

1 Mixed origin of juvenile Atlantic cod (*Gadus morhua*) 2 along the Swedish west coast

3
4 Simon Henriksson^{1,*}, Ricardo T. Pereyra¹, Marte Sodeland², Olga
5 Ortega-Martinez¹, Halvor Knutsen^{2,3}, Håkan Wennhage⁴, & Carl
6 André¹

7 ¹⁾Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad,
8 Sweden

9 ²⁾Center for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand,
10 Norway

11 ³⁾Institute of Marine Research, Flødevigen, Norway

12 ⁴⁾Institute of Marine Research, Department of Aquatic Resources, Swedish University of Agricultural
13 Sciences, Lysekil, Sweden

14 *Corresponding author: e-mail: simon.henriksson@gu.se, tel: +46702973044

15 Abstract

16 Cryptic population structure in exploited fish species poses a major challenge for fisheries
17 management. Atlantic cod (*Gadus morhua*) is a species in which the presence of sympatric ecotypes
18 has been known for a long time, for instance off the coast of Northern Norway. More recently, two
19 sympatric ecotypes of cod have also been documented in the Skagerrak and Kattegat; one ecotype is of
20 an apparent offshore origin and undertakes spawning migrations to the North Sea, and the other is
21 resident at the coast throughout its life. However, their relative contributions of juveniles to the
22 Swedish west coast remain poorly understood. The lack of adult cod along the Skagerrak and Kattegat
23 coasts in recent years has led to the hypothesis that the offshore ecotype is the main source of juveniles
24 to the area, but recent studies have shown large proportions of coastal cod inside Norwegian Skagerrak
25 fjords. In this study, juvenile cod were collected at a high spatial resolution along the Swedish west
26 coast, and genetically assigned to each of the two ecotypes. The results reveal that there is a
27 considerable proportion of juvenile coastal cod in the southern Kattegat, Öresund, and in inshore
28 Swedish Skagerrak, but that the offshore ecotype dominates in offshore areas. Model selection
29 suggests that differences in bottom depth, rather than distance from the open sea, may explain the
30 heterogenous spatial distribution of the two ecotypes. In addition, the two ecotypes displayed
31 differences at loci known to be associated with environmental adaptation, suggesting that their spatial
32 distribution is maintained by natural selection in response to specific environmental conditions.

33 *Key words: population genetics, fisheries management, fish ecology, ecotype divergence

34 Introduction

35 Overexploitation of fish stocks is cause for great concern for economic, socio-political, and ecological
36 reasons, motivating a revision of management strategies (Pauly *et al.*, 2002; FAO, 2020). Inaccurate
37 delineation of management units, or “stocks”, has been suggested as one explanation for the failed
38 management of many fish species (Reiss *et al.*, 2009). Historical definitions of management units have
39 often been based on legislative borders, despite knowledge that distribution ranges of marine
40 populations may range from highly local to transboundary (Kerr *et al.*, 2017). Management regimes
41 that do not consider the population structure at the correct spatiotemporal scale may thus be
42 suboptimal, potentially leading to underexploitation of productive populations and overexploitation of
43 vulnerable populations (Kerr *et al.*, 2017). Overexploitation may cause a loss of genetic diversity,
44 reducing the species’ robustness and elevating the risk of extinction (Allendorf *et al.*, 2022).

45 Populations with heritable differences in behaviour, morphology, physiology, or life history traits
46 associated with adaptation to different environments are often referred to as “ecotypes” (Stronen *et al.*,
47 2022), and have been described in several fish species (e.g. herring [*Clupea harengus*], Bekkevold *et*
48 *al.*, 2016; three-spined stickleback [*Gasterosteus aculeatus*], Hohenlohe *et al.*, 2010; and Atlantic cod
49 [*Gadus morhua*], Michalsen *et al.*, 2014; Knutsen *et al.*, 2018). One apparently common form of
50 divergence in marine fishes is the evolution of offshore and coastal ecotypes, as described for polar
51 cod (*Boreogadus saida*, Madsen *et al.*, 2016), beaked redfish (*Sebastes mentella*, Cadrin *et al.*, 2010),
52 European seabass (*Dicentrarchus labrax*, Allegrucci *et al.*, 1997), and European anchovy (*Engraulis*
53 *encrasicolus*, Le Moan *et al.*, 2016).

54 Atlantic cod has been a highly important commercial fish species in the North Atlantic since at least
55 the 16th century (COSEWIC, 2010). In recent times, stocks on both sides of the Atlantic have been
56 severely depleted and shown very little recovery, despite cod fishing moratoria being in place
57 (Hutchings & Myers, 1994; Cardinale & Svedäng, 2004; FAO, 2020; ICES, 2021c-d). In the
58 Skagerrak and Kattegat, current fisheries monitoring surveys catch almost no adult cod (Bland &
59 Börjesson, 2020; Andersson *et al.*, 2021). The juvenile abundances have also decreased in this area,
60 but the trend has been less clear as the recruitment shows large interannual fluctuations (Svedäng,
61 2003; Cardinale & Svedäng, 2004). In addition, discard mortality of juvenile cod is still considered
62 high, despite a landing obligation being in place since 2017 (ICES 2021c; Bryhn *et al.*, 2022).

63 Genetic and tagging studies have identified two sympatric cod ecotypes residing in the North Sea-
64 Skagerrak-Kattegat region (Knutsen *et al.*, 2011; André *et al.*, 2016; Barth *et al.*, 2017; Svedäng *et al.*,
65 2019). One of these ecotypes is genetically similar to North Sea cod and dominates in the offshore and
66 outer coastal regions (Knutsen *et al.*, 2018). This “offshore” ecotype consists, at least in part, of
67 juvenile cod from the North Sea that are transported into the area with ocean currents (Stenseth, *et al.*,
68 2006; Jonsson *et al.*, 2016). The influx of offshore juveniles varies between years, and is likely the
69 main source of interannual variability in juvenile abundances (Knutsen *et al.*, 2004; Stenseth *et al.*,
70 2006). The offshore cod appear to utilise the Skagerrak and Kattegat coasts as a nursery for 2-4 years
71 before migrating to the North Sea to spawn (Pihl & Ulmestrond, 1993; Svedäng *et al.*, 2007; André *et*
72 *al.*, 2016; Hemmer-Hansen *et al.*, 2020). The offshore ecotype is often referred to as “North Sea cod”,
73 but, to date, it is unclear whether all fish make return migrations to the North Sea, or if some fraction
74 completes its life cycle in offshore Skagerrak (Knutsen *et al.*, 2018). The second ecotype, referred to
75 as “fjord cod” in Norway and “coastal cod” in Sweden, is genetically similar to cod in the southern
76 Kattegat and Öresund and is more common in the southern Kattegat and inshore coastal Skagerrak
77 (Knutsen *et al.*, 2018; Hemmer-Hansen *et al.*, 2020). The coastal ecotype displays more resident
78 behaviour and does not appear to undertake long-range migrations during the spawning season
79 (Knutsen *et al.*, 2011; Kristensen *et al.*, 2021). The two ecotypes in the Skagerrak and Kattegat coexist
80 on multiple spatial scales, but show differences in growth rate (Jørgensen *et al.* 2020), behaviour
81 (Kristensen *et al.* 2021), and geographical distribution (Knutsen *et al.* 2018; Hemmer-Hansen *et al.*,

82 2020). In addition, the ecotypes are genetically differentiated at both neutral (Knutsen *et al.*, 2011) and
83 potentially adaptive loci (Barth *et al.*, 2019).

84 Cryptic population divergence evolving at small spatiotemporal scales is sometimes restricted to
85 highly specific genomic regions. These genomic regions with above-average genetic differentiation
86 may contain loci associated with adaptation to specific environmental conditions (Gagnaire *et al.*,
87 2015), or chromosomal rearrangements that restrict gene flow and maintain reproductive isolation
88 between populations (Kirkpatrick & Barton, 2006). A striking trait of the Atlantic cod genome is the
89 presence of four large chromosomal inversions on chromosome (chr) 1, 2, 7 and 12, which segregate
90 in different populations across the species' geographic range (Berg *et al.*, 2016; Kess *et al.*, 2020;
91 Matschiner *et al.*, 2022). Loci within an inverted region of a chromosome may resist meiotic
92 recombination in heterozygotes and are, in effect, often inherited as a single "supergene" (Dobzhansky
93 & Epling, 1948). Hence, the alternative inversion states may represent combinations of alleles that are
94 optimised for different environmental conditions (Wellenreuther & Bernatchez, 2018). As for the
95 chromosomal inversions, differentiation in haemoglobin (Hb) genes is relatively well documented in
96 cod. There are two main Hb components in cod, HbI and HbII (Sick, 1961), the former being the most
97 well-studied. HbI genotype affects the oxygen affinity of Hb at different temperatures (Brix *et al.*,
98 2004), which is reflected in the temperature preferences of cod with different HbI genotypes (Petersen
99 & Steffensen, 2003). The putative roles of chromosomal inversions and Hb genes in the offshore-
100 coastal ecotype divergence remain unknown.

101 Differentiated offshore and coastal ecotypes have also been documented for Atlantic cod in northern
102 Norway (Michalsen *et al.*, 2014), Iceland (Grabowski *et al.*, 2011), Greenland (Pampoulie *et al.*,
103 2011), and Canada (Ruzzante *et al.*, 2000). In northern Norway, these ecotypes represent the
104 migratory North-Eastern Arctic cod (NEAC; "skrei") and the stationary Norwegian coastal cod (NCC;
105 Michalsen *et al.*, 2014). The NEAC and NCC are strongly differentiated at all chromosomal inversions
106 (Berg *et al.*, 2016; Kess *et al.*, 2019), as well as HbI genotype (Andersen *et al.*, 2009). Recently, cod
107 fisheries management in northern Norway has integrated genetic methods to assign individual cod to
108 NEAC or NCC ecotype within 24 hours of capture, allowing a rapid regulation of the fisheries if catch
109 proportions of the more sensitive NCC cod exceed a certain threshold (Dahle *et al.*, 2018). In contrast,
110 cod fisheries management in the Skagerrak and Kattegat does not account for the presence of two
111 sympatric ecotypes in the area (ICES, 2020). Increasing the knowledge on the respective life history
112 strategies and relative strengths of the offshore and coastal ecotypes has been highlighted as essential
113 to the successful management of Skagerrak-Kattegat cod (Knutsen *et al.*, 2018; Hemmer-Hansen *et*
114 *al.*, 2020).

