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ABSTRACT

Advances in artificial intelligence have paved the way for predicting cancer patients’ survival
and response to treatment from hematoxylin and eosin (H&E)-stained tumor slides. Extant
approaches do so either directly from the H&E images or via prediction of actionable mutations
and gene fusions. Here we present the first genetic interactions (GI)-based approach for
predicting patient response to treatment, founded on two conceptual steps: (1) First, we build
DeepPT, a deep-learning framework that predicts tumor gene expression from H&E slides, and
subsequently, (2) we apply ENLIGHT - a previously published GI based approach - to predict
patient treatment response from the inferred tumor expression. DeepPT was trained on images
and corresponding transcriptomics data of TCGA breast, kidney, lung, and brain tumor
samples. Testing DeepPT transcriptomics prediction ability, we find that it generalizes well to
predicting the expression of two breast and brain cancer unseen independent datasets. Studying
samples from a recently published large multi-omics breast cancer clinical trial, we applied
ENLIGHT to the expression predicted by DeepPT from the tumor slides. We find that it
successfully predicts true responders with a clinically meaningful hazard ratio of about six.
These results put forward a general framework for predicting patient response to a broad array
of targeted and checkpoint therapies from the histological images. If corroborated further, the
new approach could augment the feasibility of precision oncology in developing countries and

in other situations where comprehensive molecular profiling is not available.
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INTRODUCTION

Histopathology has long been considered the gold standard of clinical diagnosis and prognosis
in cancer. In recent years, molecular markers including tumor gene expression have proven
increasingly valuable for enhancing diagnosis and precision oncology. Digital histopathology
promises to combine these complementary sources of information using machine learning,
artificial intelligence and big data. Key advances are already underway, as whole slide images
(WSI) of tissue stained with hematoxylin and eosin (H&E) have been used to computationally
diagnose tumors [1-3], classify cancer types [3—8], distinguish tumors with low or high
mutation burden [9], identify genetic mutations [2,10—17], predict patient survival [18-22],
detect DNA methylation patterns [23] and mitoses [24], and quantify tumor immune infiltration
[25]. Moreover, the ability to infer gene expression from WSI has also been explored [26-30].
These impressive advances are unravelling the potential of harnessing next-generation digital
pathology to predict a patient’s response to therapies directly from images [31,32]. The current
study aims to take these efforts one step further, demonstrating, for the first time, the feasibility

of tumor profiling based on transcriptomic imputation from H&E slides.

To realize this goal, we have taken a two-step approach. First, we developed DeepPT
(Deep Pathology for Treatment), a novel deep-learning framework for predicting gene
expression from H&E slides. Second, utilizing the predicted gene expression, we apply our
previously published approach, ENLIGHT [33], which has originally been developed to predict
patients response from the measured tumor gene expression, to predict patients’ response from

the DeepPT predicted transcriptomics.

We proceed to provide an overview of DeepPT architecture and a brief recap of
ENLIGHT workings, the study design and the cohorts analysed. We then describe the results
obtained, showing the success of the trained DeepPT models in predicting the expression in
four TCGA cohorts and two independent cohorts. The crux of our results is focused on applying
DeepPT together with ENLIGHT to recently published breast cancer clinical trial data, where
it successfully predicts the true responders among breast cancer patients directly from the H&E
images, obtaining a clinically relevant hazard ratio of about six. Overall, our results show for
the first time that combining digital pathology with expression-based approaches offers an
exciting new way to extend the feasibility of precision oncology to the realm of developing
countries and to other situations where tumor sequencing is not feasible.
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RESULTS

The computational pipeline

DeepPT is trained on formalin-fixed, paraffin-embedded (FFPE) whole slide images and their
corresponding gene expression profiles from TCGA patient samples. The model obtained is
then used to predict gene expression from both internal held-out and external datasets. In
contrast to previous studies aimed at predicting gene expression from WSI, which have focused
on fine tuning the last layer of a pre-trained convolutional neural networks (CNN), DeepPT is
composed of three main components (Methods, Figure 1a, and Extended Figure 1): a CNN
model for feature extraction, an auto-encoder for feature compression, and a multiple-layer
perceptron (MLP) for the final regression. Intuitively, the pre-trained CNN layers (trained with
natural images from ImageNet database [34,35]) play the role of a layperson’s eyes that capture
the shape and color of images, while the auto-encoder component is reminiscent of the
pathologists’ expertise in concentrating on the most important histological features or their
combinations. The MLP regression module consists of three fully connected layers in which
the weights from input layer to hidden layer are shared among genes, enabling the model to
capture shared signal among similar gene expression profiles to benefit from the advantage of
multi-task learning. Rather than training a model for each gene separately or for all genes
together as was done in previous studies [27,29], we trained simultaneously on tranches of
genes with similar median gene expression values, allowing shared signal to be leveraged while
preventing the model from focusing on only the most highly expressed genes. Overall, DeepPT
achieves a marked increase in the accuracy and efficiency compared to current published

methods for prediction of gene expression.

