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ABSTRACT 

Advances in artificial intelligence have paved the way for predicting cancer patients’ survival 

and response to treatment from hematoxylin and eosin (H&E)-stained tumor slides. Extant 

approaches do so either directly from the H&E images or via prediction of actionable mutations 

and gene fusions. Here we present the first genetic interactions (GI)-based approach for 

predicting patient response to treatment, founded on two conceptual steps: (1) First, we build 

DeepPT, a deep-learning framework that predicts tumor gene expression from H&E slides, and 

subsequently, (2) we apply ENLIGHT - a previously published GI based approach - to predict 

patient treatment response from the inferred tumor expression. DeepPT was trained on images 

and corresponding transcriptomics data of TCGA breast, kidney, lung, and brain tumor 

samples. Testing DeepPT transcriptomics prediction ability, we find that it generalizes well to 

predicting the expression of two breast and brain cancer unseen independent datasets. Studying 

samples from a recently published large multi-omics breast cancer clinical trial, we applied 

ENLIGHT to the expression predicted by DeepPT from the tumor slides. We find that it 

successfully predicts true responders with a clinically meaningful hazard ratio of about six. 

These results put forward a general framework for predicting patient response to a broad array 

of targeted and checkpoint therapies from the histological images. If corroborated further, the 

new approach could augment the feasibility of precision oncology in developing countries and 

in other situations where comprehensive molecular profiling is not available.       
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INTRODUCTION 

Histopathology has long been considered the gold standard of clinical diagnosis and prognosis 

in cancer. In recent years, molecular markers including tumor gene expression have proven 

increasingly valuable for enhancing diagnosis and precision oncology. Digital histopathology 

promises to combine these complementary sources of information using machine learning, 

artificial intelligence and big data. Key advances are already underway, as whole slide images 

(WSI) of tissue stained with hematoxylin and eosin (H&E) have been used to computationally 

diagnose tumors [1–3], classify cancer types [3–8], distinguish tumors with low or high 

mutation burden [9], identify genetic mutations [2,10–17], predict patient survival [18–22], 

detect DNA methylation patterns [23] and mitoses [24], and quantify tumor immune infiltration 

[25]. Moreover, the ability to infer gene expression from WSI has also been explored [26–30]. 

These impressive advances are unravelling the potential of harnessing next-generation digital 

pathology to predict a patient’s response to therapies directly from images [31,32]. The current 

study aims to take these efforts one step further, demonstrating, for the first time, the feasibility 

of tumor profiling based on transcriptomic imputation from H&E slides. 

To realize this goal, we have taken a two-step approach. First, we developed DeepPT 

(Deep Pathology for Treatment), a novel deep-learning framework for predicting gene 

expression from H&E slides. Second, utilizing the predicted gene expression, we apply our 

previously published approach, ENLIGHT [33], which has originally been developed to predict 

patients response from the measured tumor gene expression, to predict patients’ response from 

the DeepPT predicted transcriptomics.  

We proceed to provide an overview of DeepPT architecture and a brief recap of 

ENLIGHT workings, the study design and the cohorts analysed. We then describe the results 

obtained, showing the success of the trained DeepPT models in predicting the expression in 

four TCGA cohorts and two independent cohorts. The crux of our results is focused on applying 

DeepPT together with ENLIGHT to recently published breast cancer clinical trial data, where 

it successfully predicts the true responders among breast cancer patients directly from the H&E 

images, obtaining a clinically relevant hazard ratio of about six. Overall, our results show for 

the first time that combining digital pathology with expression-based approaches offers an 

exciting new way to extend the feasibility of precision oncology to the realm of developing 

countries and to other situations where tumor sequencing is not feasible.  
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RESULTS 

The computational pipeline 

DeepPT is trained on formalin-fixed, paraffin-embedded (FFPE) whole slide images and their 

corresponding gene expression profiles from TCGA patient samples. The model obtained is 

then used to predict gene expression from both internal held-out and external datasets. In 

contrast to previous studies aimed at predicting gene expression from WSI, which have focused 

on fine tuning the last layer of a pre-trained convolutional neural networks (CNN), DeepPT is 

composed of three main components (Methods, Figure 1a, and Extended Figure 1): a CNN 

model for feature extraction, an auto-encoder for feature compression, and a multiple-layer 

perceptron (MLP) for the final regression. Intuitively, the pre-trained CNN layers (trained with 

natural images from ImageNet database [34,35]) play the role of a layperson’s eyes that capture 

the shape and color of images, while the auto-encoder component is reminiscent of the 

pathologists’ expertise in concentrating on the most important histological features or their 

combinations. The MLP regression module consists of three fully connected layers in which 

the weights from input layer to hidden layer are shared among genes, enabling the model to 

capture shared signal among similar gene expression profiles to benefit from the advantage of 

multi-task learning. Rather than training a model for each gene separately or for all genes 

together as was done in previous studies [27,29], we trained simultaneously on tranches of 

genes with similar median gene expression values, allowing shared signal to be leveraged while 

preventing the model from focusing on only the most highly expressed genes. Overall, DeepPT 

achieves a marked increase in the accuracy and efficiency compared to current published 

methods for prediction of gene expression.  

