Department of Biochemistry and Immunology, University of Saskatchewan, Saskatoon, SK
22 Canada

23 ⁸Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK Canada

24 ⁹Arbovirus, Rabies, Rickettsia and Related Zoonotic Diseases, National Microbiology Laboratory,
25 Public Health Agency of Canada, Winnipeg, MB Canada

26
27
28 *Corresponding authors: jim.strong@phac-aspc.gc.ca (J.E.S.) and darryl.falzarano@usask.ca
29 (D.F.)

30 31 32 ABSTRACT

33 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent responsible for the
34 ongoing global pandemic. With over 500 million cases and more than 6 million deaths reported globally,
35 the need for access to effective vaccines is clear. An ideal SARS-CoV-2 vaccine will prevent pathology in
36 the lungs and prevent virus replication in the upper respiratory tract, thus reducing transmission. Here, we
37 assessed the efficacy of an adjuvanted SARS-CoV-2 S1 subunit vaccine, called COVAC-1, in an African
38 green monkey (AGM) model. AGMs immunized and boosted with COVAC-1 were protected from SARS-
39 CoV-2 challenge compared to unvaccinated controls based on reduced pathology and reduced viral RNA

40 levels and infectious virus in the respiratory tract. Both neutralizing antibodies and antibodies capable of
41 mediating antibody-dependent cell-mediated cytotoxicity (ADCC) were observed in vaccinated animals
42 prior to the challenge. COVAC-1 induced effective protection, including in the upper respiratory tract, thus
43 supporting further development and utility for determining the mechanism that confers this protection.

44

45 **KEYWORDS**

46 SARS-CoV-2; vaccine; S1; subunit; adjuvant; African green monkey; antibody; ADCC; upper respiratory
47 tract

48

49 **AUTHOR SUMMARY**

50 Vaccines that can prevent the onward transmission of SARS-CoV-2 and prevent disease are highly
51 desirable. Whether this can be accomplished without mucosal immunization by a parenterally administered
52 subunit vaccine is not well established. Here we demonstrate that following two vaccinations, a protein
53 subunit vaccine containing the S1 portion of the SARS-CoV-2 spike glycoprotein and the novel adjuvant
54 TriAdj significantly reduces the amount of virus in the lungs and also mediates rapid clearance of the virus
55 from the upper respiratory tract. Further support of the effectiveness of COVAC-1 was the observation of
56 reduced pathology in the lungs and viral RNA being largely absent from tissues, blood, and rectal swabs.
57 Thus COVAC-1 appears promising at mediating protection in both the upper and lower respiratory tract
58 and may be capable of reducing subsequent transmission of SARS-CoV-2. Further investigation into the
59 mechanism of protection in the upper respiratory tract and the initial immune response that supports this
60 would be warranted.

61

62 **INTRODUCTION**

63 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen responsible for
64 Coronavirus disease 2019 (COVID-19), has caused over 500 million cases and over 6 million deaths

65 globally (WHO dashboard) as of May 2022. With the rising case numbers internationally and the inequality
66 of vaccine accessibility throughout the world, the need to develop more effective vaccines is ongoing,
67 particularly vaccines that can reduce transmission. Several vaccines have successfully passed phase 3
68 clinical trials and/or have gained regulatory approval and have been proven to elicit effective protection
69 against SARS-CoV-2, with more candidates going through the developmental pipeline [1-4]. However,
70 even with multiple vaccines approved, worldwide vaccine coverage remains too low. Furthermore,
71 continued development of new vaccines is needed given the emergence of new variants of concern (VOC)
72 that limit the efficacy of current vaccines, as well as hurdles demonstrated in development, clinical trials,
73 production, and distribution.

74 The majority of vaccines against SARS-CoV-2, both approved and in development, include the
75 spike (S) glycoprotein [5-8]. The trimeric S glycoprotein is made up of two subunits, S1 and S2. S is
76 essential for mediating binding, fusion, and uptake of virions into mammalian cells, as well as being the
77 target of neutralizing antibodies [9]. Of the various vaccine platforms, including nucleic acid, viral-
78 vectored, inactivated, and protein subunit, recombinant protein subunit vaccines have some advantages over
79 other vaccine platforms, including greater safety while reducing cost and handling restrictions [10].
80 Although subunit vaccines typically induce weaker neutralizing antibodies, studies on recombinant subunit
81 vaccines that include the receptor binding domain (RBD) have shown higher neutralizing antibodies with
82 no antibody-dependent enhancement (ADE) effects, suggesting both a safe and effective vaccine platform
83 [11-13]. Furthermore, adjuvants may augment and prolong the immune output without corresponding
84 increases in deleterious effects [14].

85 We aimed to determine whether an S1-containing subunit protein vaccine and a combination
86 adjuvant platform developed at the Vaccine and Infectious Disease Organization (VIDO) elicits effective
87 immunogenicity and protection against SARS-CoV-2 in African green monkeys (AGMs) [15-17]. The
88 vaccine candidate, COVAC-1, contains a codon optimized, mammalian-produced S1 segment of the SARS-
89 CoV-2 spike glycoprotein and an adjuvant, TriAdj. TriAdj is comprised of the toll-like receptor (TLR)
90 agonist poly I-C, poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP), and the synthetic

91 cationic peptide IDR-100. This combination adjuvant has been used in numerous animal species with no
92 adverse reactions for vaccines with both viral and bacterial antigens, including one for human respiratory
93 syncytial virus [18]. TriAdj has also been shown to induce a balanced or Th1-biased immune response that
94 provides long-lasting immunity in various animal models, including mice, hamsters, cotton rats, sheep,
95 alpacas and pigs [18-22]. This combination adjuvant has also frequently outperformed existing commercial
96 adjuvants [23].

97 **RESULTS**

98 **Clinical parameters are comparable between vaccinated and control animals**

99 Six AGMs (Animal numbers 1478, 1512, 1540, 1572, 1775, and 1820) were vaccinated with
100 COVAC-1, a mammalian-produced HIS-tagged SARS-CoV-2 S1 protein formulated with TriAdj adjuvant
101 56 days before challenge, followed by a homologous boost 28 days before challenge. Six control animals
102 (1164, 1250, 1342, 1687, 1774, and 1776) received PBS and were used as comparators following the same
103 timeline as the vaccine group. All twelve AGMs were challenged with a total of 1.54E+04 TCID₅₀ of SARS-
104 CoV-2 (Canada/ON-VIDO-01/2020) by a combination of intratracheal (i.t), intranasal (i.n), oral and
105 intraocular (i.o) routes similar to that described by Blair et al. [24]. Longitudinal oral, rectal, and nasal
106 sampling was performed along with blood and bronchoalveolar lavage (BAL) collections to assess viral
107 load and shedding (Figure 1A). No animals had overt signs of clinical disease such as fever (Figure 1B),
108 weight loss (Figure 1C), or changes in behaviour or appetite. However, there were trends towards increased
109 pCO₂ and bicarbonate following infection, especially in the control animals. This coincided with an increase
110 in respiratory rate noted particularly in the control group at 3dpi with no substantial changes in oxygen
111 saturation (Figure 2A-E).

112 White blood cell (WBC) count, red blood cell (RBC) count, lymphocytes, platelets, monocytes,
113 and neutrophils were all within the normal range prior to infection (Figure 3A-F). During the peak of
114 infection (3dpi), counts of WBC, platelets and neutrophils decreased in both the COVAC-1 vaccinated
115 animals and the control animals. These counts started to recover again by the end of the study (7dpi) (Figure
116 3A, B, F). Average alkaline phosphatase (ALP) and albumin (ALB), typically cited as markers for liver

117 function, decreased slightly during infection. At the same time, aminotransferase (ALT), an enzyme
118 signifying hepatocellular injury, was elevated in both the vaccinated and control groups (Figure 4A, C, E),
119 but was decreasing towards normal in COVAC-1 vaccinated animals by 7dpi. Blood urea nitrogen (BUN)
120 and creatinine (CRE) levels, measures of kidney function, were found to be within the normal range (Figure
121 4B, D). Total protein (TP) levels, a combined measurement of liver and kidney function, decreased from
122 baseline at 7dpi for both vaccinated and control AGMs (Figure 4F). Thoracic radiographs and EKGs taken
123 on days 0, 1, 3, 5, and 7 post-infection showed no changes over baseline measurements (data not shown).

124

125 **COVAC-1 reduces the quantity and duration of viral RNA and infectious virus**

126 Viral loads and infectious virus were quantified from oral, rectal, and nasal swabs collected on days
127 0, 1, 3, 5 and 7 post-infection by RT-qPCR and TCID₅₀ assay (Figure 5). On day 1 post-challenge, both
128 vaccinated and unvaccinated animals had equivalent levels of viral RNA, of approximately 10⁴ genome
129 equivalence (GEQ)/mL, in nasal swabs. Given the relatively high challenge dose, this was not unexpected.
130 On subsequent days the level of viral RNA remained relatively constant in control animals. In contrast,
131 vaccinated animals began to show substantially lower levels of viral RNA, with a 2.57 log reduction on day
132 3 (p=0.0025), a 2.80 log reduction on day 5 (p=0.016), and no detectable viral RNA by day 7 (Figure 5A).
133 Infectious virus recovered from nasal swabs was inconsistent; however, only 1/6 vaccinated NHPs (1572)
134 had recoverable infectious virus on 3dpi, with no detectable infectious virus on 5 or 7dpi, while 3/6 control
135 NHPs had positive TCID₅₀ results at 3dpi, with 1/6 still having recoverable virus at 7dpi (Figure 5B). Mean
136 viral RNA levels in rectal swabs increased from 1 to 3dpi in unvaccinated animals to approximately 10³
137 GEQ/mL and remained at that level until 7dpi. In contrast, only a single vaccinated animal, 1572, had
138 positive rectal swabs on 1 and 3dpi, with all other vaccinated animals consistently being below the level of
139 detection (Figure 5C). Infectious virus in rectal swabs was only recovered from a single, unvaccinated
140 animal on day 7 (Figure 5D).

141 BAL fluid was also tested for the presence of viral RNA and infectious virus at 0, 3, and 7dpi. All
142 control animals had high levels of viral RNA at 3dpi that were maintained until 7dpi. At 3dpi, the BAL

143 samples from 5/6 control animals were positive for infectious virus, with 2 control animals still having
144 detectable infectious virus on 7dpi (Figure 5E-F). In contrast, COVAC-1 vaccinated animals showed a
145 significant reduction in mean viral RNA levels at 3dpi ($p=0.00081$) and 7dpi ($p=0.000015$), where only a
146 single animal (1820) was found positive (Figure 5E). No infectious virus was recovered from the BAL of
147 vaccinated animals at any time point, while 6/6 of unvaccinated animals were positive on 3dpi ($p=0.0022$),
148 and 2/6 were still positive at 7dpi (Figure 5F). Very low levels of viral RNA were detected in the blood of
149 3/6 and 2/6 unvaccinated animals at 3 and 7 dpi, respectively (Figure 5H). Viral RNA was not detected in
150 the blood of any of the vaccinated animals (Figure 5I).

151 Following euthanasia, collected tissues were evaluated for both viral RNA and infectious virus. Of
152 the vaccinated group, only a single tissue sample collected from the trachea of animal 1512 was positive
153 for viral RNA, with a low level of $1.83e+02$ genome copies/mg (Figure 5G). All other tissues collected
154 from vaccinated animals were negative. In contrast, all animals in the unvaccinated controls group had
155 significantly higher levels of viral RNA in the sampled tissues, which included the right upper lung (RUL)
156 ($p=0.0152$), right middle lung (RML) ($p=0.0152$), right lower lung (RLL) ($p=0.0022$) as well as nasal
157 turbinate, trachea ($p=0.0801$), tonsil, heart and kidney, with five of six animals (1687, 1776, 1774, 1342,
158 and 1512) having at least one sample positive for infectious virus as measured by $TCID_{50}$ (Figure 5H).

159

160 **COVAC-1 prevents gross and histological pathological changes**

161 Lung sections and heart, trachea, kidney, nasal turbinates, and tonsils were collected at 7dpi during
162 necropsy. Gross pathology of the lungs of control animals consistently showed patchy areas of congestion,
163 edema, and diffuse consolidation with areas of discoloration (Figure 6G). Alternatively, the control lungs
164 were red in appearance and failed to collapse, indicative of inflammation. Comparable lung lesions were
165 essentially absent in the vaccinated animals, where lungs appeared pink and readily collapsed (Figure 6H).
166 No apparent changes were noted in other organs during gross pathology investigations.