The predicted expression then serves as input to ENLIGHT [33], which is a
transcriptomics-based approach that predicts individual responses to a wide range of targeted
and immunotherapies based on gene expression data measured from the tumor biopsy (Figure
1b). ENLIGHT aims to advance and extend the scope of SELECT [36], two recent approaches
that rely on analysis of functional genetic interactions (GI) around the target genes of the chosen
therapy. Specifically, two broad types of interactions are considered: Synthetic Lethality (SL),
whereby the simultaneous loss of two non-essential genes is lethal to the cell, and Synthetic
Rescue (SR), whereby the loss of an essential gene can be compensated for through the over-
or under-expression of a second gene (its “rescuer” gene). ENLIGHT’s drug response
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prediction pipeline comprises two steps (Figure 1b): (i) Given a drug, the inference engine
identifies the clinically relevant genetic interaction partners of the drug's target gene(s). The
inference engine first identifies a list of initial candidate SL/SR by analysing cancer cell line
dependencies based on the principle that SL/SR interactions should decrease/increase tumor
cell viability, respectively, when ‘activated’ (e.g., in the SL case, viability is decreased when
both genes are under-expressed). It then selects those pairs that are more likely to be clinically
relevant by analysing a database of tumor samples with associated transcriptomics and survival
data, requiring a significant association between the joint inactivation of target and partner
genes and better patient survival for SL interactions, and analogously for SR interactions. (ii)
The drug-specific GI partners are then used to predict a given patient's response to the drug
based on the gene expression profile of the patient’s tumor. The ENLIGHT Matching Score
(EMS), which evaluates the match between patient and treatment, is based on the overall
activation state of the set of GI partner genes of the drug targets, reflecting the notion that a
tumor would be more susceptible to a drug that induces more active SL interactions and fewer

active SR interactions.

Here, we predict patient treatment response by applying ENLIGHT to the expression
values predicted by DeepPT instead of those measured using RNA sequencing. We show that
combining ENLIGHT with DeepPT enables robust prediction of response to treatment, in an
independent test set of breast cancer patients, for which H&E slides of fresh frozen (FF)
samples are available. Remarkably, this is done without adapting either DeepPT, which was
trained on FFPE samples from TCGA, or ENLIGHT, which is an unsupervised algorithm, never

trained on any response data.

Study design and patient cohorts

The workflow describing the computational analysis is depicted in Figure 1c. We collected
FFPE WSI together with matched RNAseq gene expression profiles for four major cancer
types, including breast, kidney, lung, and brain from TCGA database. Low quality slides were
excluded, resulting in 4,368 slides from 3,750 patients. Each cancer type cohort was processed,
trained and evaluated separately. We performed a 5 X 5 nested cross-validation to assess the
model performance: In the outer loop, the samples were randomly split into five disjoint sets.
Each sample set was selected in turn as the held-out test set (20%), while the rest were used for
training (80%). Given an outer split, in the inner loop each model was trained five times by
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further splitting the training set into internal training and validation sets, performing a five-fold
cross validation. Applying a bagging technique, we averaged the predictions from the five
different models, presenting our final prediction for each gene on the held-out test set. The outer
loop was repeated five times across the five held-out test sets, hence resulting overall in 25
trained models (Extended Figure 2a-b). For further validation, we applied the trained models
(with the TCGA cohort) to predict gene expression on two independent external datasets: the
TransNEO breast cancer cohort (TransNEO-Breast) consisting of 160 FF slides [37] and a new
unpublished brain cancer cohort (NCI-Brain) consisting of 210 FFPE slides, both also
containing matched expression data (see Methods). Our final goal, however, is to use the
predicted gene expression to predict treatment response. To this end, the predicted gene
expression served as input to ENLIGHT to predict treatment outcome for patients from

