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Many practical applications require optimization of multiple,
computationally expensive, and possibly competing objectives
that are well-suited for multi-objective Bayesian optimization
(MOBO) procedures. However, for many types of biomedi-
cal data, measures of data analysis workflow success are often
heuristic and therefore it is not known a priori which objectives
are useful. Thus, MOBO methods that return the full Pareto
front may be suboptimal in these cases. Here we propose a novel
MOBO method that adaptively updates the scalarization func-
tion using properties of the posterior of a multi-output Gaus-
sian process surrogate function. This approach selects useful
objectives based on a flexible set of desirable criteria, allow-
ing the functional form of each objective to guide optimization.
We demonstrate the qualitative behaviour of our method on toy
data and perform proof-of-concept analyses of single-cell RNA
sequencing and highly multiplexed imaging datasets.
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Introduction

The analysis of high-dimensional biological data is often ex-
ploratory and unsupervised. For example, gene expression
data may be subject to clustering algorithms to find groups
representative of meaningful biological variation. For assays
that profile at the patient level, these clusters may represent
novel disease subtypes, while for assays at the single-cell
level, they may represent novel cell types.

Despite the importance of these methods, there is no “one-
size-fits-all” approach to the analysis of such data. Instead,
there is a myriad of different possible parameter combina-
tions that govern these workflows and lead to variations in
the results and interpretation. For example, in the analysis
of single-cell RNA-sequencing (scRNA-seq) — a technology
that quantifies the expression profile of all genes at single-
cell resolution — a common analysis strategy is to cluster the
cells to identify groups with biological significance. How-
ever, each workflow for doing so has variations with respect
to data normalization, cell filtering strategies, and the choice
of clustering algorithm and parameters thereof. Changes to
these algorithm and parameter choices produce dramatically
different results (1, 2) and there is no ground truth available.
This motivates an important question: how do we optimize
these workflows such that the resulting exploratory analysis

best reflects the underlying biology?

In the adjacent field of supervised machine learning (ML),
such optimization over workflows has largely been tackled
from the perspective of automated ML (AutoML, (3)). This
comprises a diverse set of methods such as Bayesian opti-
mization (4) and Neural Architecture Search (5) that attempt
to optimize the success of the model with respect to one or
more hyperparameter settings. In this context, success is de-
fined as the model accuracy on a held out test set, though can
also correspond to the marginal likelihood of the data given
the model and hyperparameters.

However, in the context of exploratory analysis of genomic
data, existing AutoML approaches face three challenges.
Firstly, they are almost exclusively unsupervised, meaning
there is no notion of accuracy on a test set we may optimize
with respect to. Secondly, the majority of methods are not
generative probabilistic models (6) so it is impossible to op-
timize with respect to the marginal or test likelihood. Finally,
the objectives used to optimize a workflow are numerous,
conflicting, and can be highly subjective, due to often being
heuristics.

This is demonstrated by attempts to benchmark clustering
workflows of scRNA-seq data. As said above, there are many
parameters that must be set, e.g. which subset of genes and
clustering algorithm to use, along with such parameters as
resolution in the case of community detection (1). However,
there is no quantitative way to choose which parameter set-
ting is “best” and so the community turns to a number of
heuristic objectives to quantify the performance of a work-
flow. For example, Cui et al. (7) attempt to optimize the ad-
justed Rand index (ARI) with respect to expert annotations
and a heuristic based around downsampling rare cell types
while minimizing runtime. Germain et al. (1) similarly con-
sider the ARI but also the average silhouette width to max-
imize cluster purity. Zhang et al. (8) consider a range of
heuristics including agreement with simulated data and ro-
bustness to model misspecification.

However, given that these objectives are all heuristic and
open to user preference, there is no guarantee that all of
them are useful and have maxima that align with the meta-
objective at hand, which in the above example is the ability
to identify a biologically relevant population of cells. Con-
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versely, some heuristic objectives may be non-useful — they
are largely noisy and attribute nothing to the overall op-
timization problem by not aligning with a meta-objective.
This motivates the central question we attempt to address:
how can we adapt AutoML approaches to optimize unsuper-
vised workflows over multiple heuristic objectives that are
frequently subjective and conflicting?