167 Inflammation, type II pneumocyte hyperplasia and hemorrhage in the lungs were the most
168 prominent features in animals infected with SARS-CoV-2. Histology was evaluated by additive pathology

169 scores. Lung pathology was characterized by the presence of neutrophils and macrophages in
170 bronchi/bronchioles, alveoli, and the interstitium. Some degree of this was observed in all animals. Both
171 control and vaccinated animals had evidence of tracheal inflammation as well as neutrophils and
172 macrophages in the bronchi, alveoli and/or interstitium in varying quantities. However, the control group
173 had higher overall pathology scores when compared to the vaccinated animals, with the majority of samples
174 (77%) from vaccinated animals scoring 0 or 1, with no scores of 3. In contrast, nearly half (47%) of samples
175 from control animals scored above 1, with a small number (12%) scoring 3 (Figure 6I).

176 Lung sections from control animals collected on 7dpi were frequently positive for viral antigen
177 staining (18/25 sections from the right middle and right lower lung (Figure 6E). One animal (1774) in the
178 control group consistently had atypical staining on multiple occasions and was thus excluded from this
179 analysis. Staining was observed in type II pneumocytes and less frequently in alveolar macrophages. In
180 contrast, no positive antigen staining was observed in the same number of tissue sections in COVAC-1
181 vaccinated animals (Figure 6F).

182

183 **Serological responses**

184 The serum IgG antibody response against SARS-CoV-2 was assessed using two antigens, soluble
185 trimer or RBD by enzyme-linked immunosorbent assay (ELISA). All vaccinated animals had detectable
186 IgG antibody responses in the soluble trimer ELISA, exceeding the upper limit of the assay (1:6400) 14
187 days prior to the challenge. Two vaccinated animals (1775, 1540) had decreased titres post-challenge, which
188 subsequently increased by the end of the study. In contrast, all unvaccinated controls were negative for
189 detectable IgG against soluble trimer. Five unvaccinated controls were also negative for detectable IgG
190 against RBD throughout the study. However, one control animal (1774) had a titer of 1:400 following
191 challenge on 7dpi. Vaccinated animals all reached the upper limit of 1:6400 42 days after vaccination (-
192 14dpi) against RBD; however, animals 1775, 1820, 1478 and 1512 decreased slightly to 1:1600. By the end
193 of the study, all animals except one (1775) had titres at the upper limit (1:6400) again (Table 1).

194 Neutralizing antibodies were assessed using a plaque reduction neutralization PRNT₅₀ assay on
195 serum from 14 days prior to virus challenge and 7 days following challenge, 42 and 63 days post-
196 vaccination, respectively (Table 2). All six unvaccinated control animals were negative for neutralizing
197 antibodies against SARS-CoV-2 (Canada/ON-VIDO-01/2020) 14 days before the virus challenge;
198 however, by 7dpi, one control animal (1250) had detectable neutralizing antibody levels of 1:40. In contrast,
199 all vaccinated animals had detectable neutralizing antibodies against SARS-CoV-2 (Canada/ON-VIDO-
200 01/2020) at -14dpi with levels ranging from 1:20 to 1:160, with similar titres detected at 7dpi.

201 The ability of COVAC-1 to induce antibody-dependent cell-mediated cytotoxicity (ADCC)
202 antibodies was also assessed. This was investigated as ADCC has been proposed to be a correlate of
203 protection as it has been observed in individuals who appear to be protected from SARS-CoV-2 disease in
204 the absence of neutralizing antibodies [25-27]. Low levels of antibodies capable of mediating ADCC were
205 observed in 6/6 COVAC-1 treated animals 14 days following the boost vaccination (Figure 7A-B). The
206 level of ADCC-mediating antibodies was maintained until the challenge and did not meaningfully change
207 during the challenge period. In contrast, sera from control animals did not mediate ADCC activity at any
208 tested time points, including following challenge. The breadth of antigen binding to the spike glycoproteins
209 from other coronaviruses was also assessed separately. It was observed that sera from COVAC-1 vaccinated
210 animals only bound to cells expressing SARS-CoV-2 S and that, similarly, binding was observed 14 days
211 following the boost (on day 42) (Figure 7C-D). A much lower level of binding was also observed to SARS-
212 CoV-1 but not to the spike glycoproteins from more distantly related coronaviruses, such as OC43, HKU1
213 or MERS-CoV (not shown).

214
215 **Table 1:** IgG antibody responses following COVAC-1 vaccination and boost or PBS control and after
216 SARS-CoV-2 challenge. Serum from animals at -14/-15 days pre-challenge and at 7dpi was assessed for
217 binding to SARS-CoV-2 soluble trimer or RBD by IgG-specific ELISA.

Animal (Treatment)	Soluble trimer -14dpi/-15dpi	Soluble trimer 7dpi	RBD -14dpi/-15dpi	RBD 7dpi
1164 (Control)	Negative	Negative	Negative	Negative
1250 (Control)	Negative	Negative	Negative	Negative
1342 (Control)	Negative	Negative	Negative	Negative
1687 (Control)	Negative	Negative	Negative	Negative
1774 (Control)	Negative	Negative	Negative	1:400
1776 (Control)	Negative	Negative	Negative	Negative
1478 (COVAC-1)	1:6400	1:6400	1:6400	1:6400
1512 (COVAC-1)	1:6400	1:6400	1:6400	1:6400
1540 (COVAC-1)	1:6400	1:6400	1:6400	1:6400
1572 (COVAC-1)	1:6400	1:6400	1:6400	1:6400
1775 (COVAC-1)	1:6400	1:1600	1:6400	1:1600
1820 (COVAC-1)	1:6400	1:6400	1:6400	1:6400

218

219 **Table 2:** Neutralization 50% (PRNT50) assay using ancestral strain SARS-CoV-2

Animal (Treatment)	Canada/ON-VIDO-01/2020 -14dpi/-15dpi	Canada/ON-VIDO-01/2020 7dpi
1164 (Control)	Negative	Negative
1250 (Control)	Negative	1:40
1342 (Control)	Negative	Negative
1687 (Control)	Negative	Negative
1774 (Control)	Negative	Negative
1776 (Control)	Negative	Negative
1478 (COVAC-1)	1:20	1:40
1512 (COVAC-1)	1:160	1:80
1540 (COVAC-1)	1:80	1:80
1572 (COVAC-1)	1:40	1:80
1775 (COVAC-1)	1:40	1:40
1820 (COVAC-1)	1:40	1:80

220

221 **Immune cell infiltration**

222 Following the SARS-CoV-2 challenge, the extent of immune cell infiltration into BAL fluid
 223 (BALF) and blood was assessed by flow cytometry. Overall, the data supports that infiltration into the
 224 BALF occurred largely in the first few days following the challenge and substantially decreased thereafter.

225 In the COVAC-1 vaccinated group, HLA-DR+ CD8 T cells increased at a rate of 20% (95% CI: -
 226 4 to 49%) per day, and although infiltration in the control group occurred at a significantly higher rate (p =

227 0.0495) of 66% (95% CI: 34 to 106%), none of the time points showed statistical significance when
228 comparing the vaccinated and control groups (Figure 8A). COVAC-1 vaccinated animals had an increase
229 in CD69+ CD8 T cells (34% per day, 95% CI: 9 to 65%; Figure 8B), however the unvaccinated controls
230 also showed an increased rate (63% per day, 95% CI: 33 to 101%), resulting in no significant differences
231 in slope ($p = 0.2002$). Despite this, the final concentration of CD69+ CD8 T cells at 7dpi was significantly
232 different between the two groups, with the control group being approximately 9.7-fold higher (95% CI: 3
233 to 31-fold).

234 Interesting trends for the infiltration of memory phenotypes were also noted for both the terminally
235 differentiated RA+ effector memory (EMRA) cells (Figure 8C) and the naïve cells (Figure 8D). In
236 vaccinated animals, both cell populations show a similar pattern with little to no infiltration, a 19% increase
237 per day for EMRA (95% CI: -2.7 to 46%); and a 7.7% increase per day for naïve cells (95% CI: -13.3 to
238 34%). However, the concentration of these cells in the BALF of the control group increased by 126% per
239 day for EMRA (95% CI: 85 to 177%); and 95% increase per day for naïve cells (95% CI: 57 to 142%).

240 For CD4 T cells, no HLA-DR expression could be detected except in a single sample (Figure 8E).
241 The COVAC-1 group had a negligible daily increase in CD69+ CD4 T cells (19% per day, 95% CI: -3.2 to
242 47%; Figure 8F), but the control group showed a significantly higher rate of infiltration (74% per day, 95%
243 CI: 41 to 114%). The general trends for the EMRA (Figure 8G) and naïve (Figure 8H) CD4 T cells largely
244 parallel those of the CD8 T cells. One distinction was that EMRA CD4 T cells infiltrated into the BALF of
245 the COVAC-1 group at a significant rate (47% per day, 95% CI: 23 to 76%), while the infiltration in the
246 control group was not significantly higher (92% per day, 95% CI: 61 to 129%). Despite this, the
247 concentration of EMRA CD4 T cells was higher in the control group on both 3dpi (12-fold, 95% CI: 1.6 to
248 88) and 7dpi (15-fold higher, 95% CI: 2.3 to 99). As with the CD8 T cells, naïve CD4 T cells did not
249 significantly infiltrate into the BALF in the COVAC-1 group (3% increase per day, 95% CI: -13 to 23%),
250 but the infiltration into the BALF of the control group was significant (68% per day, 95% CI: 42 to 100%).

251 B cells infiltrated into the BALF of the COVAC-1 group at a rate of 42% per day (95% CI: 11 to
252 83%), but the infiltration in the BALF of the control group was not significantly higher, at 75% per day

253 (95% CI: 36 to 125%) (Figure 8I). Similarly, $\gamma\delta$ -T cells (Figure 8J), which play important roles in mucosal
254 immunity, infiltrated into the BALF of the COVAC-1 group at a significant rate (27% per day, 95% CI: 1.7
255 to 59%). Still, the control group did not show significantly higher infiltration (73% per day, 95% CI: 38 to
256 116%). However, the control group still had significantly more $\gamma\delta$ -T cells in its BALF (14-fold higher, 95%
257 CI: 4.6 to 44) at 7dpi. Basophils (Figure 8K) did not infiltrate the BALF of the COVAC-1 group at a
258 significant rate (18% per day, 95% CI: -7.3 to 51%) but did infiltrate the BALF of the control group at a
259 significant rate (84% per day, 95% CI: 44 to 134%). Eosinophils showed a pattern opposite most of the
260 other cell types; the infiltration was significantly higher in the COVAC-1 group (135% per day, 95% CI:
261 84 to 201%) than in the control group (52% per day, 95% CI: 19 to 95%) (Figure 8L); however, this may
262 have been due to the control group having a significantly higher concentration of eosinophils on day 0 (30-
263 fold higher, 95% CI: 25 to 36).

264

265 **DISCUSSION**

266 Since the onset of the SARS-CoV-2 pandemic, accelerated trials have facilitated the approval of
267 several vaccines; however, the pandemic remains an ongoing threat with a need for additional vaccines.
268 Here we aimed to evaluate the immunogenicity and protective efficacy of a new S1 subunit vaccine and
269 combination adjuvant, COVAC-1, in an AGM model of COVID-19. AGMs have been previously
270 established as a disease model for SARS-CoV-2 to explore the dynamics of disease pathogenesis while
271 recapitulating the human disease [15-17, 28]. Similar to previous studies, we observed that AGMs do not
272 develop notable clinical illness, likely similar to many human cases. However, during gross and histological
273 tissue pathology evaluation, they show pronounced damage of varying severity in respiratory tissues [15,
274 16]. In no case did the animals appear to have any form of distress, fever, weight loss, shivering, or any
275 obvious discomfort. However, an interesting clinical finding that has not previously been documented was
276 an increased pCO_2 coinciding with an increased respiratory rate and no associated decrease in oxygen
277 saturation that occurred in all the infected animals but was significantly higher in the control animals (Figure

278 2). In this context, this likely represents increased physiological dead space that may have manifested from
279 the interstitial and airspace disease associated with the observed pathologic changes.

280 Also notable was that despite pathology being consistently observed in lung tissues of infected
281 control animals, thoracic radiographic images taken throughout infection showed no evidence of
282 pathological changes. Unremarkable X-rays, including during peak viremia, have been reported previously
283 for SARS-CoV-2 infection in animal models and human patients [15, 29-31]. The alterations observed by
284 X-ray may be more prominent following the early stages of the disease characterized by infection with
285 SARS-CoV-2 when there are subsequently high levels of inflammation, coagulopathy and fibrosis [32].
286 Likely, clinical signs of infection, including crepitation and/or rales via auscultation (along with the
287 corresponding pathologic correlates), may precede these radiographic signs. Unfortunately, the high
288 containment level (BSL4) restrictions in this study design precluded auscultation but may be possible for
289 future iterations.