TransNEO cohort, as described in the next section.
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Figure 1. Study overview. (a) The three main components of DeepPT architecture, from left
to right. The pre-trained ResNet50 CNN unit extracts histopathology features from tile images.
The autoencoder compresses the 2,048 features to a lower dimension of 512 features. The multi-
layer perceptron integrates these histopathology features to predict the sample’s gene

expression. (b) An overview of the ENLIGHT pipeline (illustration adapted from [33]:
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ENLIGHT starts by inferring the genetic interaction partners of a given drug from various
cancer in-vitro and clinical data sources. Given the SL and SR partners and the transcriptomics
for a given patient sample, ENLIGHT computes a drug matching score that is used to predict
the patient response. Here, ENLIGHT uses DeepPT predicted expression to produce drug
matching scores for each patient studied. (¢) DeepPT was trained with formalin-fixed paraffin-
embedded (FFPE) slide images and their matched transcriptomics of TCGA patients from four
cancer types, including breast, kidney, lung, and brain. After the training phase, the models
were then applied to predict gene expression on the four internal (held-out) TCGA datasets and
on two independent datasets on which it was never trained. The predicted tumour

transcriptomics served as input to ENLIGHT for predicting patient’s response to treatment.

Prediction of gene expression from histopathology images on four TCGA and two

independent cohorts

As illustrated in Figure 1, we trained our models with histopathology images and their
corresponding normalized gene expression profiles for each of the four TCGA cancer types
studied. We then applied the trained models to predict gene expression of the internal held-out
test sets. To evaluate model performance, we estimated the Pearson correlation (R) between
predicted and actual expression values of each gene across the samples in each test set, taking
the mean correlation across all folds. For each cancer type, a total of approximately 18,000
genes were studied; of these, a majority of genes (over 15,000 genes; 80%) were significantly
predicted, with Holm-Sidak corrected p-values < 0.05. For each cancer type, over 1,800 genes
had a correlation above 0.4 (Figure 2a-d and Extended Table 1). Benchmarking against two
recently published state-of-the-art expression prediction approaches, DeepPT predicted 2,743
genes for lung cancer and 1,812 genes for breast cancer with mean correlations greater than 0.4,
roughly doubling the number of genes predicted to this extent (the ‘mark’ set) by Schmauch et
al [29] (1,550 and 786 genes for lung and breast cancer, respectively) (Extended Table 1). The
scatterplots of the prediction results for the 30 best predicted genes across samples are presented

for each dataset (Extended Figure 3-6).
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Figure 2. DeepPT prediction of gene expression from H&E slides. Histograms of the
Pearson correlation coefficients (R) between predicted and actual expression for each gene
across the test set (left panels), and top enriched pathways among the well-predicted genes
(right panels). Red dashed lines in the left panels represent the correlation coefficient level
beyond which the results are significant (p-value < 0.05 after correction for multiple hypotheses

testing).

Notably, a gene set enrichment analysis using the GSEApy python package [38] and
Reactome database [39] reveals an enrichment of cellular functions known to play a key role in
oncogenesis, such as cell cycle, mitosis, and extracellular matrix organization. Many enriched
pathways are specific to different cancer types, pointing to an interesting tumour specificity of
the pathways whose expression is associated with H&E features (Figure 2a-d, right panels).
These results indicate that transcriptomic alterations in oncogenic pathways are indeed more
likely to be more strongly associated with visible changes in the H&E slides, but the exact

nature of these associations is tumour specific.

As an independent external test, we used the trained models with TCGA-breast cancer
to predict gene expression in the TransNEO slides (N=160). Remarkably, the two datasets were
generated independently at different facilities, with two different preparation methods (TCGA
slides are FFPE, while TransNEO slides are FF). Hence, histological features extracted from
these two datasets are clearly distinct (Extended Figure 7). Despite these marked data
differences, without any further training, we found 1,489 genes with R > 0.4 (Figure 2e,
Extended Table 1, and Extended Figure 8). Similarly, we also applied the models trained
with TCGA-Brain samples to predict gene expression from NCI-Brain slides (a new
unpublished dataset; N=210). We observed 1,324 genes with R > 0.4 (Figure 2f, Extended
Table 1, and Extended Figure 9). The strong performance of DeepPT on the external datasets

suggests that the model can generalize to new data.
Predicting treatment response from DeepPT-predicted gene expression

In principle, predicting response to treatment directly from H&E slides could be of great value.
However, a purely supervised approach, which trains over TCGA data to predict treatment
response and then applies the trained model on new data, is not feasible since treatment
response data is rare for targeted therapies in TCGA (and more generally such data is scarce

and still hard to obtain). Therefore, we instead developed a two-step approach that promises far
9



wider applicability. First, we applied DeepPT to predict the patient transcriptomics from their
H&E slides. Second, based on this predicted gene expression, we used the precision oncology

algorithm, ENLIGHT [33], to predict the patients’ response from the predicted expression.