The predicted expression then serves as input to ENLIGHT [33], which is a 

transcriptomics-based approach that predicts individual responses to a wide range of targeted 

and immunotherapies based on gene expression data measured from the tumor biopsy (Figure 

1b). ENLIGHT aims to advance and extend the scope of SELECT [36], two recent approaches 

that rely on analysis of functional genetic interactions (GI) around the target genes of the chosen 

therapy. Specifically, two broad types of interactions are considered: Synthetic Lethality (SL), 

whereby the simultaneous loss of two non-essential genes is lethal to the cell, and Synthetic 

Rescue (SR), whereby the loss of an essential gene can be compensated for through the over- 

or under-expression of a second gene (its “rescuer” gene). ENLIGHT’s drug response 
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prediction pipeline comprises two steps (Figure 1b): (i) Given a drug, the inference engine 

identifies the clinically relevant genetic interaction partners of the drug's target gene(s). The 

inference engine first identifies a list of initial candidate SL/SR by analysing cancer cell line 

dependencies based on the principle that SL/SR interactions should decrease/increase tumor 

cell viability, respectively, when ‘activated’ (e.g., in the SL case, viability is decreased when 

both genes are under-expressed). It then selects those pairs that are more likely to be clinically 

relevant by analysing a database of tumor samples with associated transcriptomics and survival 

data, requiring a significant association between the joint inactivation of target and partner 

genes and better patient survival for SL interactions, and analogously for SR interactions. (ii) 

The drug-specific GI partners are then used to predict a given patient's response to the drug 

based on the gene expression profile of the patient’s tumor. The ENLIGHT Matching Score 

(EMS), which evaluates the match between patient and treatment, is based on the overall 

activation state of the set of GI partner genes of the drug targets, reflecting the notion that a 

tumor would be more susceptible to a drug that induces more active SL interactions and fewer 

active SR interactions.   

Here, we predict patient treatment response by applying ENLIGHT to the expression 

values predicted by DeepPT instead of those measured using RNA sequencing. We show that 

combining ENLIGHT with DeepPT enables robust prediction of response to treatment, in an 

independent test set of breast cancer patients, for which H&E slides of fresh frozen (FF) 

samples are available. Remarkably, this is done without adapting either DeepPT, which was 

trained on FFPE samples from TCGA, or ENLIGHT, which is an unsupervised algorithm, never 

trained on any response data. 

Study design and patient cohorts 

The workflow describing the computational analysis is depicted in Figure 1c. We collected 

FFPE WSI together with matched RNAseq gene expression profiles for four major cancer 

types, including breast, kidney, lung, and brain from TCGA database. Low quality slides were 

excluded, resulting in 4,368 slides from 3,750 patients. Each cancer type cohort was processed, 

trained and evaluated separately. We performed a 5 × 5 nested cross-validation to assess the 

model performance: In the outer loop, the samples were randomly split into five disjoint sets. 

Each sample set was selected in turn as the held-out test set (20%), while the rest were used for 

training (80%). Given an outer split, in the inner loop each model was trained five times by 
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further splitting the training set into internal training and validation sets, performing a five-fold 

cross validation. Applying a bagging technique, we averaged the predictions from the five 

different models, presenting our final prediction for each gene on the held-out test set. The outer 

loop was repeated five times across the five held-out test sets, hence resulting overall in 25 

trained models (Extended Figure 2a-b). For further validation, we applied the trained models 

(with the TCGA cohort) to predict gene expression on two independent external datasets: the 

TransNEO breast cancer cohort (TransNEO-Breast) consisting of 160 FF slides [37] and a new 

unpublished brain cancer cohort (NCI-Brain) consisting of 210 FFPE slides, both also 

containing matched expression data (see Methods). Our final goal, however, is to use the 

predicted gene expression to predict treatment response. To this end, the predicted gene 

expression served as input to ENLIGHT to predict treatment outcome for patients from 

TransNEO cohort, as described in the next section.  
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Figure 1.  Study overview. (a) The three main components of DeepPT architecture, from left 

to right. The pre-trained ResNet50 CNN unit extracts histopathology features from tile images. 