115 The low abundance of adult cod coupled with the variable juvenile recruitment in Swedish waters has
116 led to hypotheses that most cod presently found along the Swedish Skagerrak coast have an offshore
117 origin (Svedäng, 2003; Cardinale & Svedäng, 2004). However, recent studies in the Norwegian
118 Skagerrak have shown high proportions of coastal ecotype cod inside Norwegian fjords (Jorde, Synnes
119 *et al.*, 2018; Knutsen *et al.*, 2018), and potentially even fjord-specific ecotypes (Barth *et al.*, 2019).
120 Despite claims that most cod along the Swedish west coast have an offshore origin, the relative
121 proportions of offshore and coastal ecotype cod have not been assessed explicitly. Biophysical models
122 of larval drift suggest that spawning populations in the Kattegat and Öresund supply the majority of
123 recruits to the Swedish west coast (Jonsson *et al.*, 2016; Barth *et al.*, 2017), while recent observations
124 of early egg stages inside Swedish fjords suggest that local fjord spawning may still also occur
125 (Svedäng *et al.*, 2019). In addition to the lack of knowledge regarding the origin of recruits, recent
126 declines in the offshore stocks in the North Sea (ICES, 2021a; 2021c) have raised questions about
127 whether the Skagerrak-Kattegat coastal zone has lost some of its function as a nursery habitat for
128 juvenile cod, regardless of ecotype. If true, this would provide an alternative explanation for the
129 declines in adult cod abundance along the Skagerrak-Kattegat coast.

130 In this study, we genotyped juvenile cod collected in the Skagerrak, Kattegat and Öresund in 2019 and
131 2020, using both a panel of targeted SNP loci developed to assign individuals to ecotype and sex, and
132 a larger panel of genome-wide SNP loci obtained through 2b-RAD sequencing. The aims were: 1) to
133 examine whether there are juvenile cod of both offshore and coastal origins along the Swedish west
134 coast, and, if so, if there is geographical and interannual variation in the juvenile recruitment of both
135 ecotypes; 2) to analyse whether the ecotypes are genetically differentiated at candidate loci associated
136 with environmental adaptation; and 3) to explore potential genetic substructure within the coastal
137 ecotype.

138 **Methods**

139 **Sampling**

140 Juvenile cod were collected along the Swedish west coast in 2019 and 2020, and along the Norwegian
141 Skagerrak coast in 2020. Adult cod from the North Sea, Skagerrak, Kattegat, and Öresund were also
142 included as reference individuals (Figure 1). The fishing gear used included bottom trawls, beach
143 seines, fyke nets, shrimp trawls, lobster traps, and cages (Table S1). Fin clips were taken and stored in
144 95% ethanol at -20° C. DNA was extracted from the tissue samples with a Qiagen DNeasy® Blood &
145 Tissue kit following the manufacturer's protocol. To allow inter- and intra-cohort analyses, juvenile
146 samples that had not already been aged from otolith readings were assigned to cohort based on their
147 total length (TL). Informed by length distribution graphs of both ecotypes (Figure S1), we assigned
148 individuals with a TL ≤ 150 mm as 0-group cod and those with a TL > 150 mm as 1-group.

149 **Targeted loci**

150 A total of 1002 juvenile and adult individuals were genotyped using a set of 65 single nucleotide
151 polymorphism (SNP) loci (Table S2). Of these, 40 loci were selected for discriminating between the
152 offshore and coastal ecotypes along the Norwegian Skagerrak coast. These 40 loci were chosen from a
153 panel of > 9000 SNP loci used to genotype cod in the Norwegian Skagerrak (see Jorde, Kleiven *et al.*,
154 2018). Loci were ranked by the level of genetic divergence (Nei's G_{ST}) between the offshore and
155 coastal ecotypes, excluding closely linked loci (composite linkage disequilibrium, CLD > 0.5). Of
156 these 40 loci, 17 have been included in previous studies to discriminate between the ecotypes (Jorde,
157 Kleiven *et al.*, 2018; Jorde, Synnes *et al.*, 2018; Knutsen *et al.*, 2018). In addition, we included 8 sex-
158 diagnostic loci (Star *et al.*, 2016), and 19 candidate loci, putatively involved in environmental
159 adaptation: 13 loci located within chromosomal inversions – 3 loci each on chr 1, 2, and 7, and 4 loci
160 on chr 12 (Berg *et al.*, 2015; Kess *et al.*, 2020) – and one SNP locus within each Hb subunit in the $\beta 5$ -
161 $\alpha 1$ - $\beta 1$ - $\alpha 4$ globin gene cluster on chr 2 (Borza *et al.*, 2010). SNP genotyping was performed on an
162 Agena MassARRAY Platform, as described by Gabriel *et al.* (2009), at the Mutation Analysis core
163 Facility at Karolinska Institutet, Huddinge, Sweden. After quality control and filtering (see
164 supplementary note S1), 52 SNP loci remained; 33 from the ecotype-diagnostic panel, 5 sex-linked
165 loci, 10 loci located within inversions (2 each on chr 1 and 2, and 3 each on chr 7 and 12), and 4 Hb
166 loci. The final dataset consisted of 406 and 488 juveniles collected in Swedish waters in 2019 and
167 2020, respectively, 25 juveniles from the Norwegian fjords, along with 11 adult reference cod from the
168 North Sea, 6 from Norwegian Skagerrak, 18 from Gullmarsfjorden, 3 from Byfjorden, 17 from
169 Kattegat, and 13 from Öresund (Figure 1).

170 **Ecotype assignment**

171 We assigned all individuals to ecotypes through K-means clustering using ADEGENET (v2.1.3;
172 Jombart, 2008). Given that our panel was developed to distinguish the offshore and coastal ecotypes,
173 we performed the K-means clustering assuming two groups (K = 2), corresponding to the two
174 ecotypes. Individuals were assigned to the offshore or coastal ecotype according to whether they were

175 assigned to the same group as adult reference individuals from the North Sea or from the Kattegat and
176 Öresund, respectively. The ecotype assignment thus resulted in 491 offshore and 496 coastal ecotype
177 individuals. The assignment was then evaluated using four different methods (see supplementary note
178 S2): discriminant analysis of principal components (DAPC; ADEGENET), principal component analysis
179 (PCA; ADE4 v1.7-16; Dray & Defour, 2007), sparse non-negative matrix factorization (SNMF; LEA
180 v3.1.2; Frichot & François, 2015), and population assignment (ASSIGNPOP v1.2.2; Chen *et al.*, 2020).
181 Lastly, we estimated the genetic divergence between the ecotypes (F_{ST}) and its significance, using a
182 permutation test (wcFst; 10 000 permutation replicates) in STRATAG (v2.5.01; Archer *et al.*, 2016).
183 We used MAPPLOTS (v1.5.1; Gerritsen, 2018) to visualise the geographical distribution of the
184 ecotypes.

185 *Assignment of sex and inversion state*

186 For both the sex- and inversion-linked SNP loci, PCA revealed clear clustering of individual
187 genotypes along PC1 (Figure S2). Hence, we used the individual PC1 coordinates to assign sex and
188 inversion state to each individual, similar to the methods described by Ma & Amos (2012). To
189 determine which inversion state was the ancestral and which was the derived for each chromosome,
190 we assumed that the most frequent rearrangements in our study corresponded to those reported for
191 Norwegian coastal cod and Western Baltic cod by Matschiner *et al.* (2022). Note that different studies
192 have used different nomenclature for the alternative inversion states, see Table S3. Individuals with
193 one homozygous and one heterozygous SNP locus within the same inversion were removed from
194 downstream analyses (chr 1: n = 31, chr 2: n = 5, chr 12: n = 16). The four Hb loci were analysed
195 individually.

196 *Interannual differences in ecotype proportions*

197 We tested for inter- and intra-cohort differences in ecotype proportions between years using weighted
198 analyses of variance (ANOVA), as applied in STATS (v4.1.2; R Core Team, 2021). For the inter-cohort
199 analysis, we only included stations at which 0-group cod were collected in both years, whilst for the
200 intra-cohort analysis, we only included stations at which juveniles from the 2019 cohort were collected
201 in both 2019 and 2020 (as 0- and 1-group cod, respectively). In both cases, station-wise estimates of
202 ecotype proportions were weighted against the number of individuals included from each station and
203 year. Weighted ANOVAs were then performed separately for offshore and inshore stations. Öresund
204 stations were excluded from this analysis, as the sample sizes in 2020 were very low.

205 *Genetic differences between ecotypes at candidate loci*

206 We tested for differences in allele frequencies between ecotypes for the inversion- and Hb loci by
207 calculating locus-wise F_{ST} between the ecotypes using STRATAG (10 000 permutation replicates). The
208 assigned inversion state of each individual was recoded as a single superlocus genotype for this
209 analysis, to avoid biasing the F_{ST} estimates by including multiple non-independent markers. To test for
210 differences in sex ratio, we performed Pearson's χ^2 test with Yates' continuity correction, as applied in
211 STATS.

212 *Environmental predictors of ecotype and candidate locus genotype*

213 We used regression modelling and model selection to explore potential geographical correlates with
214 station-wise ecotype proportions and sex ratios, and with individual genotypes at candidate loci. We
215 only included 0-group juveniles from 2019 and 2020 collected in Skagerrak (ICES Subdivision 20),
216 Kattegat (ICES Subdivision 21), and Öresund (ICES Subdivision 23) in these analyses. This was done
217 to avoid including age classes with small sample sizes per station and subdivisions sampled at very
218 few stations. Hence, these analyses excluded all 1-group juveniles and adults, as well as all individuals
219 collected in the North Sea.

220 For the ecotype proportions and sex ratios we fitted weighted linear regression models using STATS.
221 We included year and ICES Subdivision as categorical explanatory variables, bottom depth and
222 distance inshore from the coastal baseline for each station as linear explanatory variables, and the
223 number of individuals per station as weights. ICES Subdivision was included as an explanatory
224 variable, as the subdivisions correlate with the current ICES advisory units for cod in the area: the
225 “North Sea, eastern English Channel, Skagerrak” advisory unit includes Subdivision 20; the
226 “Kattegat” advisory unit corresponds to Subdivision 21; and the “western Baltic Sea” advisory unit
227 includes Subdivision 23 (ICES, 2020). Distance from the baseline (positive value inshore, negative
228 value offshore) and depth were included as proxies for spatial environmental variation, e.g., in
229 temperature, salinity, or oxygen conditions. For the individual chromosomal inversion state, and
230 genotypes at Hb loci, we fitted ordinal logistic regression models using MASS (v7.3-54; Venables &
231 Ripley, 2002). As the ordinal regression models were fitted against individual-level data, we included
232 the ecotype and sex of each individual as categorical explanatory variables, in addition to year, ICES
233 Subdivision, depth and distance from the baseline. Depth was log-transformed to address the skewed
234 distribution of this variable, and to approach a linear relationship with the response variables. For
235 more details, see supplementary note S3.

