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ABSTRACT 

The human fetal period is associated with a rapid emergence of body organ functions and 

systems, including establishment of the functional brain connectome. In order to 

characterise developmental features of in-utero functional activity, we introduce a novel 

perspective on resting-state functional networks, which we call <maturational networks=, or 

<matnets=. The key feature of this framework is that it incorporates age-related changes in 

connectivity into network estimation, thereby characterising functional networks as an 

emerging property of the brain. We find that fetal matnets reveal several spatially 

distributed patterns of connections with remarkable anatomical specificity. The framework 

also enables construction of a whole-brain view of maturational relationships across the 

early brain9s functional organisation, which we term the <maturational connectome=. We 

find that the fetal maturational connectome is composed of several groups of maturational 

networks, among which two groups which are associated with active environmental 

interaction through perceptual and motor-planning mechanisms, assume a central role.  
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INTRODUCTION 

 

Does a 8thing9 possess invariant properties, its 8being9, or is the essence of its existence in its 

change and thus in its 8becoming9? This ancient intellectual dilemma, conceived by an early 

Greek philosopher Heraclitus, has been entwined in the centuries-long evolution of human 

knowledge1,2. At its core, it reflects a fundamental problem of selecting an appropriate 

representational framework for a phenomenon at study while offering a choice between 

two extreme alternatives. On the one hand, a description of invariant (canonical, typical) 

characteristics serves a purpose of giving a phenomenon a concrete definition and thus 

differentiating it from other things. On the other hand, representations that characterise a 

phenomenon as a process are more fitting if the phenomenon constitutes a sequence of 

superseding transient states with ill-defined invariant characteristics.  

 

The notion of functional networks in the fetal brain is a case in point for the latter. Evidence 

from animal models suggests that intrinsically generated neural activity in the prenatal brain 

first begins with local direct propagation before progressing to larger bursts of spontaneous 

activity which help to establish local circuitry3. At around 26 weeks of gestation, as 

suggested by the ex-utero resting-state functional MRI (fMRI) studies of very preterm 

infants4, spatially distinct networks emerge, showing local patterns of connectivity with a 

lack of long range interhemispheric or dorsocaudal connections. Towards term equivalent 

age, the networks evolve into a set of spatially distributed (multi-nodal) co-activation 

patterns 5,6, reflecting a generic drift of organic functions towards forming increasingly 

complex systems7. Such rapid developmental changes mean that functional networks in the 

prenatal period possess the attributes of an intrinsically non-static entity, a characteristic 

example of Heraclitian <becoming=. 

 

Previous research has demonstrated that, despite enormous technological challenges, 

functional connectivity in utero can now be studied using resting-state fMRI 8-10 . This opens 

up an opportunity for the use of standard approaches to group-level fMRI network 

analyses11 such as group independent component analysis (group-ICA) 12-14. The latter 

describes functional networks as a collection of spatial maps15, each of them charting areas 

linked together by the strength of covariation between the timecourses of their fluctuating 

intrinsic activity. However, utility of this method for application with fetal data remains an 

open question, both conceptually and when considering the unique signal properties of the 

data acquired in utero. Conceptually, an assumption embedded into this method is that a 

group-level spatial map characterises a canonical form of a functional network with respect 

to its individual manifestations, thereby downgrading developmental changes in its spatial 

layout to the status of non-systematic, and likely underestimated 16, inter-subject variability. 

As a result, coherent developmental features that are fundamental to both a definition and 

understanding of the neuroscientific basis of functional networks in utero may be lost using 

the standard approach. 

 

In this paper we introduce a novel perspective on resting-state functional networks in utero, 

which we call <maturational networks=, or matnets for conciseness. The key feature of this 

framework is that it incorporates age-related changes in connectivity into network 

estimation, thereby characterising functional networks as an emerging property of the brain. 

