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Abstract

The rapid development of deep learning-based methods has considerably advanced

the ield of protein structure prediction. The accuracy of predicting the 3D structures

of simple proteins is comparable to that of experimentally determined structures, pro-

viding broad possibilities for structure-based biological studies. Another critical ques-

tion is whether and how multistate structures can be predicted from a given protein

sequence. In this study, analysis of multiple two-state proteins demonstrated that deep

learning-based contact map predictions contain structural information on both states,

which suggests that it is probably appropriate to change the target of deep learning-

based protein structure prediction from one speciic structure to multiple likely struc-

tures. Furthermore, by combining deep learning- and physics-based computational

methods, we developed a protocol for exploring alternative conformations from a known

structure of a given protein, by which we successfully approached the holo-state con-

formation of a leucine-binding protein from its apo-state structure.
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Introduction

Protein structure prediction has been a fundamental topic in computational biology for

decades.1±3 Numerous innovative and reliable methods were developed in recent years,

speciically deep learning-based methods, which have greatly advanced this ield.4±10 Par-

ticularly, AlphaFold2 demonstrated a breakthrough improvement in the accuracy of de novo

structure prediction in the latest 14th Critical Assessment of Techniques for Protein Struc-

ture Prediction (CASP14).11,12 The use of large sequence databases has beneited from the

development of bioinformatics; the end-to-end deep neural network outperformed other

models in 3D protein structure prediction, reaching high accuracies comparable to those

of many experimentally obtained structures. Additionally, new approaches have combined

deep learning with traditional computational methods, such as template-based modeling,

physics-based optimization, and molecular dynamics (MD) simulations, to achieve improved

performance.13±17

Currently, most if not all deep-learning-based methods focus on the prediction of one

structure in a speciic state rather than likely structures of multiple states, while multiple

states are essential for most protein functions.2,18 For example, many crucial proteins such

as enzymes,19 G protein-coupled receptors (GPCRs),20 ion channels,21 and transporters22

undergo subtle or signiicant conformational changes from one stable state to another to

exert their functions. Therefore, it is important to study the multiple structures of proteins

and the dynamic transition between them to fully understand their functions, for which

the ability to predict the protein structures of alternative states is essential. There have

been attempts of using AlphaFold2 to predict alternative structures of proteins. del Alamo

et al. found that using shallow multiple sequence alignment (MSA) as input can lead Al-

phaFold2 to sample intermediate-like conformations of transporters and receptors, partic-

ularly GPCRs.23 However, there exist the possibilities that shallow MSAs were not informa-

tive enough to generate a converged structure, as pointed out by Heo et al.24 Heo and Feig

found that the default protocol of AlphaFold2 shows a strong preference for generating in-

active state structures of GPCRs, but one can predict accurate active structures by using

state-annotated GPCR structure databases without using MSA.24 This is an effective strat-
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egy to generate activated structures of GPCRs. Nevertheless, it remains elusive whether deep

learning actually captured structures of both states or only the dominant one in the struc-

tural databases. In addition, the above tests were carried out mostly for GPCRs, whose ac-

tivation involves relatively small conformational changes. Therefore, further and more ex-

tensive validations are required to examine whether deep learning can generally capture the

structural information of multiple protein states that can be extracted for a more compre-

hensive understanding of protein dynamics. From the perspective of physics, a complete

understanding of the stable conformational states and transitions among them requires a

multidimensional free energy landscape,25 which is extremely dificult to obtain. Although

experimental and computational methods have advanced in recent years and the number

of protein structures in the Protein Data Bank (PDB) has increased markedly,26±30 studying

large-scale protein conformation transitions remains experimentally and computationally

challenging.

Interestingly, direct coupling analysis (DCA) of MSA data can reveal crucial long-range

contacts for proteins and protein-protein interactions, which can also be used to explore

the likely alternative conformations of proteins and allosteric regulations.31±34 Thus, pre-

diction based on DCA may contain conformational information on multiple likely states.

Based on pioneering DCA studies, deep learning-based prediction of protein contact maps

(CMs) has been improved and widely used for 3D protein structure predictions in the last

few years,6,35,36 but the biological importance of CM prediction is not as immediately evi-

dent as that of DCA. Notably, Iyer et al. found that the difference of CMs from PDB struc-

tures can infer the conformational lexibility of proteins,37 and Feng et al. developed a

method to predict the alternative conformations of proteins by using contacts clustering

and Confold2,38 strongly suggesting that CM prediction may contain multistate structural

information. However, neither the aforementioned AlphaFold-based nor CM-based studies

excluded the homologous proteins from the training dataset. Therefore, whether and how

one can extract residue contact information on multiple likely states from a de novo CM

prediction by deep learning is still an interesting and promising question.