The autoencoder compresses the 2,048 features to a lower dimension of 512 features. The multi-

layer perceptron integrates these histopathology features to predict the sample’s gene 

expression. (b) An overview of the ENLIGHT pipeline (illustration adapted from [33]: 

gene expression
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ENLIGHT starts by inferring the genetic interaction partners of a given drug from various 

cancer in-vitro and clinical data sources. Given the SL and SR partners and the transcriptomics 

for a given patient sample, ENLIGHT computes a drug matching score that is used to predict 

the patient response. Here, ENLIGHT uses DeepPT predicted expression to produce drug 

matching scores for each patient studied. (c) DeepPT was trained with formalin-fixed paraffin-

embedded (FFPE) slide images and their matched transcriptomics of TCGA patients from four 

cancer types, including breast, kidney, lung, and brain. After the training phase, the models 

were then applied to predict gene expression on the four internal (held-out) TCGA datasets and 

on two independent datasets on which it was never trained. The predicted tumour 

transcriptomics served as input to ENLIGHT for predicting patient’s response to treatment. 

Prediction of gene expression from histopathology images on four TCGA and two 

independent cohorts 

As illustrated in Figure 1, we trained our models with histopathology images and their 

corresponding normalized gene expression profiles for each of the four TCGA cancer types 

studied. We then applied the trained models to predict gene expression of the internal held-out 

test sets. To evaluate model performance, we estimated the Pearson correlation (R) between 

predicted and actual expression values of each gene across the samples in each test set, taking 

the mean correlation across all folds. For each cancer type, a total of approximately 18,000 

genes were studied; of these, a majority of genes (over 15,000 genes; 80%) were significantly 

predicted, with Holm-Sidak corrected p-values < 0.05. For each cancer type, over 1,800 genes 

had a correlation above 0.4 (Figure 2a-d and Extended Table 1). Benchmarking against two 

recently published state-of-the-art expression prediction approaches, DeepPT predicted 2,743 

genes for lung cancer and 1,812 genes for breast cancer with mean correlations greater than 0.4, 

roughly doubling the number of genes predicted to this extent (the ‘mark’ set) by Schmauch et 

al [29] (1,550 and 786 genes for lung and breast cancer, respectively) (Extended Table 1). The 

scatterplots of the prediction results for the 30 best predicted genes across samples are presented 

for each dataset (Extended Figure 3-6).   
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Figure 2. DeepPT prediction of gene expression from H&E slides. Histograms of the 

Pearson correlation coefficients (R) between predicted and actual expression for each gene 

across the test set (left panels), and top enriched pathways among the well-predicted genes 

(right panels). Red dashed lines in the left panels represent the correlation coefficient level 

beyond which the results are significant (p-value < 0.05 after correction for multiple hypotheses 

testing). 

Notably, a gene set enrichment analysis using the GSEApy python package [38] and 

Reactome database [39] reveals an enrichment of cellular functions known to play a key role in 

oncogenesis, such as cell cycle, mitosis, and extracellular matrix organization. Many enriched 

pathways are specific to different cancer types, pointing to an interesting tumour specificity of 

the pathways whose expression is associated with H&E features (Figure 2a-d, right panels). 

These results indicate that transcriptomic alterations in oncogenic pathways are indeed more 

likely to be more strongly associated with visible changes in the H&E slides, but the exact 

nature of these associations is tumour specific. 

As an independent external test, we used the trained models with TCGA-breast cancer 

to predict gene expression in the TransNEO slides (N=160). Remarkably, the two datasets were 

generated independently at different facilities, with two different preparation methods (TCGA 

slides are FFPE, while TransNEO slides are FF). Hence, histological features extracted from 

these two datasets are clearly distinct (Extended Figure 7). Despite these marked data 

differences, without any further training, we found 1,489 genes with R > 0.4 (Figure 2e, 

Extended Table 1, and Extended Figure 8). Similarly, we also applied the models trained 

with TCGA-Brain samples to predict gene expression from NCI-Brain slides (a new 

unpublished dataset; N=210). We observed 1,324 genes with R > 0.4 (Figure 2f, Extended 

Table 1, and Extended Figure 9). The strong performance of DeepPT on the external datasets 

suggests that the model can generalize to new data. 

Predicting treatment response from DeepPT-predicted gene expression  

In principle, predicting response to treatment directly from H&E slides could be of great value. 