To begin to tackle this question, we introduce MANATEE
(Multi-objective bAyesiaN optimizAtion wiTh hEuristic ob-
jEctives). The key idea is that by considering a linear scalar-
ization as a probabilistic weighting over (heuristic) objective
inclusion, we may up- or downweight an objective based on
desirable or non-desirable behaviours of its posterior func-
tional form. Consequently, rather than returning the full
Pareto front that may include points (parameter combina-
tions) that maximize potentially non-useful heuristic objec-
tives, we automatically concentrate on a useful region. The
main contributions presented here are:

1. Introduce the concept of behaviours B of the posterior
functional form of the surrogate objective function f
that are desirable if a function is useful for overall op-
timization.

2. Suggest a set of such behaviours that may be inferred
from the posterior of a multi-output Gaussian process,
if used as the surrogate function.

3. Build upon previous MOBO procedures to com-
pute the distribution of scalarization weights p(A|B)
with resulting optimizations returning Pareto optimal
points.

4. Devise a set of experiments based on the analysis of
real molecular imaging and transcriptomic data and
show that the proposed procedure compares favourably
to existing approaches.

Background

Bayesian optimization. Bayesian optimization (BO,
see (9) and references therein) attempts to optimize a
function g(x) € R for some x € RP that is, in some sense,
expensive to evaluate and for which derivative information
is not available, precluding gradient-based approaches.
Applications of BO have become popular in the tuning of
ML hyperparameters (10) and indeed entire workflows (11)
due to the expensive nature of re-training the models.

At their core, BO approaches propose a surrogate function
f defined on the same range and domain as g that may be
searched efficiently to find points z that either maximize g,
reduce uncertainty about f, or both. This leads to the con-
cept of an acquisition function acq(z) € R that may be opti-
mized to find the next x at which g may be evaluated. While
multiple acquisition functions have been proposed, including
probability of improvement and expected improvement, here
we focus on the Upper Confidence Bound (UCB) defined as

acqycp(z) = ) (z)+ Byot) (z) @

where 1(*)(z) and ¢(*)(z) are the posterior mean and stan-
dard deviation of f at x after ¢ acquisitions from g, while
B¢ is a hyperparameter that controls the balance between ex-
ploration and exploitation. While there are many possible
choices for the surrogate function f, including deep neural
networks (12), a popular choice is a Gaussian process due to
its principled handling of uncertainty and capacity to approx-
imate a wide range of functions.

Gaussian processes. Gaussian processes (GPs) (13) de-
fine a framework for performing inference over non-
parametric functions. Let m(x) be a mean function
and k(z,x’) a positive-definite covariance function for
r,2' € RP. We define f(z) to be a Gaussian pro-
cess denoted f(z) ~ GP(m(x),k(x,a’)) if for any finite-
dimensional subset x = [x1,...,2x5]T € RNXP | the corre-
sponding function outputs f = [f(z1),..., f(zn)] follow a
multivariate Gaussian distribution p(f|x) = N (0,K), where
K is the covariance matrix with entries (K);; = k(z;,z;) and
we have assumed a zero-mean function without loss of gener-
ality. The kernel fully specifies the prior over functions, with
one popular choice we use throughout the paper being the

N2
exponentiated quadratic kernel k(x,2') = exp ((‘r—lf ) ) Jt

is common to model noisy observations y via the likelihood
p(y|f), which when taken to be N'(f,c2) leads to the exact
marginalization of f.

Multi-output Gaussian processes. Gaussian processes
may be extended to model K distinct outputs' via the func-
tions { fx(z)}/_,. One construction is to model the full co-
variance matrix as the Kronecker product between the K x K
inter-objective covariance matrix K'© and the data covari-
ance matrix:

cov (fix(2), frr () = (KO)p rk(z,a"). @)

Here the kernel hyperparameter [ is shared across objectives,
though in the following we model objective-specific observa-
tion noises €.

