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ABSTRACT

Quantification of healthy and degraded inner tissues in plants is of great interest in agronomy, for
example to assess plant’s health and quality, and to monitor physiological traits or diseases. But
detecting functional and degraded tissues in-vivo, without harming the plant, is extremely challenging.
In ligneous and perennial species, for which the sustainability of plantations is crucial, new solutions
are needed. To tackle this challenge, we developed a novel approach based on multimodal 3D imaging
and Artificial intelligence (Al)-based image processing that allowed a non-invasive diagnosis of inner
tissues in living plants. The method was successfully applied to the grapevine (Vitis vinifera L.), whose
vineyards' sustainability is threatened by trunk diseases while the sanitary status of vines cannot be
ascertained without injuring the plants. By combining MRI and X-ray CT 3D imaging, together with an
automatic voxel classification, we were able to discriminate intact, degraded, and white rot tissues
with a mean global accuracy over 91%. Each imaging modality contribution to tissue detection was
evaluated, and we identified quantitative structural and physiological markers characterizing wood
degradation steps. The combined study of inner tissues distribution versus external foliar symptoms
history demonstrated that white rot and intact tissue contents are key measurements to evaluate the
vine sanitary status. We finally proposed a model for an accurate trunk diseases diagnosis in
grapevine. This work opens new routes for precision agriculture and towards in-situ monitoring of
wood quality and plant health.

KEY WORDS

3D imaging; image processing; MRI; X-ray CT; Fungal pathogens; Plant diseases; Vitis vinifera L.
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INTRODUCTION

Wood is a complex biological structure providing physical support and serving the needs of a living
plant. Its degradation, by stresses or pathogens, exposes the plant to huge physiological and structural
changes, but consequences might not be immediately detectable from the outside. Trunk diseases can
spread internally and silently, degrading woody tissues, then erratically lead to external symptom:s,
production losses and ultimately the death of the plant. While accurate detection and monitoring of
wood degradation require structural and functional characterization of internal tissues, collecting such
data on entire plants, nondestructively and in-vivo, is extremely challenging. As a result, study and
management of wood diseases are almost impossible in-situ, and these diseases generate enormous
losses on a global scale for professional sectors such as in the wine industry.

In grapevine (Vitis vinifera L.), trunk diseases (GTDs) are a major cause of vine decline worldwide
(Claverie, Notaro et al. 2020). They are mostly undetectable until advanced stages are reached, and
the European Union has banned the only effective treatment, i.e., an arsenic-based pesticide.
Therefore, vineyards sustainability is jeopardized, with yearly losses up to several billion dollars
(Guerin-Dubrana, Fontaine et al. 2019). GTDs detection and monitoring are extremely difficult: fungal
pathogens insidiously colonize trunks, leaving different types of irreversibly decayed tissues (Claverie,
Notaro et al. 2020). The predominant GTD, Esca dieback, erratically induces tiger stripe-like foliar
symptoms, but their origin remains poorly understood (Bortolami, Gambetta et al. 2019) and their
sole observation is not indicative of the vines’ sanitary status (Mugnai, Graniti et al. 1999, Péros,
Berger et al. 2008, Lecomte, Darrieutort et al. 2012, Maher, Piot et al. 2012). Quantifying degraded
tissues within living vines could help determine the plant’s condition and predict disease evolution,
but classical techniques (Reis, Pierron et al. 2019) require sacrificing the plant, and often yielding
limited information. Reaching a reliable diagnosis is thus impossible in living plants.

Monitoring wood degradation using nondestructive imaging techniques has been tested mostly on
detached organs, blocks or planks, and using a single technique: Magnetic Resonance Imaging (MRI)
(Pearce, Stimer et al. 1994, Hiltunen, Mankinen et al. 2020) or X-ray computed tomography (CT) (Van
den Bulcke, Boone et al. 2009, Hervé, Mothe et al. 2014, Hamada, Pétrissans et al. 2016, Li, Van den
Bulcke et al. 2016). In grapevine, CT scan allowed visualizing the graft union (Milien, Renault-Spilmont
et al. 2012), studying xylem refilling (Brodersen, Knipfer et al. 2018) and tyloses-occluded vessels
(Czemmel, Galarneau et al. 2015), or quantifying starch in stems (Earles, Knipfer et al. 2018).
Synchrotron X-ray CT was applied on leaves to investigate the origin of foliar symptoms related to
trunk diseases, suggesting that symptoms might be elicited from the trunk (Bortolami, Gambetta et
al. 2019). X-ray CT and MRI were successfully combined to collect anatomical and functional
information to investigate flows in stems in vivo (Bouda, Windt et al. 2019). These techniques were
recently tested for trunk diseases detection (Vaz, Del Frari et al. 2020), but were applied separately
and on different wood samples, preventing the possibility of combining modalities and thus limiting
their effectiveness, and failed to distinguish healthy and defective tissues using MRI.

Thus, imaging-based studies are usually performed at a microscopic scale and on a specific detached
tissue or organ, but rarely on a whole plant. Difficulties in adapting the imaging devices to the plant
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and in coupling signals collected from different imaging modalities limit the fields of investigation and
prevent the development of “digital twin” models (Laubenbacher, Sluka et al. 2021) for plants .
Moreover, monitoring wood degradation using multimodal imaging necessitates proper registration
and the identification of specific signatures for structural and physiological traits of interest. Such
signatures are not well described on wood but are mandatory to deploy automatic quantitative
approaches. A preliminary conjoint analysis of multimodal imaging signals together with pixel-wise
annotation of wood degradation by experts should be performed prior deploying automatic
morphological phenotyping methods based on tissue segmentation and machine learning.