However, a purely supervised approach, which trains over TCGA data to predict treatment 

response and then applies the trained model on new data, is not feasible since treatment 

response data is rare for targeted therapies in TCGA (and more generally such data is scarce 

and still hard to obtain). Therefore, we instead developed a two-step approach that promises far 
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wider applicability. First, we applied DeepPT to predict the patient transcriptomics from their 

H&E slides. Second, based on this predicted gene expression, we used the precision oncology 

algorithm, ENLIGHT [33], to predict the patients’ response from the predicted expression.  

Leveraging this computational pipeline, we tested the ability of ENLIGHT to accurately 

predict patient response in a cohort of 67 HER2+ breast cancer patients who had received a 

combination of chemotherapy and Trastuzumab (targeting ERBB2) as part of the TransNEO 

trial [37]. Data utilized in this analysis included the response to therapy by residual cancer 

burden criteria and the fresh frozen H&E-stained primary tumor slides. First, we used the 

DeepPT model trained beforehand on the 1,043 TCGA-Breast patients, without any changes 

and with no further training on this test dataset, to predict the gene expression values from the 

H&E slides of each patient’s tumor. Second, we applied ENLIGHT to these predicted gene 

expression values to produce EMS scores based on the same SL/SR partners of ERBB2 that 

were already inferred in [33]. Importantly, we do not restrict the model to genes with high 

correlations between the actual and predicted expression values; ENLIGHT considers the 

combined effect of a large set of genes, mitigating the noise of individual expression prediction, 

which leads to robust response predictions as we show below. The only modification made to 

the original ENLIGHT version is the exclusion of the component that considers the expression 

of the drug target (ERBB2) itself, as this component highly weighs a single gene and is hence 

much more susceptible to errors in the prediction of expression values. 

We compared the prediction accuracy of this approach (termed ENLIGHT-DeepPT) to 

the accuracy of the original ENLIGHT scores when calculated based on actual expression 

values (ENLIGHT-actual), as well as to a multi-omic machine learning predictor that uses 

DNA, RNA and clinical data, published by Sammut et al. in their original study of this dataset 

(Sammut-ML) [37]. Figure 3a shows the performance of ENLIGHT-DeepPT and ENLIGHT-

actual predictions in terms of odds ratio (OR, left panel), positive predictive value (PPV; 

Precision, middle panel) and sensitivity (Recall, right panel). The OR denotes the ratio of the 

odds to respond among patients predicted to respond vs. the odds to respond among patients 

predicted not to respond. The PPV denotes the fraction of true responders out of those predicted 

as such, and the sensitivity denotes the fraction of those predicted to respond out of all true 

responders. Patients were predicted as Responders (or Non-Responders) if their EMS scores 

were greater/equal (lesser) than a decision threshold value of 0.54, a threshold that was fixed 

and determined already in [33], again, on completely independent data. The same threshold was 
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used here, without any training or modification, both for ENLIGHT-DeepPT and ENLIGHT-

actual. Using this previously established threshold, the OR of ENLIGHT-DeepPT is 5.97, 

which is strikingly similar to the OR of 5.96 obtained by ENLIGHT-actual. The PPV of 

ENLIGHT-DeepPT was 64%, higher than the PPV of 52% when using ENLIGHT-actual, and 

both were much higher than the overall observed response rate of 29.7%. ENLIGHT-DeepPT 

sensitivity was however markedly lower than that of ENLIGHT-actual, 37%, vs. 64%.  

Figure 3b compares ENLIGHT’s performance (both versions) to that of the Sammut-

ML predictor [37]. To recount, the latter was based on in-cohort supervised learning to predict 

response to chemotherapy with or without trastuzumab among HER2+ breast cancer patients. 

Here, we applied each method to the patients for which the relevant data was available: 65 

patients had RNAseq data (ENLIGHT-actual), 64 had H&E slides (ENLIGHT-DeepPT), and 

56 had RNAseq, DNAseq and clinical features needed to run the Sammut-ML predictor. First, 

to systematically compare between the predictors across a wide range of decision thresholds as 

customary in the literature, we used two overall measures: the area under the ROC curve 

(AUC), which measures how well a model can rank the samples, and the average precision 

(AP), which measures how well a model can correctly identify all the true responders without 

marking too many true non-responders as responders. Second, we aimed to compare these three 

predictors based on their ability to classify samples as responders or non-responders for 

practical clinical usage (as we did above when comparing ENLIGHT-DeepPT and ENLIGHT-

actual). Since Sammut et al. did not select a decision threshold, we made this comparison by 

setting a threshold for each method such that the sensitivity is fixed, once capturing one third 

of the true responders and once capturing two thirds of them (for confidence intervals and exact 

values of all measures, see Extended Table 2; this further complements the results in Figure 

3a which use the predefined threshold of 0.54). As can be seen, all methods have quite 

comparable predictive power, where especially the performance of ENLIGHT-actual and 

Sammut-ML predictors is similar across these diverse measures, while that of ENLIGHT-

DeepPT differs. However, importantly, using only H&E slides which are readily available, 

without need for RNA or DNA data or other clinical features, has a major practical advantage 

over the other methods. 