290 Although clinical signs were absent to subtle in both vaccinated and control animals, thus not being
291 useful as a comparator, viral indices (including RNA levels and TCID₅₀) were significantly improved in
292 vaccinated AGMs, suggesting protective efficacy from COVAC-1 vaccination. This protection was evident
293 in the significantly reduced viral loads found in the BAL, mucosal swabs and tissues, an indication of
294 reduced shedding and, therefore, potentially transmissibility as a result of vaccination [33]. While both
295 groups had equivalent levels of viral RNA at 1dpi in nasal swabs, likely a result of the relatively high level
296 of virus in the inoculum, all subsequent samples supported a rapid and significant reduction in viral RNA
297 and infectious virus. This also included the absence of viral RNA in rectal swabs. Whether vaccination
298 provides protection against virus replication in the gastrointestinal tract or whether the lack of viral RNA
299 in rectal swabs in vaccinated animals is a result of overall less virus being produced in the upper respiratory
300 and subsequently transiting the GI tract, both mechanisms support the notion that a good level of protection
301 was achieved. Together, this supports that COVAC-1 may be effective at preventing or reducing
302 transmission by reducing the amount of virus shed in the upper respiratory tract and excreted in feces.

303 This study's histopathology of respiratory tissues showed varying degrees of inflammatory cell
304 infiltration, including neutrophils and macrophages in bronchi/bronchioles, alveoli, and the interstitium, as
305 observed previously in this model [16]. The trachea of multiple control AGMs and some of the vaccinated
306 animals also showed mild to moderate levels of inflammation. However, tracheal inflammation may result
307 from repeated BAL procedures throughout the study rather than from the infection itself. Notably,
308 vaccination decreased the extent of pathological alterations in lung tissues compared to controls. Not only
309 did this include lower overall scores, but also the absence of scores over 2. Consistent with decreased
310 pathology and the absence of viral RNA, as assessed by RT-qPCR, was a complete absence of viral antigen
311 in lung sections compared to consistently positive staining in control animals. Overall, this correlated with
312 the gross pathological finding where vaccinated animals had essentially normal lungs in contrast to controls
313 which showed congestion, edema, and diffuse consolidation with areas of discoloration.

314 Characterization of the cells that infiltrated into the lungs and were collected in BAL samples
315 suggests that infiltration occurs early during infection. Similar processes occur in vaccinated and
316 unvaccinated animals, with two notable differences. While not reaching significance due to large animal-
317 to-animal variation, there was a consistent trend that control animals had overall higher levels of almost all
318 characterized immune cell types, supportive of an overall higher level of immune cell infiltration. This data
319 is consistent with histological data that also finds more immune cell infiltration and accompanying
320 pathological alterations in the lungs of control animals. Perhaps expectedly, the second notable observation
321 was that both naïve CD4 and CD8 cells were largely absent in vaccinated animals, while a memory response
322 was active in vaccinated animals. While EMRA T cells also infiltrated the BAL fluid in control animals,
323 this may be due to a non-specific response, given the large number of such cells involved, or cross-reactivity
324 from previous coronavirus exposure [34, 35].

325 An important finding of this study is the production of ADCC-mediating antibodies in COVAC-1
326 vaccinated animals since the engagement of immune effector cells via non-neutralizing antibody functions,
327 such as ADCC, is proposed to play an important role in the clearance of infected cells and protection from
328 numerous viral pathogens [36-41]. In SARS-CoV-2, protection elicited following a single vaccination was

329 associated with antibodies able to mediate ADCC [27]. Additionally, many infected human patients with
330 mild disease have very low levels of neutralizing antibodies. In patients with severe disease that survive,
331 ADCC-mediating antibodies are present at higher levels than in patients that do not survive [25, 42] and
332 there is an inverse associated between ADCC and mortality [42]. This observation has even been extended
333 to show an association between ADCC and survival following treatment with convalescent plasma [43].
334 Given the rapid clearance of the virus and the decreased pathological changes in the lungs, this would
335 suggest that the COVAC-1 vaccine is sufficient to induce protection in this model. Not unexpectedly,
336 antibody binding to other distantly related human coronaviruses such as OC43, HKU1 and MERS-CoV
337 was not observed (not shown). However, a low level of binding to the SARS-CoV-1 spike glycoprotein
338 was observed, suggesting that some cross-reactivity is present among more closely related coronaviruses.

339 Subunit vaccines offer several advantages over other vaccine formats that make them desirable. \
340 They are a proven technology that overall has excellent safety profiles. In clinical trials of the different
341 vaccine platforms for COVID-19, local and systemic reaction rates were significantly lower among protein
342 subunit vaccines than in three other COVID-19 vaccine platforms [44]. Subunit vaccines also retain a high
343 safety profile even with multiple boosts [44-46]. Production is also highly scalable, and a significant global
344 manufacturing infrastructure exists. However, in SARS-CoV-2, some limitations must still be overcome.
345 The most critical of these may be ensuring that the spike glycoprotein is present in a form that elicits
346 neutralizing antibodies, as non-neutralizing antibodies may mediate ADE. However, this has yet to be
347 observed in the context of a polyclonal response [47-50]. In this study, S1 formulated with TriAdj, which
348 typically induces a balanced to Th1-biased immune response [18], was demonstrated to provide a high level
349 of protection against the SARS-CoV-2 challenge. In addition, no adverse effects were noted in any of the
350 vaccinated AGMs.

351 However, there are several limitations with this animal model and in this study. This study
352 evaluated gross and histological pathology at limited terminal time points, perhaps missing aspects of
353 disease pathogenesis in the control or vaccinated groups. In addition, the AGM model of SARS-CoV-2
354 does not show significant clinical disease. Thus, it is not possible to conclude that vaccination prevents

355 severe disease, despite this being inferred given the rapid clearance of the virus. Moreover, it has been
356 quite apparent from the human cases that severe disease manifests more frequently with associated
357 comorbidities and at later times in the disease course that we may have precluded with early termination of
358 this experiment. However, it was anticipated that comparing levels of virus in tissues would no longer be
359 possible at later times.

360 In summary, we showed effective immunogenicity and protective effects against SARS-CoV-2
361 challenge from two injections of an S1 subunit vaccine candidate containing TriAdj (COVAC-1).
362 Specifically, our evaluation demonstrated that COVAC-1 had no apparent side effects or ADEs, had a
363 protective effect from lung disease pathology, and elicited neutralizing antibodies in sera of immunized
364 AGMs against SARS-CoV-2 (Canada/ON-VIDO-01/2020). Moreover, vaccinated animals had
365 significantly reduced viral loads within BAL, mucosal swabs, and tissues compared to control animals. This
366 vaccine candidate should be considered for further investigation and development, contributing to the
367 armamentarium in the worldwide fight against SARS-CoV-2.

368

369 **METHODOLOGY**

370 **Vaccine**

371 COVAC-1 consists of a codon-optimized mammalian-produced HIS-tagged S1 protein produced
372 by Biodextris (400 μ g/mL Lot: C2003-VID-DSP-E-002) that has been formulated with TriAdj comprising
373 250 μ g PCEP, 250 μ g poly I:C (Lot: PJ625E01) and 500 μ g IDR-1002 per dose in PBS. Six African green
374 monkeys (AGM) (3 female: 3 male) (animal numbers: 1478, 1512, 1540, 1572, 1775, 1820) received 50 μ g
375 of mammalian-produced SARS-CoV-2 S1 formulated with TriAdj in a volume of 0.5mL delivered via the
376 intramuscular (i.m.) route on the caudal thigh. Animals were vaccinated on day -56 and boosted on day -28
377 pre-challenge. Six control AGMs (3 female: 3 male) (animal numbers 1164, 1250, 1342, 1687, 1774, 1776)
378 were mock vaccinated with PBS following the same sampling timeline as the vaccinated animals.

379 **Animal Challenge**

380 All the animal experiments were approved by the Animal Care Committees of the Canadian
381 Science Center for Human and Animal Health and the University of Saskatchewan in accordance with the
382 guidelines provided by the Canadian Council on Animal Care. All experiments with live SARS-CoV-2
383 were completed within the Biosafety Level 3 (BSL3) or BSL4 laboratories. All twelve AGMs were
384 inoculated with target dose of 5E+04 TCID₅₀ per animal of SARS-CoV-2 (Canada/ON-VIDO-01/2020,
385 GISAID #EPI_ISL_425177) delivered as follows: 0.5mL per nare intranasal (i.n), 5mL intratracheal (i.t.),
386 1mL oral and 0.2mL per eye ocular routes (i.o) for a total volume of 7.4mL. The inoculum was back titered
387 on Vero cells and indicated a total challenge dose of 1.54E+04 TCID₅₀ was delivered. Animals were
388 monitored twice daily for clinical signs of illness, including fever, clinical appearance/behaviour, and
389 respiratory signs. All procedures requiring handling were performed under sedation by ketamine or
390 ketamine in addition to dexmedetomidine.

391 ***In vivo* sampling**

392 Vaccinated animals were sedated, and blood was collected on days -56 (vaccination), -49, -42, -28
393 (vaccine boost), -14, 0, 3, and 7 days post-infection (dpi). Oral, rectal, and nasal swabs (MedPro 018-430)
394 were taken to assess viral shedding at 0, 1, 3, 5, and 7 dpi. Bronchoalveolar lavages (BAL) were completed
395 at days -49, 0, 3 and 7 post-challenge. Electrocardiogram (ECG) and X-rays were performed on days 0, 1,
396 3, 5 and 7 post infection (Figure 1A). Unvaccinated controls followed a similar sampling timeline; however,
397 the viral challenge with SARS-CoV-2 was delayed by one day. Therefore, sampling days included -57, -
398 50, -43, -29, -15 before challenge and 0, 1, 3, 5 and 7 post virus challenge (Figure 1A).

399 BAL procedures were completed on ketamine and dexmedetomidine-sedated animals receiving
400 100% O₂. Animals were intubated with a 3.5-4.5mm cuffed endotracheal tube (ETT) (COVIDIEN, 86445).
401 Subsequently, a sterile suction catheter was placed past the end of an inserted ETT into a main stem
402 bronchus in the distal airway. Saline was then infused through the catheter and immediately aspirated back
403 into the syringe. Once the initial fluid was recovered, the process was repeated 2-3 times, followed by the
404 removal of the catheter. Adequate yields for this procedure are ~60% of the total infused volume.

405 **Virus inactivation, RNA extraction, RT-qPCR**

406 140 μ l of fluid samples were inactivated with AVL (QIAGEN, Valencia, CA), and RNA was
407 subsequently extracted using the QIAamp viral RNA Mini kit (QIAGEN, Valencia, CA) following the
408 manufacturer's instructions. For tissue samples, 30mg of homogenized tissue was inactivated with RLT
409 and extracted using the RNeasy Mini kit (QIAGEN, Valencia, CA) following manufacturer instructions.
410 Primers and probes used to detect SARS-CoV-2 by real-time quantitative PCR (RT-qPCR) were based on
411 the E gene (E_Sarboco_F1: ACAGGTACGTTAATAGTTAATAGCGT, E_Sarboco_R2:
412 ATATTGCAGCAGTACGCACACA, E_Sarboco_P1: FAM-ACACTAGCCATCCTTACTGCGCTTCG-
413 BHQ), described by Corman et al. [51]. RT-qPCR was performed using TaqPath master mix (ThermoFisher
414 Scientific) and run on a QuantStudio 5 RT-qPCR system to measure the cycle threshold (Ct).

415 To compare differences in viral RNA levels between the COVAC-1 vaccinated group and the
416 control group, a Fisher's exact test was completed using GraphPad Prism 9. Additionally, an unpaired t-test
417 with Welch correction was used to analyze the difference in unequal means. The outcome variable was
418 transformed as $\log_{10}(\text{GEQ/mL} + 1)$ to account for samples with 0 viral genome copies.

419 **Virus Titration**

420 Virus titration was performed by tissue culture infectious dose 50 (TCID₅₀) assay using Vero cells
421 (ATCC CCL-81) on blood, swab, BAL and tissue samples that had a Ct at or below 27 measured by RT-
422 qPCR [33]. Briefly, increasing 10-fold dilutions of the samples were incubated on Vero monolayers
423 maintained in modified Eagle's medium (MEM) supplemented with 5% fetal bovine serum (FBS), 1%
424 penicillin/streptomycin, 1% L-glutamine, in triplicate and incubated at 37°C with 5% CO₂. Following
425 incubation for 96-120 hours, the cytopathic effect was measured under a microscope, and TCID₅₀/mL or
426 mg was calculated using the Reed and Muench method as previously described [52].

427 To compare differences in infectious virus levels between the COVAC-1 vaccinated group and the
428 control group, a Fisher's exact test was completed using GraphPad Prism 9. Furthermore, an unpaired t-test
429 with Welch correction was used to analyze the difference in unequal means. The outcome variable was
430 transformed as $\log_{10}(\text{TCID}_{50}/\text{mL} + 1)$ to account for samples with 0 infectious virus recovered.