At its core, it builds on Flechsig9s idea17, that functionally related areas mature together. In 
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contrast to the standard analytical approach of ICA, which utilises correlational structure to 

factorise networks, our approach leverages age-related changes in correlations in order to 

characterise maturational modes of variation in the data. The utility of this approach is 

demonstrated in in-utero fMRI data acquired as part of the developing Human Connectome 

Project (dHCP)18,19, an open science initiative aiming to map brain connectivity across the 

perinatal period. The data, of unprecedented sample size, quality and length, were 

reconstructed and preprocessed using cutting-edge methodologies20-22. We show that our 

novel approach overcomes the inherent limitations of fMRI data acquired in-utero for 

characterising mid- and long-distance connectivity, and for inference about the 

developmental trajectory of the fetal functional connectome. Moreover, it enables 

factorisation of spatial patterns that fit better the concept of resting-state network as we 

understand it from the studies of more mature brains, that is, as a spatially distributed 

configuration encompassing non-adjacent brain areas23,24. Finally, we show that 

maturational networks lead to a new perspective on the macro-scale developmental 

relationships in the human brain, the <maturational connectome=. 

  

 

RESULTS 

 

12.8 mins of resting state fMRI data was acquired from 144 fetuses with an age range 

between 25 and 38 gestation weeks (Supplementary Figure 1) on a 3T Philips Achieva 

system25 as part of the dHCP. All of the fetal brain images showed appropriate appearances 

for their gestational age with no acquired lesions or congenital malformations. The data 

underwent dynamic geometric correction for distortions, slice-to-volume motion 

correction20,21 and temporal denoising22, followed by their registration to a common space 

to enable group-level analyses6.  

 

The framework 

 

In order to demonstrate the utility of our approach, we note that developmental changes in 

a spatial layout of functional networks can be modelled retrospectively within the standard 

group-ICA approach using several post-processing steps14, as shown in Figure 1A. The results 

of this modelling can provide a benchmark for a comparison with matnets. In brief, the 

modelling involves the estimation of group-level (<canonical=) spatial maps, followed by the 

two steps of dual regression (DR)14, i.e., a sequence of spatial and temporal regressions 

performed against individual data, in order to obtain subject-specific variants of the group 

maps, followed by a mass-univariate (i.e., voxelwise) modelling of the latter using age as a 

covariate. The key step is the dual regression step, that <permits the identification of 

between-subject differences in resting functional connectivity based on between-subject 

similarities=14, where a subject-specific map represents the individualised manifestation of a 

group map.  In contrast, our matnets approach, shown in Figure 1B, attempts to derives 

maps of maturational modes of variation in a direct manner, in essence by reversing the 

order of operations while omitting the intermediate steps of dual regression. It runs as 

follows. At the first step, a dense N voxels by N voxels connectome is computed for each 

subject separately. Each element of the dense connectome is then fitted across subjects 

with age as covariate, and converted into a t-weighted dense connectome, i.e., a matrix in 

which elements contain the estimates of the age effect. An ICA factorisation of the t-
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weighted connectome is then performed to factorise matnets that comprise voxels with 

similar maturational profiles across the study period. 

 

 

(A) 

 
 

 

(B) 

 

 
Figure 1. Two approaches to maturational analysis of the functional networks. (A) Group-ICA + dual regression pipeline and 

its outputs. The pipeline allows modelling maturational changes in the spatial layout of the networks using mass-univariate 

analysis of the subject-specific variants of the group maps. The latter are derived using dual regression. (B) Pipeline for 

derivation of maturational networks. It directly leverages age-related changes to derive networks instead of estimating 

subject-specific variants of the group-level maps. se 3 standard error 

 

 

Univariate spatial properties of group-average correlations and age-related differences in 

correlations 

 

The efficiency of either method for network analysis, for instance in terms of their ability to 

discover meaningful spatial relationships, is contingent on the relevant signal properties of 

the data, which remain poorly understood for the in-utero fMRI. A brief description of these 

properties would assist subsequent interpretations and inform analytical choices. 

Consequently, we provide a short summary of the univariate spatial properties of the two 

metrics that are expected to shape the results of the group-ICA and matnets analyses: 

respectively, group-average correlations and the effect of age (t-value) on the strength of 

correlations.  
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The generic spatial structure of the two metrics can be easily appreciated by considering 

connectivity maps from seed regions to the whole brain (<seed-to-brain= maps). The maps of 

the group-average correlation for six cortical seeds (3 per hemisphere) are shown in Figure 

2A. The conspicuous feature of these maps is a presence of a strong distance dependent 

gradient, indicating signal smearing over the immediate neighbourhood of the seed. This 

effect transgresses anatomical boundaries, as demonstrated in a context where the 

anatomical and purely spatial distances can be disentangled (Supplementary Figure 2) and 

shows a spatially indiscriminate character as it could equally be replicated for seeds located 

in the white matter (Supplementary Figure 3).  