In this study, by analyzing the predicted CMs and known structures of representative

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.07.495232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495232
http://creativecommons.org/licenses/by-nc-nd/4.0/


proteins, we demonstrate that it is possible to extract structural information on multiple

states from the deep learning predicted CMs. As CM prediction can be viewed as an in-

termediate step for 3D structure prediction, we think the message is applicable to protein

structure prediction as well, i.e., deep-learning-based structure predictions contain infor-

mation of multiple likely states. In addition, by combining deep learning predictions with

physics-based computational methods, we propose a straightforward approach for explor-

ing alternative protein conformations from a known structure guided using CM analysis

(Fig. 1). This study will facilitate the prediction of multistate structures based on deep learn-

ing methods, as well as accelerate large-scale conformation sampling in MD simulations.

Results

Predicted contact maps contain structural information on both states for

two-state proteins

Two residues are deined as being in direct contact when the Euclidean distance between the

Cβ atoms (Cα for glycine) is shorter than 8 Å, and the Boolean matrix showing the contact

status of all residue pairs in a protein is known as a CM.39 Starting from three represen-

tative cases, we examined whether protein CMs predicted from sequences based on deep

learning and MSA can capture the structural information of both states for two-state pro-

teins. We selected three two-state proteins for CM and structural analyses: rhodopsin, 70-

kDa heat shock protein (Hsp70), and leucine-binding protein (LBP). The structures of both

states are known for these three proteins and the transitions between their two states involve

various degrees of conformational changes, from relatively minor helices rearrangements of

rhodopsin to global domain rearrangements of Hsp70.

Our analysis showed that the predicted contact maps indeed contain structural infor-

mation on multiple states. We calculated the contact maps based on two known structures

of both states, which are denoted as TCM1 (true contact map 1) and TCM2. We also used

a deep-learning-based method to predict the contact map of the same protein from its se-

quence (PCM), and then compared the three CMs to check whether the PCMs contain true
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contacts of both TCM1 and TCM2. The results are summarized in Table 1. As can be seen,

when only considering the predictions of ªhigh conidenceº (over 0.9), the PCMs of the three

proteins not only have the true contacts existing in both states (column 1), but also contain

the true contacts that exist exclusively in either state (columns 2 and 3).

Table 1: Comparison of predicted contact maps (PCMs) with true contact maps (TCMs) of
the two states for the three representative proteins. A three-digit code is used to describe
the contact status in the three CMs: the irst digit indicates the contact status in TCM1, the
second TCM2, and the third PCM. For example, ª101º means that a contact exists in the
irst state structure and the predicted CM, but not in the second state. The values show the
number of contacts in the speciic status.

Contact status in TCM1, TCM2 and PCM

111 101 011 001 110 100 010

Rhodopsin 117 17 18 43 263 180 83

Hsp70 756 53 92 149 285 183 274

LBP 445 7 16 62 356 42 85

It is worth mentioning that, the training dataset for our CM predictor did not contain any

homologous proteins with a sequence identity over 25% with respect to the target proteins,

so the CM predictions can be viewed as de novo. Although there are still many false positive

(column 4) and false negative (column 5-7) predictions as shown in Table 1, the data in the

irst three columns suggest that the PCMs can probably be used to construct the structures

of both states, if the false positives can be effectively excluded. Removing the false positives

from PCMs is a very challenging problem if no other structural information is available. Here

we consider an easier scenario, in which the structure of the irst state is already known, and

we ask the question whether the structure of the second state can be explored based on the

known structure and CM analysis. This is a very common scenario, as a protein structure can

be readily predicted by deep learning methods nowadays, or even solved experimentally, if

it is not already available in the PDB.
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A known protein state

Sequence

CM of this structure CM prediction

Signal for the alternative state

Predict with Rosetta

Refine with MD simulations

Compare

Figure 1: Worklow of our prediction method. We started with a known protein state struc-
ture and used the information extracted from its true contact map and predicted contact
map to explore the alternative state structure.
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Extracting structural information on the alternative conformation based

on a known structure and contact map analysis

By analyzing the above three cases, we established a strict and effective selection criteria

to remove the false positives and extract the contact information of the alternative state

structure (Materials and methods). In the irst case, we analyzed the structures and CMs

of rhodopsin, which undergoes a subtle conformational change between its inactive and

active states on a few transmembrane helices, mostly the intracellular part of helices 5 and 6

(Fig. 2A).40 Hypothetically, the inactive structure but not the active structure was available.

As shown in Fig. 1, we calculated the TCM of the known inactive structure (STR1) and the

PCM using the rhodopsin sequence. By subtracting the TCM from the PCM, we obtained

the difference contact map (DCM) and identiied 61 additional pairs of in-contact residues

with prediction conidence of over 0.9 (Fig. 2B), among which 23 pairs were separated by

a distance of over 10 Å in STR1 (Table S1). Furthermore, we found 11 pairs of residues that

were associated with the conformational change of activation according to our CM analysis

criteria, seven of which were located on helices 5 and 6 (Fig. 2A). This result indicates that

the additional contacts in the alternative conformation can be extracted by analyzing one

known structure and the PCM of rhodopsin, and it is possible to exclude the false positives

based on the known structure.