431 **Hematology**

432 Whole blood collected in an EDTA tube (BD vacutainer) was used to test total white blood cell
433 (WBC) counts, cell differential distribution, red blood cell counts, platelet counts, hematocrit values, total
434 hemoglobin concentrations and other blood markers using an HM5 hematologic analyzer (Abaxis).
435 Additionally, lithium heparin treated blood was tested for markers of organ function, specifically liver and
436 kidney, including albumin (ALB), amylase, alanine aminotransferase (ALT), alkaline phosphatase (ALP),
437 blood urea nitrogen (BUN), calcium, creatinine (CRE), using a Vetscan (Abaxis) and a piccolo point-of-
438 care analyzer with Metlac and Biochemistry Panel Plus analyzer discs (Abaxis). Blood gas analysis,
439 including partial pressures of CO₂ and O₂, pH, bicarbonate, glucose, sodium and potassium levels, was
440 obtained using an iSTAT Alinity hematological analyzer (Abbott).

441 **ELISA**

442 Serum collected at the time points indicated above were tested for SARS-CoV-2 specific antibodies
443 against soluble trimer (S1+S2) (Sino Biological 40859-V08H1) and RBD (Sino Biological 40592-V08B)
444 recombinant proteins. HI BIND Assay plates (COSTAR 3366) were coated with antigen diluted 1:1000 in
445 PBS overnight at 4°C. Plates were then washed three times with wash buffer (PBS with 0.1% Tween20).
446 Wells were then blocked with 100µL of 5% skim milk in 0.2% Tween20 (DIFCO BD 232100) in PBS at
447 37°C. After blocking, serum samples were four-fold serially diluted from 1:100 down to 1:6400 in 5% skim
448 milk in 0.2% Tween20 solution in the pre-coated wells and incubated at 37°C for 1 hour. Serum collected
449 at days -56 and -57 post infection for the vaccinated and control animal was used as a baseline. Plates were
450 subsequently washed with wash buffer three times, and then 100µL of HRP labelled goat anti-human IgG
451 (SERA CARE 5450-0009), diluted 1:2000 in 5% skim milk in 0.2% Tween20 in PBS, was added to the
452 wells and placed at 37°C for 1 hour followed by three more washes. After the final wash, KPL ABST
453 substrate solution A (SERA CARE 5210-0035) and peroxidase substrate solution B (SERA CARE 5120-
454 0038) were mixed in a 1:1 ratio, and 100µL was added to each well. The plates were then incubated for 30
455 minutes at 37°C, and absorbance values were determined at 405nm.

456 **Serum Neutralization Assay**

457 Neutralization titres were calculated by determining the dilution of serum that reduced plaques by
458 50% (PRNT₅₀) following the previously outlined methodology [53]. Briefly, serum collected at the
459 sampling times outlined above was diluted 2-fold and incubated with SARS-CoV-2 (Canada/ON-VIDO-
460 01/2020) for 1 hour at 37°C with 5% CO₂. 100µL of the inoculum was then placed on Vero E6 cells (ATCC
461 CRL-1586) for 1 hour at 37°C with 5% CO₂, rocking every 15 minutes. The cells were then overlaid with
462 a 3% carboxymethylcellulose (CMC) liquid matrix diluted 1:1 with 2X MEM supplemented with 8% FBS,
463 2% L-glutamine, 2% penicillin and streptomycin, 2% non-essential amino acids, 7.5% sodium bicarbonate
464 and incubated at 37°C for 72 hours. Following incubation, the CMC was aspirated, and the cell monolayer
465 was fixed for 1 hour with 10% buffered formalin. The formalin was then removed, and 100µL of 0.5%
466 crystal violet (CV) solution was added to each well for 15 minutes to stain the cells. 1mL of 20% ethanol
467 was added to each well for washing, followed by aspiration of both the CV and ethanol before plaques were
468 counted.

469 **ADCC Assay**

470 A detailed STAR Protocol is available for the ADCC assay [54]. Briefly, parental CEM.NKr CCR5+ cells
471 were mixed at a 1:1 ratio with CEM.NKr.SARS-CoV-2.S cells and stained for viability with AquaVivid
472 (Thermo Fisher Scientific, Waltham, MA, USA) and with cell proliferation dye eFluor670 (Thermo Fisher
473 Scientific) to generate target cells. Overnight rested human PBMCs were stained with cell proliferation dye
474 eFluor450 (Thermo Fisher Scientific) and used as effector cells. Stained target and effector cells were mixed
475 at a ratio of 1:10 in 96-well V-bottom plates. Gamma irradiated serum from vaccinated and control AGMs
476 (1/500 dilution) were added to the appropriate wells. The plates were subsequently centrifuged for 1 min at
477 300 g and incubated at 37°C, 5% CO₂ for 5 h prior to being fixed with 2% PBS-formaldehyde. Samples
478 were acquired on an LSRII cytometer (BD Biosciences), and data analysis was performed using FlowJo
479 v10.7.1 (Tree Star). ADCC activity was calculated as previously described [54].

480 **Cell-based Spike Binding Assay**

481 This assay was performed as previously described (34). Briefly, 293T cells were transfected
482 individually with a plasmid encoding the indicated S glycoprotein (D614G, SARS-CoV-1, OC43, HKU1,

483 MERS-CoV). 48 h post-transfection, S-expressing cells were stained with the CV3-25 Ab or gamma-
484 irradiated serum from vaccinated or control AGMs (1/250 dilution) followed by AlexaFluor-647-
485 conjugated goat anti-human IgM+IgG+IgA Abs (1/800 dilution) as secondary Abs. The percentage of
486 transduced cells (GFP+ cells) was determined by gating the living cell population based on viability dye
487 staining (Aqua Vivid, Invitrogen). Samples were acquired on an LSRII cytometer (BD Biosciences), and
488 data analysis was performed using FlowJo v10.7.1 (Tree Star). The seropositivity threshold was established
489 as previously described [27].

490 **Histopathology and Immunohistochemistry**

491 Tissues collected during necropsy, approximately 1cm³ in size, were immersion-fixed in 10%
492 neutral buffered formalin. Tissues collected included right upper, middle and lower lung, heart, trachea,
493 kidney, tonsils and nasal turbinate. Lung tissues were submitted in tissue cassettes and processed overnight
494 in a Sakura Tissue-Tek VIP6AI Tissue Processor. Samples were taken from 10% neutral buffered formalin,
495 through increasing concentrations of alcohol, to xylene, then finished in paraffin wax over 14 hours.
496 Samples were taken from the tissue cassettes and placed in metal moulds filled with molten wax to create
497 a paraffin “block”. Blocks were subsequently cut at 4 µm on a microtome.

498 **Hematoxylin and Eosin**

499 Hematoxylin and Eosin (H&E) staining was performed on a Sakura (Tissue-Tek) Prisma
500 Automated Slide Stainer. Slides were placed on slide staining racks and deparaffined for 1 hour at 60°C.
501 Surgipath Hematoxylin 560, Surgipath Blue Buffer 8 and Surgipath Alcohol Eosin Y 515 were used
502 onboard the automated stainer. Slides were coverslipped using the Sakura (Tissue-Tek) Glas G2 Automated
503 Coverslipper with Somagen Tissue-Tek Glas Mounting Medium. Tissue sections, including upper, middle,
504 and lower right and left lungs, were scored based on inflammation (0: absent, 1: slight or questionable, 2:
505 clearly present, 3: moderate, 4: severe), the proportion of parenchyma affected, the extent of hypertrophy
506 of alveolar pneumocytes and intensity of hemorrhage.

507 **Immunohistochemistry**

508 Lung tissue sections were prepared for immunohistochemical staining, conducted at Prairie
509 Diagnostic Services (Saskatoon, SK) using an automated slide stainer (Autostainer Plus, Agilent
510 Technologies Canada Inc., Mississauga, ON). Epitope retrieval was performed in Tris/EDTA, pH 9, at 97°C
511 for 20 minutes. The primary antibody was a rabbit polyclonal antibody against the nucleocapsid protein of
512 SARS-CoV-2 (SARS2-N). The SARS2-N-specific antibody was produced in-house by VIDO (Animal
513 Study number AS#20-012). The SARS2-N-specific antibody was diluted at 1:800 in PBS and incubated
514 with the slides for 30 minutes at room temperature. After washing, the bound SARS2-N antibody was then
515 detected using an HRP-labelled polymer detection reagent (EnVision+ System - HRP Labelled Polymer,
516 Agilent Technologies Canada Inc., Mississauga, ON). Immunostaining was categorized as no staining,
517 weak staining intensity, or strong staining intensity.

518 **Flow cytometry and Immunophenotyping**

519 The BALF was centrifuged at 600 x g for 10 minutes. The pellet was then resuspended in 0.5mL
520 plain RPMI medium. An aliquot was mixed with an equal volume of PBS 5 µg/ml Acridine Orange (Life
521 Technologies) 100 µg/mL Propidium Iodide (Life Technologies) and counted on a Nexcelom Cellometer
522 Auto 2000. One hundred microliters of resuspended BALF cells or whole blood were stained as described
523 in the “Immunophenotyping for NHPs, containment protocol” [55]. The samples were run on a
524 FACSymphony A5 instrument.

525 The counts for each population of interest were normalized to the Live CD45+ cells and multiplied by
526 the number of cells per mL of fluid to obtain the concentration of each cell type in the BALF or the count
527 of white blood cells (WBC) from the HM5 analyzer. To compare the cell concentration between the
528 vaccinated and control groups at each time point, a two-way repeated measures mixed-effect ANOVA with
529 Šídák's multiple comparisons test was performed using GraphPad Prism 9. The overall trend over time
530 across groups was compared by using a linear mixed effect model in R. The outcome variable was the
531 $\log_{10}(\text{Cell Concentration} + 1)$ to account for samples with a cell concentration of 0.

532

533 **FIGURE LEGENDS**

534 **Figure 1:** Schematic of the experimental and sampling timeline showing initial COVAC-1 vaccination and
535 homologous boost prior to SARS-CoV-2 challenge, as well as the time points BAL, blood, X-ray/EKGs
536 and swabs, taken throughout (A). All animals were monitored for changes in temperature (B) and percent
537 weight change (C) from initial vaccination (day -56/-57) until 7dpi. Each line represents an individual
538 animal, with red indicating vaccinated animals and black representing control AGMS.

539

540 **Figure 2:** Blood was collected from all AGMs at 0, 3 and 7dpi for blood gas analysis using an iSTAT
541 Alinity hematological analyzer. The measured parameters included pH (A), pCO₂ (C), saturated oxygen
542 sO₂ (D) and bicarbonate HCO₃ (E). Animals' respiratory rates were measured during sedation (B). Each
543 line represents an individual animal, with red indicating vaccinated animals and black representing control
544 AGMs.

545

546 **Figure 3:** EDTA treated blood was collected from all AGMs at 0, 3, and 7 days post SARS-CoV-2 infection
547 for complete blood count analysis. Hematology values are presented for total white blood cell counts (A),
548 platelets (B), total red blood cell counts (C), monocyte (D), lymphocytes (E) and neutrophils (F). Each line
549 represents an individual animal, with red indicating vaccinated animals and black representing control
550 AGMS.

551

552 **Figure 4:** Lithium heparin treated blood collected at 0, 3 and 7 days post infection with SARS-CoV-2 was
553 used to evaluate clinical chemistry markers for kidney and liver function. These markers include alanine
554 aminotransferase ALT (A), blood urea nitrogen BUN (B), albumin ALB (C), creatinine CRE (D), alkaline
555 phosphatase ALP (E) and total protein TP (F). Each line represents an individual animal, with red indicating
556 vaccinated animals and black representing control AGMS.

557

558 **Figure 5:** SARS-CoV-2 viral loads in control and COVAC-1 vaccinated AGMs. SARS-CoV-2 RNA and
559 infectious virus in nasal swabs (A, B), rectal swabs (C, D), BAL fluid (E, F), tissues (G, H) and blood (I).

560 Blue asterisk (*) indicates statistical significance ($p<0.05$) in percent positive when comparing COVAC-1
561 treated animals to unvaccinated controls. Green asterisk (*) represents a statistically significant difference
562 in unequal means when comparing COVAC-1 to unvaccinated controls.

563

564 **Figure 6:** Representative histological staining and gross pathology of the right lower lung from control
565 animal 1687 and COVAC-1 treated animal 1775. H&E staining at 4X magnification (A, B) and 10X
566 magnification (C, D). Immunohistochemistry of the right lower lung of control animal 1687 showed strong
567 immunoreactivity in pneumocytes and alveolar macrophages at 20X magnification (E). COVAC-1 treated
568 animal 1775 showed an absence of staining in pneumocytes at 20X magnification (F). Gross pathology of
569 control animal 1687 showed patchy red lesions indicative of inflammation and edema (G), which were not
570 apparent in COVAC-1 treated animal 1775 (H). Histology additive pathology scores comparing COVAC-
571 1 vaccinated animals and control animals (I).

572

573 **Figure 7:** FACS-based ADCC assay was completed on CEM.NKr CCR5+ and CEM.NKr.SARS-CoV-2S
574 target cells using serum from COVAC-1 vaccinated animals and unvaccinated control AGMs as effector
575 cells. Results are presented as mean fluorescent intensity (MFI) (A), and percentage of ADCC obtained
576 (B). Spike-specific binding was evaluated by flow cytometry using 293T cells expressing either SARS-
577 CoV-2 (C) or SARS-CoV-1 (D) S full-length glycoproteins.