Leveraging this computational pipeline, we tested the ability of ENLIGHT to accurately
predict patient response in a cohort of 67 HER2+ breast cancer patients who had received a
combination of chemotherapy and Trastuzumab (targeting ERBB?2) as part of the TransNEO
trial [37]. Data utilized in this analysis included the response to therapy by residual cancer
burden criteria and the fresh frozen H&E-stained primary tumor slides. First, we used the
DeepPT model trained beforehand on the 1,043 TCGA-Breast patients, without any changes
and with no further training on this test dataset, to predict the gene expression values from the
H&E slides of each patient’s tumor. Second, we applied ENLIGHT to these predicted gene
expression values to produce EMS scores based on the same SL/SR partners of ERBB?2 that
were already inferred in [33]. Importantly, we do not restrict the model to genes with high
correlations between the actual and predicted expression values; ENLIGHT considers the
combined effect of a large set of genes, mitigating the noise of individual expression prediction,
which leads to robust response predictions as we show below. The only modification made to
the original ENLIGHT version is the exclusion of the component that considers the expression
of the drug target (ERBB?2) itself, as this component highly weighs a single gene and is hence

much more susceptible to errors in the prediction of expression values.

We compared the prediction accuracy of this approach (termed ENLIGHT-DeepPT) to
the accuracy of the original ENLIGHT scores when calculated based on actual expression
values (ENLIGHT-actual), as well as to a multi-omic machine learning predictor that uses
DNA, RNA and clinical data, published by Sammut ef al. in their original study of this dataset
(Sammut-ML) [37]. Figure 3a shows the performance of ENLIGHT-DeepPT and ENLIGHT-
actual predictions in terms of odds ratio (OR, left panel), positive predictive value (PPV;
Precision, middle panel) and sensitivity (Recall, right panel). The OR denotes the ratio of the
odds to respond among patients predicted to respond vs. the odds to respond among patients
predicted not to respond. The PPV denotes the fraction of true responders out of those predicted
as such, and the sensitivity denotes the fraction of those predicted to respond out of all true
responders. Patients were predicted as Responders (or Non-Responders) if their EMS scores
were greater/equal (lesser) than a decision threshold value of 0.54, a threshold that was fixed

and determined already in [33], again, on completely independent data. The same threshold was
10



used here, without any training or modification, both for ENLIGHT-DeepPT and ENLIGHT-
actual. Using this previously established threshold, the OR of ENLIGHT-DeepPT is 5.97,
which is strikingly similar to the OR of 5.96 obtained by ENLIGHT-actual. The PPV of
ENLIGHT-DeepPT was 64%, higher than the PPV of 52% when using ENLIGHT-actual, and
both were much higher than the overall observed response rate of 29.7%. ENLIGHT-DeepPT
sensitivity was however markedly lower than that of ENLIGHT-actual, 37%, vs. 64%.

Figure 3b compares ENLIGHT’s performance (both versions) to that of the Sammut-
ML predictor [37]. To recount, the latter was based on in-cohort supervised learning to predict
response to chemotherapy with or without trastuzumab among HER2+ breast cancer patients.
Here, we applied each method to the patients for which the relevant data was available: 65
patients had RNAseq data (ENLIGHT-actual), 64 had H&E slides (ENLIGHT-DeepPT), and
56 had RNAseq, DNAseq and clinical features needed to run the Sammut-ML predictor. First,
to systematically compare between the predictors across a wide range of decision thresholds as
customary in the literature, we used two overall measures: the area under the ROC curve
(AUC), which measures how well a model can rank the samples, and the average precision
(AP), which measures how well a model can correctly identify all the true responders without
marking too many true non-responders as responders. Second, we aimed to compare these three
predictors based on their ability to classify samples as responders or non-responders for
practical clinical usage (as we did above when comparing ENLIGHT-DeepPT and ENLIGHT-
actual). Since Sammut et al. did not select a decision threshold, we made this comparison by
setting a threshold for each method such that the sensitivity is fixed, once capturing one third
of the true responders and once capturing two thirds of them (for confidence intervals and exact
values of all measures, see Extended Table 2; this further complements the results in Figure
3a which use the predefined threshold of 0.54). As can be seen, all methods have quite
comparable predictive power, where especially the performance of ENLIGHT-actual and
Sammut-ML predictors is similar across these diverse measures, while that of ENLIGHT-
DeepPT differs. However, importantly, using only H&E slides which are readily available,
without need for RNA or DNA data or other clinical features, has a major practical advantage

over the other methods.