236 We applied a model selection approach to the full suite of models to identify the most informative
237 predictors. The quality of each model was determined by calculating the sample-size-corrected
238 Akaike’s information criterion (AICc), using AICCMODAVG (v2.3-1; Mazerolle, 2020). Models with
239 an AICc difference (ΔAICc) < 2 were treated as having equal levels of support, following Burnham &
240 Anderson (2004), and are referred to as the “top-ranked” models henceforth. We consider our analyses
241 of environmental correlates as exploratory (see Tredennick *et al.*, 2021), and thus, we opted against
242 selecting a single model to make statistical inferences from. Instead, we have identified the most
243 important explanatory variables across the top-ranked models and their respective effects, to indicate
244 the main geographical correlations (see Burnham & Anderson, 2004; Tredennick *et al.*, 2021).

245 **Genome-wide loci**

246 A subset of 268 individuals was selected for genome-wide genotyping using 2b-RAD sequencing. The
247 subset included juveniles from Swedish (n=181) and Norwegian (n=12) Skagerrak fjords, the Kattegat
248 (n=18), and Öresund (n=16), together with adult reference cod from the North Sea (n=10),
249 Gullmarsfjorden (n=9), Byfjorden (n=3), Kattegat (n=10) and Öresund (n=9). The main aim of this
250 approach was to analyse potential substructure within the coastal ecotype, and specifically if juveniles
251 collected in fjords were distinct from cod in the Kattegat. However, we also included juveniles
252 assigned to the offshore ecotype, which enabled comparisons of any potential coastal substructure to
253 the already described offshore-coastal ecotype divergence. It also allowed for independent evaluation
254 of the ecotype assignment using the ecotype-diagnostic SNP panel (see supplementary note S4).

255 *Library preparation and sequencing*

256 The DNA integrity was assessed in a 1% agarose gel and the quality using a NanoDrop® ND-1000
257 spectrophotometer. The quality of the DNA extractions was improved with a purification step using a
258 Zymo DNA Clean & Concentrator™-25 Kit. The 2b-RAD libraries (Wang *et al.*, 2012) were prepared
259 following a modified protocol by Mikhail Matz
260 (https://github.com/z0on/2bRAD_GATK/blob/master/2bRAD_protocol_june1_2018.pdf) as described
261 in Kinnby *et al.* (2020).

262 *Mapping and filtering*

263 Trimming, filtering, and genotype calling was done following Pereyra *et al.* (2022). Trimmed and
264 quality-filtered sequences were mapped to the cod genome assembly gadMor3.0 (NCBI Bioproject
265 accession no. [PRJEB33455](#)).

266 *Genotype calling*

267 Individual RAD libraries produced 0.3–14.8 (median: 4.4) million reads per individual. Mapping to
268 the gadMor3.0 genome assembly resulted in alignment rates ranging 74.9–95.9 % (median 94.0 %).
269 Technical replicates rendered 15 320 SNPs that were used as “true” SNP dataset for recalibration of
270 variants. A total of 55 449 SNPs were called, and a set of 23 364 SNP loci and 235 individuals was
271 obtained after filtering following Pereyra *et al.* (2022). Subsequent removal of loci with a minor allele
272 frequency < 5 % resulted in 9956 SNP loci for downstream analyses. A complete list of the filtered
273 loci is provided in Table S4.

274 *Inversion scans*

275 To identify loci located within inverted chromosomal regions, the filtered SNPs were scanned for
276 chromosomal inversions using INVERSION (v1.40.0, Cáceres, 2021). For details, see supplementary
277 note S5.

278 *Local coastal populations*

279 We performed PCAs in ADEGENET to visualise the genetic distances between coastal ecotype
280 individuals at genome-wide loci located outside of inversions. We also calculated pairwise multi-locus
281 F_{ST} between sampling sites with STRATAG (1000 permutation replicates). For stations with small
282 sample sizes, individuals from multiple nearby stations were pooled, thus representing the juvenile
283 assemblage of a larger area (Table S5). Due to low 2b-RAD genotyping success for the fjord reference
284 samples, adults from Gullmarsfjorden and Byfjorden were also pooled. The dimensions of the
285 pairwise F_{ST} matrix were then reduced using multi-dimensional scaling (MDS) in STATS.

286 *Outlier analyses*

287 Pairwise outlier tests were performed using BAYESCAN (v2.1; Foll & Gaggiotti, 2008) and
288 OUTFLANK (v0.2; Whitlock & Lotterhos, 2014) with default settings, to identify loci displaying
289 patterns of non-neutral selection between the ecotypes. Annotation of outlier loci was performed by
290 running 2.5 kb flanking regions of each outlier locus through blastx, to match to all non-redundant
291 GenBank CDS translations+PDB+SwissProt+PIR+PRF databases. Loci with annotated hits were
292 subsequently searched for Gene Ontology (GO) terms using PANTHER DB (Mi *et al.*, 2021) and
293 PANTHER’s tool (Thomas *et al.*, 2006) to access the list of GO annotations (Ashburner *et al.*, 2000;
294 Gene Ontology Consortium, 2021).

295 Unless else stated, all data filtering and statistical analyses were performed in R (v4.1.2; R Core Team,
296 2021), using RStudio (v1.4.1717; RStudio Team, 2021). All p-values were corrected for multiple
297 testing with STATS, using the false discovery rate (FDR) method with the threshold for significance set
298 at $q < 0.05$.

299 **Results**

300 **Ecotype assignment**

301 The DAPC (Figure 2A) and PCA (Figure 2B) performed with the ecotype-diagnostic SNP panel
302 separated the ecotypes into two distinct clusters. The two ecotypes were also separated to a large
303 extent in the PCA using genome-wide loci located outside of inverted chromosomal regions (Figure

304 2C). The latter PCA was largely unchanged when outlier loci (Figure 3) were removed (Figure 2D-E).
305 The ecotype assignment was further corroborated by alternative assignment methods (Supplementary
306 note S2; Figure S3; Table S6). Multi-locus F_{ST} between the ecotypes was 0.14 ($p < 0.01$) for the
307 ecotype-diagnostic loci, and 0.006 ($p < 0.01$) for the 2b-RAD genome-wide loci outside of inverted
308 chromosomal regions.

309 **Geographical distribution of ecotypes**

310 Juveniles (0- and 1-group) of the two ecotypes co-occurred both offshore and inshore across the
311 sampled region (Figure 4), but the ecotypes also showed differences in their geographical distribution
312 that were highly stable between the years. Juveniles in offshore areas and the northern Skagerrak
313 predominantly assigned to the offshore ecotype, whilst juveniles in inshore areas, southern Kattegat,
314 and Öresund predominantly assigned to the coastal ecotype. With few exceptions, the proportion of
315 coastal ecotype juveniles generally increased toward the innermost parts of the fjords, although the
316 offshore ecotype was also found in this environment (Figure 4, inset maps).

317 The ecotype proportions for 0-group cod were very similar in 2019 and 2020 (Figure 4A vs 4B), at
318 both offshore ($F_{1,17} = 3.04$, $q = 0.20$) and coastal stations ($F_{1,67} = 0.48$, $q = 0.49$). Ecotype proportions
319 for 0-group in 2019 and 1-group cod in 2020 (intra-cohort) were also similar at offshore stations ($F_{1,12} = 0.91$,
320 $q = 0.48$), but differed at coastal stations ($F_{1,30} = 7.33$, $q = 0.04$). This was due to an increase in
321 the proportion of coastal ecotype in the outer archipelago between 2019 (0-group, Figure 4A) and
322 2020 (1-group, Figure 4C). However, 1-group cod were absent at many stations in 2020, especially in
323 inshore Skagerrak.

324 **Differentiation at candidate loci**

325 The two ecotypes showed differentiation in several genomic regions that have previously been linked
326 with environmental adaptation (Figure 5). These included inversions on chr 2 ($F_{ST} = 0.08$, $q < 0.01$),
327 chr 7 ($F_{ST} = 0.03$, $q < 0.01$), and chr 12 ($F_{ST} = 0.21$, $q < 0.01$), as well as the Hb- $\beta 1$ ($F_{ST} = 0.01$, $q < 0.01$) and Hb- $\beta 5$ loci ($F_{ST} = 0.02$, $q < 0.01$). However, the ancestral chr 1 inversion state appeared to
328 be fixed in both ecotypes, and the ecotypes did not differ in genotype frequencies at Hb- $\alpha 1$ ($F_{ST} = 0.00$, $q = 1.00$) and Hb- $\alpha 4$ ($F_{ST} = 0.00$, $q = 0.11$), or sex ratio ($\chi^2 = 0.37$, $df = 1$, $q = 0.62$).

329 **Environmental predictors**

330 *Ecotype*

331 Our exploration of potential drivers behind the distribution of ecotypes using model selection returned
332 23 models in total (Table 1), with three models of equal quality ($\Delta AIC < 2$). The simplest of the three
333 models, Model 1, included only ICES Subdivision and depth in the predictor, and both had significant
334 effects (Table S7). Subdivision and depth were included in all the top-7 models, and depth was
335 included in all top-13 models. Models 2 and 3 also included these variables, and the additional
336 explanatory variables included in these models all had non-significant effects. According to all three
337 top-ranked ($\Delta AICc < 2$) models, the proportion of coastal ecotype was predicted to be similar between
338 the Skagerrak and Kattegat, but higher in the Öresund, and to decrease with depth in all subdivisions.

339 *Candidate locus genotype*

340 Ecotype was the single most important explanatory variable for most loci. However, the chromosomal
341 inversions on chr 2, 7 and 12 were also correlated with environmental variables. For the chr 2
342 inversion, both distance inshore from the baseline and ecotype were important explanatory variables
343 (Table 2). Both variables were included in all 4 top-ranked models and had significant effects, whilst
344 all additional explanatory variables in these models were non-significant (Table S9). In all top-ranked
345 models, the proportion of coastal ecotype was predicted to be similar between the Skagerrak and
346 Kattegat, but higher in the Öresund, and to decrease with depth in all subdivisions.