578

579 **Figure 8:** Infiltration of populations of interest in the BAL fluid of challenged animals. BAL fluid was
580 processed by flow cytometry to assess the concentration of several cell populations. The plots present the
581 concentration per mL of BAL fluid (+ 1 to account for 0s). Thin lines are individual animals, and thick lines
582 are group averages. All other cell types evaluated are plotted and analyzed in Supplementary Material.

583

584 **ACKNOWLEDGEMENTS**

585 SARS-CoV-2 research is supported in the laboratory of D.F. by the Canadian Institutes of Health
586 Research (CIHR) grants OV5-170349, VRI-173022 and VS1-175531 and in the laboratory of A.F by
587 grants 352417 and 177958 and by an Exceptional Fund COVID-19 from the Canada Foundation for
588 Innovation (CFI) #41027 to A.F. D.F. is a member of the CIHR-funded Coronavirus Variants Rapid
589 Response Network (CoVaRR-Net). VIDO receives operational support from the Province of
590 Saskatchewan through Innovation Saskatchewan and from the Canadian Foundation for Innovation
591 through the Major Science Initiatives. A.F. is the recipient of a Canada Research Chair on Retroviral
592 Entry # RCHS0235 950-232424. G.B.B. is the recipient of a Fonds de Recherche Québec-Santé (FRQS)
593 PhD fellowship. The funders had no role in study design, data collection and analysis, decision to publish,
594 or preparation of the manuscript. The authors have declared that no competing interests exist.

595

596 REFERENCES

597

- 598 1. Wang Y, Wang L, Cao H, Liu C. SARS-CoV-2 S1 is superior to the RBD as a COVID-
599 19 subunit vaccine antigen. *J Med Virol.* 2021;93(2):892-8. Epub 2020/07/22. doi:
600 10.1002/jmv.26320. PubMed PMID: 32691875; PubMed Central PMCID: PMCPMC7404424.
- 601 2. Knoll MD, Wonodi C. Oxford-AstraZeneca COVID-19 vaccine efficacy. *Lancet.*
602 2021;397(10269):72-4. Epub 2020/12/12. doi: 10.1016/S0140-6736(20)32623-4. PubMed
603 PMID: 33306990; PubMed Central PMCID: PMCPMC7832220.
- 604 3. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and
605 Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *N Engl J Med.* 2020;383(27):2603-15.
606 Epub 2020/12/11. doi: 10.1056/NEJMoa2034577. PubMed PMID: 33301246; PubMed Central
607 PMCID: PMCPMC7745181.
- 608 4. Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N, et al. Effect of 2
609 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A
610 Randomized Clinical Trial. *JAMA.* 2021;326(1):35-45. Epub 2021/05/27. doi:
611 10.1001/jama.2021.8565. PubMed PMID: 34037666; PubMed Central PMCID:
612 PMCPMC8156175.
- 613 5. Lazaro-Frias A, Perez P, Zamora C, Sanchez-Cordon PJ, Guzman M, Luczkowiak J, et
614 al. Full efficacy and long-term immunogenicity induced by the SARS-CoV-2 vaccine candidate
615 MVA-CoV2-S in mice. *NPJ Vaccines.* 2022;7(1):17. Epub 2022/02/11. doi: 10.1038/s41541-
616 022-00440-w. PubMed PMID: 35140227; PubMed Central PMCID: PMCPMC8828760.
- 617 6. Escriou N, Callendret B, Lorin V, Combredet C, Marianneau P, Fevrier M, et al.
618 Protection from SARS coronavirus conferred by live measles vaccine expressing the spike
619 glycoprotein. *Virology.* 2014;452-453:32-41. Epub 2014/03/13. doi:
620 10.1016/j.virol.2014.01.002. PubMed PMID: 24606680; PubMed Central PMCID:
621 PMCPMC7111909.

622 7. Kim YI, Kim D, Yu KM, Seo HD, Lee SA, Casel MAB, et al. Development of Spike
623 Receptor-Binding Domain Nanoparticles as a Vaccine Candidate against SARS-CoV-2 Infection
624 in Ferrets. *mBio*. 2021;12(2). Epub 2021/03/04. doi: 10.1128/mBio.00230-21. PubMed PMID:
625 33653891; PubMed Central PMCID: PMCPMC8092224.

626 8. Prompetchara E, Ketloy C, Tharakhet K, Kaewpang P, Buranapraditkun S,
627 Techawiwattanaboon T, et al. DNA vaccine candidate encoding SARS-CoV-2 spike proteins
628 elicited potent humoral and Th1 cell-mediated immune responses in mice. *PLoS One*.
629 2021;16(3):e0248007. Epub 2021/03/23. doi: 10.1371/journal.pone.0248007. PubMed PMID:
630 33750975; PubMed Central PMCID: PMCPMC7984610 following competing interests to
631 declare: WW is a consultant for BioNet-Asia Co., Ltd. BioNet-Asia Co., Ltd provided peptides
632 for T cells assay. This does not alter our adherence to PLOS ONE policies on sharing data and
633 materials. There are no patents, products in development or marketed products associated with
634 this research to declare.

635 9. Martinez-Flores D, Zepeda-Cervantes J, Cruz-Resendiz A, Aguirre-Sampieri S, Sampieri
636 A, Vaca L. SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New
637 Viral Variants. *Front Immunol*. 2021;12:701501. Epub 2021/07/30. doi:
638 10.3389/fimmu.2021.701501. PubMed PMID: 34322129; PubMed Central PMCID:
639 PMCPMC8311925.

640 10. Kaur SP, Gupta V. COVID-19 Vaccine: A comprehensive status report. *Virus Res*.
641 2020;288:198114. Epub 2020/08/18. doi: 10.1016/j.virusres.2020.198114. PubMed PMID:
642 32800805; PubMed Central PMCID: PMCPMC7423510.

643 11. Guo Y, He W, Mou H, Zhang L, Chang J, Peng S, et al. An Engineered Receptor-
644 Binding Domain Improves the Immunogenicity of Multivalent SARS-CoV-2 Vaccines. *mBio*.
645 2021;12(3). Epub 2021/05/13. doi: 10.1128/mBio.00930-21. PubMed PMID: 33975938;
646 PubMed Central PMCID: PMCPMC8262850.

647 12. Liu Z, Xu W, Xia S, Gu C, Wang X, Wang Q, et al. RBD-Fc-based COVID-19 vaccine
648 candidate induces highly potent SARS-CoV-2 neutralizing antibody response. *Signal Transduct
649 Target Ther*. 2020;5(1):282. Epub 2020/11/29. doi: 10.1038/s41392-020-00402-5. PubMed
650 PMID: 33247109; PubMed Central PMCID: PMCPMC7691975.

651 13. He Y, Zhou Y, Liu S, Kou Z, Li W, Farzan M, et al. Receptor-binding domain of SARS-
652 CoV spike protein induces highly potent neutralizing antibodies: implication for developing
653 subunit vaccine. *Biochem Biophys Res Commun*. 2004;324(2):773-81. Epub 2004/10/12. doi:
654 10.1016/j.bbrc.2004.09.106. PubMed PMID: 15474494; PubMed Central PMCID:
655 PMCPMC7092904.

656 14. Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. *Nat Med*.
657 2013;19(12):1597-608. Epub 2013/12/07. doi: 10.1038/nm.3409. PubMed PMID: 24309663.

658 15. Woolsey C, Borisevich V, Prasad AN, Agans KN, Deer DJ, Dobias NS, et al.
659 Establishment of an African green monkey model for COVID-19 and protection against re-
660 infection. *Nat Immunol*. 2021;22(1):86-98. Epub 2020/11/26. doi: 10.1038/s41590-020-00835-8.
661 PubMed PMID: 33235385; PubMed Central PMCID: PMCPMC7790436.

662 16. Speranza E, Williamson BN, Feldmann F, Sturdevant GL, Perez-Perez L, Meade-White
663 K, et al. Single-cell RNA sequencing reveals SARS-CoV-2 infection dynamics in lungs of
664 African green monkeys. *Sci Transl Med*. 2021;13(578). Epub 2021/01/13. doi:
665 10.1126/scitranslmed.abe8146. PubMed PMID: 33431511; PubMed Central PMCID:
666 PMCPMC7875333.

667 17. Cross RW, Agans KN, Prasad AN, Borisevich V, Woolsey C, Deer DJ, et al. Intranasal
668 exposure of African green monkeys to SARS-CoV-2 results in acute phase pneumonia with
669 shedding and lung injury still present in the early convalescence phase. *Virol J.* 2020;17(1):1-12.
670 Epub 2020/08/21. doi: 10.21203/rs.3.rs-50023/v2. PubMed PMID: 32818211; PubMed Central
671 PMCID: PMC7430587.

672 18. Garg R, Latimer L, Gerdts V, Potter A, van Drunen Littel-van den Hurk S. Vaccination
673 with the RSV fusion protein formulated with a combination adjuvant induces long-lasting
674 protective immunity. *J Gen Virol.* 2014;95(Pt 5):1043-54. Epub 2014/02/28. doi:
675 10.1099/vir.0.062570-0. PubMed PMID: 24572813.

676 19. Garg R, Brownlie R, Latimer L, Gerdts V, Potter A, van Drunen Littel-van den Hurk S. A
677 chimeric glycoprotein formulated with a combination adjuvant induces protective immunity
678 against both human respiratory syncytial virus and parainfluenza virus type 3. *Antiviral Res.*
679 2018;158:78-87. Epub 2018/08/03. doi: 10.1016/j.antiviral.2018.07.021. PubMed PMID:
680 30071204.

681 20. Garg R, Latimer L, Gomis S, Gerdts V, Potter A, van Drunen Littel-van den Hurk S.
682 Maternal vaccination with a novel chimeric glycoprotein formulated with a polymer-based
683 adjuvant provides protection from human parainfluenza virus type 3 in newborn lambs. *Antiviral Res.*
684 2019;162:54-60. Epub 2018/12/15. doi: 10.1016/j.antiviral.2018.12.010. PubMed PMID:
685 30550799.

686 21. Wilson HL, Kovacs-Nolan J, Latimer L, Buchanan R, Gomis S, Babiuk L, et al. A novel
687 triple adjuvant formulation promotes strong, Th1-biased immune responses and significant
688 antigen retention at the site of injection. *Vaccine.* 2010;28(52):8288-99. Epub 2010/10/21. doi:
689 10.1016/j.vaccine.2010.10.006. PubMed PMID: 20959153.

690 22. Lu Y, Landreth S, Liu G, Brownlie R, Gaba A, Littel-van den Hurk SVD, et al. Innate
691 immunemodulator containing adjuvant formulated HA based vaccine protects mice from lethal
692 infection of highly pathogenic avian influenza H5N1 virus. *Vaccine.* 2020;38(10):2387-95. Epub
693 2020/02/06. doi: 10.1016/j.vaccine.2020.01.051. PubMed PMID: 32014270.

694 23. Garg R, Babiuk L, van Drunen Littel-van den Hurk S, Gerdts V. A novel combination
695 adjuvant platform for human and animal vaccines. *Vaccine.* 2017;35(35 Pt A):4486-9. Epub
696 2017/06/11. doi: 10.1016/j.vaccine.2017.05.067. PubMed PMID: 28599794.

697 24. Blair RV, Vaccari M, Doyle-Meyers LA, Roy CJ, Russell-Lodrigue K, Fahlberg M, et al.
698 Acute Respiratory Distress in Aged, SARS-CoV-2-Infected African Green Monkeys but Not
699 Rhesus Macaques. *Am J Pathol.* 2021;191(2):274-82. Epub 2020/11/11. doi:
700 10.1016/j.ajpath.2020.10.016. PubMed PMID: 33171111; PubMed Central PMCID:
701 PMC7648506.

702 25. Yu Y, Wang M, Zhang X, Li S, Lu Q, Zeng H, et al. Antibody-dependent cellular
703 cytotoxicity response to SARS-CoV-2 in COVID-19 patients. *Signal Transduct Target Ther.*
704 2021;6(1):346. Epub 2021/09/26. doi: 10.1038/s41392-021-00759-1. PubMed PMID: 34561414;
705 PubMed Central PMCID: PMC8463587.

706 26. Vigon L, Garcia-Perez J, Rodriguez-Mora S, Torres M, Mateos E, Castillo de la Osa M,
707 et al. Impaired Antibody-Dependent Cellular Cytotoxicity in a Spanish Cohort of Patients With
708 COVID-19 Admitted to the ICU. *Front Immunol.* 2021;12:742631. Epub 2021/10/08. doi:
709 10.3389/fimmu.2021.742631. PubMed PMID: 34616404; PubMed Central PMCID:
710 PMC8488389.