The above results support the notion that the DeepPT-based ENLIGHT approach is
quite robust to measurement noise, enabling expression predictions on unseen data in an

unsupervised manner, without further training. Notably, the predictions were made on fresh
11



frozen tissue slides, while the DeepPT model was trained on FFPE samples, which differ

considerably from FF samples, further testifying to the robustness of DeepPT and ENLIGHT.
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Figure 3. Predicting treatment response from H&E slides. (a) Odds Ratio (OR, left panel),

OR (Sensitivity = 2/3)

Positive Predictive Value (PPV, middle panel) and Sensitivity (Recall, right panel) of response
prediction based on ENLIGHT, using either the actual expression or the DeepPT-predicted
expression. Comparison is made on the 64 of the 67 patients for which both RNAseq values
and H&E slides were available. The overall response rate (19/64, 29.7%) is denoted by a
horizontal dashed line in the center panel. (b) Comparison of both ENLIGHT based models and
the Sammut-ML predictor of Sammut et al. [37] using either the actual expression or the
DeepPT predicted expression. Each method was applied to the patients for which relevant data
is available: 65 patients had RNAseq data, 64 had H&E slides, and 56 had RNAseq and clinical
data needed to run the Sammut et al. predictor. Odds Ratio (OR) is calculated at two thresholds
for each predictor, one which achieves a sensitivity of one third and one of two thirds.

Horizontal dashed lines denote the corresponding baseline value for each measure.
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DISCUSSION

Our study demonstrates that an appropriate combination of DeepPT, a novel deep learning
framework for predicting gene expression from H&E slides, and ENLIGHT, an unsupervised
computational approach for predicting patient response from their predicted tumour gene
expression, could be used to form a new approach for H&E-based personalized medicine, in an
integrated form termed ENLIGHT-DeepPT. We show that ENLIGHT-DeepPT successfully
predicts the true responders in a recently published multi-omic breast cancer clinical trial

directly from the H&E images, obtaining a clinically meaningful hazard ratio of about six.

DeepPT is fundamentally different from previous computational pipelines for gene
expression prediction both in its model architecture and in its training strategy. We attribute its
superior performance to four key innovations: (i) All previous studies fed output from the
conventional pre-trained CNN model (with natural images from ImageNet database) directly
into their regression module, whereas we added an auto-encoder to re-train the output of the
pre-trained CNN model. This helps to familiarise the model with histological features, to
exclude noise, to avoid over fitting, and finally to reduce the computational demands. (ii) Our
regression module is a non-linear MLP model in which the weights from the input layer to the
hidden layer are shared among genes. This architecture enables the model to exploit the
correlations between the expression of the genes. (iii) We trained together sets of genes with
similar median gene expression values; doing so further implements a form of multitask
learning and prevents the model from focusing on only the most highly expressed genes. (iv)
We performed ensemble learning by taking the mean predictions across all models. This further

improves the prediction accuracy quite significantly (Extended Figure 2c).

DeepPT can be broadly applied to other cancer types; however, similar to many other
deep learning models, it requires a sufficient number of training samples. An interesting
direction for future work would be to apply transfer learning between cohorts, to improve the
predictive performance in cancer types with small training cohorts. In other words, it might be
possible to train the model on large datasets such as breast and lung cancer, then fine tune it for

generating predictions in smaller datasets such as pancreatic cancer or melanoma.

ENLIGHT is an unsupervised approach that leverages large-scale data in cancer to infer

genetic interaction partners associated with drug targets, and then uses their activation patterns
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in the tumor to generate a matching score for each possible treatment, given a tumor sample.
The ENLIGHT matching score is translated to a binary response prediction using a single pan-
cancer pan-treatment threshold, above which a treatment is considered a match to the patient.
The ENLIGHT framework was originally developed and validated using RNA expression data,
and was applied here as-is to DeepPT-predicted expression, generating ENLIGHT-DeepPT.
The robustness of the overall approach was demonstrated in an independent test set, where the
response prediction accuracy was on par with that achieved using the actual expression data, as
well as that of a supervised classifier trained for this task that was published in the original
study. Combining DeepPT with ENLIGHT is a promising approach to predicting response to
treatment directly from H&E slides because it does not require response data on which to train.
This is a crucial advantage compared to the more common practice of using response data to
train classifiers in a supervised manner. Indeed, while the TCGA lacks response data that would
enable a supervised predictor of response to Trastuzumab, applying ENLIGHT on predicted
expression here has successfully enabled the prediction of response to Trastuzumab in the
TransNEO dataset with considerable accuracy. An additional motivation for developing a
response prediction pipeline directly from H&E slides is that NGS results often take 4-6 weeks
after initiation to return a result. Many patients who have advanced cancers require treatment

immediately, and this method can potentially offer treatment options within a short time frame.