347 models, the ancestral chr 2 inversion state was more common in the coastal ecotype, and increased in
348 frequency with distance from the baseline. Model selection for the chr 7 inversion returned 6 top-
349 ranked models, for which the only common explanatory variable was bottom depth, either alone or as
350 an interaction effect with ecotype (Table 3). A Subdivision \times distance interaction was also present in
351 some of these models. Thus, it appears that depth was the most important explanatory variable for the
352 chr 7 inversion, but its effect may be moderated by ecotype, Subdivision, and distance from the
353 baseline. Overall, the frequency of the derived inversion state increased with depth, but this effect was
354 stronger in the offshore ecotype. Some models suggested that the derived state also decreased in
355 frequency with distance from the baseline, however only significantly in the Kattegat or the offshore
356 ecotype (Table S10). For the chr 12 inversion, all 8 top-ranked models included various combinations
357 of ecotype, depth, and distance from the baseline as predictors (Table 4). The top-ranked model with
358 the fewest explanatory variables (model #5) included distance and the depth \times ecotype interaction, the
359 latter having the strongest effect. A distance \times depth interaction was also frequent across the top-
360 ranked models. Shared among the top-ranked models was that the ancestral allele increased sharply
361 with depth in the offshore ecotype, but not in the coastal ecotype, whilst distance had a very small
362 effect (Table S11).

363 We excluded the chr 1 inversion and Hb- α 1 loci from the regression analyses as the total genetic
364 variance was too low. For the Hb- α 4, Hb- β 1 and Hb- β 5 loci, the models including only ecotype as
365 predictor were among the top-ranked models, and no other variables appeared to be important in
366 predicting the genotypes at these loci (Table S12-S14). In addition, the intercept-only model was
367 among the top-ranked models for sex ratio (Table S8), indicating that sex ratio of the 0-group
368 juveniles did not correlate with any of the included explanatory variables.

369 **Outlier analyses**

370 From the genome-wide SNP panel, BAYESCAN and OUTFLANK identified 57 and 156 outlier loci
371 between the ecotypes, respectively (Figure 3). All 57 outlier loci detected by BAYESCAN were also
372 detected by OUTFLANK, and more than half of the outlier loci were located within the inverted region
373 on chr 12, for both methods (33/57 for BAYESCAN and 80/156 for OUTFLANK). Gene annotation of
374 all 156 outlier loci resulted in 80 unique gene hits obtained for 85 loci (see Table S15), and GO terms
375 were available for 71 of these genes (see Table S16). However, no enrichment analysis was performed
376 on these GO terms, as the number of genes was too small.

377 **Local coastal populations**

378 When exploring putative genetic substructure within the coastal ecotype, the PCA based on 9418
379 genome-wide loci outside inversions revealed no distinct clusters (Figure 6A). Instead, there was a
380 high degree of overlap among stations, and each PC explained similarly low proportions of the total
381 genetic variation within the coastal ecotype (< 1 %). Pairwise F_{ST} values (Table 5) were significant
382 between the North Sea offshore adults and most of the coastal samples ($F_{ST} = 0.006 - 0.010$, $q = 0.008$
383 – 0.014), but there were also significant F_{ST} values within the coastal ecotype, between juveniles from
384 Norwegian fjords (Risør area) and seven of the innermost Swedish fjords – Brofjorden,
385 Färlevsfjorden, Saltkällan, Ellösefjorden, Havstensfjorden, Byfjorden, and Hakefjorden ($F_{ST} = 0.003 -$
386 0.004, $q = 0.008 - 0.045$). However, F_{ST} was non-significant for all coastal ecotype samples compared
387 to both Kattegat and Öresund spawning adults, and only significant between two Swedish fjord
388 samples – the two adjacent fjords Havstensfjorden and Byfjorden ($F_{ST} = 0.003$, $q = 0.040$). The MDS
389 plot based on these pairwise F_{ST} values (Figure 6B), similarly to the PCA, showed a large cluster
390 clearly separated from the North Sea adults. Within this cluster, coastal ecotype juveniles from the
391 Skagerrak, Kattegat and Öresund clustered together with spawning adults from both Kattegat and

392 Öresund. In contrast to the PCA score plot, coastal ecotype juveniles from Norwegian fjords were
393 separated from the main coastal cluster, indicating genetic divergence from the Swedish samples.

394 Discussion

395 Our results show that the 2019 and 2020 cohorts of Atlantic cod collected along the Swedish west
396 coast were mechanical mixtures of offshore and coastal ecotype juveniles. Furthermore, the coastal
397 ecotype was dominant in many locations where both ecotypes co-occurred, especially in the inshore
398 and southern regions. This contrasts with the hypothesis that juvenile cod found along the Swedish
399 Skagerrak coast mainly originate from offshore spawning areas in the North Sea or Skagerrak
400 (Svedäng, 2003; Cardinale & Svedäng, 2004). In addition to differences in geographical distribution
401 between the ecotypes, the ecotypes were differentiated at multiple SNP loci that may be involved in
402 adaptation to local environmental conditions.

403 Ecotype distribution

404 The geographical distribution of the two ecotypes in Swedish waters was consistent with previous
405 studies, showing a dominance of the offshore ecotype in offshore Skagerrak, whereas the coastal
406 ecotype dominates inshore localities in the Skagerrak, southern Kattegat, and Öresund (Barth *et al.*,
407 2017; Knutson *et al.*, 2018; Hemmer-Hansen *et al.*, 2020). However, the present study provides the
408 first fine-scaled overview of the geographical distribution of both ecotypes in Swedish waters.
409 Juveniles from both ecotypes coexist in coastal areas at very small spatial scales, as has been described
410 also in Norwegian fjords (Knutson *et al.*, 2018; Jorde, Synnes *et al.*, 2018). The geographical
411 distribution of ecotypes was highly stable between 2019 and 2020, which indicates a low interannual
412 variability in the spatial recruitment patterns. On the other hand, recent results from the adjacent
413 Norwegian Skagerrak coast suggest that recruitment may vary between seasons as well as between
414 years (Synnes *et al.*, 2021; see also Jorde, Synnes *et al.*, 2018).

415 Model selection suggests that the proportion of 0-group juveniles of the coastal ecotype is higher
416 overall in Öresund than in the other ICES subdivisions, while decreasing with depth in all areas. The
417 former inference might be expected, as biophysical modelling studies suggest that a large part of the
418 juveniles assigned to the coastal ecotype may originate from the Öresund or southern Kattegat
419 (Jonsson *et al.*, 2016; Barth *et al.*, 2017). That the coastal ecotype is more common in shallow areas is
420 also expected, as bottom depth generally decreases toward the coast. However, the models with
421 predictors including distance from the baseline did not perform as well as those including depth,
422 suggesting a closer relationship of ecotype distribution with actual depth, rather than with distance
423 from the baseline. For example, there were high proportions of offshore juveniles in both years at two
424 stations within Gullmarsfjorden; Skår and Torgestad. While these two stations are located 13 and 21
425 km inshore from the baseline, they are substantially deeper than neighbouring stations, with bottom
426 depths of 65 m and 107 m, respectively. The correlation with depth may thus be informative, and
427 could reflect niche partitioning between the ecotypes in coastal areas. For example, niche partitioning
428 related to depth (Grabowski *et al.*, 2011; Michalsen *et al.*, 2014) and differences in juvenile settling
429 depths (Fevolden *et al.*, 2012) have been observed between the migratory north-east Arctic cod
430 (NEAC) and the stationary Norwegian coastal cod (NCC). The offshore-coastal divergences in beaked
431 redfish, European seabass, and European anchovy are also associated with differences in depth
432 distribution, as well as salinity tolerance (Allegrucci *et al.*, 1997; Cadrian *et al.*, 2010; Le Moan *et al.*,
433 2016). The apparent utilisation of different depth strata may also be connected to differences in prey
434 choice between the two cod ecotypes, which have been suggested for cod in Norwegian fjords
435 (Kristensen *et al.*, 2021).

436 Within the 2019 cohort, the coastal ecotype proportions increased from 0-group to 1-group in the
437 inshore region. This might be the result of natural selection favouring the coastal ecotype in shallow,
438 coastal environments, as suggested by Barth *et al.* (2019; see also “Environmental adaptation” below).
439 On the other hand, the lack of 1-group cod in 2020 in several of the innermost fjord locations suggests
440 that overall survival was low in inshore Skagerrak. Indeed, annual mortality rates as high as 75% have
441 been suggested on the Norwegian Skagerrak coast (Olsen & Moland, 2011). However, the apparent
442 “offshore shift” within the 2019 cohort could also have resulted from a net migration of 1-group cod
443 toward the outer coastal zone. Different age classes of cod may well utilise different habitats
444 (Fromentin *et al.*, 2000; Pihl *et al.*, 2006), but the habitat preference, feeding ecology, and behaviour
445 of juvenile cod in this region are yet to be explored in detail.

446 **Environmental adaptation**

447 The genetic variation at candidate loci suggests that the ecotypes may be genetically adapted to
448 different environments. For instance, homozygotes for the valine allele (“homozygote 1” in Figure
449 5G) at the Hb- β 1 locus are proposed to be more tolerant to hypoxic conditions, and prefer lower
450 temperatures (Petersen & Steffensen, 2003; Brix *et al.*, 2004). In addition, the migratory NEAC and
451 the brackish-adapted eastern Baltic cod both have highly differentiated HbI genotypes compared to
452 cod in other locations (Sick, 1961; Andersen *et al.*, 2009), likely reflecting environmental adaptation.
453 The higher frequency of the valine allele could thus provide the coastal ecotype with a higher
454 tolerance for hypoxia and low temperatures. The ecotype differences in Hb- β 1 allele frequencies
455 observed in the present study were small, but consistent with a previous study comparing the Hb- β 1
456 allele frequencies for cod in the North Sea and Kattegat (Andersen *et al.*, 2009).