The above results support the notion that the DeepPT-based ENLIGHT approach is 

quite robust to measurement noise, enabling expression predictions on unseen data in an 

unsupervised manner, without further training. Notably, the predictions were made on fresh 
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frozen tissue slides, while the DeepPT model was trained on FFPE samples, which differ 

considerably from FF samples, further testifying to the robustness of DeepPT and ENLIGHT.  

 

Figure 3.  Predicting treatment response from H&E slides. (a) Odds Ratio (OR, left panel), 

Positive Predictive Value (PPV, middle panel) and Sensitivity (Recall, right panel) of response 

prediction based on ENLIGHT, using either the actual expression or the DeepPT-predicted 

expression. Comparison is made on the 64 of the 67 patients for which both RNAseq values 

and H&E slides were available. The overall response rate (19/64, 29.7%) is denoted by a 

horizontal dashed line in the center panel. (b) Comparison of both ENLIGHT based models and 

the Sammut-ML predictor of Sammut et al. [37] using either the actual expression or the 

DeepPT predicted expression. Each method was applied to the patients for which relevant data 

is available: 65 patients had RNAseq data, 64 had H&E slides, and 56 had RNAseq and clinical 

data needed to run the Sammut et al. predictor. Odds Ratio (OR) is calculated at two thresholds 

for each predictor, one which achieves a sensitivity of one third and one of two thirds. 

Horizontal dashed lines denote the corresponding baseline value for each measure. 

b

a
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DISCUSSION 

Our study demonstrates that an appropriate combination of DeepPT, a novel deep learning 

framework for predicting gene expression from H&E slides, and ENLIGHT, an unsupervised 

computational approach for predicting patient response from their predicted tumour gene 

expression, could be used to form a new approach for H&E-based personalized medicine, in an 

integrated form termed ENLIGHT-DeepPT. We show that ENLIGHT-DeepPT successfully 

predicts the true responders in a recently published multi-omic breast cancer clinical trial 

directly from the H&E images, obtaining a clinically meaningful hazard ratio of about six. 

     DeepPT is fundamentally different from previous computational pipelines for gene 

expression prediction both in its model architecture and in its training strategy. We attribute its 

superior performance to four key innovations: (i) All previous studies fed output from the 

conventional pre-trained CNN model (with natural images from ImageNet database) directly 

into their regression module, whereas we added an auto-encoder to re-train the output of the 

pre-trained CNN model. This helps to familiarise the model with histological features, to 

exclude noise, to avoid over fitting, and finally to reduce the computational demands. (ii) Our 

regression module is a non-linear MLP model in which the weights from the input layer to the 

hidden layer are shared among genes. This architecture enables the model to exploit the 

correlations between the expression of the genes. (iii) We trained together sets of genes with 

similar median gene expression values; doing so further implements a form of multitask 

learning and prevents the model from focusing on only the most highly expressed genes. (iv) 

We performed ensemble learning by taking the mean predictions across all models. This further 

improves the prediction accuracy quite significantly (Extended Figure 2c). 

DeepPT can be broadly applied to other cancer types; however, similar to many other 

deep learning models, it requires a sufficient number of training samples. An interesting 

direction for future work would be to apply transfer learning between cohorts, to improve the 

predictive performance in cancer types with small training cohorts. In other words, it might be 

possible to train the model on large datasets such as breast and lung cancer, then fine tune it for 

generating predictions in smaller datasets such as pancreatic cancer or melanoma.  

ENLIGHT is an unsupervised approach that leverages large-scale data in cancer to infer 

genetic interaction partners associated with drug targets, and then uses their activation patterns 
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in the tumor to generate a matching score for each possible treatment, given a tumor sample. 

The ENLIGHT matching score is translated to a binary response prediction using a single pan-

cancer pan-treatment threshold, above which a treatment is considered a match to the patient. 

The ENLIGHT framework was originally developed and validated using RNA expression data, 

and was applied here as-is to DeepPT-predicted expression, generating ENLIGHT-DeepPT. 

The robustness of the overall approach was demonstrated in an independent test set, where the 

response prediction accuracy was on par with that achieved using the actual expression data, as 

well as that of a supervised classifier trained for this task that was published in the original 

study. Combining DeepPT with ENLIGHT is a promising approach to predicting response to 

treatment directly from H&E slides because it does not require response data on which to train. 