 

In comparison, the configuration of the spatial maps for the age-related effect on correlation 

for the same set of seeds reveals two components of relevance: a negative local component 

and a positive mid- and long-distance component (Figure 2B). The negative local component 

is revealed by a distribution of high negative values in the proximity of the seed. This local 

component, which implies that the strength of distance-dependent gradients in connectivity 

structure is negatively associated with age at a short distance, occurs in a spatially 

indiscriminate manner (Supplementary Figure 4), though less obviously in white matter, 

possibly due to a greater signal blurring within this tissue. Otherwise, the positive mid- and 

long-distance component is characterised by an age-related increase in correlation strength 

between seed and other grey matter regions.  

 

Furthermore, the spatial distance also determines a similarity (i.e., spatial correlation) 

between pairs of maps (Figure 2C) for group-average correlation, which suggests that spatial 

distance may become a dominant factor for the fusion of the voxels into networks in the 

analyses based on the correlational structure of the data, such as group-ICA. Conversely, the 

same figure (Figure 2C) also shows that the similarity between age-effect maps was 

unaffected by the spatial distance between seeds used to produce these maps. This suggests 

that leveraging positive age-related associations for the network construction can potentially 

reveal a rich set of spatially distributed patterns with improved specificity. In this view, 

matnets were derived using a factorisation of the positively thresholded t-weighted 

connectome. 
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(A) 

 
 

 

(B) 
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(C) 

  
Figure 2. Spatial properties of group-average correlations and age-related differences in correlations. All spatial maps are 

shown in radiological orientation, i.e., left is right. (A)  seed-to-brain maps of group-average correlations. Location of a seed 

coincides with a center of the crosshair. Examples of 6 seeds are shown, 3 per each hemisphere (B) Same as (A) for the age-

effect maps. (C). Spatial similarity between each pair of seed-to-brain maps. CoG 3 centre of gravity. Statistical testing of 2 

main effects (type of map and distance) and their interaction shows a significant main effect of type of map (i.e., higher 

spatial correlation for the group-average correlation maps, t(26)  = 4.30, p < .001), and a significant interaction between 

distance and type of map (i.e., higher dependency on the distance the group-average correlation maps, t (26) = 3.21, p < 

.005), but not the main effect of distance (p = 0.37, i.e., indicating a relative tolerance of the age effect statistics to the 

factor of spatial distance).   

 

Group ICA maps and estimated age-related differences in their layout 

 

The results of group-ICA factorisation are shown in Figure 3A. The appearance of the spatial 

maps suggest that they inherit certain signal properties that had previously been revealed in 

the univariate analysis. Thus, their <blurry= appearance is reminiscent of the increased local 

signal correlations observed in univariate maps of seed-to-brain group-average correlations. 

In addition, the location of the peaks in many group-ICA maps tended to be biased away 

from the cortex towards the white matter and a local low-to-high ramp of the component 

values could often be traced along the boundary between grey and white matter tissues 

(Supplementary Figure 5). Despite the above characteristics, most components have 

anatomically plausible layouts, encompassing a diverse range of functionally relevant areas. 

The components where peaks were most firmly located within cortical ribbon, were found in 

sensorimotor and pre-motor areas (e.g., components #16,17, 23, 24).  

 

Meanwhile, the analysis of age-related changes in the spatial layout of the networks using 

the dual regression approach appear to be affected by a specific bias, as shown using the 

examples of the spatial maps of the first 3 components and the corresponding maps of the 

age effect in Figure 3B, demonstrating a negative effect of age (i.e., a decrease of 

connectivity with age) in the most representative component voxels. This somewhat 

counter-intuitive pattern was observed for all group-ICA components. Furthermore, as 
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Figure 3C shows, there was a high negative spatial correlation between component group-

lCA component spatial maps and corresponding t-maps of the age effect. As we will discuss 

later, this pattern appears to be a direct consequence of the signal properties earlier 

highlighted in the context of the univariate analyses, showing that there is a negative 

association between age and strength of correlations for voxels surrounding a seed. 