To address these issues, we developed an end-to-end workflow for in-vivo phenotyping of internal
woody tissues condition, based on multimodal and nondestructive 3D imaging, and assisted by Al-
based automatic segmentation. This approach was applied to vine imaging datasets acquired in a
clinical imaging facility. 3D images were acquired in five different modalities (X-rays for structure,
three MRI parameters for function, and serial sections for expertise) on entire plants, and combined
by an automatic 3D registration pipeline (Fernandez and Moisy 2021). Based on serial section
annotations, structural and physiological signatures characterizing early and late stages of wood
degradation were identified in each imaging modality. Then we trained a machine learning model to
automatically detect tissue condition based on the multimodal imaging data, achieving high
performances in the recognition of healthy and sick tissues. We were therefore able to perform an
accurate quantification of intact, degraded, and white rot compartments within the entire vine trunks.
We also evaluated the contribution and efficiency of each imaging technique for tissue detection, and
finally assessed the interest of internal tissue diagnosis by studying the relationships between external
foliar symptom expression and the distribution of internal healthy and sick tissues.

This study highlights the potential of our 3D image- and IA-based workflow for nondestructive and in-
vivo diagnosis of complex plant diseases, in grapevine and other plants. It gives access to key indicators
for the vine inner sanitary status evaluation and permits structural and functional modeling of the
whole plant. Plant-specific “digital twins” (Laubenbacher, Sluka et al. 2021) could revolutionize
agronomy by providing diseased plant-dedicated models, and computerized assistance to diagnosis.
This work also opens new routes for a broad range of applications on other organs, plants and
diseases, for the development of in-situ diagnosis solutions, and precision agriculture.

RESULTS

Multimodal 3D imaging of healthy and sick tissues

Based on foliar symptom history, symptomatic- and asymptomatic-looking vines (twelve total) were
collected in 2019 from a Champagne vineyard (France) and imaged using four different modalities: X-
ray CT and a combination of multiple MRI protocols: T1-, T2-, and PD-weighted (w) (Fig. 1). Following
imaging acquisitions, vines were molded, sliced, and each side of the cross-sections photographed

(approx. 120 pictures per plant). Eighty-four random cross-sections and their corresponding images
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were manually annotated by experts according to visual inspection of tissue appearance. Six classes
showing specific colorations were defined (Fig. 2.a): (i) healthy-looking tissues showing no sign of
degradation; and unhealthy-looking tissues such as (ii) black punctuations, (iii) reaction zones, (iv) dry
tissues, (v) necrosis associated with GTD (incl. Esca and Eutypa dieback), and (vi) white rot (decay).
The 3D data resulting from each imaging modality (three MRI, X-ray CT, and registered photographs)
were aligned into 4D-multimodal images (11). It enabled 3D voxel-wise joint exploration of the
modality’s information and its confrontation with ground-truth annotations by experts (Fig. 2.b).

A preliminary study of manually annotated random cross-sections led to the identification of general
signal trends distinguishing healthy- and unhealthy-looking tissues (Fig. 2.a, 2.c and 2.d).

Considering healthy-looking wood, areas of functional tissues were associated with high X-ray
absorbance and high MRI values (i.e., high NMR signals in T1-, T2-, and PD-weighted images) while
non-functional wood showed slightly lower X-ray absorbance (approx. -10%) and lower values in all
three MRI modalities (-30 to -60%).

As to unhealthy-looking tissues, signals were highly variable. Dry tissues, resulting from wounds
inflicted during seasonal pruning, exhibited medium X-ray absorbance and very low MRI values in all
three modalities. Necrotic tissues, corresponding to different types of GTD necrosis, showed medium
X-ray absorbance (approx. -30% compared to functional tissues) and medium to low values in T1-w
images, while signals in T2-w and PD-w were close to zero (-60 to -85%). Black punctuations, known
as clogged vessels, generally colonized by the fungal pathogen Phaeomoniella chlamydospora, were
characterized by high X-ray absorbance, medium values in T1-w, and variable values in T2-w and PD-
w. Finally, white rot, the most advanced stage of degradation, exhibited significantly lower mean
values in X-ray absorbance (-70% compared to functional tissues; -50% compared to necrotic ones)
and in MRI modalities (-70 to -98%).

Interestingly, some regions of healthy-looking (uncolored) tissues showed a particularly strong
hypersignal in T2-w compared to the surrounding ones (Fig. 2.d). Located in the vicinity of necrotic
tissue boundaries and sometimes undetectable by visual inspection of the wood, these regions most
probably corresponded to reaction zones described earlier as areas where host and pathogens
strongly interact and showing specific MRI signatures (Pearce 2000).

These results highlighted the benefits of multimodal imaging in distinguishing different tissues for
their degree of degradation, and in characterizing signatures of the degradation process. The loss of
function was properly highlighted by a significant MRI hyposignal. The necrosis-to-decay transition
was marked by a strong degradation of the tissue structure and a loss of density revealed by a
reduction in X-ray absorbance. While distinguishing different types of necrosis remained challenging
because their signal distributions overlap, degraded tissues considered as a whole exhibited
multimodal signatures permitting their detection. Interestingly, specific events such as reaction zones
were detected by combining X-ray and T2-w modalities. Overall, MRI appeared to be better suited for
assessing functionality and investigating physiological phenomena occurring at the onset of wood
degradation when the wood still appeared healthy (Fig. 2.f). On the opposite, X-ray CT seemed more
suited for the discrimination of more advanced stages of degradation.
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Figure 1: General Workflow: from wine multimodal imaging to data analysis.

(1) and (2) Multimodal 3D imaging of a vine using MRI (T1-weighted, T2-w, and PD-w) and X-ray CT.

(3) (Optional step) the vine is molded and then sliced every 6 mm. Pictures of cross-sections (both sides) are
registered in a 3D photographic volume and some cross-sections are manually annotated by experts.