711 27. Tauzin A, Nayrac M, Benlarbi M, Gong SY, Gasser R, Beaudoin-Bussieres G, et al. A
712 single dose of the SARS-CoV-2 vaccine BNT162b2 elicits Fc-mediated antibody effector

713 functions and T cell responses. *Cell Host Microbe*. 2021;29(7):1137-50 e6. Epub 2021/06/17.
714 doi: 10.1016/j.chom.2021.06.001. PubMed PMID: 34133950; PubMed Central PMCID:
715 PMCPMC8175625.

716 28. Takayama K. In Vitro and Animal Models for SARS-CoV-2 research. *Trends Pharmacol
717 Sci*. 2020;41(8):513-7. Epub 2020/06/20. doi: 10.1016/j.tips.2020.05.005. PubMed PMID:
718 32553545; PubMed Central PMCID: PMCPMC7260555.

719 29. Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Perez-Perez L, Schulz J, et
720 al. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. *Nature*.
721 2020;585(7824):268-72. Epub 2020/05/13. doi: 10.1038/s41586-020-2324-7. PubMed PMID:
722 32396922; PubMed Central PMCID: PMCPMC7486227.

723 30. Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, et al.
724 Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model.
725 *Science*. 2020;368(6494):1012-5. Epub 2020/04/19. doi: 10.1126/science.abb7314. PubMed
726 PMID: 32303590; PubMed Central PMCID: PMCPMC7164679.

727 31. Borakati A, Perera A, Johnson J, Sood T. Diagnostic accuracy of X-ray versus CT in
728 COVID-19: a propensity-matched database study. *BMJ Open*. 2020;10(11):e042946. Epub
729 2020/11/08. doi: 10.1136/bmjopen-2020-042946. PubMed PMID: 33158840; PubMed Central
730 PMCID: PMCPMC7650091.

731 32. Polak SB, Van Gool IC, Cohen D, von der Thesen JH, van Paassen J. A systematic
732 review of pathological findings in COVID-19: a pathophysiological timeline and possible
733 mechanisms of disease progression. *Mod Pathol*. 2020;33(11):2128-38. Epub 2020/06/24. doi:
734 10.1038/s41379-020-0603-3. PubMed PMID: 32572155; PubMed Central PMCID:
735 PMCPMC7306927.

736 33. Bullard J, Dust K, Funk D, Strong JE, Alexander D, Garnett L, et al. Predicting Infectious
737 Severe Acute Respiratory Syndrome Coronavirus 2 From Diagnostic Samples. *Clin Infect Dis*.
738 2020;71(10):2663-6. Epub 2020/05/23. doi: 10.1093/cid/ciaa638. PubMed PMID: 32442256;
739 PubMed Central PMCID: PMCPMC7314198.

740 34. da Silva Antunes R, Pallikkuth S, Williams E, Dawen Yu E, Mateus J, Quiambao L, et al.
741 Differential T-Cell Reactivity to Endemic Coronaviruses and SARS-CoV-2 in Community and
742 Health Care Workers. *J Infect Dis*. 2021;224(1):70-80. Epub 2021/04/07. doi:
743 10.1093/infdis/jiab176. PubMed PMID: 33822097; PubMed Central PMCID:
744 PMCPMC8083569.

745 35. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets
746 of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and
747 Unexposed Individuals. *Cell*. 2020;181(7):1489-501 e15. Epub 2020/05/31. doi:
748 10.1016/j.cell.2020.05.015. PubMed PMID: 32473127; PubMed Central PMCID:
749 PMCPMC7237901.

750 36. Zohar T, Alter G. Dissecting antibody-mediated protection against SARS-CoV-2. *Nat
751 Rev Immunol*. 2020;20(7):392-4. Epub 2020/06/10. doi: 10.1038/s41577-020-0359-5. PubMed
752 PMID: 32514035; PubMed Central PMCID: PMCPMC7278217.

753 37. Schafer A, Muecksch F, Lorenzi JCC, Leist SR, Cipolla M, Bournazos S, et al. Antibody
754 potency, effector function, and combinations in protection and therapy for SARS-CoV-2
755 infection in vivo. *J Exp Med*. 2021;218(3). Epub 2020/11/20. doi: 10.1084/jem.20201993.
756 PubMed PMID: 33211088; PubMed Central PMCID: PMCPMC7673958 treatment of COVID-
757 19. D.F. Robbiani reported a patent to coronavirus antibodies pending. M.C. Nussenzweig
758 reported a patent to anti-SARS-2 antibodies pending, and reported that Rockefeller University

759 has applied for a patent on anti-SARS-2 antibodies. These antibodies are being produced for
760 human clinical trials but have not been licensed to any commercial entity. No other disclosures
761 were reported.

762 38. Su B, Dispineri S, Iannone V, Zhang T, Wu H, Carapito R, et al. Update on Fc-Mediated
763 Antibody Functions Against HIV-1 Beyond Neutralization. *Front Immunol.* 2019;10:2968. Epub
764 2020/01/11. doi: 10.3389/fimmu.2019.02968. PubMed PMID: 31921207; PubMed Central
765 PMCID: PMCPMC6930241.

766 39. Beaudoin-Bussieres G, Chen Y, Ullah I, Prevost J, Tolbert WD, Symmes K, et al. A Fc-
767 enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb
768 to protect mice from lethal SARS-CoV-2 infection. *Cell Rep.* 2022;38(7):110368. Epub
769 2022/02/07. doi: 10.1016/j.celrep.2022.110368. PubMed PMID: 35123652; PubMed Central
770 PMCID: PMCPMC8786652.

771 40. Tazuin A, Gong SY, Beaudoin-Bussieres G, Vezina D, Gasser R, Nault L, et al. Strong
772 humoral immune responses against SARS-CoV-2 Spike after BNT162b2 mRNA vaccination
773 with a 16-week interval between doses. *Cell Host Microbe.* 2022;30(1):97-109 e5. Epub
774 2021/12/27. doi: 10.1016/j.chom.2021.12.004. PubMed PMID: 34953513; PubMed Central
775 PMCID: PMCPMC8639412.

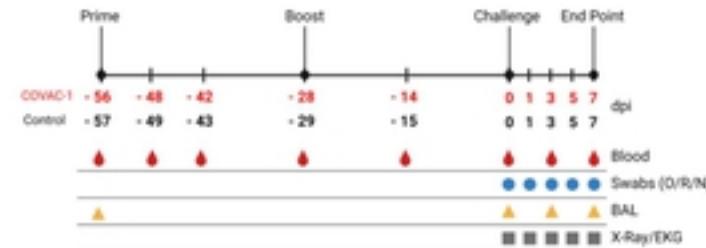
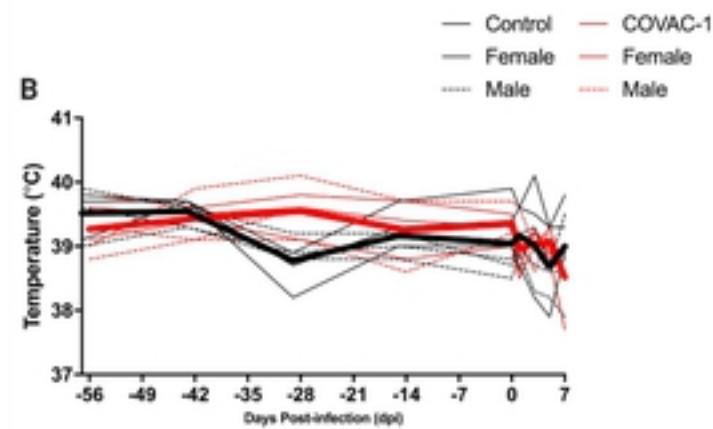
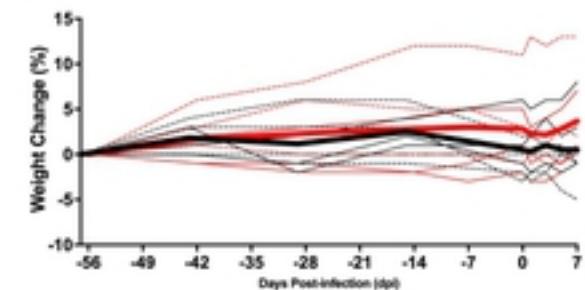
776 41. Ullah I, Prevost J, Ladinsky MS, Stone H, Lu M, Anand SP, et al. Live imaging of
777 SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for
778 optimal efficacy. *Immunity.* 2021;54(9):2143-58 e15. Epub 2021/08/29. doi:
779 10.1016/j.jimmuni.2021.08.015. PubMed PMID: 34453881; PubMed Central PMCID:
780 PMCPMC8372518.

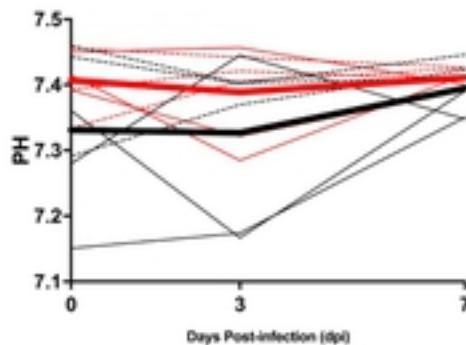
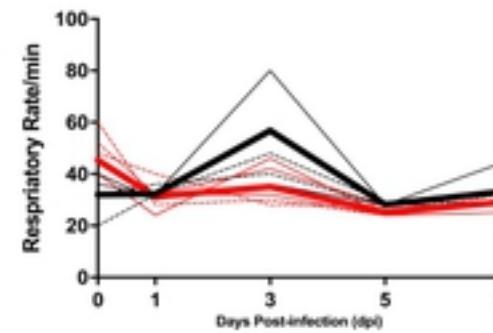
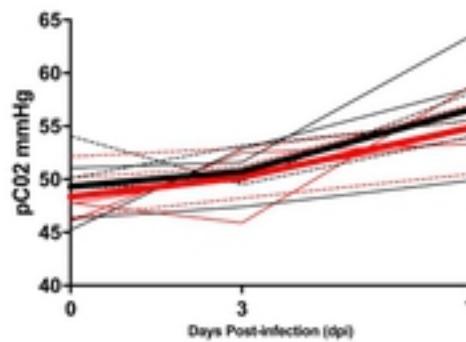
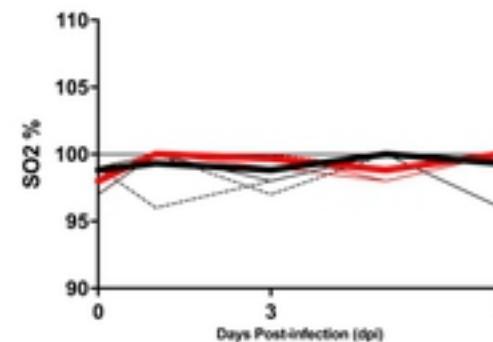
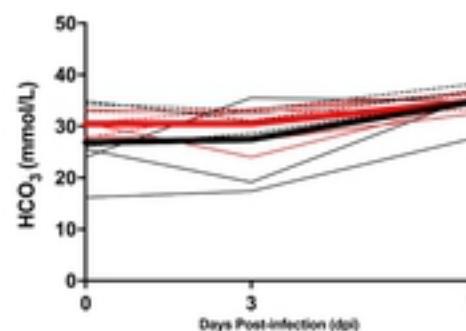
781 42. Brunet-Ratnasingham E, Anand SP, Gantner P, Dyachenko A, Moquin-Beaudry G,
782 Brassard N, et al. Integrated immunovirological profiling validates plasma SARS-CoV-2 RNA
783 as an early predictor of COVID-19 mortality. *Sci Adv.* 2021;7(48):eabj5629. Epub 2021/11/27.
784 doi: 10.1126/sciadv.abj5629. PubMed PMID: 34826237; PubMed Central PMCID:
785 PMCPMC8626074.

786 43. Begin P, Callum J, Jamula E, Cook R, Heddle NM, Tinmouth A, et al. Convalescent
787 plasma for hospitalized patients with COVID-19: an open-label, randomized controlled trial. *Nat
788 Med.* 2021;27(11):2012-24. Epub 2021/09/11. doi: 10.1038/s41591-021-01488-2. PubMed
789 PMID: 34504336; PubMed Central PMCID: PMCPMC8604729.

790 44. Wu Q, Dudley MZ, Chen X, Bai X, Dong K, Zhuang T, et al. Evaluation of the safety
791 profile of COVID-19 vaccines: a rapid review. *BMC Med.* 2021;19(1):173. Epub 2021/07/29.
792 doi: 10.1186/s12916-021-02059-5. PubMed PMID: 34315454; PubMed Central PMCID:
793 PMCPMC8315897.