A striking finding of this study is the robustness of response predictions based on H&E
slides when combining DeepPT and ENLIGHT. First, despite the inevitable noise introduced
by the prediction of gene expression, the original ENLIGHT inferred GI partners of
Trastuzumab did not require any modifications to predict response here from the DeepPT-
predicted expression. Second, though DeepPT was trained using FFPE slides, it generalized
well and could be used as-is to predict expression values from FF slides. This demonstrates the
applicability of DeepPT for predicting RNA expression either from FF or from FFPE slides.
Nevertheless, a limitation of this work is that additional validation will be required, once
appropriate publicly available resources become available. We are currently focusing on
obtaining and analysing additional test cohorts for an extended journal submission of this

manuscript, but we publish the current interim results on bioRxiv, given their potential interest.

The growing efforts to harness the rapid advances in deep learning to improve cancer

patients care are obviously laudable. Those include a variety of promising studies developing
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new methods to classify tumors, predict their survival and their response to therapy from tumor
slides. The vast majority of current studies aimed at predicting patient response have been
focused on predicting genomic alterations; to date, we are not aware of studies aiming at
predicting patient response to therapy from the predicted tumor expression from histological
images. Given its general and unsupervised nature, we are hopeful that ENLIGHT-DeepPT may
possibly have considerable impact, making precision oncology more accessible to patients in
the developing world and in other situations where sequencing is less feasible. While promising,

one should cautiously note that the results presented await a broader validation.
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METHODS

Data collection

The datasets in this study were collected from three resources: TCGA, TransNEO, and
Laboratory of Pathology at the NCI.

The TCGA histological images and their corresponding gene expression profiles were

downloaded from the TCGA database (https://portal.gdc.cancer.gov). Only diagnostic slides
from primary tumor were selected, making a total of 4,368 formalin-fixed paraffin-embedded
(FFPE) slides from 3,750 patients with breast cancer (1,106 slides; 1,043 patients), kidney
cancer (859 slides; 836 patients), lung cancer (1,018 slides; 927 patients), and brain cancer

(1,015 slides; 574 patients).

The TransNEO-Breast dataset consists of fresh frozen (FF) slides and their corresponding gene
expression profiles from 160 breast cancer patients. Full details of the RNA library preparation

and sequencing protocols, as well as digitisation of slides have been previously described [37].

The NCI-Brain histological images and their corresponding gene expression profiles were
obtained from archives of the Laboratory of Pathology at the NCI, and consisted of 210 cases
comprising a variety of CNS tumors, including both common and rare tumor entities. All cases

were subject to methylation profiling to evaluate the diagnosis, as well as RNA-sequencing.

Histopathology image processing

We first used method of Otsu [40] to identify areas containing tissue within each slide. Because
the WSI are too large (from 10,000 to 100,00 pixels in each dimension) to feed directly into the
deep neural networks, we then partitioned the WSI at 20x magnification into non-overlapping
tiles comprised of 512 x 512 RGB pixels. Tiles containing heavy marks or more than 50% of
background were removed. Depending on the size of slide, the number of tiles per slide in
TCGA cohort varied from 100 to 8,000 (Extended Figure 10a-d). In contrast, TransNEO slides
are much smaller, resulting in 100 to 1,000 tiles per slide (Extended Figure 10e). To minimize
staining variation (heterogeneity and batch effects), color normalization was applied for the

selected tiles [41—43].
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Gene expression processing

Gene expression profiles were obtained from read counts for approximately 60,000 gene
identifiers. A subset of highly expressed genes was identified using edgeR, resulting in roughly
18,000 genes for each cancer type. The median expression across samples of each gene varied
from 10 to 10,000 across for every dataset (Extended Figure 11). To reduce the range of gene
expression values, and to minimize discrepancies in library size between experiments and

batches, a normalization was performed as described in our previous work [33].

Model architecture

Our model architecture was composed of three main units (Extended Fig. 1).

(1) Feature extraction: The pre-trained ResNet50 CNN model with 14 million natural images

from the ImageNet database [34] was used to extract features from image tiles. Before feeding
these tiles into the ResNet50 unit, the image tiles were resized to 224 x 224 pixels to match the
standard input size for the convolutional neural network. Through the feature extraction

process, each input tile is represented by a vector of 2,048 derived features.

(2) Feature compression: We applied an autoencoder, which consists of a bottleneck of 512

neurons, to reduce the number of features from 2,048 to 512. This helps to familiarise the model
with histological features, to exclude noise, to avoid over fitting, and finally to reduce the

computational demands.