Multi-objective optimization. Multi-objective optimiza-
tion attempts to simultaneously optimize K objectives
g1(2),...,9x(x) over x € RP, which is common in
many real-world settings. However, it is rare in prac-
tice to be able to optimize all K functions simultaneously
and instead is common to attempt to recover the Pareto
front. We say a point x1 is Pareto dominated by xo iff
gr(z1) < gr(ze)Vk = 1,...,Kand Ik € 1,....K st
gr(x1) < gi(x2). A point is said to be Pareto optimal if it
is not dominated by any other point. The Pareto front is then
defined as the set of Pareto optimal points, which intuitively
corresponds to the set of equivalently optimal points given no
prior preference between objectives.

1Commonly referred to as tasks, we here refer to them as objectives given
the application.
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Scalarization functions. One popular approach to multi-
objective optimization is the use of scalarization func-
tions (see (14) for an overview). A scalarization function
sa(g(x)) parameterized by X takes the set of K functions
g(x) = [g1(x),...,9K (2)] and outputs a single scalar value
to be optimized in lieu of g(x). It can be shown (15) that if
s is monotonically increasing in all g (z) then the resulting
optimum z* lies on the Pareto front of g.

While many scalarization functions exist, one pop-
ular choice is the linear scalarization function
sx(g(x)) = 8 Argr(x), Ap > 0Vk. This has the
intuitive interpretation that each Aj corresponds to the
weight assigned to function k, with a larger relative value
pulling the optimum of sy towards the optimum of gg.

Hypervolume improvement. Another multi-objective opti-
mization approach relies on the notion of hypervolume (HV),
the volume of the space dominated by an approximate Pareto
front and bounded from below by a reference point, which
current work assumes to be known by the practitioner (16).
HV is used as a metric to assess the quality of a Pareto front
and is sought to be maximized in the optimization. HV can
be efficiently computed by box decomposition methods (17),
allowing one to compute the HV improvement (HVI) for a
new set of points (18).

Multi-objective Bayesian optimization. MOBO proce-
dures tackle the scalarization-based multi-objective opti-
mization as above but under the same conditions as BO,
where each evaluation of gp(x) is expensive and deriva-
tive information is unavailable. An example method is
ParEGO (19), which randomly scalarizes objectives with
augmented Chebyshev scalarization and uses expected im-
provement. It was recently extended to gNParEGO (20),
which supports parallel and constrained optimization in a
noisy setting. Unlike hypervolume-based methods which can
struggle with > 5 objectives (21), gNParEGO is more suited
for such problems.

Paria et al. (15) propose a MOBO procedure that, rather than
maximizing sy for a single A, constructs a distribution p(\)
and minimizes the expected pointwise regret,

ROX) = Ey(a) g sn (o) - g () ).

where X is the feature space of x and X is the subset of X
lying on the Pareto front to be computed. The exact region
of the Pareto front to be considered is governed by p(\) and
the authors provide a bounding box procedure for the user to
select p(A), akin in the case of a linear scalarization to assert-
ing a priori which objectives k are important. However, to
our knowledge, no MOBO approach has proposed a p(A|-),
inferred from either the data or the posterior over functions,
that adaptively up- or downweights objectives based on de-
sirable properties.

For hypervolume-based methods in the MOBO setting,
the posterior distribution of the surrogate model can be
used to compute the expected hypervolume improvement
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Fig. 1. Examples of desirable behaviours.

(EHVI) (20). As EHVI assumes noise-free observations and
can be affected in the presence of noise, recent work in-
troduced noisy hypervolume improvement (NEHVI), which
uses the expectation of EHVI under the posterior distri-
bution of the surrogate function values given noisy ob-
servations (16). NEHVI is more robust to noise than
other hypervolume-based MOBO methods, is equivalent to
EHVI in the noiseless setting, and its parallel formulation
(gNEHVI) achieves computational gains and state-of-the-art
performance in large batch optimization (16).