 

 

(A) 
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Figure 3. Results of group-ICA analysis. All spatial maps are shown in radiological orientation. (A) Group-level spatial maps, 

thresholded at abs(z) >3. (B). Spatial maps of the first 3 components (upper row) and the corresponding maps of the age 

effect (lower row). A negative effect of age can be observed in the most representative component voxels. (C) Distribution of 

spatial correlations between component spatial maps and corresponding t-maps. The outlier is the component with likely 

vascular origin (#5 in (A)) 

 

 

Maturational networks (matnets) 

 

The above analysis demonstrates an inability to reconstruct coherent maturational 

relationships in the fetal fMRI data using tools that are widely used in standard network 

analysis in pediatric and adult populations. In contrast, results from the maturational 

network factorisation, presented in Figure 4A, reveal spatial configurations of a high 

anatomical validity, including locality within the grey matter (Supplementary Figure 6). In 

order to ascertain the robustness of the method, we repeated the analysis in split-half 

samples. We found a good replicability of the network properties (Supplementary Figures 7 

and 8), including non-trivial connectivity patterns, such as   between the occipito-temporal 

and dorsal somatosensory/superior parietal cortices and between the right anterior lateral 

temporal and right dorsolateral pre-motor/pre-frontal cortices. Compared to the group-ICA, 

the matnets tended to show a greater spatial complexity, encompassing non-adjacent areas. 

For instance, the main node of matnet #11 spatially overlapped with that of group-ICA #24 
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but in addition encompassed areas in lateral central and pre-motor cortices. Another 

example is the bilateral matnet component #7 in which the left-hemisphere sub-division 

overlapped with a spatially compact group-ICA component #16. Furthermore, the matnet 

maps tended to demonstrate more anatomically specific local variations of intensity 

compared to the group-ICA maps (Figure 4B) which are reminiscent of the spatial specificity 

in the age-effect seed-to-brain maps from the univariate analyses. For instance, the matnet 

map #7 in Figure 4B has multiple poles, distributed across the somatosensory, motor and 

premotor cortices, which suggests an early integration of local circuits supporting different 

functions. In contrast, group-ICA components were typically characterised by the tendency 

to have one centre-of-gravity.  

 

 

(A) 

 
 

(B) 

 
Figure 4. Results of maturational network analysis. All spatial maps are shown in radiological orientation. (A) Spatial maps. 

(B)  Examples of components from maturational and group-ICA analyses, showing that the former tends to show more 

anatomically specific variation in intensity than the latter. 
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Whole-brain maturational connectome 

 

In order to complete the description of the maturational relationships, we present a whole-

brain view of the in utero functional architecture, i.e., the fetal brain9s functional 

connectome. Within the standard group-ICA+DR approach, the functional connectome is 

described using <netmats=26, a matrix of correlations between component timecourses 

estimated in step 1 of DR. Our goal here is to present a maturational analogue to this 

approach, which we refer to as a <maturational connectome=. We estimate it using the 

outputs provided by the framework of the maturation network analysis, as shown in Figure 

5A. In brief, it involves the regression of the maturational networks against columns of the 

thresholded t-weighted connectome in order to obtain a N components by N voxels matrix 

of estimated regression coefficients (an analogue of component timecourses of DR1), 

followed by calculation of N components by N components matrix, in which elements 

represent correlations between each pair of rows in the regression coefficient matrix. The 

latter matrix constitutes the maturational connectome. 

 

A three-dimensional embedding of the maturational connectome (Figure 5B), allows one to 

appreciate its generic structure. Here a point in space indicates a relative location of a 

network with respect to other networks, with a shorter distance between networks being 

indicative of stronger maturational ties (i.e., maturing together). 5 groups of networks can 

be identified using hierarchical clustering, based on the networks9 location in the embedded 

space (Figure 5C). The first (<red=) group consisted of networks that combined the posterior 

and anterior peri-insular areas with occipital, auditory and ventral sensorimotor areas. The 

second (<green=) group consisted of two smaller sub-groups: one comprising dorsolateral 

pre-motor, dorsolateral prefrontal and medial pre- and supplementary motor areas; the 

other combining frontal anterior cingulate with inferior parietal and superior lateral occipital 

cortices, extending into medial posterior areas (precuneus). Adjacent to this group, there 

was a two-network (<blue=) group, comprising dorsal sensorimotor areas. The fourth 

(<violet=) group comprised ventral frontal and orbitofrontal areas. Finally, the last (<purple=) 

group combined ventral occipito-temporal areas with dorsal parietal and sensorimotor 

areas.  
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(A)  

 
 

 

(B) 
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(C)  

 
 
Figure 5. Maturational connectome. (A)  Pipeline for derivation and analysis of maturational connectome (B) Maturational 

connectome embedding and their split into groups, based on hierarchical clustering (C) Hierarchical clustering tree. 