(3) Multi-Layer Perceptron (MLP) regression: The purpose of this component is to build a

predictive model linking the aforementioned auto-encoded features to whole-genome gene
expression. The model consists of three layers: (1) an input layer with 512 nodes, reflecting the
size of the auto-encoded vector; (2) a hidden layer whose size depends on the number of genes
under shared consideration; and (3) an output layer with one node per gene. The rationale
behind this architecture is to leverage similarity among the genes under shared consideration,
as captured by the weights connecting the input layer to the hidden layer. The weights
connecting the hidden layer to the output layer model the subsequent relationship between the
hidden layer and each individual gene. This follows the philosophy of multi-task learning. If
the prediction of each gene’s expression level represents a single task, then our strategy is to

first group these tasks for shared learning, followed by optimization of each individual task. In
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our default whole-genome approach, we bin genes into groups of 4,096 whose median
expression levels are similar, and we use 512 hidden nodes. Because the training data is
comprised of gene expression at the slide level (i.e. bulk gene expression, as opposed to at

spatial resolution), we average our per-tile predictions to obtain bulk values at the slide level.
Model training and evaluation

We trained and evaluated each cancer type independently. To evaluate our model performance,
we applied 5x5 nested cross-validation. For each outer loop, we split the entire samples (of each
cohort) into training (80%) and held-out test (20%) set. We further split the training set into
internal training and evaluation set, according five-fold cross validation. The models were
trained and evaluated independently with the different pairs of training/validation sets.
Averaging the predictions from the five different models represents our final prediction for each
single gene on each held-out test set. We repeated this procedure five times across the five held-
out test sets, making a total of 25 trained models. These models trained with TCGA cohorts
were used to predict the expression of each gene in a given external cohort by computing the

mean over the predicted values of all models.

As noted in the Model Architecture section, tranches of genes with similar median expression
levels were grouped for simultaneous training and evaluation. This was done to optimize model
performance and model efficiency, and contrasts approaches in the literature that either train on
each gene separately [27] or on all genes together [29]. Each training round was stopped at a
maximum of 500 epochs, or sooner if the average correlation per gene between actual and
prediction values of gene expression on the validation set did not improve for 50 continuous
epochs. The Adam optimizer with mean squared error loss function was employed in both auto-
encoder and MLP models. A learning rate of 10™* and a minibatches of 32 image tiles per step
were used for both the auto-encoder model and MLP regression model. To avoid overfitting, a

dropout of 0.2 was also used.
Implementation details

All analysis in this study was performed in Python 3.7.4 and R 4.1.0 with the libraries including
Numpy 1.18.5, Pandas 1.0.5, Scikit-learn 0.23.1, Matplotlib 3.2.2, and edgeR 3.28.0. Image
processing including tile partitioning and color normalization was conducted with OpenSlide

1.1.2, OpenCV 4.4.0, PIL 6.1.0, and colorcorrect 0.9.1. The histopathology feature extraction
18



was carried out using TensorFlow 2.2.0. The feature compression (autoencoder unit) and MLP
regression parts were implemented using PyTorch 1.7.0. Pearson correlation was calculated
using Scipy 1.5.0. Gene set enrichment analysis was performed with Gseapy 0.10.7. The

identification of highly expressed genes was performed with edgeR 3.28.0.
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SUPPLEMENTARY DATA

Cohort Number of patients Number of genes
P-value < 0.05 R>04
TCGA-Breast 1,043 15,124 (82%) 1,812
TCGA-Kidney 836 17,326 (95%) 8,312
TCGA-Lung 927 15,361 (84%) 2,743
TCGA-Brain 574 15,531 (81%) 5,341
TransNEO-Breast 160 9,548 (56%) 1,489
NCI-Brain 210 10,386 (66%) 1,324

Extended Table 1 | Number of well-predicted genes for each cohort. P-values were adjusted

for multiple hypotheses testing using the Holm-Sidak method.

Number of AUC AP OR OR
patients (Sensitivity =%5) | (Sensitivity =%3)
scored (out
of 67)

ENLIGHT on actual 65 0.784 0.467 310.82,10.94] 10.02
expression (ENLIGHT- [2.92,34.37]
actual)
ENLIGHT on DeepPT 64 0.64 0.434 5.97[1.49,23.92] | 2.47[0.79,7.67]
predicted expression
(ENLIGHT-DeepPT)
Sammut ef al. on actual 56 0.752 0.437 2.29[0.58,8.91] 9.29[2.53,34.15]
expression (Sammut-
ML)

Extended Table 2 | Comparison between methods for predicting treatment response with
various methods. AUC: Area under the ROC curve. AP: Average Precision. OR: odds ratio.