Applications of AutoML in genomics. Despite the preva-
lence of ML applications in genomics, AutoML methods
have received surprisingly little attention. The GenoML
project (22) provides a Python framework centered on open
science principles to perform end-to-end AutoML proce-
dures for supervised learning problems in genomics. Auto-
GeneS (23) develops a multi-objective optimization frame-
work for the selection of genes for the deconvolution of bulk
RNA-sequencing. However, to our knowledge, there is no
work that tackles the general problem of optimizing bioin-
formatics and genomics workflows in the absence of well-
defined objective functions. In contrast, there are multiple
BO techniques that allow a user to express a preference be-
tween solutions (24). While these could have exciting ap-
plications in genomics, we assume such information is not
available here.

Multi-objective Bayesian optimization over
heuristic objectives

Setup. We assume we have access to K noisy, heuristic ob-
jectives that at acquisition step ¢ return a measurement Y
for an input location z; € X, where X’ is a compact subset
of R on [a,b]. We introduce surrogate functions fj(x) that
we model with a multi-output GP as described above with a
full kernel given by Equation 2. We use a linear scalariza-
tion function over objectives sx (f(z)) = >, Axfr(x) and
ultimately seek to maximize E,x|.)[sx(f(z))]. The next
point to query zyy; is chosen by maximizing the expec-
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tation of the acquisition function. For this we propose
two approaches: (i) the expectation of the scalarization of
the single-objective acquisition function of each objective
Ep(al-) [sx(acq(f(z)))] as per (15) and (ii) the expectation of
the single-objective acquisition function of the scalarized ob-
jectives (x| [acq(sx(f(z)))] (derived in Supplementary
Note 3). We denote these as SA (scalarized acquisition) and
AS (acquisition of scalarized), respectively, and use the UCB
single-objective acquisition function as per Equation 1. We
wish to set p(A|-) to upweight objectives that are inferred as
useful based on desirable properties learned from the data.

Desirable heuristic objective behaviours. We begin by
considering what properties of a given heuristic objective
fx(x) may be considered desirable that would lead to up-
weighting of that objective in our overall optimization proce-
dure. While many are possible, we suggest three (Figure 1):

1. Explainability: fi(x) covaries significantly with x
(i.e. is explained by z). The justification here is that the
practitioner has selected heuristic £ assuming it will
provide insight into the choice of z, so if there is no
correlation then it should be downweighted. Given that
the data have been scaled to empirical variance 1, o2},
represents the proportion of variance unexplained by

f1 so we define B,(Cl) =02}

2. Inter-objective agreement: fj, shares a similar func-
tional form with fi/, k" # k, with the intuition that it
is useful for practitioners to find regions of the input
space where multiple heuristics agree. After fitting the
multi-output GP, (K'©) &,k defines the covariance be-
tween objective k and &’ for k # k' and (K'©)y 5, de-
fines the variance of objective k. We therefore intro-
duce the inter-objective agreement behaviour as

K 10
1 K /
B](CZ):: Z max O,K 1 ( ik
k=1 k'#k B \/(Klo)k,k(KIO)k’,k’
10 (3)
K ’
The intuition is that (K ik represents the

\/(Klo)k,k(KIO)k/,k/
. L 2
correlation between objectives k and k' so B,g ) rep-
resents the average correlation with other objectives
while not penalizing negative correlation worse than
no correlation.

3. Maximum not at boundary: Within X, f; has a max-
imum that is not at the boundary of x. The justification
is that if the maximum is at the boundary, f may be un-
bounded by increasing |z| and/or there is a mismatch
between the practitioner’s expectations of the domain
of X and the behaviour of f. Since the derivative of
a GP is also a GP, we may identify whether a station-
ary point exists in X’ by searching for the zeros of the
posterior mean derivative f’(x). We therefore define

B,(;’) := hasmax ( fx, X'), where hasmax returns 1 if fy
has a maximum on X’ and 0 otherwise by evaluating the

derivatives of the posterior mean of the multi-output
GP (derived in Supplementary Note 4).