 

 

 

DISCUSSION 

 

In this paper we present a framework for characterising in-utero functional brain 

architecture that models networks as an emerging property of the brain. Within this 

framework, which we call maturational network analysis, the fusion of voxels into a network 

is determined by the similarity of their maturational profiles with respect to the rest of the 

brain. In effect, this represents a computational implementation of Flechsig9s principle17 that 

states that concordant maturation characterises functionally related areas.  

 

In an implicit form, Flechsig9s principle has been previously utilised in the studies of 

structural covariance27 in developmental cohorts28,29, including fetal ones30. Here we apply 

the principle explicitly to the study of brain9s functional organisation.  

 

We have found several key methodological benefits of maturational network analysis in the 

context of the fetal resting-state fMRI data. First, we have demonstrated the robustness of 

the method by showing a persistence of the network properties in split-half subsamples. 

Next, we have showed that maturational networks represent a coherent way of 

characterising maturational patterns in the context of fetal fMRI, compared to inference 

using the standard approach, in which results appear to be affected by a specific bias (we 

will discuss this below). Matnets have revealed spatially distributed patterns of connections 

with a remarkable anatomical specificity for the in-utero data likely owing to their reliance 

on the benign signal properties that reveal an age-dependent increase of mid- and long-

distance connectivity in a spatially selective manner. Finally, the framework renders 

biologically interpretable results, reflecting a range of motifs characteristic of the neonatal 

brain connectivity, which can be viewed as the eventual target for maturational processes in 

utero. Thus, several networks revealed a non-negligible bilateral component, that agrees 

with the studies of pre-term and term born babies 4-6 as well as in-utero seed-based 
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connectivity fMRI studies8 suggesting that interhemispheric coupling becomes established 

during this period. The maturational networks also characterised a range of non-trivial 

functional relationships that are similarly observed in neonatal data6, such as functional 

associations between the inferior parietal regions and precuneus; between the anterior 

cingulate cortex and lateral orbito-frontal cortex, between the medial and lateral (pre)-

motor cortices; between the central sulcus and posterior insular cortex; or between  the 

dorsal and ventral stream regions. This demonstrates that these emerging functional 

relationships across spatially distinct regions are an intrinsic property of the brain and 

provides crucial validation of the findings of neonatal studies where the complementary role 

of environmental influences had been unclear. 

 

An additional level of insight into the developmental sequelae of the fetal functional brain is 

provided by a low-dimensional embedding of the whole-brain maturational connectome, 

allowing an appreciation of mutual relationships between networks. A conspicuous generic 

feature of this connectome is the tendency for homologous contralateral networks to cluster 

together. Overall, the clustering analysis identifies two larger groups that occupy the central 

location in the maturational connectome and three smaller, more peripheral, groups.  Based 

on the areas that dominate their anatomical layout, the three smaller clusters of networks 

can be labelled as orbitofrontal, ventral visual and sensorimotor groups. Of the larger 

groups, one was dominated by the cortical nodes of perception and bodily sensation 

(occipital, auditory and somatosensory limbic areas) but also included nodes in the motor 

and motor limbic31 (anterior cingulate and anterior insular) cortices. The other larger group 

was dominated by the functional nodes responsible for an environmental interaction 

through action (dorsolateral and medial pre-motor cortex and  pre-frontal areas), but also 

included a sub-group of networks which spatially overlap with nodes of the future default 

mode networks23,32, such as  precuneus, anterior cingulate and angular gyrus. Notably, the 

location of the latter within the embedding space was midway between the notional 

perception group and the remaining networks of the notional action group, hinting both 

towards hub connectivity patterns and their apparent role in modulating internal and 

external inputs whilst mind-wandering or performing cognitively demanding tasks later in 

life33. 