(4) Multimodal registration of the MRI, X-ray CT, and photographic data into a coherent 4D image using Fijiyama
(Fernandez and Moisy 2021).

(5) Machine-learning based voxel classification. Segmentation of images based on the tissue expert manual
annotations: wood (intact, degraded, white rot), bark and background. The classifier was trained and evaluated
using manual annotations collected on different vines during step 3.

(6) Data analysis and visualization.
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Figure 2: Multimodal imaging and signal analysis.

a) Comparison of tissue classification based either on visual observation of trunk cross-sections (6 classes),
multimodal imaging data (7 classes), or Al-based segmentation (3 classes).

b) Multimodal imaging data collected on vines. XZ views of the photographic, X-ray CT, and MRI volumes, after
registration using Fijiyama (Fernandez and Moisy 2021).

c) Example of manual tissue annotation and corresponding multimodal signals.

d) Multimodal signal values collected by manual annotation of tissues on random trunk cross-sections (19,372
voxels total).

e) Multimodal signal values collected automatically on all 4D datasets (46.2 million voxels total) after Al-based
voxel classification in three main tissue classes defined as Intact, Degraded and White rot.

f) General trends for functional and structural properties during the wood degradation process, and proposed
fields of application for MRI and X-ray CT imaging.

Legend: letters on bar plots correspond to Tukey tests for the comparison of tissue classes in each modality.
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Automatic segmentation of intact, degraded, and white rot tissues using non-destructive imaging

In order to propose a proper in vivo GTD diagnosis method, we aimed to assess vines' condition by
quantifying automatically and non-destructively the trunks' healthy and unhealthy inner
compartments in 3D. To achieve this complex task, we trained a segmentation model to detect the
level of degradation voxel-wise, using imaging data acquired with non-destructive devices. We defined
three main classes corresponding to the level of tissue degradation: (1) “intact” for functional or non-
functional but healthy tissues; (2) “degraded” for necrotic and other altered tissues; and (3) “white
rot” for decayed wood (Fig. 2.a).

An algorithm was trained to automatically classify each voxel in one of the three classes, based on its
T1-w, T2-w, PD-w, and X-ray absorbance values (Fig. 3.a). The classification was performed using the
Fast Random Forest algorithm implemented in the Weka library (Witten, Frank et al. 2016). The
algorithm was first trained on a set of 81,454 manually annotated voxels (Table S1), then cross-
validated, and finally applied to whole 4D-images (46.2 million voxels total) (Fig. 1.4). The mean global
accuracy of the classifier (91.6% + 2.0) indicated a high recognition rate, with minor variations among
cross-validation folds (Table S2). In our evaluation, F1 scores were 93.6% (+ 3.7) for intact, 90.0% (+
3.8) for degraded, and 91.4% (+ 6.8) for white rot tissue classes. The global confusion matrix of the
validation sets, summed over the 66 folds (895,994 samples), showed that the great majority of
incorrect classifications were either due to confusions between intact and degraded classes (53.4%)
or between degraded and white rot (20.8%) (Table S3). Intact and white rot classes were almost never
confused (<0.001% error).

The same validation protocol was used to compare the effectiveness of all possible combinations of
imaging modalities for tissue detection (Fig. 3.b): the most efficient combination was [T1-w, T2-w, X-
ray] for detection of intact (F1= 93.9% + 3.4) and degraded tissues (90.5% * 3.2); and [T1-w, X-ray] for
white rot (93.0% + 5.1). Interestingly, the X-ray modality considered alone reached almost similar
scores for white rot detection. In general, slightly better results (+ 0.5%) were obtained without
considering the PD-w modality, most probably due to its lower initial resolution.

The classifier was finally applied to the whole dataset, and statistics were computed to compare the
tissue contents in different vines. Considering the entire classified dataset (46.2 million voxels), mean
signal values significantly declined between intact and degraded tissues (-19.3% for X-ray absorbance;
and -57.3%, -86.3% and -71.3% for MRI T1-w, T2-w, and PD-w, respectively); and between degraded
and white rot (-56.0% for X-ray absorbance; and -36.8%, -76.8% and -64.2% for MRI T1-w, T2-w, and
PD-w, respectively) (Fig. 2.e and Table S4).

With the increasing deployment of X-ray and NMR devices on phenotyping tasks, in-field imaging has
become accessible, but at a heavy cost in terms of image quality and resolution. We challenged our
method by training and evaluating the classifier at coarser resolutions, ranging from 0.7 up to 10 mm
per voxel (Fig. 3.c). Results proved our approach maintained correct performances even at 10 mm (F1
> 80% for intact ; > 70% for degraded and white rot ) while a human operator is no longer able to
recognize any anatomical structure or tissue class at this resolution.

These results confirmed both the wide range of potential applications and the complementarity of the
four imaging modalities. Combining medical imaging techniques and an Al-based classifier, it was
possible to automatically and non-destructively segment intact, degraded, and white rot

Fernandezetal. 8


https://doi.org/10.1101/2022.06.09.495457
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495457; this version posted August 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

compartments inside the wood. This represents an important breakthrough in their visualization,
volume quantification and localization in the entire 3D volume of the vines (Fig. 3.d).
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Figure 3: Automatic tissues segmentation
a) Al-based image segmentation using multimodal signals.

b) Comparison of all possible imaging modality combinations for their effectiveness (F1l-scores) in tissue
detection.

c) Effectiveness of tissue detection at lower imaging resolutions (using four modalities).
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d) 3D reconstructions highlighting the extent and localization of the degraded and white rot compartments in
four vines.