The second case was heat shock protein (Hsp70), which undergoes large and global con-

formational changes when it transitions between the ADP-bound and ATP-bound states

(Fig. 2C).41 The most evident change was the distance between the nucleotide-binding do-

main (NBD) and substrate-binding domain (SBD). By following our analysis protocol (Fig.

1) and selection criteria (Materials and methods), we found that: 241 new additional con-

tacts were spotted in the DCM and new clusters of predicted contacts appeared on the PCM

compared to in the ADP-bound state (TCM1) (Fig. 2D), indicating that these new regional

contacts may exist in the alternative, ATP-bound state (Fig. 2C); 78 pairs of residues with

distance over 10 Å were found in the DCM; after ruling out the residue pairs with high lexi-

bility and those showing small distance changes, 27 pairs were selected, which are shown by

magenta dashed lines in Fig. 2C. Among these likely contacts, 15 pairs showed an original

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.07.495232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495232
http://creativecommons.org/licenses/by-nc-nd/4.0/


Rhodopsin

Inactive state Active stateSignals extracted from CMs
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Figure 2: Critical signals associated with conformational changes between two distinct
states can be extracted from contact map analyses. (A) Analysis of the transition from the
inactive (closed) state (PDB ID: 2i35) to the active (open) state (PDB ID: 6oy9) structures
of rhodopsin. (B) Subtracting the true contact map of the known structure (TCM1) from
the predicted contact map (PCM) yielded the differences between the two contact maps
(DCM), which contains critical signals of likely structural differences when the known struc-
ture transitions to the alternative conformation. The selected signals are indicated in (A)
with pink lines. (C-D) Similar to (A-B), but for the heat shock protein (HSP70), whose ADP-
bound state (PDB ID: 2kho) and ATP-bound state (PDB ID: 4b9q) structures are shown. (E-F)
Similar to (A-B), but for leucine-binding protein, the open state (PDB ID: 1usg) and closed
state (PDB ID: 1usi) structures are shown.
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distance of 20±50 Å (Table S2), indicating that these residues comprised the likely regions of

large conformational changes, as they may have to move close to each other until within 8

Å (in contact) in the alternative conformation. Interestingly, the interface between the NBD

and SBD in the ATP-bound state was highly correlated with these 15 pairs of residues (Fig.

2C). Therefore, the PCM appears to contain structural information on the two distinct states

of Hsp70 during the transition, which involves global and large conformational changes.

We further validated our protocol in the third case, LBP, a periplasmic ligand-binding

protein that undergoes a sizable conformational change when transitioning from the apo

(open) to the holo (closed) state upon binding to leucine or phenylalanine (Fig. 2E).42 Com-

pared to the CM of the open structure (TCM1) of LBP, 78 additional contacts with high

prediction conidence (over 0.9) were identiied on the PCM (Fig. 2F), showing relatively

strong signals for the alternative conformation. According to our selection criteria, 15 pairs

of residues were predicted to be in contact in the PCM with a distance (d0) larger than 10 Å

in the known structure (Table 2, Fig. S1), and four pairs of residues (bold in Table 2) were

selected for further analysis and modeling. These four contacts may represent the most crit-

ical new contacts in the alternative conformation. The distance between these residues is

expected to change from above 15 Å to lower than 8 Å in the new conformation, according

to the PCM and known structure. In addition, these four pairs of residues were present at

the interface of two domains, indicating that the two domains should approach each other

in the alternative conformation (Fig. 2E).

In our selection criteria from the DCM, the potential contact with large distance vari-

ation, inter-secondary structures, or inter-domains were strongly preferred. This will ex-

clude some true positives in the DCM, but the advantage is that all the false negatives can

be excluded and some key contacts in the alternative conformation can still be identiied for

further analysis and modeling.

Prediction of alternative conformation of LBP with Rosetta

We further explored whether the contact information identiied above can help predict or

model the alternative conformation. We used LBP as a validation system because the struc-
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Table 2: Selection of key residue pairs based on contact map analysis of leucine-binding
protein. The inal selection is indicated in bold.

Residue pair Initial distance (Å) ∆d (Å) Local SS Domain

201±209 10.4 1.56 loop±helix Intra
82±101 10.4 1.97 helix±loop Intra

173±189 10.5 1.68 sheet±helix Intra
286±309 10.6 1.54 helix±helix Intra
220±243 11.0 1.61 loop±sheet Intra
261±273 12.1 1.85 helix±loop Intra
24±269 10.4 2.02 helix±loop Intra
76±280 11.3 1.47 loop±helix Intra

121±153 10.0 1.55 helix±helix Intra
121±157 11.1 1.61 helix±helix Intra
247±286 23.6 1.47 sheet±helix Inter
229–274 17.8 1.80 loop–loop Inter