457 Similar to Hb- β 1, the inversions on chr 2, 7, and 12 have also been associated with temperature and
458 oxygen conditions, but also with salinity (Berg *et al.*, 2015; Oomen, 2019). The ecotype-specific
459 inversion state frequencies observed in this study were highly consistent with those from previous
460 studies (Barth *et al.*, 2017; 2019; Sodeland *et al.*, 2022), indicating that they are spatiotemporally
461 stable in this geographical area. The most striking difference between ecotypes was in chr 12 inversion
462 state, as indicated both by the large genotype frequency differences, and by most genome-wide
463 outliers being located within this inversion. One of the chr 12 inversion states (“ancestral” in this
464 study) was very rare in the coastal ecotype, a pattern highly consistent with previous studies (Barth *et*
465 *al.*, 2017; 2019; Sodeland *et al.*, 2022). Barth *et al.* (2019) showed that survival in the fjord
466 environment is lower for homozygotes of the ancestral chr 12 state (“inverted” in Barth *et al.*, 2019;
467 see Table S3), which is more common within the offshore ecotype in the present study.
468 Model selection indicated that the inversion states on chr 2, 7, and 12 were not only different between
469 ecotypes, but also correlated with ICES Subdivision, bottom depth, and/or distance from the baseline.
470 This suggests that the coastal ecotype-like inversion genotypes are favoured in habitats that are
471 shallower or located further inshore, the same areas where coastal ecotype juveniles were more
472 frequent. Indeed, recent research suggest that the mode of natural selection (neutral, balancing, or
473 directional) on the alternative inversion states partly depends on ecotype, but can also differ between
474 locations (Sodeland *et al.*, 2022). This motivates more research efforts aimed towards linking
475 inversion genotypes to phenotypes and environmental variables. The inversions on chr 2, 7 and 12
476 have previously been broadly associated with salinity, temperature and oxygen conditions (Berg *et al.*,
477 2015; Kess *et al.*, 2020). Experiments on cod larvae suggest that the inversions on chr 2 and 7 affect
478 thermal plasticity and salinity tolerance, respectively, and that those on chr 2 and 12 are involved in
479 cold-protection (Oomen, 2019). Hence, the associations with depth and/or distance from the baseline
480 likely represent a more proximate relationship of the alternative inversion states to environmental
481 differences between offshore and inshore, and deep and shallow, habitats. However, further studies
482 may be required to assess the biological relevance of the low levels of genetic differentiation at the
483 Hb- β 1 and Hb- β 5 loci, and the chr 2 and chr 7 inversions.

484 The outlier analysis provides additional evidence that differential environmental adaptation may
485 underlie the offshore-coastal ecotype divergence. Two of the annotated outlier genes located within
486 the chr 12 inversion, vitellogenin-2 (VTG2) and Tubulin-Tyrosine Ligase-Like Protein 7 (TTLL7), are
487 in a genomic region characterised by a double crossover in Baltic cod (Matschiner *et al.*, 2022). Both
488 genes may be associated with environmental adaptation and reproduction, as VTG is involved in
489 regulating fish egg buoyancy (Finn & Fyhn, 2010), and TTLL7 is involved in tubulin
490 polyglutamylation, which may play a role in both sperm cells in cod testes (Klotz *et al.*, 1999) and
491 cold-adaptation of cod microtubules (Modig *et al.*, 1999). Vigilin (HDLP), which inhibits degradation
492 of VTG mRNA (Cunningham *et al.*, 2000), was also among the genes associated with outlier loci.
493 Among the annotated outliers, there were also four genes with potential links to migratory behaviour
494 (CACNB3-, OR2K2-, OR56A4-, and SLCO1C1-like). The calcium channel subunit CACNB3 is
495 associated with the annotated outlier locus with the highest F_{ST} between the ecotypes, and has
496 previously been linked with migratory phenotypes in fish (Cao *et al.*, 2020; Gao *et al.*, 2021). The two
497 olfactory receptors OR2K2 and OR56A4 are located within a cluster of olfactory genes on chr 16, and
498 olfaction is heavily involved in establishing long-term memory and homing behaviour in fish (Hara,
499 1994). SLCO1C1 is involved in thyroid hormone signalling (Admati *et al.*, 2020), which may dictate
500 the timing of spawning migrations in cod (Woodhead, 1959). SLCOC1 has previously been described
501 as an outlier between “North Sea” and “fjord” cod in Norwegian Skagerrak (Barth *et al.*, 2019). In
502 addition, we detected outlier loci linked to genes associated with long-term memory (PPP1R14B;
503 Cheng *et al.*, 2015), social and acoustic behaviour (ISTR; Goodson & Bass, 2000), feeding behaviour
504 and growth (PACAP; Xu & Volkoff, 2009, and LEP-R; Gorissen & Flik, 2014) in fish. Together, the
505 functions of these genes provide mechanistic insights into how the divergence may have evolved and
506 persisted between these sympatric ecotypes.

507 **Local coastal populations**

508 There are at least three potential explanations for the dominance of the coastal ecotype in inshore
509 areas. First, the fjords may receive more recruits originating from the known spawning grounds in the
510 Kattegat and Öresund than from the North Sea (Stenseth *et al.*, 2006; Jonsson *et al.*, 2016; Barth *et al.*,
511 2017). Second, the coastal ecotype may be better adapted to the environmental conditions associated
512 with inshore habitats and therefore dominate these areas (Knutsen *et al.*, 2018; Barth *et al.*, 2019;
513 Oomen, 2019). Third, the pattern might be attributed to local spawning populations inhabiting coastal
514 areas that are closely related to Kattegat and Öresund cod (Svedäng *et al.*, 2019).

515 In Norwegian fjords, local populations genetically similar to, but distinct from, cod from the Kattegat
516 and Öresund have been identified (Barth *et al.*, 2019), and both local spawning (Espeland *et al.*, 2007;
517 Jorde, Synnes *et al.*, 2018) and highly resident behaviour (Knutsen *et al.*, 2011; Kristensen *et al.*,
518 2021) have been documented. Local spawning could potentially explain the dominance of coastal
519 ecotype juveniles in the innermost portions of Swedish fjords (Färlevfjorden and Saltkällefjorden in
520 particular, but also Åbyfjorden, Brofjorden, and Havstensfjorden). Recently, cod eggs of early
521 developmental stages that assign genetically to adult fjord cod were documented also in Swedish
522 fjords (Svedäng *et al.*, 2019). As modelled drift velocities for eggs spawned in Öresund average < 5
523 km per day (Jonsson *et al.*, 2016), the early (1-2 days old) egg stages found inside Swedish fjords
524 likely originate from locally spawning adults (Svedäng *et al.*, 2019). Moreover, models of pelagic egg
525 drift on a local scale in Gullmarsfjorden and Brofjorden suggest that, if local spawning occurs, a high
526 proportion of eggs are likely to be retained within fjords (P. Jonsson, pers. comm.; cf. Cianelli *et al.*,
527 2010). Hence, the juveniles found inside fjords in the present study may originate from both locally
528 spawning adults and adults spawning in areas outside of the fjords.

529 The analysis of 9956 genome-wide SNP loci, however, provided no evidence that coastal ecotype
530 juveniles found inside Swedish fjords are genetically distinct from adult spawning populations in
531 Kattegat and Öresund. Our sampling design included a high number of stations and a relatively low
532 number of individuals per station, and this design was better suited to resolve the distribution of the
533 ecotypes than to explore population structure within the coastal ecotype. Sequencing efforts with
534 higher genomic resolution (such as whole-genome sequencing), more individuals per location, and
535 more reference spawning adults would provide higher power to infer cryptic population structure.
536 Nevertheless, if there are reproductively isolated local populations in the area, the level of genetic
537 differentiation between them is likely very low and it may be restricted to specific genomic regions. In
538 addition, even low migration rates that may have limited demographic importance in marine
539 populations, can contribute with sufficient gene-flow to erode any genetic population structure
540 (Allendorf *et al.*, 2022). Hence, while the presence of genetic population structure is a strong
541 indication of demographic independence, a lack thereof is not evidence of the opposite. Further studies
542 assessing whether local spawning aggregations along the Swedish west coast represent
543 demographically independent populations are therefore warranted.

544 **Conclusions and implications for management**

545 Our results dispute the notion that cod along the Swedish Skagerrak coast generally originate from
546 offshore spawning populations in the North Sea or Skagerrak (Svedäng, 2003; Cardinale & Svedäng,
547 2004). We show that there are considerable proportions of coastal ecotype juveniles, which should be
548 accounted for in fisheries management, and in efforts to explain the underlying mechanisms of
549 declining adult abundances. We suggest that future studies should look for alternative explanations
550 connected to the population dynamics of the coastal ecotype, for instance whether adults perform
551 spawning migrations to the Kattegat, Öresund or the Danish Belt Sea (Svedäng *et al.*, 2007; André *et*
552 *al.*, 2016), or if larval and juvenile mortality has increased in the last decades. The lack of 1-group cod
553 at the innermost fjord stations in this study coupled with declining adult abundances (ICES, 2021a-d)
554 support the theory that shallow coastal habitats may have lost some of their function as a nursery for
555 juvenile cod.

556 Altogether, this study provides an overview of the genetic population structure of Atlantic cod off the
557 Swedish west coast. Our findings highlight the importance of treating the cod stock of the Skagerrak,
558 Kattegat and Öresund as a mechanical mixture of two or more genetically distinct ecotypes. It is
559 essential to consider this population structure and the local genetic adaptation for the conservation of
560 Atlantic cod in this region. If genetic diversity is not restored in severely depleted cod stocks, it may
561 negatively affect the potential for recovery of this ecologically and (once) economically important
562 species.

563 **Data availability statement**

564 All data underlying the results presented in this study will be publicly available upon acceptance to a
565 peer-reviewed journal.

566 **Acknowledgements**

567 We thank Jakob Hemmer-Hansen for insightful comments on early versions of the manuscript.
568 Sampling and genetic analysis were supported by contract Dnr 1639-2020 within 1:11 Åtgärder för
569 havs- och vattenmiljö from SwAM. Sequencing was performed by the SNP&SEQ Technology
570 Platform in Uppsala. The facility is part of the National Genomics Infrastructure (NGI) Sweden and
571 Science for Life Laboratory. The SNP&SEQ Platform is also supported by the Swedish Research

572 Council and the Knut and Alice Wallenberg Foundation. Further funding was provided by the EU
573 Interreg project MarGen II, and the study was performed within the Linnaeus Centre for Marine
574 Evolutionary Biology.

575 **Conflict of interest**

576 The authors have no conflicts of interest to declare.

577 References

578 Admati, I., Wasserman-Bartov, T., Tovin, A., Rozenblat, R., Blitz, E., Zada, D., Lerer-Goldstein, T., & Appelbaum, L. (2020). Neural alterations and
579 hyperactivity of the hypothalamic–pituitary–thyroid axis in oatp1c1 deficiency. *Thyroid*, 30(1), 161–174. <https://doi.org/10.1089/thy.2019.0320>

580 Allegretti, G., Fortunato, C., & Sbordoni, V. (1997). Genetic structure and allozyme variation of sea bass (*Dicentrarchus labrax* and *D. punctatus*) in the
581 Mediterranean Sea. *Marine Biology*, 128(2), 347–358. <https://doi.org/10.1007/s002270050100>

582 Allendorf, F. W., Funk, W. C., Aitken, S. N., Byrne, M., & Luikart, G. (2022). *Conservation and the genomics of populations (3rd edition)*. Oxford University
583 Press. 784 pp.