Deciphering the relationship between inner tissue composition and external symptomatic histories:

a step forward toward a reliable in situ diagnosis

Non-destructive detection of GTDs in vineyards is currently only possible through the observation of
foliar symptoms and vine mortality, and numerous studies are based on these proxies for
phenotyping. Foliage is usually screened at specific periods of the year when Esca or Eutypa dieback
symptoms occur, and this screening is usually repeated for one or several years. However, new leaves
are produced each year and symptoms may not recur in following years, making any diagnosis
hazardous at best, and attempts to correlate external and internal impacts of GTDs unsuccessful. Here,
foliar symptoms were recorded each year for twenty years, i.e. since the plot was planted in 1999 (Fig.
4.a). Together with the accurate quantification and localization of degraded and non-degraded
compartments in trunks, this allowed more advanced investigations.

Using foliar symptoms observed in 2019 as sole markers, half of the vines would have been
misclassified as “healthy” plants although harboring significantly degraded internal tissues (Fig. 4.b).
Indeed, despite the absence of leaf symptoms these vines contained important volumes of
deteriorated wood (up to 623 c¢cm? of degraded tissues and 281 cm?® of white rot) (Table S5).
Considering one year at a time, the foliar symptom proxy would have led to different -and erroneous-
diagnoses each year, confirming its unreliability (Fig. 4.a). Correlations between foliar symptoms
observed in 2019 and total internal contents were indeed very weak (R?>= -0.25, 0.27 and 0.18 for
intact, degraded, and white rot, respectively). On the opposite, internal tissue contents were better
supported by categories taking into account the complete vine history (Fig. 4.c). For example, the sum
of foliar symptoms detected during the vine’s life was strongly correlated to the composition of
internal tissues (R?= -0.87, 0.79, and 0.84 for intact, degraded, and white rot, respectively) and the
correlation between inner contents and the date of the first foliar symptom expression was also high
(-0.87 for intact, 0.91 for white rot) (Table S6).

As illustrated by 3D reconstructions (Fig. 3.d), degraded and white rot compartments were mostly
continuous and located in the top of the vine trunk. This result was consistent with previous reports
and the positioning of most pruning injuries that are considered as pathways for the penetration of
fungal pathogens causing GTDs (Claverie, Notaro et al. 2020). However, the distribution and volumes
of the three tissue classes helped distinguish different degrees in disease severity (Fig. 4.d). In detail,
the tissue content located in the upper last centimeters of the trunk and the insertion point of
branches allowed efficient discrimination of the vine condition (Fig. 4.e). On one hand, the proportion
of intact tissues detected in this region discriminated between vines with mild forms of the disease
(intact > 30%) and vines at more advanced stages (< 30%). On the other hand, the proportion of white
rot distinguished the healthiest vines (white rot < 8%), more affected ones (8 to 15%), and the ones
facing critical stages (> 15%). The volume of degraded tissues, together with the positioning of intact
and white rot tissues, allowed to fine-tune the diagnosis (Fig. S1).
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Non-invasive imaging and 3D modeling offered the possibility to access both internal tissue contents
and spatial information without harming the plant (Fig. 5). In vines suffering from advanced stages of
trunk diseases, white rot tissues were surrounded by degraded tissues, while only thin areas of intact
functional tissues were limited to the periphery of trunk tops. As illustrated in Fig. 5, abiotic stresses
such as a fresh wound can also have a huge impact on the functionality of surrounding tissues and
affect even more plant survival.
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Figure 4: Deciphering the relationship between inner tissue degradation and external foliar
symptoms.

a) Left: Detailed history of external GTD symptoms expression. Right: classification of vines based on their
external sanitary status, either considering year 2019 only or the complete symptom history (right).
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b) and c) Internal tissue contents of the trunks. Vines are grouped per phenotypic categories, based either on
the single 2019 observation or the complete 1999-2019 symptom history.

Tissue percentages are calculated from the upper 25 cm of the trunk.

d) Comparison of phenotypic categories for the white rot and intact tissues distribution (mean and interval)
along the trunk. Position 0 cm corresponds to the top of the trunk and initiation of branches (i.e., >0 in branches;
< 0in trunk).

e) Comparison of vines for intact and white rot tissue contents in the region -2 to +2 cm (last 2cm of the trunk
and first 2 cm of the branches).
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Figure 5: 3D visualization of internal tissue contents: example of a specimen at the critical stage of
vine decline
a) Original external view of the vine.

b) Combining MRI data volume rendering and white rot model.

c) 3D representation of the intact (green), degraded (orange) and white rot (red) compartments inside the

trunk.
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DISCUSSION

A new method for non-destructive detection of wood diseases

Certain plant diseases are mostly undetectable until advanced stages are reached. This is the case for
grapevine wood diseases and their detection is currently only possible through destructive techniques
or the observation of erratically expressed foliar symptoms. A non-destructive and reliable method
for their detection is frequently expected (Gramaje, Urbez-Torres et al. 2018, Mondello, Songy et al.
2018, Ouadi, Bruez et al. 2019, Claverie, Notaro et al. 2020). To that end, we developed an innovative
approach to non-destructively measure healthy and unhealthy tissues in living perennial vines. We
combined 1) non-invasive 3D imaging techniques; 2) a registration pipeline for multimodal data; and
3) a machine-learning based model for voxel classification. We were able to determine voxel-wise the
level of tissue degradation, and to accurately segment, visualize, and quantify healthy and unhealthy
compartments in the plants.