101–150 15.0 1.84 loop–helix Inter

79–150 17.6 1.76 helix–helix Inter

79–149 17.5 1.84 helix–helix Inter

tural transition between its two states exhibits signiicant and straightforward conforma-

tional changes (Fig. 2E). Hypothetically, the apo (open) state structure but not the holo

(closed) state structure of LBP was available. Based on the above analysis, four critical

residue pairs were predicted to be close to each other in the holo state structure (Table 2

and Fig. 3A). Such a conformation exploration problem can be solved using a physics-based

optimization method with a powerful tool such as the widely used Rosetta software suite. We

constructed an energy-distance function according to the likely contacts of the alternative

conformation (Fig. 3B) to guide the selected residue pairs to approach each other to match

the above contact signals from the DCM. After adding this energy function to the optimiza-

tion procedure of Rosetta, a closed-state model of LBP was obtained from the open-state

crystal structure (details in Materials and methods).

As shown in Fig. 3C, we obtained a closed conformation of LBP from its open state struc-

ture. The quantitative change in distances between the four pairs of residues was labeled.

Comparisons of the predicted conformation with the crystal structures of the two states,

as evaluated using the template modeling score (TM-score) and root-mean-square devia-

tion (RMSD), are listed in Table 3. The predicted structure resembled the holo-state crystal

structure (TM-score: 0.81; RMSD: 3.6 Å) while deviating signiicantly from the initial model
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Figure 3: Prediction of the closed state structure of LBP from the open structure. (A) Dis-
tances (in Å) between the four selected pairs of residues in the original open-state structure.
(B) Restraint energy function for the four selected residue pairs for the optimization proce-
dure in Rosetta. (C) Predicted closed structure (purple) aligned with the holo-state crystal
structure (light pink) with a TM-score of 0.81.

Ð the open-state crystal structure (TM-score: 0.62; RMSD: 6.7 Å), indicating that a rough

holo-state model was obtained.

Table 3: TM-score and RMSD of the predicted or sampled conformations of leucine-binding
protein, with respect to its open and closed structures, respectively.

Model
TM-score RMSD (Å)

Open state
(1usg)

Closed state
(1usi)

Open state
(1usg)

Closed state
(1usi)

Closed state (predicted) 0.62 0.81 6.7 3.6

MD1 0.60 0.87 7.6 2.0

MD2 0.60 0.86 7.9 2.5

MD3 0.61 0.88 7.4 2.0

Closed state (1usi) 0.64 1.00 7.2 0.0

MD refinement of alternative conformation

To further reine the rough model obtained above, atomistic MD simulations were per-

formed. First, we conducted a 500-ns MD simulation using the closed, holo-state crystal

structure as the initial coniguration. This control simulation showed that the closed state

was unstable in the absence of the ligand and tended to quickly evolve back to the open

state, with the RMSD of the protein conformation with respect to the holo-state crystal

structure reaching above 7 Å (orange line in Fig. 4A). We then performed three independent
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500-ns MD simulations to evaluate the stability of our predicted LBP conformation without

applying distance restraints. The results were similar to those of the control simulation, and

the RMSD with respect to the holo-state structure luctuated over a large range between 4

and 11 Å (blue lines in Fig. 4A). These results indicate that the predicted conformation was

unstable in the absence of ligands or external restraints, which is in accord with expectation.

B C

1 ns

TM-score

0.87
(46 ns)

500 nsA

0.86
(453 ns)

0.88
(490 ns)

Figure 4: Molecular dynamics (MD) reinement for the predicted structure. (A) The RMSD
of 500-ns MD simulations with respect to the closed structure. The simulations started with
the experimentally solved closed structure (left orange) and predicted closed structure (left
blue), with or without distance restraints. Conformations at 500 ns are also shown for the
simulations without distance restraint (right). (B) Distance restraint potential applied to
the selected pairs of residues in MD simulations. (C) Three best-sampled conformations in
the MD simulations with distance restraint (indicated by arrows in (A)), showing the lowest
RMSD values and best TM-scores with respect to the closed structure.

To better reine the predicted closed-state model without having to incorporate the lig-

and, which would introduce other uncertainties, we applied distance restraints in our MD

simulations. We added a piece-wise harmonic function to maintain the distances between
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the predicted in-contact residue pairs in the MD simulation (Fig. 4B, Materials and meth-

ods) to better maintain and reine the conformation of the predicted model from Rosetta.

As shown by the green lines in Fig. 4A, there were still deviations from the holo-state struc-

ture in the three independent simulations with distance restraints, but the RMSD values

luctuated around 3 to 5 Å (Fig. 4A), indicating that the sampled LBP conformations were

more close to the holo state than in the simulations without restraints. Indeed, we obtained

multiple conformations that were highly similar to the holo-state crystal structure in our

MD trajectories (Fig. 4C and Table 3). In addition, the local conformation of helices within

the lower domain was also optimized compared with that of the initial model from Rosetta

(Fig. S2). The best-sampled conformation showed a TM-score of 0.88 and an RMSD of 2.0 Å,

indicating that conformations highly similar to the holo-state structure had been sampled.