584 Andersen, Ø., Wetten, O. F., De Rosa, M. C., André, C., Carelli Alinovi, C., Colafranceschi, M., Brix, O., & Colosimo, A. (2009). Haemoglobin polymorphisms
585 affect the oxygen-binding properties in Atlantic cod populations. *Proceedings of the Royal Society B: Biological Sciences*, 276(1658), 833–841.
586 <https://doi.org/10.1098/rspb.2008.1529>

587 Andersson, E., Högvall, J., & Larsson, R. (2021). *Kusttrålundersökningen 2021 - Expeditionsrapport. Aqua reports 2021:23*. Swedish university of agricultural
588 sciences, Institute of marine research, Lysekil, 27 pp. https://pub.epsilon.slu.se/26368/1/andersson_e_et_al_211221.pdf

589 André, C., Svedäng, H., Knutsen, H., Dahle, G., Jonsson, P., Ring, A. K., Sköld, M., & Jorde, P. E. (2016). Population structure in Atlantic cod in the eastern
590 North Sea-Skagerrak-Kattegat: early life stage dispersal and adult migration. *BMC research notes*, 9(1), 1–11. <https://doi.org/10.1186/s13104-016-1878-9>

591 Archer, F. I., Adams, P. E., & Schneiders, B. B. (2016). strataG: An R package for manipulating, summarizing and analysing population genetic data. *Molecular
592 Ecology Resources*. <https://doi.org/10.1111/1755-0998.12559>

593 Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P.,
594 Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: tool for the
595 unification of biology. The Gene Ontology Consortium. *Nature Genetics*, 25(1), 25–29. <https://doi.org/10.1038/75556>

596 Barth, J. M., Berg, P. R., Jonsson, P. R., Bonanomi, S., Corell, H., Hemmer-Hansen, J., Jakobsen, K. S., Johannesson, K., Jorde, P. E., Knutsen, H., Moksnes, P.,
597 O, Star, B., Stenseth, N. C., Svedäng, H., Jentoft, S., & André, C. (2017). Genome architecture enables local adaptation of Atlantic cod despite high
598 connectivity. *Molecular ecology*, 26(17), 4452–4466. <https://doi.org/10.1111/mec.14207>

599 Barth, J. M., Villegas-Ríos, D., Freitas, C., Moland, E., Star, B., André, C., Knutsen, H., Bradbury, I., Dierking, J., Petereit, C., Righton, D., Metcalfe, J.,
600 Jakobsen, K. S., Olsen, E. M., & Jentoft, S. (2019). Disentangling structural genomic and behavioural barriers in a sea of connectivity. *Molecular Ecology*,
601 28(6), 1394–1411. <https://doi.org/10.1111/mec.15010>

602 Bekkevold, D., Gross, R., Arula, T., Helyar, S. J., & Ojaveer, H. (2016). Outlier loci detect intraspecific biodiversity amongst spring and autumn spawning
603 herring across local scales. *PLoS one*, 11(4), e0148499. <https://doi.org/10.1371/journal.pone.0148499>

604 Berg, P. R., Jentoft, S., Star, B., Ring, K. H., Knutsen, H., Lien, S., Jakobsen, K. S., & André, C. (2015). Adaptation to low salinity promotes genomic
605 divergence in Atlantic cod (*Gadus morhua* L.). *Genome biology and evolution*, 7(6), 1644–1663. <https://doi.org/10.1093/gbe/evv093>

606 Berg, P. R., Star, B., Pampoulie, C., Sodeland, M., Barth, J. M., Knutsen, H., Jakobsen, K. S., & Jentoft, S. (2016). Three chromosomal rearrangements promote
607 genomic divergence between migratory and stationary ecotypes of Atlantic cod. *Scientific reports*, 6(1), 1–12. <https://doi.org/10.1038/srep23246>

608 Bland, B., Börjesson, P. (2020). *Expeditionsrapport IBTS, augusti 2020. Aqua reports 2020:13*. Swedish university of agricultural sciences, Institute of marine
609 research, Lysekil, 20 pp. https://pub.epsilon.slu.se/18720/1/bland_b_et_al_201124.pdf

610 Borza, T., Higgins, B., Simpson, G., & Bowman, S. (2010). Integrating the markers Pan I and haemoglobin with the genetic linkage map of Atlantic cod (*Gadus
611 morhua*). *BMC Research Notes*, 3(1), 1–7. <https://doi.org/10.1186/1756-0500-3-261>

612 Brix, O., Thorkildsen, S., & Colosimo, A. (2004). Temperature acclimation modulates the oxygen binding properties of the Atlantic cod (*Gadus morhua* L.)
613 genotypes—HbI* 1/1, HbI* 1/2, and HbI* 2/2—by changing the concentrations of their major hemoglobin components (results from growth studies at
614 different temperatures). *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*, 138(2), 241–251.
615 <https://doi.org/10.1016/j.cbpa.2004.04.004>

616 Bryhn, A. C., Bergek, S., Bergström, U., Casini, M., Dahlgren, E., Ek, C., Hjelm, J., Königson, S., Ljungberg, P., Lundström, K., Lunneryd, S. G., Ovegård, M.,
617 Sköld, M., Valentinsson, D., Vitale, F., & Wennhage, H. (2022). Which factors can affect the productivity and dynamics of cod stocks in the Baltic Sea,
618 Kattegat and Skagerrak?. *Ocean & Coastal Management*, 223, 106154. <https://doi.org/10.1016/j.ocecoaman.2022.106154>

619 Burnham, K. P., & Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. *Sociological Methods & Research*, 33(2),
620 261–304. <https://doi.org/10.1177/0049124104268644>

621 Cáceres, A. (2021). *inveRsion: Inversions in genotype data. R package version 1.40.0*. <https://doi.org/doi:10.18129/B9.bioc.inveRsion>

622 Cadrin, S. X., Bernreuther, M., Daníelsdóttir, A. K., Hjörleifsson, E., Johansen, T., Kerr, L., Kristinsson, K., Mariani, S., Nedreaas, K., Pampoulie, C., Planque,
623 B., Reinert, J., Saborido-Rey, F., Sigurðsson, T., & Stransky, C. (2010). Population structure of beaked redfish, *Sebastes mentella*: evidence of divergence
624 associated with different habitats. *ICES Journal of Marine Science*, 67(8), 1617–1630. <https://doi.org/10.1093/icesjms/fsq046>

625 Cao, Q., Chu, P., Gu, J., Zhang, H., Feng, R., Wen, X., Wang, D., Xiong, W., Wang, T., & Yin, S. (2020). The influence of Ca²⁺ concentration on voltage-
626 dependent L-type calcium channels' expression in the marbled eel (*Anguilla marmorata*). *Gene*, 722, 144101. <https://doi.org/10.1016/j.gene.2019.144101>

627 Cardinale, M., & Svedäng, H. (2004). Modelling recruitment and abundance of Atlantic cod, *Gadus morhua*, in the eastern Skagerrak–Kattegat (North Sea):
628 evidence of severe depletion due to a prolonged period of high fishing pressure. *Fisheries Research*, 69(2), 263–282.
629 <https://doi.org/10.1016/j.fishres.2004.04.001>

630 Chen, K.-Y., Marschall, E. A., Sovic, M. G., Fries, A. C., Gibbs, H. L., & Ludsin, S. A. (2020). *assignPOP: Population Assignment using Genetic, Non-Genetic*
631 *or Integrated Data in a Machine Learning Framework. R package version 1.2.2.* <https://CRAN.R-project.org/package=assignPOP>

632 Cheng, X. Y., He, S., Liang, X. F., Song, Y., Yuan, X. C., Li, L., Wen, Z. Y., Cai, W. J., & Tao, Y. X. (2015). Molecular cloning, expression and single
633 nucleotide polymorphisms of protein phosphatase 1 (PP1) in mandarin fish (*Simperca chuatsi*). *Comparative Biochemistry and Physiology Part B: Biochemistry*
634 *and Molecular Biology*, 189, 69-79. <https://doi.org/10.1016/j.cbpb.2015.08.001>

635 Ciannelli, L., Knutson, H., Olsen, E. M., Espeland, S. H., Asplin, L., Jelmert, A., Knutson, J. A., & Stenseth, N. C. (2010). Small-scale genetic structure in a
636 marine population in relation to water circulation and egg characteristics. *Ecology*, 91(10), 2918-2930. <https://doi.org/10.1890/09-1548.1>

637 COSEWIC, (2010). COSEWIC assessment and status report on the Atlantic Cod, *Gadus morhua*, in Canada. *Committee on the Status of Endangered Wildlife in*
638 *Canada*. Ottawa. xiii + 105 pp. http://www.sararegistry.gc.ca/status/status_e.cfm

639 Cunningham, K. S., Dodson, R. E., Nagel, M. A., Shapiro, D. J., & Schoenberg, D. R. (2000). Vigilin binding selectively inhibits cleavage of the vitellogenin
640 mRNA 3'-untranslated region by the mRNA endonuclease polysomal ribonuclease 1. *Proceedings of the National Academy of Sciences*, 97(23), 12498-12502.
641 <https://doi.org/10.1073/pnas.220425497>

642 Dahle, G., Johansen, T., Westgaard, J. I., Aglen, A., & Glover, K. A. (2018). Genetic management of mixed-stock fisheries “real-time”: the case of the largest
643 remaining cod fishery operating in the Atlantic in 2007–2017. *Fisheries Research*, 205, 77-85. <https://doi.org/10.1016/j.fishres.2018.04.006>

644 Dobzhansky, T., & Epling, C. (1948). The suppression of crossing over in inversion heterozygotes of *Drosophila pseudoobscura*. *Proceedings of the National*
645 *Academy of Sciences of the United States of America*, 34(4), 137. <https://doi.org/10.1073/pnas.34.4.137>

646 Dray, S., & Dufour, A. (2007). The ade4 Package: Implementing the Duality Diagram for Ecologists. *Journal of Statistical Software*, 22(4), pp. 1-20.
647 <https://doi.org/10.18637/jss.v022.i04>

648 Espeland, S. H., Gundersen, A. F., Olsen, E. M., Knutson, H., Gjøsæter, J., & Stenseth, N. C. (2007). Home range and elevated egg densities within an inshore
649 spawning ground of coastal cod. *ICES journal of marine science*, 64(5), 920-928. <https://doi.org/10.1093/icesjms/fsm028>

650 FAO. (2020). *The State of World Fisheries and Aquaculture 2020. Sustainability in action*. Rome. <https://doi.org/10.4060/ca9229en>