Among the imaging modalities tested, MRI already proved relevant to assess tissue functions in
grapevine (Bouda, Windt et al. 2019) and in several applications in living plants (Van As and van
Duynhoven 2013). In a recent study, MRI surprisingly failed to distinguish healthy and necrotic tissues
in grapevine trunk samples (Vaz, Del Frari et al. 2020). Here MRI was found particularly well suited for
detecting early stages of wood degradation, characterized by a significant loss of signal (57 to 86%) in
T1-w and T2-w protocols between intact and degraded tissue classes. Combining MRI modalities
provided information on the tissue functionality and water content. T1-w was efficient for anatomical
discrimination and T2-w highlighted phenomena associated with host-pathogens interactions such as
reaction zones (Pearce 2000). Interestingly, the T2-w signal dropped by approx. -60% between
functional and non-functional tissues but increased by +110% between non-functional and reaction
zones.

X-rays CT, on the other hand, was particularly efficient in detecting more advanced stages of wood
deterioration characterized by a loss in structural integrity and highlighted by a 56% drop in X-ray
absorbance between degraded and white rot tissues.

Multimodal imaging, together with the 4D registration step and machine learning to extract
information, proved its efficacy: combining MRI and X-ray CT techniques significantly increased the
quality of tissue segmentation. All possible imaging combinations were finally compared for their
efficiency, and it is now possible to select the modality(ies) best suited to specific needs. For example,
combining T1-w, T2-w, and X-ray was optimal for intact and degraded tissues detection, but T2-w
alone proved also efficient in case only one imaging modality is possible. For white rot detection,
combining T1-w and X-ray, or using X-ray alone were the best options.

In grapevine, MRl and X-ray CT were recently tested for GTDs detection but applied separately and on
different wood samples (Vaz, Del Frari et al. 2020). Here we collected multimodal 3D data on whole
trunks of aged plants and developed a pipeline for automatic analysis. Although vines were cut up to
gather data to train and evaluate the classifier, this approach is now feasible without harming the
plants (Fig. 1). It opens several exciting prospects for diagnosis and applications to other plants and
complex diseases.
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GTD indicators based on internal tissue degradation rather than external foliar symptoms

New light was shed on classical monitoring studies when we compared foliar symptom histories with
internal degradations. While previous reports showed necrosis volumes could be linked to the
probability of esca leaf symptoms occurrence and white rot volumes to apoplectic forms (Péros,
Berger et al. 2008, Lecomte, Darrieutort et al. 2012, Maher, Piot et al. 2012, Gramaje, Urbez-Torres et
al. 2018), but only weak correlations between tainted or necrotic tissue contents and foliar symptoms
were generally observed (Mugnai, Graniti et al. 1999, Calzarano and Di Marco 2007). In most studies,
plants are considered “healthy” if not expressing any foliar symptoms during the experiment,
considering generally a few years. Our results confirmed that the appearance of foliar symptoms in a
given year are not linked to the volume of internal wood degradations, and that foliar symptoms are
not reliable markers of the plant's actual health status in the GTD context.

Here we considered that the internal tissue composition (intact, degraded, white rot) better reflects
the severity of the disease affecting the vines and their actual condition. It seemed particularly
relevant for asymptomatic vines: half of them, harboring large volumes of unhealthy tissues, would
have been erroneously categorized as “healthy” plants using the foliar symptom proxy. Indeed,
asymptomatic vines could have reached advanced stages of GTDs while symptomatic ones could be
relatively unharmed. In such cases, foliar symptoms-based diagnosis is not reliable and internal tissue
content is the only reliable proxy of plant health. Necrotic and decay compartments are intuitively
more stable indicators than foliage symptoms: once tissues have suffered irreversible alterations, they
will remain obviously not functional.

An internal tissue-based model for accurate GTD diagnosis

A model based on the quality, quantity and position of internal tissues could be proposed for an
accurate diagnosis. Different stages in trunk damages could be distinguished: “Low” damages would
be characterized by low volumes of altered tissues; - “moderate” by significant degraded and decay
contents but still a fair amount of peripheral intact tissues; and - “critical” by only very limited areas
of intact tissues (Fig. 6). Assuming a non-destructive imaging detection, these stages could be
evaluated directly in fields and permit a reliable diagnosis in living specimens.

Based on trunk cross-sections, a threshold value of 10% white rot in branches has been proposed as a
predictor for the chronic form of Esca (Maher, Piot et al. 2012, Gramaje, Urbez-Torres et al. 2018).
This value could be a proper threshold between the low and moderate phases defined here, while 20%
white rot would be the limit toward the critical stage. However, intact tissues should also be
considered: a minimum of 30% intact tissues located in the last centimeters of the trunk could be
proposed as a threshold for critical status.

Here all necrotic tissues were regrouped in a single degraded class, but defining more tissue classes
(e.g., different types of necrosis) could enable studying each wood disease separately.

Grapevine is a tortuous liana in which both the proportion and configuration of tissues are highly
irregular along the trunk, and among plants. Thresholds for the transition from one stage to the other
would probably need to be established according to the grapevine variety. Considering their vigor and
capacity to produce new functional tissues every year, some varieties might be able to cope with large
volumes of unhealthy tissues while maintaining sufficient physiological and hydraulic functions. Other
factors such as the environment, fungal pathogens and pruning mode might also influence the
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capacity of the plant to survive with only very limited intact tissues (Claverie, Notaro et al. 2020), and
their impact could be measured using this novel non-destructive approach.

Predicting the course of diseases and assisting management strategies

The quantity and position of healthy and unhealthy tissues could be useful to predict the evolution of
the plant sanitary status. According to intact tissue content, it would indeed be tempting to predict
that an asymptomatic vine might soon develop symptoms, assuming its proximity to neo-symptomatic
vines (Fig. 4.e). Considering white rot and degraded tissues, we could also guess that, among the
asymptomatic-resilient vines, one was more likely to survive a few more years, whereas others were
more likely to die in the next year or so. Additional and larger-scale data are required to confirm the
effectiveness of these proxies for individual and accurate predictive diagnosis, but multimodal imaging
already proved relevant for diagnosing the current status of the vines studied here.