This is a crucial advantage compared to the more common practice of using response data to 

train classifiers in a supervised manner. Indeed, while the TCGA lacks response data that would 

enable a supervised predictor of response to Trastuzumab, applying ENLIGHT on predicted 

expression here has successfully enabled the prediction of response to Trastuzumab in the 

TransNEO dataset with considerable accuracy. An additional motivation for developing a 

response prediction pipeline directly from H&E slides is that NGS results often take 4-6 weeks 

after initiation to return a result. Many patients who have advanced cancers require treatment 

immediately, and this method can potentially offer treatment options within a short time frame.  

A striking finding of this study is the robustness of response predictions based on H&E 

slides when combining DeepPT and ENLIGHT. First, despite the inevitable noise introduced 

by the prediction of gene expression, the original ENLIGHT inferred GI partners of 

Trastuzumab did not require any modifications to predict response here from the DeepPT-

predicted expression. Second, though DeepPT was trained using FFPE slides, it generalized 

well and could be used as-is to predict expression values from FF slides. This demonstrates the 

applicability of DeepPT for predicting RNA expression either from FF or from FFPE slides. 

Nevertheless, a limitation of this work is that additional validation will be required, once 

appropriate publicly available resources become available. We are currently focusing on 

obtaining and analysing additional test cohorts for an extended journal submission of this 

manuscript, but we publish the current interim results on bioRxiv, given their potential interest. 

 The growing efforts to harness the rapid advances in deep learning to improve cancer 

patients care are obviously laudable. Those include a variety of promising studies developing 
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new methods to classify tumors, predict their survival and their response to therapy from tumor 

slides. The vast majority of current studies aimed at predicting patient response have been 

focused on predicting genomic alterations; to date, we are not aware of studies aiming at 

predicting patient response to therapy from the predicted tumor expression from histological 

images. Given its general and unsupervised nature, we are hopeful that ENLIGHT-DeepPT may 

possibly have considerable impact, making precision oncology more accessible to patients in 

the developing world and in other situations where sequencing is less feasible. While promising, 

one should cautiously note that the results presented await a broader validation. 
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METHODS 

Data collection 

The datasets in this study were collected from three resources: TCGA, TransNEO, and 

Laboratory of Pathology at the NCI. 

The TCGA histological images and their corresponding gene expression profiles were 

downloaded from the TCGA database (https://portal.gdc.cancer.gov). Only diagnostic slides 

from primary tumor were selected, making a total of 4,368 formalin-fixed paraffin-embedded 

(FFPE) slides from 3,750 patients with breast cancer (1,106 slides; 1,043 patients), kidney 

cancer (859 slides; 836 patients), lung cancer (1,018 slides; 927 patients), and brain cancer 

(1,015 slides; 574 patients). 

The TransNEO-Breast dataset consists of fresh frozen (FF) slides and their corresponding gene 

expression profiles from 160 breast cancer patients. Full details of the RNA library preparation 

and sequencing protocols, as well as digitisation of slides have been previously described [37]. 

The NCI-Brain histological images and their corresponding gene expression profiles were 

obtained from archives of the Laboratory of Pathology at the NCI, and consisted of 210 cases 

comprising a variety of CNS tumors, including both common and rare tumor entities.  All cases 

were subject to methylation profiling to evaluate the diagnosis, as well as RNA-sequencing. 

Histopathology image processing 

We first used method of Otsu [40] to identify areas containing tissue within each slide. Because 

the WSI are too large (from 10,000 to 100,00 pixels in each dimension) to feed directly into the 

deep neural networks, we then partitioned the WSI at 20x magnification into non-overlapping 

tiles comprised of 512 x 512 RGB pixels. Tiles containing heavy marks or more than 50% of 

background were removed. Depending on the size of slide, the number of tiles per slide in 

TCGA cohort varied from 100 to 8,000 (Extended Figure 10a-d). In contrast, TransNEO slides 

are much smaller, resulting in 100 to 1,000 tiles per slide (Extended Figure 10e). To minimize 

staining variation (heterogeneity and batch effects), color normalization was applied for the 

selected tiles [41–43]. 

 



17 
 

Gene expression processing 

Gene expression profiles were obtained from read counts for approximately 60,000 gene 

identifiers. A subset of highly expressed genes was identified using edgeR, resulting in roughly 

18,000 genes for each cancer type. The median expression across samples of each gene varied 

from 10 to 10,000 across for every dataset (Extended Figure 11). To reduce the range of gene 

expression values, and to minimize discrepancies in library size between experiments and 

batches, a normalization was performed as described in our previous work [33]. 