651 Fevolden, S. E., Westgaard, J. I., Pedersen, T., & Præbel, K. (2012). Settling-depth vs. genotype and size vs. genotype correlations at the Pan I locus in 0-group
652 Atlantic cod *Gadus morhua*. *Marine Ecology Progress Series*, 468, 267-278. <https://doi.org/10.3354/meps09990>

653 Finn, R. N., & Fyhn, H. J. (2010). Requirement for amino acids in ontogeny of fish. *Aquaculture research*, 41(5), 684-716. <https://doi.org/10.1111/j.1365-2109.2009.02220.x>

655 Foll, M. & Gaggiotti, O. M. (2008) A genome scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian
656 perspective. *Genetics* 180: 977-993. <https://doi.org/10.1534/genetics.108.092221>

657 Fritchot, E., & François, O. (2015). LEA: An R package for landscape and ecological association studies. *Methods in Ecology and Evolution*, 6(8), 925-929.
658 <https://doi.org/10.1111/2041-210X.12382>

659 Fromentin, J. M., Gjøsæter, J., Bjørnstad, O. N., & Stenseth, N. C. (2000). Biological processes and environmental factors regulating the dynamics of the
660 Norwegian Skagerrak cod populations since 1919. *ICES Journal of Marine Science*, 57(2), 330-338. <https://doi.org/10.1006/jmsc.1999.0638>

661 Gabriel, S., Ziaugra, L., & Tabbaa, D. (2009). SNP genotyping using the Sequenom MassARRAY iPLEX platform. *Current protocols in human genetics*, 60(1),
662 2-12. <https://doi.org/10.1002/0471142905.hg0212s60>

663 Gagnaire, P. A., Broquet, T., Aurelle, D., Viard, F., Souissi, A., Bonhomme, F., Arnaud-Haond, S., & Bierne, N. (2015). Using neutral, selected, and hitchhiker
664 loci to assess connectivity of marine populations in the genomic era. *Evolutionary applications*, 8(8), 769-786. <https://doi.org/10.1111/eva.12288>

665 Gao, J., Xu, G. & Xu, P. (2021). Whole-genome resequencing of three *Coilia nasus* population reveals genetic variations in genes related to immune, vision,
666 migration, and osmoregulation. *BMC Genomics* 22, 878. <https://doi.org/10.1186/s12864-021-08182-0>

667 Gene Ontology Consortium. (2021). The Gene Ontology resource: enriching a GOld mine. *Nucleic acids research*, 49(D1), D325–D334.
668 <https://doi.org/10.1093/nar/gkaa113>

669 Gerritsen, H. (2018). *mapplots: Data Visualisation on Maps. R package version. 1.5.1.* <https://CRAN.R-project.org/package=mapplots>

670 Goodson, J. L., & Bass, A. H. (2000). Forebrain peptides modulate sexually polymorphic vocal circuitry. *Nature*, 403(6771), 769-772.
671 <https://doi.org/10.1038/35001581>

672 Gorissen, M., & Flik, G. (2014). Leptin in teleostean fish, towards the origins of leptin physiology. *Journal of chemical neuroanatomy*, 61, 200-206.
673 <https://doi.org/10.1016/j.jchemneu.2014.06.005>

674 Grabowski, T. B., Thorsteinsson, V., McAdam, B. J., & Marteinsdóttir, G. (2011). Evidence of segregated spawning in a single marine fish stock: sympatric
675 divergence of ecotypes in Icelandic cod?. *PLoS One*, 6(3), e17528. <https://doi.org/10.1371/journal.pone.0017528>

676 Hara, T. J. (1994). Olfaction and gustation in fish: an overview. *Acta physiologica Scandinavica*, 152(2), 207-217. <https://doi.org/10.1111/j.1748-1716.1994.tb09800.x>

677 Hemmer-Hansen, J., Hüssy, K., Vinther, M., Albertsen, C. M., Storr-Paulsen, M., & Eero, M. (2020). *Sustainable management of Kattegat cod; better knowledge*
678 *of stock components and migration*. DTU Aqua. DTU Aqua-rapport No. 357-2020. National Institute of Aquatic Resources, Technical University of Denmark.
679 42 pp. https://backend.orbit.dtu.dk/ws/files/215628161/357_2020_Sustainable_management_of_Kattegat_cod.pdf

680 Hohenlohe, P. A., Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. A., & Cresko, W. A. (2010). Population genomics of parallel adaptation in threespine
681 stickleback using sequenced RAD tags. *PLoS genetics*, 6(2), e1000862. <https://doi.org/10.1371/journal.pgen.1000862>

683 Hutchings, J. A., & Myers, R. A. (1994). What can be learned from the collapse of a renewable resource? Atlantic cod, *Gadus morhua*, of Newfoundland and
684 Labrador. *Canadian Journal of Fisheries and Aquatic Sciences*, 51(9), 2126-2146. <https://doi.org/10.1139/f94-214>

685 ICES. (2020). Workshop on Stock Identification of North Sea Cod (WKNSCodID). *ICES Scientific Reports*. 2(89). 82 pp. <http://doi.org/10.17895/ices.pub.7499>

686 ICES. (2021a). Cod (*Gadus morhua*) in Subarea 4, Division 7.d, and Subdivision 20 (North Sea, eastern English Channel, Skagerrak). In Report of the ICES
687 Advisory Committee, 2021. *ICES Advice 2021*, cod.27.47d20. <https://doi.org/10.17895/ices.advice.7746>

688 ICES. (2021b). Cod (*Gadus morhua*) in Subdivision 21 (Kattegat). In Report of the ICES Advisory Committee, 2021. *ICES Advice 2021*, cod.27.21.
689 <https://doi.org/10.17895/ices.advice.7743>

690 ICES. (2021c). Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). *ICES Scientific Reports*. 3(66). 1281 pp.
691 <https://doi.org/10.17895/ices.pub.8211>

692 ICES. (2021d). Baltic Fisheries Assessment Working Group (WGBFAS). *ICES Scientific Reports*. 3(53). 717 pp. <https://doi.org/10.17895/ices.pub.8187>

693 Jombart T. (2008). adegenet: a R package for the multivariate analysis of genetic markers *Bioinformatics* 24, 1403-1405.
694 <https://doi.org/10.1093/bioinformatics/btn129>

695 Jonsson, P. R., Corell, H., André, C., Svedäng, H., & Moksnes, P. O. (2016). Recent decline in cod stocks in the North Sea–Skagerrak–Kattegat shifts the sources
696 of larval supply. *Fisheries Oceanography*, 25(3), 210-228. <https://doi.org/10.1111/fog.12146>

697 Jorde, P. E., Kleiven, A. R., Sodeland, M., Olsen, E. M., Ferter, K., Jentoft, S., & Knutsen, H. (2018). Who is fishing on what stock: population-of-origin of
698 individual cod (*Gadus morhua*) in commercial and recreational fisheries. *ICES Journal of Marine Science*, 75(6), 2153-2162.
699 <https://doi.org/10.1093/icesjms/fsy080>

700 Jorde, P. E., Synnes, A. E., Espeland, S. H., Sodeland, M., & Knutsen, H. (2018). Can we rely on selected genetic markers for population identification?
701 Evidence from coastal Atlantic cod. *Ecology and Evolution*, 8(24), 12547-12558. <https://doi.org/10.1002/ece3.4648>

702 Jørgensen, K. E. M., Neuheimer, A. B., Jorde, P. E., Knutsen, H., & Grønkjær, P. (2020). Settlement processes induce differences in daily growth rates between
703 two co-existing ecotypes of juvenile cod *Gadus morhua*. *Marine Ecology Progress Series*, 650, 175-189. <https://doi.org/10.3354/meps13433>

704 Kerr, L. A., Hintzen, N. T., Cadrian, S. X., Clausen, L. W., Dickey-Collas, M., Goethel, D. R., Hatfield, E. M. C., Kritzer, J. P., & Nash, R. D. (2017). Lessons
705 learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. *ICES Journal of Marine
706 Science*, 74(6), 1708-1722. <https://doi.org/10.1093/icesjms/fsw188>

707 Kess, T., Bentzen, P., Lehnert, S. J., Sylvester, E. V., Lien, S., Kent, M. P., Sinclair-Waters, M., Morris, C., Wringe, B., Fairweather, R., & Bradbury, I. R. (2020).
708 Modular chromosome rearrangements reveal parallel and nonparallel adaptation in a marine fish. *Ecology and evolution*, 10(2), 638-653.
709 <https://doi.org/10.1002/ece3.5828>

710 Kinnby, A., Jonsson, P. R., Ortega-Martinez, O., Töpel, M., Pavia, H., Pereyra, R. T., & Johannesson, K. (2020). Combining an Ecological Experiment and a
711 Genome Scan Show Idiosyncratic Responses to Salinity Stress in Local Populations of a Seaweed. *Frontiers in Marine Science*, 7, 470.
712 <https://doi.org/10.3389/fmars.2020.00470>

713 Kirkpatrick, M., & Barton, N. (2006). Chromosome inversions, local adaptation and speciation. *Genetics*, 173, 419–434.
714 <https://doi.org/10.1534/genetics.105.047985>

715 Klotz, A., Rutberg, M., Denoulet, P., & Wallin, M. (1999). Polyglutamylation of atlantic cod tubulin: immunochemical localization and possible role in pigment
716 granule transport. *Cell motility and the cytoskeleton*, 44(4), 263-273. [https://doi.org/10.1002/\(SICI\)1097-0169\(199912\)44:4%3C263::AID-CM4%3E3.0.CO;2-V](https://doi.org/10.1002/(SICI)1097-0169(199912)44:4%3C263::AID-CM4%3E3.0.CO;2-V)

717 Knutsen, H., André, C., Jorde, P. E., Skogen, M. D., Thuróczy, E., & Stenseth, N. C. (2004). Transport of North Sea cod larvae into the Skagerrak coastal
718 populations. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 271(1546), 1337-1344. <https://doi.org/10.1098/rspb.2004.2721>

719 Knutsen, H., Olsen, E. M., Jorde, P. E., Espeland, S. H., André, C., & Stenseth, N. C. (2011). Are low but statistically significant levels of genetic differentiation
720 in marine fishes ‘biologically meaningful’? A case study of coastal Atlantic cod. *Molecular ecology*, 20(4), 768-783. <https://doi.org/10.1111/j.1365-294X.2010.04979.x>