 

Compared to maturational networks, group-ICA components identified with a standard 

group-ICA approach had diminished spatial complexity and anatomical specificity and were 

biased towards the white matter. Notably, the results of dual regression modeling showed 

that local connectivity within group-ICA networks diminishes with age. Such characteristics 

fit well those of the functional nodes described in the fetal animal studies, which center on 

the cortical subplate and act as local amplifiers of the thalamic activity with spread that does 

not conform to anatomical boundaries3,34. This may suggest that group-ICA and maturational 

networks truthfully reflect two different states of the fetal functional brain: a truly <fetal= 

subplate-centered35 and locally active state depicted by the group-ICA, that gives way to the 

adult-like cortex-centered and spatially distributed state of maturational networks. 

 

Against this intriguing interpretation, though not necessary incompatible with it, are the 

results of the univariate analysis of the connectivity metrics. The latter demonstrates that 

the correlational structure of the data, that underlies the derivation of the group-ICA 

components, is dominated by a spatially smooth and non-linear distance-dependent 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2022. ; https://doi.org/10.1101/2022.06.14.495883doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.14.495883
http://creativecommons.org/licenses/by/4.0/


gradient, which at a short distance is scaled negatively with age. The factors that make 

biologically-motivated interpretation of this gradient unlikely is the spatially indiscriminate 

character of these phenomena combined with a violation of anatomical boundaries, 

including the large connectivity distance between the two brain hemispheres which in reality 

are separated by a CSF filled inter-hemispheric fissure. 

 

An initial hypothesis to explain the origins of distance-dependent gradients and its 

interaction with age can be based on the potential contribution of two factors: motion and 

effective resolution. The role of motion on connectivity estimates has been demonstrated in 

adult imaging, where it has been shown to decrease long-range connectivity and 

overestimate local connectivity36,37. Although we used a comprehensive image processing 

pipeline to account for head motion during data acquisition, fetal imaging data is still 

especially susceptible to this effect as it has virtually no motion-free periods. Even if the 

fetus stays still, maternal breathing cycles and endogenous motion in the non-rigid tissues 

surrounding the fetal head continue to cause a constant change of position. Under these 

circumstances, effective resolution naturally leads to age-related differences in the effect, 

which likely explains the dual regression result showing a decrease in connectivity with age 

within the most representative component voxels. The brain undergoes a 3-fold growth in 

size over the studied period, which implies that real-world separation between pairs of 

voxels in the standard space is smaller for younger subjects than for older ones and thus a 

greater effect of distance as measured in the common space. In light of the differences in 

signal properties between the grey and white matter and their modulation by age, the 

possible contribution of other factors such as modulation of the BOLD signal itself and/or the 

role of age-related changes in tissue content should also not be disregarded. 

 

A question can also be asked about the biological underpinnings of the age-related increase 

in correlation implicated in the derivation of maturational networks. Maturation entails 

competing physiological processes which may potentially leave a footprint on the properties 

of the fMRI signal38,39. For instance, one cannot exclude the possibility that changes in the 

long-distance connectivity are in part due to the coordinated development of  the brain9s 

vasculature40. De-confounding the latter from the estimates of neural connectivity is a 

contentious issue even in the context of adult resting-state imaging41,42. In the fetal brain the 

problem may be further exacerbated as the development of brain neural systems goes hand 

in hand with the development of other organ functions and therefore the development of 

vascular and activity-dependent components are likely collinear to the degree that the two 

are indistinguishable at a level visible to fMRI.  

 

Below we outline several limitations of the study. First, the current study has the well-known 

limitations of cross-sectional analyses whereby between-subject variability can be 

confounded with aging effects. Nevertheless, cross-sectional data are expected to dominate 

the fetal research for a foreseeable future, as the problem of scanning mothers during 

pregnancy multiple times encounters certain ethical and practical challenges. In the 

meantime, one can strive for better estimates of cross-sectional trajectories, using improved 

modelling and larger data samples. Our results are based on the largest fetal fMRI data set 

both in terms of the number of subjects and the number of volumes per subject. However, 

further improvements in modelling can be achieved when data for the full fetal dHCP cohort 

will be made openly available to the neuroscientific community in the coming year. This 
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would increase the current data sample by a factor nearing to 2. In addition, it is expected to 

contain more than 20 participants scanned twice, a potential starting point for longitudinal 

studies. 