Discussion

Deep learning-based protein structure prediction has achieved astonishing accuracy for

simple proteins in recent years.8,11 However, most existing methods focus on predicting a

speciic structure without considering the existence of multiple-state conformations. Re-

cently, AlphaFold2’s prediction performance on different conformations has also drawn much

attention. Besides the attempts of two groups to predict the alternative conformations of

GPCRs,23,24 Saldaño et al. elaborately collected 91 pairs of apo-holo structures and used

them to examine whether AlphaFold2 could capture those two-state conformations.43 It was

found that AlphaFold2 failed to yield models resembling different functional conformations

for the given protein sequence. Nonetheless, this dataset provides an ideal test set for our

method as well. By analyzing those 91 pairs of proteins, we further proved that CMs pre-

dicted via deep learning indeed contain structural information on both states in most cases

(Fig. 5 and Table S3). The predicted CMs of 84 proteins in the 91-protein dataset contain

structural information of both states, indicating that the current deep learning-based pre-

dictions work fairly well in capturing multistate structural information, although there is still

room for further improvement. The fact that the multistate conformation can be predicted
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from the CMs probably relies on the exploration of MSA information by machine learning-

based approaches. This occurs because diverse stable or metastable states of proteins are

selected by evolution, and the evolutionarily important residue contacts can be captured,

regardless of whether the interaction stabilizes one or the other states. In fact, similar ideas

were proposed in the pioneering work by other groups based on DCA.31,32,44 Here we further

expand the idea to deep-learning-based CM prediction and provide strong evidence for de

novo prediction of multistate structural information by using deep learning, in addition to

Feng and Shukla’s work that utilized a different strategy.38

Figure 5: Analysis of contacts in the predicted contact maps (PCMs) for the additional 91
proteins. The number of apo/holo-state speciic contacts ("101"/"011" in table S3) were
represented on the x/y axis. The size of circles represented proteins’ sequence length. The
PCMs of most proteins cover certain amounts of the state-speciic contacts of both states.

Although the CM only shows 2D information, they have been extensively used for con-

structing 3D structures and can be predicted in parallel with 3D structures.36,45 Therefore,

the conclusion may be applicable for 3D protein structure prediction too; that is, knowledge-

based deep-learning prediction may be used for multistate structure prediction. This im-

plies that current deep learning-based protein structure predictions can probably be further

improved by adjusting the prediction target from one speciic structure to multiple likely

structures, which could not only improve the prediction accuracy but also expand the bio-

logical signiicance of protein structure predictions.
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Physics-based computer simulations of proteins have been greatly hindered by dificul-

ties related to eficient sampling. Speciically, MD simulations are effective for sampling

the conformational space around the initial coniguration and can often generate quantita-

tive results consistent with the functional state of the initial structure. However, it remains

challenging to simulate the global conformational transition from one state to another, par-

ticularly when the transition process faces a high free energy barrier and prior knowledge of

the reaction coordinate is lacking. In this regard, our approach provides a potential solution

for determining the reaction coordinate or conformation sampling direction by analyzing

deep learning predictions. This protocol can be used to sample the alternative conforma-

tion of a protein based on its known structure and PCM. In fact, similar methods can be used

with other types of predictions, such as torsion angle and accessibility predictions, to drive

large-scale conformational transitions; however, deep learning predictions of global struc-

tural features would probably be more useful for steering major and global conformational

changes. There are still challenges though: due to the absence of the binding ligand and

limitation of sampling eficiency, the best sampled conformation was not the most probable

conformation in MD simulations in the LBP case. Therefore, more sophisticated reinement

protocol need to be developed and utilized in future studies.

The criteria used to extract information from PCMs in this study have proven useful for

multiple protein systems, including both local conformational changes within one domain

and global changes across domains. However, several parameters in the method depend on

the speciic properties of the protein being evaluated, such as its size, secondary structure,

lexibility, domain composition, and surrounding environment of the protein. Therefore,

some prior knowledge of the protein is still necessary for establishing an eficient protocol.

Fortunately, most of this information can be obtained by the experimentally resolved struc-

tures or deep learning-based predictions now. In addition, the method for constructing the

energy-distance function and distance restraint strength can also be further improved to ex-

plore alternative conformations. For instance, a predicted distance map, rather than a CM,

is useful for constructing a more accurate energy-distance function. It is encouraging to see

that, based on the structural information of the known state, most false positives in the PCM
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can be excluded. Obviously, the protocol can also be used with a reliably predicted structure

as the known state, such as a predicted structure by AlphaFold2 or RoseTTAFold. Therefore,

in principle, our method and its derivatives can be used in combination with existing 3D

structure prediction tools to explore multiple likely protein structures, which can be further

combined with MD simulations to depict the free energy landscape of protein dynamics.