White rot removal using a small chainsaw has been proposed to extend the life of seriously affected
vines. This technique, called curettage, is under evaluation and particularly aggressive because applied
"blindly", causing great damage to the plant (Pacetti, Moretti et al. 2021). By giving access to the exact
location and volume of sick tissues to be removed, a non-destructive imaging-based approach could
improve precision surgery by enabling low-damage access to the sick inner compartments. It will also
permit in vivo evaluation of its long-term efficacy.

Finally, non-destructive and in vivo monitoring studies of internal tissue contents could help identify
plants that require urgent intervention (i.e., local treatment, curettage, surveillance) or to prioritize
replacements in plots, facilitating vineyards management.

CONCLUSION

By providing direct access to internal tissue degradations in living plants, non-destructive imaging and
Al-based image analysis provide new insights on complex diseases affecting woody plants. A wide
range of new, in vivo, and time-lapse studies now become accessible. For example, physiological
responses to wounding and pathogen-linked infection could be monitored at tissue level to search for
varietal tolerance. At the individual level, long-term surveillance of healthy, necrotic and decay tissues
could fine-tune prediction models, permit the evaluation of potential curative solutions, and facilitate
the management of the agricultural exploitation.

In grapevine, the enigmatic origin of Esca foliar symptoms and the influence of environmental factors
on trunk diseases development could probably be investigated more efficiently than with traditional
destructive methods. Previous studies, based on a limited number of foliar symptom observations,
might also have led to wrong interpretations, and could be revisited. If no alternative is possible, foliar
symptoms should at least be considered with extreme caution, after multiple years of survey.

In medicine, imaging is often dedicated to single individuals, which is rarely the case for plants that
are generally considered at the population level. In viticulture, however, plots are perennial, and each
vine represents a long-term financial investment. Individual and non-destructive diagnosis is therefore
of great interest for grapevine, whether to target a local treatment or to consider the replacement of
specific individuals. Long-term and complex diseases are also generally more difficult to handle.

Fernandezetal. 17


https://doi.org/10.1101/2022.06.09.495457
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495457; this version posted August 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

Conceiving virtual digital twins (Laubenbacher, Sluka et al. 2021) of living plants would authorize

monitoring complex diseases, modeling their evolution, and assessing the impact of novel solutions,

at different scales. Placing imaging at the bedside of plants offers great hopes and exciting

perspectives which could help define next-generation management processes.
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Figure 6: Model for GTD diagnosis based on the degree of trunk internal tissue degradation.
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MATERIALS AND METHODS

Plants

A vineyard was planted in 1999 in Champagne, France, with Vitis vinifera L., cultivar Chardonnay
rootstock 41B, and with a traditional Chablis pruning system. Each vine was monitored every year by
CIVC for foliar symptom (FS) expression of grapevine trunk diseases (GTDs, including Esca, Black dead
arm, Botryosphaeria and Eutypa diebacks). Observations were performed at different periods during
the vegetative season to ensure the detection of different forms of GTDs, if present.
Based on FS observed in 2019, vines were considered asymptomatic (healthy) or symptomatic (sick).
Based on their whole FS history, vines were then sub-classified as:

1) asymptomatic-always if they never expressed any FS.

2) asymptomatic-resilient if they expressed FS in previous years but not in 2019.

3) symptomatic-neo if they expressed FS for the first time in 2019.

4) symptomatic-apoplectic if they died suddenly from typical apoplexy a few days before being

collected.

For our study, vines showing different histories (three vines per subclass, 12 total, Fig. 3.a) were
manually collected from the vineyard on the 19th of August 2019.
Branches and roots were cut out approx. 15 cm from the trunk, and plants were individually packed
in sealed plastic bags to prevent drying.

Multimodal imaging acquisitions

Multimodal imaging acquisitions were performed on each vine individually, from rootstocks to the
beginning of branches, by Magnetic Resonance Imaging (MRI) and X-ray Computed Tomography (CT).
MRI acquisitions were performed with Tridilogy SARL (http://www.tridilogy.com) and the help of

radiologists from CRP/Groupe Vidi at the Clinique du Parc (Castelnau-le-Lez, France), using a Siemens
Magnetom Aera 1,5 Tesla and a human head antenna. Three acquisition sequences, T1-weighted(-w),
T2-w, and PD-w were performed on each specimen, respectively:

- 3D T1 Space TSE Sagittal (Thickness 0.6 mm, DFOV 56.5 x 35 cm, 320 images, NEx 1, EC 1, FA 120, TR
500, TE 4.1, AQM 256/256).

- 3D T2 Space Sagittal (Thickness 0.9mm, DFOV 57.4 x 35.5 cm, 160 images, NEx 2, EC 1, FA 160, TR
1100, TE 129, AQM 384/273).

- Axial Proton Density Fat Sat TSE Dixon (Ep 5mm, Sp 6.5, DFOV 57.2 x 38 cm, 40 images, NEx 1, EC 1,
FA 160, TR 3370, TE 21, AQM 314/448).

X-ray CT acquisitions were performed at the Montpellier RIO Imaging platform (Montpellier, France,
http://www.mri.cnrs.fr/en/) on an EasyTom 150kV microtomograph (RX Solution). 3D volumes were

reconstructed using XAct software (RX solution) and resulted in approx. 2500 images per specimen at
the resolution of 177 um/voxel. Geometry, spot, and ring artifacts were corrected when necessary,
using the default correction settings.
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Plant slicing and photographic acquisition

After MRI and X-ray CT acquisitions, plants were individually placed in rigid PVC tubes, molded in a
fast-setting polyurethane foam filler, and cut into 6 mm-thick cross-sections using a bandsaw (Fig. 1.3).
Cutting thickness was approx. 1 mm. Marks were placed on tubes to ensure regular slicing, and three
rigid plastic sticks with different diameters were molded together with vines to serve as landmarks for
their realignment. Both faces of each cross-section were then photographed using a photography
studio, artificial light, a tripod, a digital camera (Canon 500d), and a fixed-length lens (EF 50mm /1.4
USM) to limit aberration and distortion. Approximately 120 pictures per plant were collected and
registered into a coherent 3D photographic volume based on landmarks.