 

The second limitation concerns generalisation of our conclusions to other data samples, 

especially in the context of fetal fMRI as a novel field, where norms of data acquisition are 

yet to be established. Unfortunately, fetal fMRI has not as yet stepped in into the age of 

normative open-access big data43 which has enabled recent progress in the study of ex-utero 

connectivity, (e.g.,44). However, the qualitative comparison of our results with the results 

drawn from other studies gives us a certain confidence that our results are not specific to 

our sample. For instance, there was a remarkable similarity between our group-ICA results 

and the group-ICA results reported in a recent paper11, despite considerable differences in 

the acquisition sequence (multi- vs single-band), spatial image corrections (dynamic 

distortion and slice-to-volume corrections vs volumetric alignment only) and de-noising 

pipelines (predominantly motion parameter-based vs. ICA-based). Furthermore, the 

qualitative characteristics of group-ICA components as well as the dominance of distance-

dependent gradient over the correlational structure also appear to be reproducible across 

the studies11.  

 

In conclusion, we have described a novel framework that can characterise the spatial 

distribution of maturing functional networks which has been applied to delineate the 

emergence of resting state networks in the fetal human brain. A discerning feature of this 

maturational network framework is a prospective incorporation of the variable-of-interest 

(here, age) into network estimation. This can potentially make the method adaptable to 

other problems, such as early human development through infancy, network maturations in 

neurodevelopmental disorders, such as autism, ageing and exploring connectivity 

underpinnings of behavior. 

 

 

METHODS 

 

Data 

 

Resting-state fMRI data were acquired in 151 fetuses (62 females, 77 males, 5 unknown), 

median age = 29.5w, range = [25 38], with Philips Achieva 3T system (Best, NL) and a 32-

channel cardiac coil. Single-shot EPI (TR/TE = 2200/60) sequence consisted of 350 volumes of 

48 slices each, slice grid 144 x 144, isotropic resolution = 2.2 mm, multi-band (MB) factor = 3 

and SENSE factor = 1.425. All of the fetal brain images were reported by a neuroradiologist as 

showing appropriate appearances for their gestational age with no acquired lesions or 

congenital malformations of clinical significance. Data from 7 fetuses did not pass quality 

control assessment due to excessive motion and failure in image reconstruction. 

 

The data of the remaining 144 fetuses were preprocessed using a dedicated pipeline21,22. In 

brief, the data underwent MB-SENSE image reconstruction, dynamic shot-by-shot B0 field 

correction by phase unwrapping and slice-to-volume (S2V) motion correction. A temporal 

denoising model, optimised for ability to both recover signal and minimise risk of its 

inadvertent removal, was then applied to the data. The model combined volume censoring 
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regressors, aiming to reject volumes (at a heuristically selected threshold) (Supplementary 

Figure 9),  highpass (1/150 Hz) filtering regressors of direct cosine transform matrix in order 

to remove slow frequency drift in the data,  6 white matter and cerebrospinal fluid 

component timecourses (obtained using subject-level ICA within a combined white matter + 

CSF mask, e.g.,45), and 3 novel variants of voxelwise denoising maps in order to account for 

the local artefacts in the data: 1) folding maps (N=2) which aggregate time courses of voxels 

linked in multiband acquisition to voxels in the original data, aiming at filtering out leakage 

artefacts; 2) density maps, representing temporal evolution of an operator that 

compensates for the volume alterations a result of distortion in phase encoding direction, 

and aiming to filter out residual effects of distortion correction on the voxel timecourses; 

and 3) motion-parameter-based (MP-based) regressors, expanded to include first and 

second order volume-to-volume and slice-to-slice differentials as well as their square terms, 

aiming to remove motion-related artefacts46,47. 

 

Registration to the group space 

 

A schematic depiction of the registration to a common template space is shown in 

Supplementary Figure 10. The mapping between a functional native space and the common 

template space is constructed as the concatenation of several intermediate transformations, 

which ascertain a gradual alignment between spaces to minimise the risks of gross 

misalignment as a result of the substantial differences in the brain topology across the range 

of gestation ages6: 1) rigid alignment between mean functional and anatomical scans 

calculated using FLIRT48; 2) a non-linear transformation between an anatomical T2 scan and 

an age-matched template49 (available at https://brain-development.org/brain-atlases/fetal-

brain-atlases/) calculated using ANTs50 ; 3) a sequence of non-linear transformations 

between templates of adjacent ages (e.g., 24 and 25, 25 and 26, etc. ), also calculated using 

ANTs. These transformations were concatenated to create a one-step mapping between 

functional and group template space, avoiding multiple interpolations. The template 

corresponding to GA=37 was selected as a common space for group analysis based on the 

considerations that it has a greatest effective resolution and topological complexity. An 

additional group space was created by symmetrizing the GA=37 template with respect to the 

brain midline, with appropriate adjustment of the mapping from the functional native 

spaces, that included an additional non-linear transform from non-symmetrical-to-

symmetrical template spaces. After registering the functional MRI data to the template 

space, they were smoothed using 3mm Gaussian kernel. 