Model architecture 

Our model architecture was composed of three main units (Extended Fig. 1). 

(1) Feature extraction: The pre-trained ResNet50 CNN model with 14 million natural images 

from the ImageNet database [34] was used to extract features from image tiles. Before feeding 

these tiles into the ResNet50 unit, the image tiles were resized to 224 x 224 pixels to match the 

standard input size for the convolutional neural network. Through the feature extraction 

process, each input tile is represented by a vector of 2,048 derived features. 

(2) Feature compression: We applied an autoencoder, which consists of a bottleneck of 512 

neurons, to reduce the number of features from 2,048 to 512. This helps to familiarise the model 

with histological features, to exclude noise, to avoid over fitting, and finally to reduce the 

computational demands. 

(3) Multi-Layer Perceptron (MLP) regression: The purpose of this component is to build a 

predictive model linking the aforementioned auto-encoded features to whole-genome gene 

expression. The model consists of three layers: (1) an input layer with 512 nodes, reflecting the 

size of the auto-encoded vector; (2) a hidden layer whose size depends on the number of genes 

under shared consideration; and (3) an output layer with one node per gene. The rationale 

behind this architecture is to leverage similarity among the genes under shared consideration, 

as captured by the weights connecting the input layer to the hidden layer. The weights 

connecting the hidden layer to the output layer model the subsequent relationship between the 

hidden layer and each individual gene. This follows the philosophy of multi-task learning. If 

the prediction of each gene’s expression level represents a single task, then our strategy is to 

first group these tasks for shared learning, followed by optimization of each individual task. In 



18 
 

our default whole-genome approach, we bin genes into groups of 4,096 whose median 

expression levels are similar, and we use 512 hidden nodes. Because the training data is 

comprised of gene expression at the slide level (i.e. bulk gene expression, as opposed to at 

spatial resolution), we average our per-tile predictions to obtain bulk values at the slide level. 

Model training and evaluation 

We trained and evaluated each cancer type independently. To evaluate our model performance, 

we applied 5x5 nested cross-validation. For each outer loop, we split the entire samples (of each 

cohort) into training (80%) and held-out test (20%) set. We further split the training set into 

internal training and evaluation set, according five-fold cross validation. The models were 

trained and evaluated independently with the different pairs of training/validation sets. 

Averaging the predictions from the five different models represents our final prediction for each 

single gene on each held-out test set. We repeated this procedure five times across the five held-

out test sets, making a total of 25 trained models. These models trained with TCGA cohorts 

were used to predict the expression of each gene in a given external cohort by computing the 

mean over the predicted values of all models. 

As noted in the Model Architecture section, tranches of genes with similar median expression 

levels were grouped for simultaneous training and evaluation. This was done to optimize model 

performance and model efficiency, and contrasts approaches in the literature that either train on 

each gene separately [27] or on all genes together [29]. Each training round was stopped at a 

maximum of 500 epochs, or sooner if the average correlation per gene between actual and 

prediction values of gene expression on the validation set did not improve for 50 continuous 

epochs. The Adam optimizer with mean squared error loss function was employed in both auto-

encoder and MLP models. A learning rate of  10%& and a minibatches of 32 image tiles per step 

were used for both the auto-encoder model and MLP regression model. To avoid overfitting, a 

dropout of 0.2 was also used. 

Implementation details 

All analysis in this study was performed in Python 3.7.4 and R 4.1.0 with the libraries including 

Numpy 1.18.5, Pandas 1.0.5, Scikit-learn 0.23.1, Matplotlib 3.2.2, and edgeR 3.28.0. Image 

processing including tile partitioning and color normalization was conducted with OpenSlide 

1.1.2, OpenCV 4.4.0, PIL 6.1.0, and colorcorrect 0.9.1. The histopathology feature extraction 
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was carried out using TensorFlow 2.2.0. The feature compression (autoencoder unit) and MLP 

regression parts were implemented using PyTorch 1.7.0. Pearson correlation was calculated 

using Scipy 1.5.0. Gene set enrichment analysis was performed with Gseapy 0.10.7. The 

identification of highly expressed genes was performed with edgeR 3.28.0. 
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SUPPLEMENTARY DATA 

Cohort Number of patients Number of genes 

P-value < 0.05 R > 0.4 

TCGA-Breast 1,043 15,124 (82%) 1,812 

TCGA-Kidney 836 17,326 (95%) 8,312 

TCGA-Lung 927 15,361 (84%) 2,743 

TCGA-Brain 574 15,531 (81%) 5,341 

TransNEO-Breast 160 9,548 (56%) 1,489 

NCI-Brain 210 10,386 (66%) 1,324 

Extended Table 1 | Number of well-predicted genes for each cohort. P-values were adjusted 

for multiple hypotheses testing using the Holm-Sidak method. 