A more challenging question is how to deal with proteins with more than two states

when analyzing the PCMs and clustering contacts during the 3D structure prediction pro-

cedure. Some methods for self-consistency checks may be useful, which require further ex-

amination. Meanwhile, previous studies have shown that the development of MD enhanced

sampling together with elaborate structure reinement procedures would probably also con-

tribute to the prediction of alternative conformations.15,16,28,46 Therefore, the combination

of knowledge-based deep learning predictions and physics-based computer simulations is

expected to provide new possibilities and more comprehensive pictures in the study of mul-

tistate structures and free energy landscapes of proteins.

In summary, this study revealed that multiple-state structural information can be ex-

tracted from de novo deep learning predictions, which can be further utilized for structural

modeling based on physics-based approaches and constructing reaction coordinates for

eficient sampling in MD simulations. This method can be improved, but the framework

is suficiently general to be used as a quick test of hypotheses related to protein structure

changes and can be used in combination with experimental techniques to study protein dy-

namics. The method will be useful for providing biophysical insights into the underlying

structural and dynamic mechanisms of multistate proteins.

Materials and methods

Overall protocol

To determine whether the PCMs contain structural information for multiple states, we eval-

uated three representative two-state proteins whose structures in both states have been re-

solved. The overall protocol is as follows.
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1. As shown in Fig. 1, starting with one known structure (STR1), we directly calculated its

contact map, which was named as "TCM1" (true contact map 1).

2. We used a deep learning-based method to predict the CM from the sequence of the

same structure,4,47 named as "PCM".

3. The matrix of the TCM1 was subtracted from PCM, and the resulting contact map was

named "DCM" (difference contact map).

4. The CM of the structure of the second state (STR2) was calculated directly from the

known structure and named as TCM2 (true contact map 2). Please note that this step

is only for the purpose of validation and is not required for prediction or modeling.

5. We examined whether the DCM contained the contact information of TCM2 that did

not exist in TCM1, and extracted the contact information for further structure model-

ing.

After identifying key contact information in the DCM, we applied additional energy-

distance restraint functions in the physics-based model-building tools to search for an al-

ternative structure (STR2) from the known structure (STR1):

1. Starting with STR1, we added energy-distance restraint functions to the ‘initialize pose’

module of Rosetta and searched for an alternative structural model (see below for de-

tails).

2. With the structure generated using Rosetta, we performed MD simulations with dis-

tance restraints to further reine the structure (see below for details).

Protein structures studied in this work

Rhodopsin: GPCRs form a large group of membrane-embedded receptor proteins that are

involved in a plethora of diverse processes.20 Rhodopsin, a class A GPCR, is the light receptor

in rod photoreceptor cells of the retina and plays a central role in phototransduction and rod

photoreceptor cell health.48 Upon activation, rhodopsin undergoes subtle conformational
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changes in a few transmembrane helices. The inactive (PDB ID: 2i35) and active (PDB ID:

6oy9) structures have both been resolved and deposited in the Protein Data Bank (PDB),

which were downloaded for analysis.

Heat shock protein (Hsp70): The 70-kDa heat-shock proteins (Hsp70s) are ubiquitous

molecular chaperones essential for cellular protein folding and proteostasis.49,50 Hsp70 has

two functional domains: a nucleotide-binding domain and a substrate-binding domain.

The formation of domain interfaces is associated with signiicant conformational changes

upon binding to ATP and polypeptide substrates. The structures of the ADP-bound (PDB

ID: 2kho) and ATP-bound states (PDB ID: 4b9q) were downloaded from the PDB.

Leucine-binding protein (LBP): The periplasmic leucine-binding protein is the primary

receptor for the leucine transport system in Escherichia coli.51 The crystal structures of both

the apo and holo forms have been resolved and have revealed that an ‘open-to-close’ confor-

mational change was associated with ligand binding. The open (PDB ID: 1usg) and closed

(PDB ID: 1usi) state structures were downloaded from the PDB.

The additional 91 two-state proteins: To make more comprehensive tests, we adopted the

91 two-state proteins curated by a recently published work,43 in which the structures of both

apo and holo states were available for each of the 91 proteins.

Protein CM prediction

In recent years, machine learning-based methods for contact map (CM) prediction have ad-

vanced signiicantly and become the mainstream in the ield of CM prediction. Xu et al.

developed a ResNet-based model for the CM prediction (RaptorX-Contact), which showed

breakthrough performances.4 Based on this deep model, we built a ResNet-based CM pre-

dictor with a new character of proteins, membrane contact probability (MCP), incorporated

to better account for the structural feature of membrane proteins and achieved improved

performance for both soluble and membrane proteins.47
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In this study, we updated the training data set and trained new MCP-incorporated con-

tact map predictors with the same hyperparameters as in our previous work.47 For the three

representative proteins, we removed the redundant sequences in the training sets with a

strict criterion so that there were no training proteins with sequence identity > 25% with

respect to any of them. For the 91 additional proteins, we also removed their homologous

sequences according to the same criterion and re-trained the model. To predict the CM of

each protein from its sequence, we ran HHblits 3.0.352 (with an E-value of 0.001 and three

iterations) to ind its homologous in the Uniclust30 database dated October 2017 and built

its multiple sequence alignment (MSA). Then the input features were generated from the