Incorporating desirable behaviours into scalarization
weights. We next consider how to use the set of behaviours
B to parameterize the scalarization probabilities p(A|B). We
assume that A\ is a binary variable V& that corresponds to
whether objective k is useful or otherwise, with p(Ax|Byg)
given by a Bernoulli distribution. While this construction ini-
tially appears restrictive, it has two desirable properties that
maintain its generality (proofs presented in Supplementary
Note 5):
Theorem 1: It E,(x,B,)[Ak] > 0 Vk, the solution to
max; E,x8)sa(f(z)) lies on the Pareto front of f.
Theorem 2: For some p(A|B), any point z* on the Pareto
front of f is reachable as a maximizer of E,, 5 z)sA(f(2)).
However, how to construct p(A\; = 1|B£1)7B,(€2),B,(€3)) di-
rectly is non-obvious. Instead, we ask how would each ob-
jective behaviour appear if we knew that objective was use-
ful or otherwise? These allow us to specify p(B,(;) [Ap =1),
p(B,(:)|)\k =0) for i = 1,2,3 and combine with a prior
p(Ar =1) =1—p(A\x = 0) to compute p(A\y =1|Bg) =
[1p(BY M=1)p(n=1)
> oon L P(BY Da=a)p(r=a)
we suggest distributions for p(B,(;)\)\k); however, we em-

phasize that these are suggestions only and there are many
possible that would fit the problem.

. With these considerations,

Explainability:  For B,(Cl), the explainability of objective k
(i.e. the proportion of variance unexplained by that function),
we assume that if that objective is desirable (A\; = 1) then
the lower the observation noise, the better and in the non-
desirable case (A = 0), higher noise is expected. Given the
lack of additional assumptions, we appeal to the principle of
parsimony and propose a linear relationship of the form:

p(BV|Ar) = {

0 otherwise.

)

Inter-objective agreement: For inter-objective agreement

B,(f), we propose reversed likelihoods to Equation 4 given
the reasoning that high inter-objective correlation should be
more likely under a desirable objective and vice-versa for a
non-desirable one, and again a linear relationship is the most
parsimonious.

Maximum not at boundary: We propose B,(C?’)\)\k:i ~
Bernoulli(w;) where mg,7m; are user-settable hyper-
parameters. This means that conditioned on an objective
being useful (or otherwise), there is a fixed probability of
that objective containing a maximum in the region.

MANATEE. Putting these steps together results in the MAN-

ATEE framework, an iterative MOBO procedure as outlined
in Figure 2. First, the objectives are evaluated at a set of input
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Fig. 2. Multi-objective Bayesian optimization with heuristic objectives.

locations randomly chosen on the parameter space. Second,
the multi-output GP surrogate function with covariance given
by Equation 2 is fitted to all objectives. Then, the objective
behaviours 3 are computed from the surrogate function and
the distributions over objective weights are updated. Finally,
the updated acquisition function is optimized, guiding acqui-
sition of the next point. The procedure is repeated for a pre-
determined number of steps. The overall “best” point to be
used for downstream analysis may be chosen as that which
maximizes the scalarized surrogate function.

Baselines for experiments. We contrast our method
against two baselines and two existing approaches designed
for MOBO of noisy objectives: (1) Random acquisition: draw
x¢ ~ Unif(0,1) at each iteration, (ii) Random scalarization:
use identical surrogate and acquisition functions as MANA-
TEE to sample z; but draw A\ ~ Unif(0, 1) rather than con-
ditional on B, (iii) gNEHVI (16) with approximate hypervol-
ume computation to facilitate inference over > 5 objectives,
and (iv) gNParEGO (20).