794 45. Munro APS, Janani L, Cornelius V, Aley PK, Babbage G, Baxter D, et al. Safety and
795 immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of
796 ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre,
797 randomised, controlled, phase 2 trial. *Lancet.* 2021;398(10318):2258-76. Epub 2021/12/06. doi:
798 10.1016/S0140-6736(21)02717-3. PubMed PMID: 34863358; PubMed Central PMCID:
799 PMCPMC8639161 an investigator on studies funded or sponsored by vaccine manufacturers
800 including AstraZeneca, GlaxoSmithKline, Janssen, MedImmune, Merck, Pfizer, Sanofi, and
801 Valneva. She receives no personal financial payment for this work. SNF acts on behalf of
802 University Hospital Southampton National Health Service (NHS) Foundation Trust as an
803 investigator or providing consultative advice, or both, on clinical trials and studies of COVID-19
804 and other vaccines funded or sponsored by vaccine manufacturers including Janssen, Pfizer,

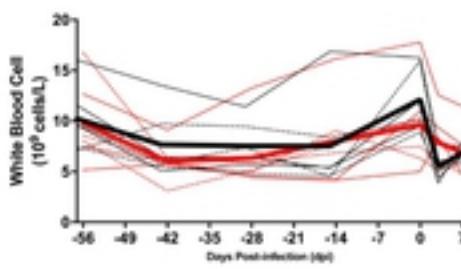



805 AstraZeneca, GlaxoSmithKline, Novavax, Seqirus, Sanofi, Medimmune, Merck, and Valneva.
806 He receives no personal financial payment for this work. ALG is named as an inventor on a
807 patent covering use of a particular promoter construct that is often used in ChAdOx1-vectored
808 vaccines and is incorporated in the ChAdOx1 nCoV-19 vaccine. ALG might benefit from royalty
809 income paid to the University of Oxford from sales of this vaccine by AstraZeneca and its
810 sublicensees under the University's revenue sharing policy. JH has received payments for
811 presentations for AstraZeneca, Boehringer Ingelheim, Chiesi, Cippe, and Teva. VL acts on behalf
812 of University College London Hospitals NHS Foundation Trust as an investigator on clinical
813 trials of COVID-19 vaccines funded or sponsored by vaccine manufacturers including Pfizer,
814 AstraZeneca, and Valneva. He receives no personal financial payment for this work. PM acts on
815 behalf of University Hospital Southampton NHS Foundation Trust and The Adam Practice as an
816 investigator on studies funded or sponsored by vaccine manufacturers including AstraZeneca,
817 GlaxoSmithKline, Novavax, Medicago, and Sanofi. He received no personal financial payment
818 for this work. JSN-V-T is seconded to the Department of Health and Social Care, England. MR
819 has provided post marketing surveillance reports on vaccines for Pfizer and GlaxoSmithKline for
820 which a cost recover charge is made. MDS acts on behalf of the University of Oxford as an
821 investigator on studies funded or sponsored by vaccine manufacturers including AstraZeneca,
822 GlaxoSmithKline, Pfizer, Novavax, Janssen, Medimmune, and MCM vaccines. He received no
823 personal financial payment for this work. All other authors declare no competing interests.
824 46. Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological
825 considerations for COVID-19 vaccine strategies. *Nat Rev Immunol.* 2020;20(10):615-32. Epub
826 2020/09/06. doi: 10.1038/s41577-020-00434-6. PubMed PMID: 32887954; PubMed Central
827 PMCID: PMCPMC7472682.
828 47. Wu Y, Huang X, Yuan L, Wang S, Zhang Y, Xiong H, et al. A recombinant spike protein
829 subunit vaccine confers protective immunity against SARS-CoV-2 infection and transmission in
830 hamsters. *Sci Transl Med.* 2021;13(606). Epub 2021/07/22. doi: 10.1126/scitranslmed.abg1143.
831 PubMed PMID: 34285130.
832 48. Arunachalam PS, Walls AC, Golden N, Atyeo C, Fischinger S, Li C, et al. Adjuvanting a
833 subunit COVID-19 vaccine to induce protective immunity. *Nature.* 2021;594(7862):253-8. Epub
834 2021/04/20. doi: 10.1038/s41586-021-03530-2. PubMed PMID: 33873199.
835 49. Wang S, Wang J, Yu X, Jiang W, Chen S, Wang R, et al. Antibody-dependent
836 enhancement (ADE) of SARS-CoV-2 pseudoviral infection requires Fc γ RIIB and virus-
837 antibody complex with bivalent interaction. *Commun Biol.* 2022;5(1):262. Epub 2022/03/26.
838 doi: 10.1038/s42003-022-03207-0. PubMed PMID: 35332252; PubMed Central PMCID:
839 PMCPMC8948278.
840 50. Junqueira C, Crespo A, Ranjbar S, de Lacerda LB, Lewandrowski M, Ingber J, et al.
841 Fc γ R-mediated SARS-CoV-2 infection of monocytes activates inflammation. *Nature.*
842 2022. Epub 2022/04/07. doi: 10.1038/s41586-022-04702-4. PubMed PMID: 35385861.
843 51. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of
844 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. *Euro Surveill.* 2020;25(3). Epub
845 2020/01/30. doi: 10.2807/1560-7917.ES.2020.25.3.2000045. PubMed PMID: 31992387;
846 PubMed Central PMCID: PMCPMC6988269.
847 52. Ramakrishnan MA. Determination of 50% endpoint titer using a simple formula. *World J*
848 *Virol.* 2016;5(2):85-6. Epub 2016/05/14. doi: 10.5501/wjv.v5.i2.85. PubMed PMID: 27175354;
849 PubMed Central PMCID: PMCPMC4861875.






850 53. Mendoza EJ, Mangiat K, Wood H, Drebot M. Two Detailed Plaque Assay Protocols for
851 the Quantification of Infectious SARS-CoV-2. *Curr Protoc Microbiol*. 2020;57(1):ecpmc105.
852 Epub 2020/06/01. doi: 10.1002/cpmc.105. PubMed PMID: 32475066; PubMed Central PMCID:
853 PMC7300432.

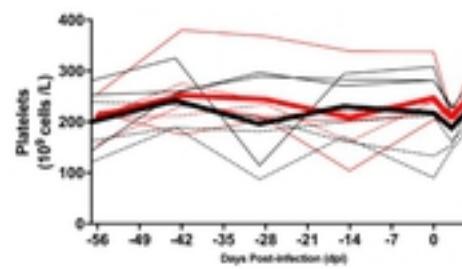
854 54. Beaudoin-Bussieres G, Richard J, Prevost J, Goyette G, Finzi A. A new flow cytometry
855 assay to measure antibody-dependent cellular cytotoxicity against SARS-CoV-2 Spike-
856 expressing cells. *STAR Protoc*. 2021;2(4):100851. Epub 2021/09/21. doi:
857 10.1101/j.xpro.2021.100851. PubMed PMID: 34541555; PubMed Central PMCID:
858 PMC8435374.

859 55. Audet J, Meilleur C. Immunophenotyping for NHPs, containmnet protocol. *protocolsio*.
860 2022.