MSA and put into the ResNet model for the CM prediction. Please refer to the previous pub-

lications for more details.4,47

Analysis of true contact maps and predicted contact maps

For a certain residue pair of a given two-state protein, their contact status in the two TCMs

and the PCM can be expressed by a three-digit code. The irst digit corresponds to the con-

tact status in TCM1, the second in TCM2, and the third in PCM. ª1º means there is a contact

and ª0º no contact. Therefore, ª101º means there is a contact in TCM1 and PCM, but not

in TCM2. There are eight different sets to show the contact status of the residue pair in the

three CMs, but ª000º is not of interest and hence discarded. The number of each status were

counted for all the 94 proteins. The analysis results for the three representative and the 91

additional two-state proteins are shown in Table 1 and Table S3, respectively. Noted that

we only include residue pairs with sequence spacing ≥ 6 for counting, and only considered

those contacts in the PCM with a prediction conidence of > 0.9.

Extracting information on alternative conformations from CM analysis

To compare the CM of the known structure (TCM1) with the PCM and extract useful infor-

mation, the following procedure was performed.

1. The PCM was subtracted by TCM1 to yield the DCM, in which only the residue pairs
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predicted to be in contact (distance between Cβ atoms < 8 Å) with a conidence p > 0.9

in the PCM were considered. The residue pairs were categorized into three groups ac-

cording to their spacing in the protein sequence, named as short-, medium-, or long-

range, if the sequence distance fell into [6, 11], [12, 23], and ≥ 24, respectively. The

medium- and long-range contacts were of primary interest because they may help

identify larger conformational changes. Therefore, the predicted medium- and long-

range contacts with high conidence that did not exist in TCM1 were further analyzed.

2. The above extracted contact information may indicate which residue pairs have direct

contacts in the alternative conformation, and only residue pairs with distances over 10

Å in the STR1 (d0) were selected for further operation. The cut-off distance in the CM

deinition is 8 Å, and thus residue pairs with distances lower than 10 Å (d0 < 10) may

vary little and have a weak impact on the global conformational change of the pro-

tein when searching for an alternative conformation, and thus were discarded before

further analysis.

3. The lexibility of the known structure (STR1) was also considered. The b-factor values

(B) in the PDB ile of STR1 relect the luctuation of atoms in their average positions

and provide valuable information on protein lexibility. The root-mean-square luctu-

ation (RMSF) was calculated using Equation 1, in which 〈B〉 represented the average

value of all atoms in one residue. And the closest residue-residue distance dmi n was

calculated using Equation 2 to account for the lexibility of each residue pair.

∆d = RMSF =

√

3〈B〉

8π2
(1)

dmi n = d0 −
∑

i=1,2

∆di , (2)

where d0 represents the distance between the residue pairs in the known protein struc-

ture (STR1). The residue pairs with dmi n < 10 (Å) was discarded for further analysis as

well. This step assists in screening out noise caused by protein lexibility, which is

particularly helpful for the analysis of small conformational changes.
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4. The rigidity of local secondary structures was taken into account. Different types

of secondary structures show varying degrees of conformational lexibility,53 and α-

helices and β-sheets are more rigid than loops; therefore, the residue pairs within one

α-helix or β-sheet that are predicted to be in contact with the DCMs were excluded

from further analysis; the residue pairs separated by stable, local structures were also

discarded to avoid disruption within a structural domain.

Following the above procedure, false positive and ambiguous signals were screened out.

Model building and optimization

Initial modeling with Rosetta

Starting with the STR1 of LBP (PDB ID: 1usg, resolution: 1.53 Å), we used Rosetta to build an

approximate model of the alternative conformation with restraints derived from the above

DCM signals. Three functional modules of PyRosetta,54 pose initialization, minimization,

and full-atom reinement, were employed in this process.

First, we initialized the pose of our input structure (STR1) with the switch type as "cen-

troidº. Speciically, a mutation of residue GLY to ALA was adopted in our protocol to account

for the lack of Cβ atoms in GLY. This made the protein suitable for adding a distance-energy

function in the following steps, as the distance between residues was calculated from the

positions of Cβ atoms.