Brackets indicate the 95% confidence interval. See main text for more details.
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a AutoEncoder b MLP Regression
| FC(2048, 512) U | FC(512, 512) [} i slides, # tles, 512]
| R<iu ) Dropout
| FC(512, 2048) U | FC(512, #genes) U [# slides, # tiles, #genes]
| ReLU )
| Tile averaging | [#slides, # genes]

Extended Figure 1 | Model architecture in detail. (a) The feature compression subnetwork
consists of an input layer of 2,048 neurons, a bottleneck of 512 neurons, and an output layer of
2,048 neurons. (b) The MLP regression subnetwork consists of an input layer of 512 neurons,
a hidden layer of 512 neurons, and an output layers with the number of neurons reflecting the

number of genes in each group.
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Extended Figure 2 | Training strategies and their performance. In the ensemble learning
strategy (bagging), five models were trained independently with five internal training-
validation splits; these five model predictions were averaged to make the final prediction (a).
In the model selection strategy, the “best” model with the highest performance on the validation
set was chosen to make prediction on the test set (b). The comparative performance of these
strategies is shown for each cohort (c¢). Note that with either strategy, DeepPT outperforms the
current state-of-the-art approach, HE2RNA.
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Extended Figure 3 | DeepPT performance on prediction of gene expression for the best thirty
genes in TCGA-Breast cohort as measured by Pearson correlation (R). Each scatter plot shows

predicted versus actual expression for a single gene across all 1,043 patients.
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Extended Figure 4 | DeepPT performance on prediction of gene expression for the best thirty

genes in TCGA-Kidney cohort as measured by Pearson correlation (R). Each scatter plot shows

predicted versus actual expression for a single gene across all 836 patients.
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Extended Figure 5 | DeepPT performance on prediction of gene expression for the best thirty
genes in TCGA-Lung cohort as measured by Pearson correlation (R). Each scatter plot shows

predicted versus actual expression for a single gene across all 927 patients.
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Extended Figure 6 | DeepPT performance on prediction of gene expression for the best thirty
genes in TCGA-Brain cohort as measured by Pearson correlation (R). Each scatter plot shows

predicted versus actual expression for a single gene across all 574 patients.
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Extended Figure 7 | Difference between histopathological features extracted from TCGA-
Breast tiles and TransNEO-Breast tiles. UMAP visualization of 2,048 histopathological
features that were extracted by using pre-trained ResNet50 CNN. 4,000 image tiles from each
dataset were selected randomly to illustrate. Each point represents each feature vector of one

image tile.
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Extended Figure 8 | DeepPT performance on prediction of gene expression for the best thirty
genes in the TransNEO-Breast cohort as measured by Pearson correlation (R). Notably, the
models were trained on TCGA-Breast, without the need for re-training. Each scatter plot shows

predicted versus actual expression for a single gene across all 160 samples.
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Extended Figure 9 | DeepPT performance on prediction of gene expression for the best thirty
genes in external NCI-Brain cohort as measured by Pearson correlation (R). Notably, the
models were trained on TCGA-Brain cancer dataset, without the need for re-training. Each

scatter plot shows predicted versus actual expression for a single gene across all 210 samples.

32



] TCGA-Breast - TCGA-Kidney - TCGA-Lung
300 A 200 A 200 - —
§ 250 3 ] 3
b=l 2 150 4 2 150 4
o 200+ o o
o o o
2 150 A 2 100 A % 100 A
€ € £
2 100 A 2 2
50 A 50 4
N | In
0= T '_|.'_' u 0= .|_|'_'. 0 T |_|.
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Number of tiles per slide Number of tiles per slide Number of tiles per slide
R e
d 30017 — TCGA-Brain 20 1 ] TransNEO-Breast f ] NCI-Brain
250 A 404 —
g g ] 2
S 200 A 3 3071 ke
@ @ — & 301
bS] k] k]
+ 1501 = =
] 8209 8201
€ 100+ £ E
=4 = 104 =
0 | ! e 04 . 0 ! =
0 2000 4000 6000 8000 0 200 400 600 800 0 2000 4000 6000 8000
Number of tiles per slide Number of tiles per slide Number of tiles per slide

Extended Figure 10 | Histograms of the number of tiles per slide by cohort. The number of
tiles in each slide image from TCGA and NCI-Brain datasets ranges from 100 to 8,000 (a, b, c,
d), while the number of tiles in each TransNEO-Breast slide image is much smaller, ranging

from 100 to 1,000 (e).
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Extended Figure 11 | Histogram of median expression over slides. The median expression
over samples of each gene commonly varies from 10 to 100,000 for every dataset considered

in this study.
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