When a meta-objective h(x;) is available at every itera-
tion t = 1,...,T with overall maximum y* = max,cx h(z),
to compare among approaches we compute the follow-
ing metrics: (i) Cumulative regret: %Zle (y* —h(zs)),
(i) Full regret: y* —maxgcx,., h(x), and (iii) Bayes re-
gret: % Zthl (y* —maxzex,., h(x)), where X1.; is the set
of x acquired up to time ¢. Of these, we place most em-
phasis on cumulative regret as it quantifies how close each
method gets to the optimal solution on average. In contrast,
the full and Bayes regret quantify how close the “best” ac-
quired point gets to y* as measured by the max over A of all
points acquired so far; however, since the meta-objective h
is in general inaccessible for our problem setup (and only
used for method comparison), it is impossible to quantify
max,ex,., h(z) in practice outside of benchmarking exer-
cises.

Selega etal. | Bayesian optimization for heuristic objectives

Experiments

Toy data experiment. We begin by demonstrating the over-
all problem setup on toy data on an input space x € [0,1].
We consider 5 objectives overall — 3 that act as the useful ob-
jectives with maxima around that of a meta-objective at 1/4
given by sin 2wz, max(0,sin27z), and sin 27 (z — 0.05) and
2 that disagree and act as the non-useful objectives given by
2z and —2z. Each objective is augmented with noise (Sup-
plementary Note 2A). Note that on real data we do not know
a priori which objectives are useful®. Further, the meta-
objective is not specified — it may be linear, non-linear, and
not necessarily a function of the heuristic objectives — it sim-
ply needs a maximum at x ~ %.

Samples from each of these functions can be seen in Fig-
ure 3A (blue points). The overall Pareto front (orange
points) spans almost the entire region including samples at
the very right where one of the non-useful linear objective
functions has its maximum. However, when applied to this
toy problem, MANATEE quickly begins acquiring samples
around the joint maxima of the three useful objective func-
tions (red points). Indeed, tracing the inclusion probabili-
ties p(Ax = 1|By) across the iterations (Figure 3B) demon-
strates how MANATEE learns to upweight objectives 1-3
while downweighting 4-5. This demonstrates than when we
do not know a priori which objectives to trust, we may still
recover a region of high utility when the Pareto front spans
the full space of conflicting objectives.

Imaging Mass Cytometry cofactor selection. We next
apply MANATEE to the selection of cofactors for Imaging
Mass Cytometry (IMC) data, a new technology that can mea-
sure the expression of up to 40 proteins at subcellular res-
olution in tissue sections (25). In the analysis of mass cy-

20therwise only useful objectives would be included and standard MOBO
procedures applied.
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Fig. 3. A Samples of toy data for the 5 objectives, including those on the Pareto front (orange) and otherwise (blue), along with points acquired by MANATEE-SA (red). B

Inclusion probabilities for each of the objectives as a function of acquisition step.

tometry data, a cofactor c is frequently used to normalize the
data (26, 27) via the transformation § = sinh ™! (y/c). How-
ever, to our knowledge no systematic approach exists to set
the cofactor and it is typically left as a user-specified param-
eter.

Here, we consider the standard workflow, where (i) the ex-
pression data is normalized with a given cofactor ¢ and (ii) the
data is clustered using standard methods with the “best” co-
factor being the one that leads to the most biologically rel-
evant cellular populations®. Given that this problem in gen-
eral has no notion of “test accuracy” with respect to which
we could optimize the cofactor, we instead suggest a number
of heuristic objectives based around maximizing the corre-
lation of cluster-specific mean expression of known protein
marker combinations. For example, the proteins CD19 and
CD20 are highly expressed in B lymphocyte cells and lowly
expressed in all others. Therefore, if a clustering correctly
separates B cells from others, the correlation between the
mean CD19 and CD20 expression in each cluster should be
high as the proteins should either be co-expressed or both not
expressed (at the origin), as demonstrated in Supplementary
Note 6A. We can apply this logic to a range of cell type mark-
ers to construct our set of heuristic objectives (Supplementary
Note 6B).