 

 Number of 
patients 

scored (out 
of 67) 

AUC AP OR 
 (Sensitivity =⅓) 

OR  
(Sensitivity =⅔) 

ENLIGHT on actual 
expression (ENLIGHT-
actual) 

65 0.784 0.467 3 [0.82,10.94] 10.02 
[2.92,34.37] 

ENLIGHT on DeepPT 
predicted expression 
(ENLIGHT-DeepPT) 

64 0.64 0.434 5.97 [1.49,23.92] 2.47 [0.79,7.67] 

Sammut et al. on actual 
expression (Sammut-
ML) 

56 0.752 0.437 2.29 [0.58,8.91] 9.29 [2.53,34.15] 

Extended Table 2 | Comparison between methods for predicting treatment response with 

various methods. AUC: Area under the ROC curve. AP: Average Precision. OR: odds ratio. 

Brackets indicate the 95% confidence interval. See main text for more details.  
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Extended Figure 1 | Model architecture in detail. (a) The feature compression subnetwork 

consists of an input layer of 2,048 neurons, a bottleneck of 512 neurons, and an output layer of 

2,048 neurons. (b) The MLP regression subnetwork consists of an input layer of 512 neurons, 

a hidden layer of 512 neurons, and an output layers with the number of neurons reflecting the 

number of genes in each group. 
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Extended Figure 2 | Training strategies and their performance. In the ensemble learning 

strategy (bagging), five models were trained independently with five internal training-

validation splits; these five model predictions were averaged to make the final prediction (a). 

In the model selection strategy, the “best” model with the highest performance on the validation 

set was chosen to make prediction on the test set (b). The comparative performance of these 

strategies is shown for each cohort (c). Note that with either strategy, DeepPT outperforms the 

current state-of-the-art approach, HE2RNA. 
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Extended Figure 3 | DeepPT performance on prediction of gene expression for the best thirty 

genes in TCGA-Breast cohort as measured by Pearson correlation (R). Each scatter plot shows 

predicted versus actual expression for a single gene across all 1,043 patients. 
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Extended Figure 4 | DeepPT performance on prediction of gene expression for the best thirty 

genes in TCGA-Kidney cohort as measured by Pearson correlation (R). Each scatter plot shows 

predicted versus actual expression for a single gene across all 836 patients. 
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Extended Figure 5 | DeepPT performance on prediction of gene expression for the best thirty 

genes in TCGA-Lung cohort as measured by Pearson correlation (R). Each scatter plot shows 

predicted versus actual expression for a single gene across all 927 patients. 
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Extended Figure 6 | DeepPT performance on prediction of gene expression for the best thirty 

genes in TCGA-Brain cohort as measured by Pearson correlation (R). Each scatter plot shows 

predicted versus actual expression for a single gene across all 574 patients. 
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Extended Figure 7 | Difference between histopathological features extracted from TCGA-

Breast tiles and TransNEO-Breast tiles. UMAP visualization of 2,048 histopathological 

features that were extracted by using pre-trained ResNet50 CNN. 4,000 image tiles from each 

dataset were selected randomly to illustrate. Each point represents each feature vector of one 

image tile. 
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Extended Figure 8 | DeepPT performance on prediction of gene expression for the best thirty 

genes in the TransNEO-Breast cohort as measured by Pearson correlation (R). Notably, the 

models were trained on TCGA-Breast, without the need for re-training. Each scatter plot shows 

predicted versus actual expression for a single gene across all 160 samples. 
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Extended Figure 9 | DeepPT performance on prediction of gene expression for the best thirty 

genes in external NCI-Brain cohort as measured by Pearson correlation (R). Notably, the 

models were trained on TCGA-Brain cancer dataset, without the need for re-training. Each 

scatter plot shows predicted versus actual expression for a single gene across all 210 samples. 



33 
 

 

Extended Figure 10 | Histograms of the number of tiles per slide by cohort. The number of 

tiles in each slide image from TCGA and NCI-Brain datasets ranges from 100 to 8,000 (a, b, c, 

d), while the number of tiles in each TransNEO-Breast slide image is much smaller, ranging 

from 100 to 1,000 (e). 

 

Extended Figure 11 | Histogram of median expression over slides. The median expression 

over samples of each gene commonly varies from 10 to 100,000 for every dataset considered 

in this study. 
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