For the minimization stage, we designed a piece-wise energy-distance function to rep-

resent the restraints derived from the DCM signals, as a previous study showed that such a

function is suitable for modeling protein structures.6 The restraint energy-distance function

was as follows:

Er estr ai nt (di j ) =



















































−Ui j , di j < 10

Ui j

2
[1− sin

di j − ( 8+D
2 )

db

π], 10 ≤ di j < D

Ui j

2
[1+ sin

di j − ( 8+D
2 )

80−D
π], D ≤ di j ≤ 80

(3)
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where

Ui j = 2.5[1+ (Cscor e −Ccut )] (4)

D = 10+db , (5)

In Equations 3±5, Ui j represents the intensity of the functions, which is related to the

precision of the PCM (Cscor e ) and cut-off conidence value (Ccut ) chosen prior to analysis

(typically set to 0.9). D represents the boundary of the distance interval, as expressed in

Equation 3. di j represents the distance between the Cβ atoms of the indexed residue pairs,

and db represents the width of the energy barrier, which is determined from the length of the

protein sequence: db = 10 Å for protein lengths over 250 amino acids, 8 Å for protein lengths

between 200 and 250 amino acids, and 6 Å for protein lengths below 200 amino acids.

After the restraint energy score from the DCM was calculated using Equation 3, the dis-

crete scores were converted into a smooth energy potential using the spline function in

Rosetta and used as restraints to guide energy minimization and structure modeling.

We then used quasi-Newton-based energy minimization function55 of PyRosetta (Min-

Mover) to lower the energy of the protein backbones and build coarse-grained models. At

this stage, protein structures were represented using a centroid model, in which the side

chains were simpliied into single artiicial atoms (centroids), whereas the backbones re-

mained atomistic. Optimization was performed based on the L-BFGS algorithm (lbfgs_armijo_nonmonotone)

with a maximum of 1,000 iterations, and the convergence cut-off was set to 0.0001. In ad-

dition to the spline function mentioned previously, several Rosetta energy forms were used,

including centroid backbone hydrogen bonding (cen_hb), ramachandran (rama), omega,

and steric repulsion van der Waals forces. The weights of cen_hb, rama, omega, and van der

Waals were 5, 1, 0.5, and 3, respectively. The orientation distributions were determined ac-

cording to the protocol of trRosetta to set dihedral and angle restraints with equal weights.

Detailed potential instructions for θ, ω ( dihedral ), and φ ( angle ) can be found in a previous

publication.45

Finally, we used the relaxation function (FastRelax) to generate the predicted full-atom

model. The top 50 models with the lowest energies built using MinMover were used for
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FastRelax. During relaxation, both distance restraints (the spline function) and orientation

restraints explained in MinMover were added to the side chains. We used the score function

ref2015 from Rosetta56 to obtain physically plausible conformations. A maximum iteration

of 200 was suficient for FastRelax with a lexible MoveMap to generate the inal model of

the alternative structure.

Conformation sampling with MD simulations

Using the approximate model obtained above, we further performed MD simulations to

evaluate the stability of the predicted LBP conformations and applied step-wise reinements

to obtain better sampling for the alternative conformation (holo, closed state). All simula-

tions were performed using GROMACS 2018.457 and CHARMM36m force ield.58 Each pro-

tein system was solvated in a water box of 8.9nm×8.9nm×8.9nm with periodic boundary

conditions, and Na+ was added to the solvent to neutralize the simulation system.

We performed two rounds of equilibration before the production simulations. First,

we used the steepest descent algorithm for 50,000 steps to minimize the system energy.

Next, the system underwent a 100-ps equilibration to reach 310 K in the canonical ensem-

ble (NVT) and 500-ps equilibration to reach a pressure of 1.0 bar in the NPT ensemble us-

ing the Berendsen coupling method.59 Position restraints were applied to the protein back-

bone (force constant 1000 kJmol−1 nm−2). The time step of the equilibration was 2 fs. The

particle-mesh Ewald method60 was used to calculate long-range electrostatic interactions.

The van der Waals interactions were smoothly switched off from 1.0 to 1.2 nm. An elastic

network was used to maintain the global conformation of proteins during equilibration.

We then used virtual sites61 to increase the time step from 2 to 4 fs for the sake of sim-

ulation eficiency in the production simulations. Again, energy minimization followed by a

100-ps NVT equilibration and 500-ps NPT ensemble equilibration were conducted before

the inal production simulations.
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Vdr (ri j ) =
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1

2
kdr (ri j − r0)2, ri j < r0

0, r0 ≤ ri j < r1

1

2
kdr (ri j − r1)2, r1 ≤ ri j ≤ r2

1

2
kdr (r2 − r1)(2ri j − r2 − r1), r2 ≤ ri j

(6)

To achieve the aforementioned potential contacts in the alternative conformation (four

residue pairs for LBP shown in Table 2 and Fig. 3B), in some of the production MD sim-

ulations, we added distance restraints using a piecewise harmonic function as described

in Equation 6, where kdr was set to 200 kJmol−1 nm−2; r0, r1, and r2 were set to 0.3, 0.8,

and 1.2 nm, respectively. Please refer to the Distance restraints section in the GROMACS

documentation for more details. Meanwhile, all the other restraints were removed. The

systems were simulated for 500 ns multiple times and analyzed using VMD62 and PyMOL

(https://pymol.org/).
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