To quantify the ability of each clustering to uncover bio-
logically relevant populations, we use expert annotated cell
types from (28) and assess cluster overlap with the ad-
justed Rand index (ARI) and normalized mutual informa-
tion (NMI), which for this experiment form the overall meta-
objectives in line with prior benchmarking efforts of single-
cell clustering (29, 30). Note that this is in general unavail-
able for the analysis of newly generated data and we would
only have access to the correlation (heuristic) objectives.
The results comparing MANATEE to the alternative meth-
ods are shown in Table 1. On the metric of cumulative
regret, which as above, is most relevant for the problem

3 All parameters of the clustering procedure are held constant across co-
factors to allow for fair comparison.

setup at hand, MANATEE-SA outperforms the alternative
approaches. On full and Bayes regret, MANATEE per-
forms comparably with the baselines. On cumulative regret,
gNEHVI is comparable to random acquisition, suggesting
that consistently acquiring close-to-optimal solutions over
> 5 noisy objectives is challenging even for approximate hy-
pervolume computation. Interestingly, we find that random
scalarization exhibits strong performance on several mea-
sures, which may be understood by the fact that the scalarized
objective ), A fi naturally places high weight on regions
where many objectives agree, mimicking a similar scenario
to our inter-objective agreement criterion.

We further performed ablation experiments of each be-
haviour and found that no single behaviour drives the perfor-
mance (Supplementary Note 1D). We also performed cross-
validation on data splits to demonstrate that MANATEE does
not overfit to a given dataset (Supplementary Note 1C).

Single-cell RNA-seq highly variable gene selection.
Single-cell RNA-sequencing (scRNA-seq, see (31) for an
overview) quantifies whole-transcriptome gene expression at
single-cell resolution. A key step in the analysis of the re-
sulting data is selection of a set of highly variable genes
(HVGs) for downstream analysis, typically taken as the
“top %" (32), but there are no systematic or quantitative
recommendations for selecting this proportion (33). There-
fore, we apply MANATEE to this problem following a clus-
tering workflow similar to the IMC experiment, but by vary-
ing the proportion of HVGs used for the analysis and keep-
ing all other clustering parameters fixed. We again propose
a number of co-expression based heuristics (Supplementary
Note 6C) and augment these with measures of cluster purity
(mean silhouette width, Calinski and Harabasz score, Davies-
Bouldin score) previously used in scRNA-seq analysis (1).

For these workflows, no general ground truth clustering or
cell types are available. However, a new technology called
CITE-seq can simultaneously quantify both the RNA and
surface protein expression at single-cell level (34). Given
that cell types are traditionally defined by surface protein
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ARI NMI

Method CR FR BR CR FR BR
M-SA _ 0.018(0.005) 0.003(0.003) 0.008(0.006) 0.019(0.009) 0.002(0.005) 0.008(0.009)
M-AS 0.022(0.009) 0.004(0.010) 0.009(0.010) 0.028(0.015) 0.007(0.016) 0.014(0.016)
RA 0.045(0.001) 0.024(0.013) 0.031(0.008) 0.065(0.003) 0.026(0.013) 0.036(0.009)
RS 0.021(0.004) 0.003(0.004) 0.008(0.005) 0.025(0.006) 0.003(0.006) 0.008(0.007)
gNEHVI  0.043(0.004) 0.011(0.007) 0.021(0.011) 0.061(0.007) 0.011(0.007) 0.026(0.017)
gNParEGO 0.037(0.005) 0.003(0.003) 0.018(0.012) 0.049(0.009) 0.005(0.003) 0.023(0. 017)

Table 1. Results for IMC cofactor optimization experiment. CR: cumulative regret, FR: full regret; BR: Bayes regret. M-SA: MANATEE with scalarized acquisition, M-AS:
MANATEE with acquisition of scalarized function, RA: random acquisition, RS: random scalarization. ARI: adjusted Rand index, NMI: normalized mutual information. Values

are mean (s.d.).