Data preprocessing: 4D multi-modal registration

For each vine, 3D data from all modalities (MRI T1-w, T2-w and PD-w, X-ray CT, and 3D photographic
volumes) were registered using Fijiyama (Fernandez and Moisy 2021) and combined into a single 4D-
multimodal image (voxel size = 0.68 mm x 0.68 mm x 0.60 mm) (Fig. 1.4). To compensate for possible
magnetic field biases, generally present at the edge of the fields during MRI acquisitions, we added
checkpoints manually, facilitating the estimation of non-linear compensations during the 4D
registration.

The registration accuracy was validated using manually placed landmarks (167 couples) distributed in
the different modalities. Compared to MRI and X-ray CT modalities, the photographic volume
presented a reduced number of images and light geometric distortions due to slicing irregularities.
However, the alignment between photographs and other modalities resulted in an estimated average
registration mismatch of 1.42 + 0.98 mm (mean % standard deviation). The alignment between
photographs and other modalities was accurate enough to allow experts to perform a manual
annotation of tissues directly on the 4D-multimodal images (see below).

Preliminary investigation of multi-modal signals

An initial signal study was carried out on eighty-four cross-sections randomly sampled from three
vines.

Tissues were firstly classified in 6 different classes based on their visual appearance (Fig. 2.a): (i)
“healthy-looking tissues” showing no sign of degradation; (ii) “black punctuations” corresponding to
clogged vessels; (iii) “reaction zones” described earlier (Pearce 2000); (iv) “dry tissues” resulting from
pruning injuries; (v) “degraded tissues” including several types of necrotic tissues; and (vi) “white rot”.

III

Once considering X-ray CT and MRI images, experts were able to distinguish “intact functional” and

IM

“intact non functional” tissues among the “healthy-looking” class, resulting in a total of seven tissue
classes (Fig. 2.a and 2.c). Moreover, some apparently “healthy-looking” tissues showed specific MR
hypo- or hyper-signals and were re-classified as “reaction zones” (Fig. 2.c). For these particular classes,
an alteration of the wood aspect was not always visible by direct observation of the cross-sections.

Finally, multiple regions of interest (ROls, 19,372 voxels total) were delineated by hand on the
multimodal images and assigned to one of the seven tissue classes. For each selected voxel, values
were gathered simultaneously from the four modalities (X-ray CT, T1-w, T2-w, and PD-w; 77,488

values total) using the registered multimodal images. The data were processed using R (v3.5.3) and
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the R-studio interface (v1.2.5001). Results are summarized in Fig. 2.d. The significance of differences
observed between the seven tissue classes was tested within each modality using Tukey tests and a
95% family-wise confidence level.

Automatic tissues segmentation of the whole 3D datasets

For each plant, thirteen cross-sections were sampled and manually annotated to label the
corresponding voxels. Five classes were defined as 1) background; 2) bark; and three tissue classes 3)
intact tissues; 4) degraded tissues; and 5) white rot (Fig. 2.a). The annotation was performed using the
Trainable segmentation plugin for Fiji (Arganda-Carreras, Kaynig et al. 2017), which was extended to
process multi-channel 3D images (see code availability). As a result, a set of 81,454 annotated voxels
distributed among the twelve 3D volumes was produced (Table S1).

We trained an algorithm to classify each voxel Pi=(x,y,z) of the images (20 million voxels per specimen),
attributing a class C; among the five previously described (Fig 3.a). The classification was performed
using the Fast Random Forest algorithm implemented in the Trainable Segmentation plugin given its

Ill

performance when working with “small” training datasets (< 100.000 samples).

For each voxel, a feature vector X; was built and then used by the classifier to predict the class C; of
the voxel P;. Information on the voxel’s local environment was gathered in the feature vector by
applying various image processing operators (local mean value, variance, edge, etc.) to the initial
images, and for each imaging modality. These operators were parameterized using a scale factor

taking values from 1 to 64 voxels.

Evaluation of classifier performances

The classifier performances were evaluated using a k-fold cross-validation strategy. In each fold, the
annotated voxels were split into a training set and a validation set. The train set, regrouping
annotations from 10 plants, was used to train the classifier. The validation set, containing annotations
from the two remaining plants, was used to assess the performances of the trained classifier. A global
confusion matrix was then computed from all possible 66 folds (Table S3). From this matrix, global and
class-specific accuracies, and F1-scores (considering both the test precision p and the recall r (Chinchor
1992) were evaluated for each class and for all possible combinations of imaging modalities (Fig. 3.b
and Table S2). F1-scores are generally considered as a better indicator of performance because they
highlight more precisely under- and over-estimations of a specific class.

Tissue quantification and 3D volumes reconstruction

For further analysis, we only considered voxels corresponding to areas of interest, i.e., tissue classes
intact, degraded, and white rot. The number and localization of these voxels were collected for tissue
quantification and visualization. 3D views presented in Fig. 3.d and Fig. 5 were produced using
isosurface extraction and volume rendering routines from VTK libraries (Schroeder and Martin 2005).