 

Data analysis 

 

Univariate analyses. The seeds for the seed-to-brain analysis were determined empirically 

using the results of modelling age-related changes in interhemispheric connectivity between 

pairs of homologous voxels (Supplementary Figure 11), performed in the symmetrical 

template space25. The subject-specific maps of homologous voxel connectivity were 

obtained by calculating the correlation between timecourses of homologous voxels in the 

two hemispheres. The age-effect map was obtained via a voxel-wise regression with age as a 

covariate. The seeds for grey matter were created by thresholding the age-effect map from 

the above analysis at z > 3, which rendered 3 sizable clusters of voxels (14, 32 , and 45 

voxels). Given the absence of positive age-related increase in connectivity between 
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homologous voxels for white matter areas, the white matter seeds were created by 

thresholding the age-effect map of interhemispheric connectivity negatively at z < -3, and 

then manually adjusting clusters to fit the size of the grey matter clusters. Because the seeds 

were defined in the symmetrical template space, the seed-to-brain connectivity analysis was 

also performed in this space. The seed-to-brain group-average correlation map was 

calculated by first calculating individual maps of correlations between time course of a seed 

and time courses of all voxels in the brain and then averaging these maps across subjects. 

The age-effect map was obtained by fitting individual maps voxelwise using age as a 

covariate. 

 

Group-ICA. The derivation of group-average modes-of-variation and their subject-specific 

variants was performed using the protocol of FSL MELODIC for group-ICA analyses15, 

including FSL MELODIC9s Incremental Group Principal component analysis (MIGP step12), and 

the standard procedure of dual regression, implemented in FSL51. The number of derived 

components was set to 25. 

 

Maturational modes of variation. The pipeline for derivation of maturational modes of 

variation is shown in Figure 1B. First, a symmetrical matrix of correlations between each pair 

of voxels in the brain mask was calculated, aka <dense connectome=, for each subject 

separately. Each element of the dense connectome was fitted across subjects with age as 

covariate, rendering a voxel-by-voxel matrix of age-effect beta coefficients. The matrix was 

then converted into t-values, rendering t-weighted dense connectome, subsequently 

thresholded at 0 in order to leverage the age-dependent increases in correlations in network 

estimation. The rationale for positive thresholding is described in Results section. In order to 

perform connectome factorisation, an intermediate step of dimensionality reduction, 

analogous to MIGP, was applied. For this, the t-weighted dense connectome (size: N voxels 

by N voxels) was split column-wise into 200 blocks (size: N voxels by N voxels/200. At the 

initial step, a matrix consisting of the first two blocks was formed and subsequently reduced 

to 500 components using singular value decomposition. An iterative procedure was then run 

that consisted of concatenating the current matrix of 500 components with a following block 

and subsequent reduction to 500 components by SVD, until all blocks were exhausted. The 

output of this procedure was used to obtain the final factorisation of 25 components using 

FSL MELODIC.   

 

Maturational connectome analysis. The pipeline for derivation of the maturational 

connectome is shown in Figure 5A. It consists of the regression of the maturational networks 

against the t-weighted dense connectome in order to obtain #networks by #voxels matrix of 

regression coefficients. Correlations between each pair of rows of the matrix were then 

estimated, collected into a matrix which constitutes the maturational connectome. In order 

to unveil a structure of the whole-brain maturational relationships, the maturational 

connectome matrix was embedded into 3-dimensional space using an eigendecomposition 

of a graph normalised Laplacian. A point in the embedding space indicates a relative location 

of a network with respect to other networks (i.e., a shorter distance means closer 

maturational ties). In order to facilitate the discussion of results, a partition of networks into 

groups of networks was performed using the Ward method of hierarchical clustering52, 

based on the network coordinates in the embedding 3D space. 
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