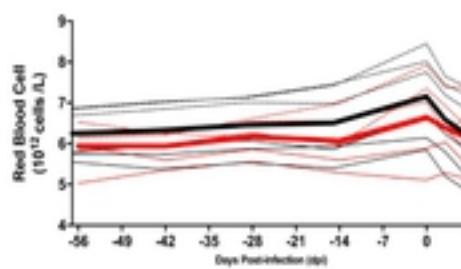
861

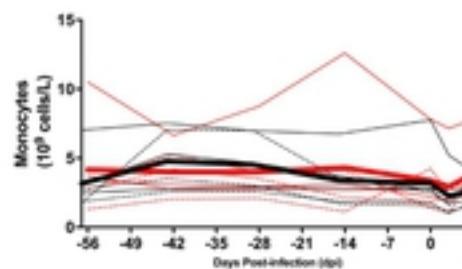

A**B****C**

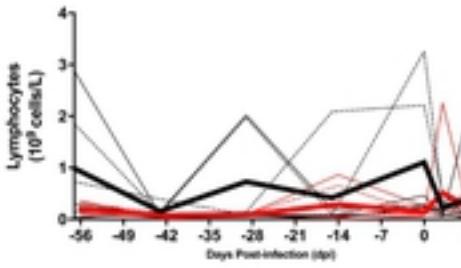
A**B****C****D****E**

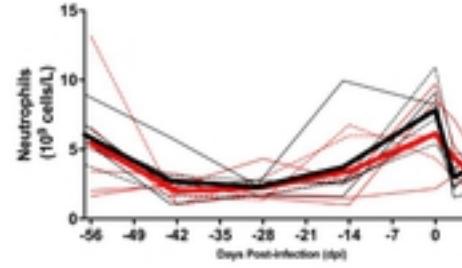

— Control — COVAC-1
— Female — Female
..... Male Male

— Control — COVAC-1
— Female — Female
- - - Male - - - Male

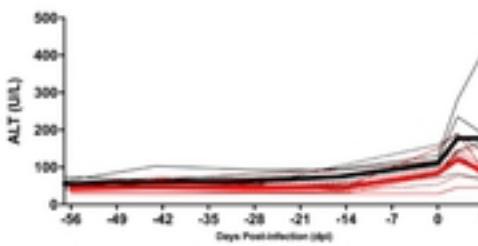

A


B

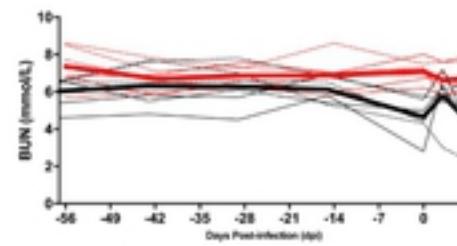

C


D

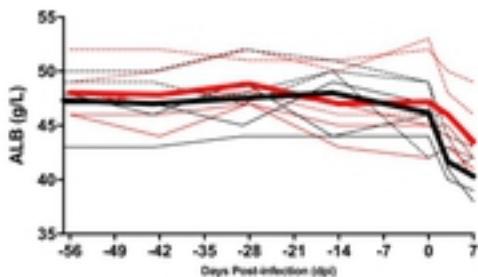
E

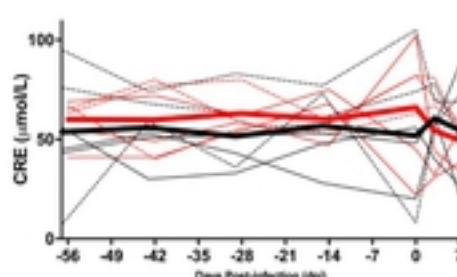


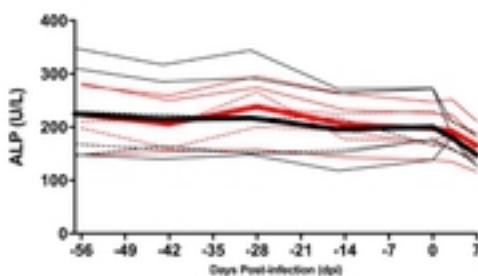
F

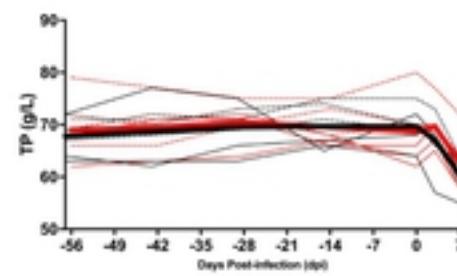


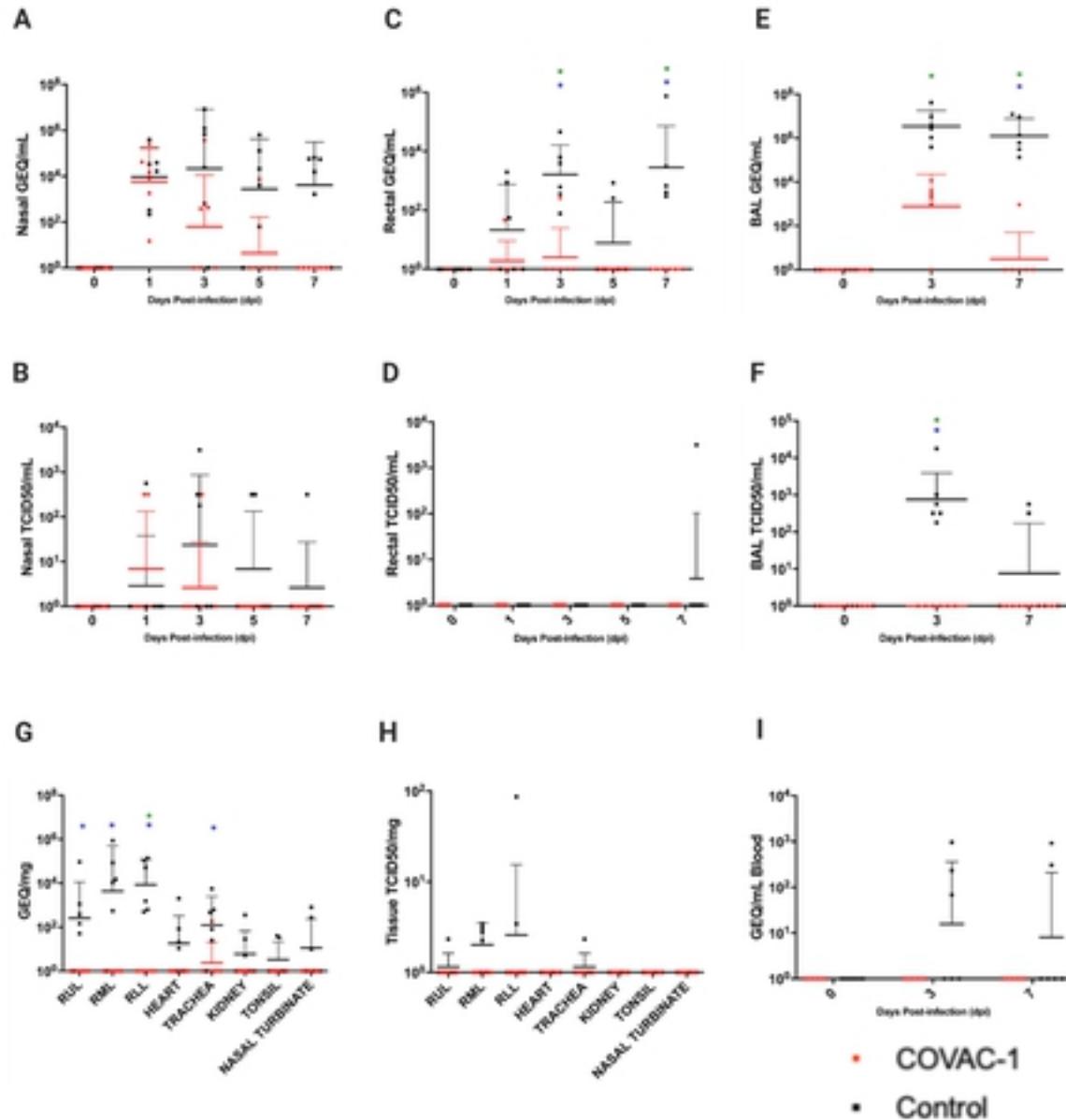
— Control — COVAC-1
— Female — Female
---- Male ----- Male

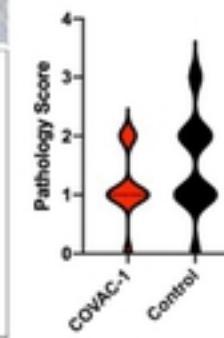
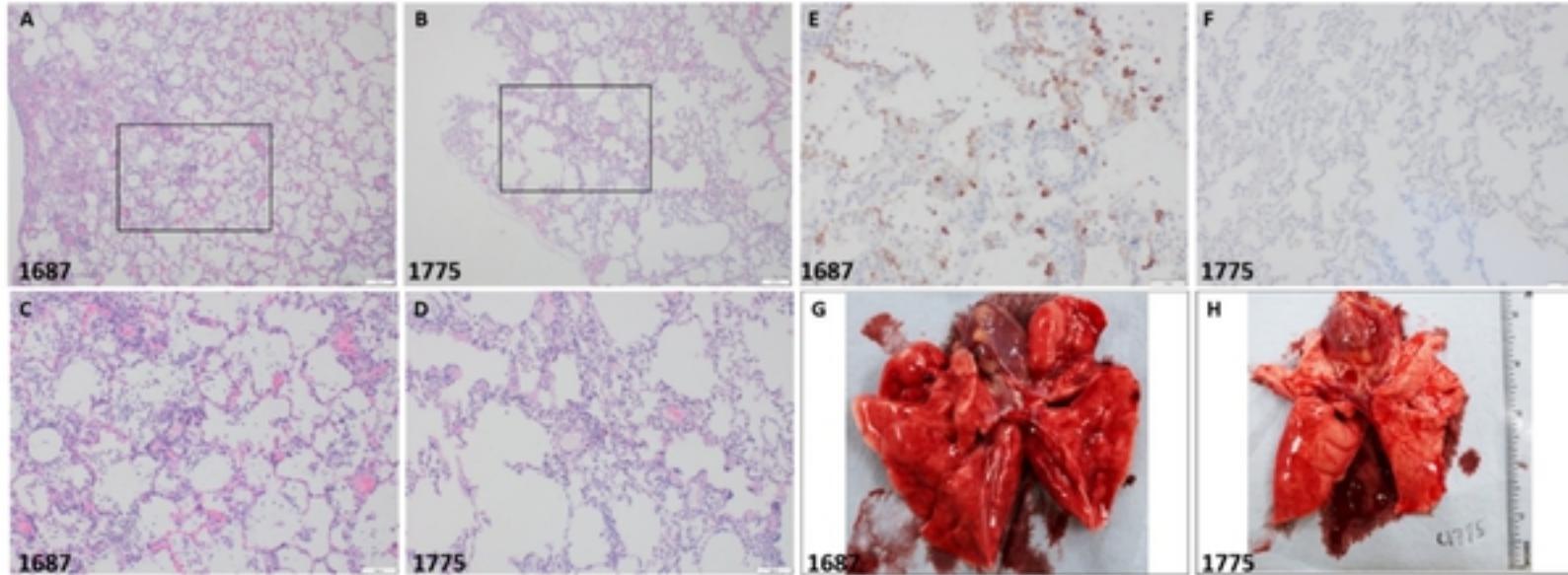

A

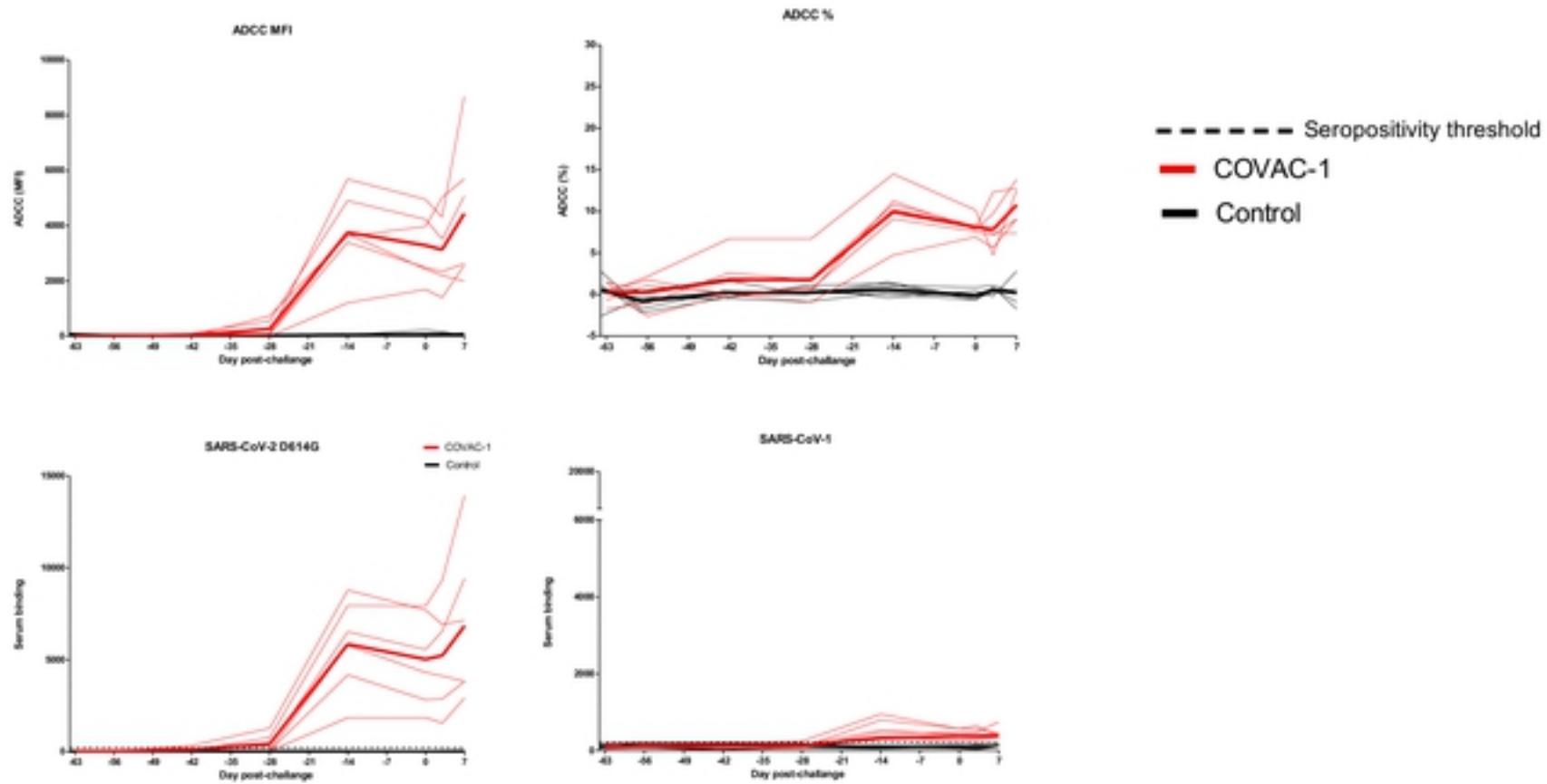

B

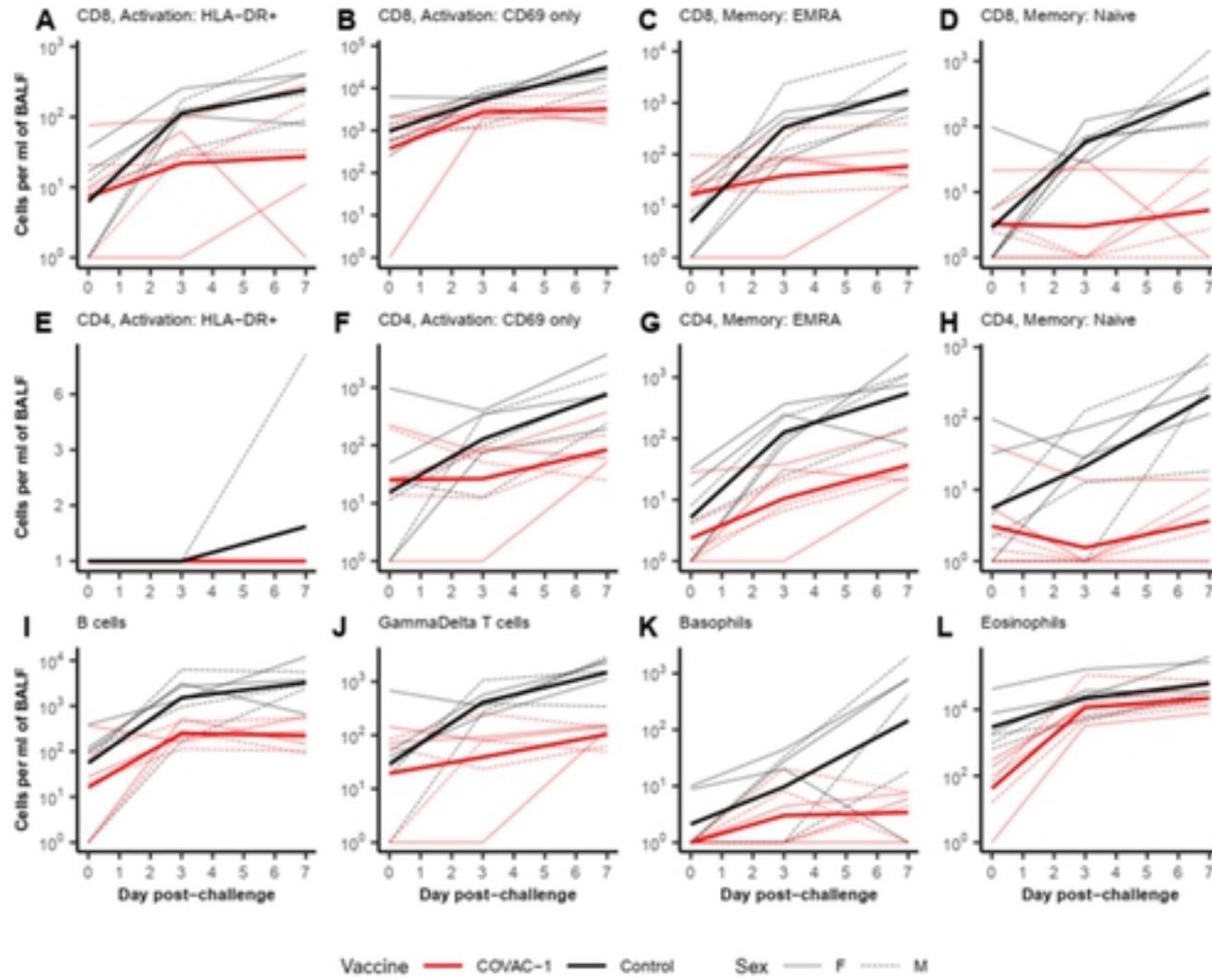

C


D





E




F