Fernandezetal. 21


https://doi.org/10.1101/2022.06.09.495457
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495457; this version posted August 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Relative positioning of tissue classes along the vines

To compare the position of intact, degraded, and white rot tissues in different vines, we estimated the
geodesic distance separating each voxel from a common reference area point located at the center of
the trunk, twenty centimeters below trunk head. Using geodesic distances, we considered a region
ranging from the last 20 cm of the trunk (defined as “position -20”), passing through the top of the
trunk (“0”), to the first 5 cm of branches (“+5”) (Fig. S2). This computation allowed the identification
of voxel populations located within a same distance range while considering the tortuous shape of the
trunks.

Simulation of performances at lower resolutions

To simulate an average portable imaging device’s resolution, test images were built by image sub-
sampling, resulting in voxel sizes ranging from 0.7 (original resolution) up to 10 mm. The corresponding
annotated samples were converted accordingly, retaining the most represented label for each voxel
volume. The classifier was then trained and tested on these low-resolution sample sets.
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SUPPORTING INFORMATION

The following Supporting Information is available for this article:

Classes
Vine # Background I ntact Dti.-graded White rot Bark Total %
tissues tissues samples

01 683 3,749 2,699 155 560 7,846 96
02 781 3,079 2,490 337 599 7,286 8.9
03 252 2,231 2,106 49 528 5166 6.3
04 538 2,290 3,155 1,450 550 7,983 9.8
05 135 2,013 2,690 2,681 192 7,711 9.5
06 272 2,168 2,821 1,250 301 6,812 84
07 317 2,743 2,343 1,169 451 7,023 86
08 461 2,179 2,247 665 319 5,871 7.2
09 288 2,868 1,500 479 559 5694 7.0
10 403 2,154 2,578 2,167 180 7,482 9.2
11 192 2,004 2,755 894 358 6,203 7.6
12 274 1,123 2,733 2,009 238 6,377 7.8

Total 4,596 28,601 3,0117 13,305 4,835 81,454 100
% 5.6 35.1 37.0 16.3 5.9 100

Table S1 Number of annotated samples available for classifier training and evaluation
Distribution among tissue classes and vines.
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Table S2 Evaluation of classifier performances

Global and class accuracies (Acc), precision (Prec), recall (Rec) and F1-scores (F1) percentages. Mean
(bold) and standard deviation (italic) were collected by training on ten vines and evaluating on the last
two. Different combinations of imaging modalities were tested: MRI PD-w, T1-w, and T2-w; and X-ray
CT (XR).

REAL classes
Sample # g?'zzlr(l-d Intact Degraded White rot Bark %

Background 48,824 4 32 3,818 894 6.0
@ Intact 0 300,293 24,096 0 1,065 |36.3
2| Degraded 31 13611 296,931 9,085 5276 |36.3
I;IEJ White rot 652 3 6,26 132,996 455 15.7

Bark 1,049 700 3,968 456 45495 |58

% 56 35.1 37.0 16.3 59

Table S3 Evaluation of the classifier performance: sum of confusion matrices
Considering the 66 folds of the cross-validation.

Tissue classes

Imaging
. Intact Degraded White rot
modalities

X-ray 129,4 104,5 46,0
21,3 24,6 14,1

T1-w 110,2 47,1 29,7
40,0 42,6 19,7

T2-w 68,9 9,4 2,2
46,1 20,4 3,0

PD-w 41,8 12,0 4,3
37,2 17,4 6,8

Table S4 Multimodal signal values corresponding to the three main tissue classes
Means (in bold) and standard deviations (italic) (values in 8-bits) collected on the whole dataset (after
automatic classification, 46.2 million voxels total).
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Tissue content cm’ (%)

Vine # Phenotype Intact Degraded White rot
01  AS-A ASymptomatic Always 687 (2,0) 302 (29,9) 21 (68,0)
02  AS-A ASymptomatic Always 571 (4,2) 278 (31,3) 38 (64,3)
03  AS-A ASymptomatic Always 663 (1,7) 336 (33,0) 18 (65,1)
04  SY-N Symptomatic Neo 722 (9,5) 395 (31,9) 118 (58,4)
05 SY-N Symptomatic Neo 426 (7,9) 450 (47,2) 76 (44,7)
06  SY-N Symptomatic Neo 559 (9,1) 334 (33,9) 90 (56,8)
07 AS-R ASymptomatic Resilient 278 (19,2) 623 (55,8) 215 (24,9)
08 AS-R ASymptomatic Resilient 357 (23,6) 551 (46,3) 281 (30,0)
09 AS-R ASymptomatic Resilient 421 (10,8) 368 (41,5) 96 (47,5)
10 SY-A SYmptomatic Apoplectic 333 (20,8) 436 (44,9) 202 (34,2)
11  SY-A SYmptomatic Apoplectic 425 (12,2) 685 (54,1) 155 (33,5)
12 SY-A SYmptomatic Apoplectic 252 (17,5) 565 (57,0) 174 (25,4)

Table S5 Tissue contents per vine

Contents measured for each individual vine from the automatically segmented 3D datasets. Data were
collected in the region ranging from the upper last 20 cm of the trunks to the first 5 cm of the branches.
Results are expressed as volume (cm3) and percentages.
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Table S6 Correlogram
Chart of correlation statistics between “internal” (blue text) and “external” (black text) proxies for GTD
status diagnosis. FS= foliar symptom; Nb= number; D= degraded tissues; WR= white rot.
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Fig. S1 Detailed comparison of vines for intact, degraded, and white rot contents considering
different positions along the vine trunk

AS-A= asymptomatic-always; SY-N= symptomatic-neo; AS-R= asymptomatic-resilient; SY-A=
symptomatic-apoplectic.
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Trunk

Fig. S2 Vine trunk geodesic distance estimation
Geodesic distances were estimated from the center of the trunk and using the top of the trunk as a
reference (point “0”).
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