ART NMI

Method CR FR BR CR FR BR
M-SA 0.119(0.024) 0.048(0.008) 0.053(0.008) 0.114(0.030) 0.014(0.014) 0.022(0.015)
M-AS  0.117(0.027) 0.051(0.014) 0.059(0.014) 0.117(0.035) 0.023(0.015) 0.034(0.019)
RA 0.191(0.022) 0.045(0.007) 0.060(0.014) 0.201(0.027) 0.020(0.008) 0.037(0.017)
RS 0.128(0.017) 0.045(0.006) 0.051(0.007) 0.116(0.019) 0.011(0.003) 0.019(0.008)
gNEHVI  0.182(0.054) 0.046(0.013) 0.086(0.061) 0.190(0.067) 0.021(0.008) 0.068(0.076)
gNParEGO 0.152(0.035) 0.045(0.006) 0.075(0.032) 0.152(0.040) 0.013(0.010) 0.055(0.043)

Table 2. Results for scRNA-seq HVG selection optimization experiment. CR: cumulative regret, FR: full regret; BR: Bayes regret. M-SA: MANATEE with scalarized acquisition,
M-AS: MANATEE with acquisition of scalarized function, RA: random acquisition, RS: random scalarization. ARI: adjusted Rand index, NMI: normalized mutual information.

Values are mean (s.d.).

expression (35), we use a clustering of the surface pro-
tein expression alone as the ground truth following existing
work (36). The concordance with this clustering acts as the
meta-objective in this experiment, which we benchmark the
proposed approaches against. We supply each method with
the heuristic objectives above and benchmark the gene pro-
portion acquisitions by contrasting the resulting clusterings
with the surface protein-derived ground truth using ARI and
NMI as metrics. Once again, these represent only two pos-
sible choices of meta-objective and there are many more we
could design, highlighting the prevalence of heuristic objec-
tives in the field.

The results are shown in Table 2. As above, our main focus
is on cumulative regret since when deploying in a real-world
scenario, we would not have access to the meta-objective.
MANATEE performs favourably on cumulative regret com-
pared to the other approaches, though has higher full and
Bayes regret. Overall, this demonstrates our method to be
a promising approach to tackle hyperparameter optimization
on real, noisy datasets and achieve competitive performance
compared to existing baselines and state-of-the-art methods.

Discussion

A common theme here is the subjectivity of parameter set-
ting in biological data analysis workflows. Setting these of-
ten involves no heuristic objectives at all, simply relying on
an iterative data exploration to find a parameter combination
that “works”. Even when heuristic objectives are involved —
such as in the benchmarking analyses of scRNA-seq work-
flows — the precise choice of which objectives to include is
fundamentally subjective too.

It is important to note that our proposed approach does not re-
move subjectivity from the analysis. Many important steps,
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including the chosen behaviours B and their conditional in-
clusion distributions p(53|A) are set by the user. Therefore,
it abstracts the subjectivity by a level, changing the ques-
tion from “which objectives should I use to benchmark my
method?” to “what would the behaviour of a good objective
function be?”. Given that no link is assumed between the
specified heuristic objectives and the true meta-objective and
that the choice of desirable objective behaviours is given as
example only, we make no optimality claims about the ability
to explore the Pareto front. We note that our approach may be
used to optimize parameters in ethically dubious bioinformat-
ics analyses, such as genetic testing of embryos, and strongly
caution any such use, emphasizing the need for a thorough
ethical review process.

There are several extensions that would serve as future steps.
We have only considered x € R, but this could be extended to
z € RP for D > 1. Similarly, there is much current research
in BO methods over both continuous and categorical domains
(37), which may better suit the parameter space of scCRNA-
seq analysis pipelines (1). Finally, much research in BO cen-
tres on the incorporation of user input and expert opinions to
guide optimization (38, 39). While we have explicitly con-
sidered the opposite problem — where a priori it is not known
which objectives should be upweighted — there could be sit-
uations where both approaches could be integrated. For ex-
ample, an expert may provide ratings for the results of each
scRNA-seq clustering during optimization. In such settings,
these ratings could be integrated into our proposed frame-
work by updating the distributions p(A|B,0) over © such
that they confer high weights to functions of expert ratings.
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