721 Knutsen, H., Jorde, P. E., Hutchings, J. A., Hemmer-Hansen, J., Grønkjær, P., Jørgensen, K. E. M., André, C., Sodeland, M., Albretsen, J., & Olsen, E. M.
722 (2018). Stable coexistence of genetically divergent Atlantic cod ecotypes at multiple spatial scales. *Evolutionary Applications*, 11(9), 1527-1539.
723 <https://doi.org/10.1111/eva.12640>

724 Kristensen, M. L., Olsen, E. M., Moland, E., Knutsen, H., Grønkjær, P., Koed, A., Källö, K., & Aarestrup, K. (2021). Disparate movement behavior and feeding
725 ecology in sympatric ecotypes of Atlantic cod. *Ecology and evolution*, 11(16), 11477-11490. <https://doi.org/10.1002/ece3.7939>

726 Le Moan, A., Gagnaire, P. A., & Bonhomme, F. (2016). Parallel genetic divergence among coastal–marine ecotype pairs of European anchovy explained by
727 differential introgression after secondary contact. *Molecular ecology*, 25(13), 3187-3202. <https://doi.org/10.1111/mec.13627>

728 Ma, J. & Amos, C. I. (2012). Investigation of Inversion Polymorphisms in the Human Genome Using Principal Components Analysis. *PLoS ONE* 7(7): e40224.
729 <https://doi.org/10.1371/journal.pone.0040224>

730 Madsen, M. L., Nelson, R. J., Fevolden, S. E., Christiansen, J. S., & Præbel, K. (2016). Population genetic analysis of Euro-Arctic polar cod *Boreogadus saida*
731 suggests fjord and oceanic structuring. *Polar Biology*, 39(6), 969-980. <https://doi.org/10.1007/s00300-015-1812-y>

732 Matschiner, M., Barth, J. M. I., Torresen, O. K., Star, B., Baalsrud, H. T., Brieuc, M. S. O., Pampoulie, C., Bradbury, I., Jakobsen, K. S., & Jentoft, S. (2022).
733 Supergene origin and maintenance in Atlantic cod. *Nature Ecology & Evolution*, 1-13. <https://doi.org/10.1038/s41559-022-01661-x>

734 Mazerolle, M. J. (2020). *AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c)*. R package version 2.3-1. <https://cran.r-project.org/package=AICcmodavg>.

737 Mi, H., Ebert, D., Muruganujan, A., Mills, C., Albou, L.-P., Mushayamaha, T., & Thomas, P. D. (2021). PANTHER version 16: a revised family classification, 738 tree-based classification tool, enhancer regions and extensive API. *Nucleic Acids Research*, 49(D1), D394–D403. <https://doi.org/10.1093/nar/gkaa1106>

739 Michalsen, K., Johansen, T., Subbey, S., & Beck, A. (2014). Linking tagging technology and molecular genetics to gain insight in the spatial dynamics of two 740 stocks of cod in Northeast Atlantic waters. *ICES Journal of Marine Science*, 71(6), 1417–1432. <https://doi.org/10.1093/icesjms/fsu083>

741 Modig, C., Olsson, P. E., Barasoain, I., De Ines, C., Andreu, J. M., Roach, M. C., Ludueña, R. F., & Wallin, M. (1999). Identification of β III- and β IV-tubulin 742 isotypes in cold-adapted microtubules from Atlantic cod (*Gadus morhua*): Antibody mapping and cDNA sequencing. *Cell motility and the cytoskeleton*, 42(4), 743 315–330. [https://doi.org/10.1002/\(SICI\)1097-0169\(1999\)42:4<315::AID-CM5>3.0.CO;2-C](https://doi.org/10.1002/(SICI)1097-0169(1999)42:4<315::AID-CM5>3.0.CO;2-C)

744 Olsen, E. M., Moland, E. (2011). Fitness landscape of Atlantic cod shaped by harvest selection and natural selection. *Evolutionary Ecology* 25, 695–710. 745 <https://doi.org/10.1007/s10682-010-9427-9>

746 Oomen, R. A. (2019). *The Genomic Basis and Spatial Scale of Variation in Thermal Responses of Atlantic Cod (Gadus morhua)* [Doctoral dissertation, 747 Dalhousie University]. DalSpace Graduate Online Thesis and Dissertations. <http://hdl.handle.net/10222/80478>

748 Pampoulie, C., Daníelsdóttir, A. K., Storr-Paulsen, M., Hovgård, H., Hjörleifsson, E., & Steinarsson, B. Æ. (2011). Neutral and nonneutral genetic markers 749 revealed the presence of inshore and offshore stock components of Atlantic cod in Greenland waters. *Transactions of the American Fisheries Society*, 140(2), 750 307–319. <https://doi.org/10.1080/00028487.2011.567850>

751 Pauly, D., Christensen, V., Guénette, S., Pitcher, T. J., Sumaila, U. R., Walters, C. J., Watson, R., & Zeller, D. (2002). Towards sustainability in world fisheries. 752 *Nature*, 418(6898), 689–695. <https://doi.org/10.1038/nature01017>

753 Pereyra, R. T., Rafajlović, M., De Wit, P., Pinder, M., Kinnby, A., Töpel, M., & Johannesson, K. (2022). Clones on the run - the genomics of a recently 754 expanded facultative asexual species. *BioRxiv*, 2022.05.11.491277. <https://doi.org/10.1101/2022.05.11.491277>, 17-05-2022, preprint: not peer reviewed.

755 Petersen, M. F., & Steffensen, J. F. (2003). Preferred temperature of juvenile Atlantic cod *Gadus morhua* with different haemoglobin genotypes at normoxia and 756 moderate hypoxia. *Journal of Experimental Biology*, 206(2), 359–364. <https://doi.org/10.1242/jeb.00111>

757 Pihl, L., & Ulmestrand, M. (1993). Migration pattern of juvenile cod (*Gadus morhua*) on the Swedish west coast. *ICES Journal of Marine Science*, 50(1), 63–70. 758 <https://doi.org/10.1006/jmsc.1993.1007>

759 Pihl, L., Baden, S., Kautsky, N., Rönnbäck, P., Söderqvist, T., Troell, M., & Wennhage, H. (2006). Shift in fish assemblage structure due to loss of seagrass 760 *Zostera marina* habitats in Sweden. *Estuarine, Coastal and Shelf Science*, 67(1-2), 123–132. <https://doi.org/10.1016/j.ecss.2005.10.016>

761 R Core Team (2021). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>

762 Reiss, H., Hoarau, G., Dickey-Collas, M., & Wolff, W. J. (2009). Genetic population structure of marine fish: mismatch between biological and fisheries 763 management units. *Fish and Fisheries*, 10(4), 361–395. <https://doi.org/10.1111/j.1467-2979.2008.00324.x>

764 RStudio Team. (2021). *RStudio: Integrated Development for R*. RStudio, PBC, Boston, MA. <http://www.rstudio.com/>

765 Ruzzante, D. E., Wroblewski, J. S., Taggart, C. T., Smedbol, R. K., Cook, D., & Goddaard, S. V. (2000). Bay-scale population structure in coastal Atlantic cod in 766 Labrador and Newfoundland, Canada. *Journal of Fish Biology*, 56(2), 431–447. <https://doi.org/10.1111/j.1095-8649.2000.tb02116.x>

767 Sick, K. (1961). Haemoglobin polymorphism in fishes. *Nature*, 192(4805), 894–896. <https://doi.org/10.1038/192894a0>

768 Sodeland, M., Jorde, P. E., Lien, S., Jentoft, S., Berg, P. R., Grove, H., Kent, M. P., Arnyasi, M., Olsen, E. M., & Knutsen, H. (2016). “Islands of Divergence” in 769 the Atlantic cod genome represent polymorphic chromosomal rearrangements. *Genome biology and evolution*, 8(4), 1012–1022. 770 <https://doi.org/10.1093/gbe/evw057>

771 Sodeland, M., Jentoft, S., Jorde, P. E., Mattingdal, M., Albretsen, J., Kleiven, A. R., Synnes, A.-E., Espeland, S. H., Olsen, E. M., André, C., Stenseth, N. C., & 772 Knutsen, H. (2022). Stabilizing selection on Atlantic cod supergenes through a millennium of extensive exploitation. *Proceedings of the National Academy of 773 Sciences*, 119 (8). <https://doi.org/10.1073/pnas.2114904119>

774 Star, B., Tørresen, O. K., Nederbragt, A. J., Jakobsen, K. S., Pampoulie, C., & Jentoft, S. (2016). Genomic characterization of the Atlantic cod sex-locus. 775 *Scientific reports*, 6(1), 1–9. <https://doi.org/10.1038/srep31235>

776 Stenseth, N. C., Jorde, P. E., Chan, K. S., Hansen, E., Knutsen, H., André, C., Skogen, M. D., & Lekve, K. (2006). Ecological and genetic impact of Atlantic cod 777 larval drift in the Skagerrak. *Proceedings of the Royal Society B: Biological Sciences*, 273(1590), 1085–1092. <https://doi.org/10.1098/rspb.2005.3290>

778 Stronen, A. V., Norman, A. J., Vander Wal, E., & Paquet, P. C. (2022). The relevance of genetic structure in ecotype designation and conservation management. 779 *Evolutionary Applications*, 00, 1–18. <https://doi.org/10.1111/eva.13339>

780 Svedäng, H. (2003). The inshore demersal fish community on the Swedish Skagerrak coast: regulation by recruitment from offshore sources. *ICES Journal of 781 Marine Science*, 60(1), 23–31. <https://doi.org/10.1006/jmsc.2002.1329>

782 Svedäng, H., Righton, D., & Jonsson, P. (2007). Migratory behaviour of Atlantic cod *Gadus morhua*: natal homing is the prime stock-separating mechanism. 783 *Marine Ecology Progress Series*, 345, 1–12. <https://doi.org/10.3354/meps07140>

784 Svedäng, H., Barth, J. M., Svenson, A., Jonsson, P., Jentoft, S., Knutsen, H., & André, C. (2019). Local cod (*Gadus morhua*) revealed by egg surveys and 785 population genetic analysis after longstanding depletion on the Swedish Skagerrak coast. *ICES Journal of Marine Science*, 76(2), 418–429. 786 <https://doi.org/10.1093/icesjms/fsy166>

787 Synnes, A. E. W., Huserbråten, M., Knutsen, H., Jorde, P. E., Sodeland, M., & Moland, E. (2021). Local recruitment of Atlantic cod and putative source 788 spawning areas in a coastal seascapes. *ICES Journal of Marine Science*, 78(10), 3767–3779. <https://doi.org/10.1093/icesjms/fsab226>

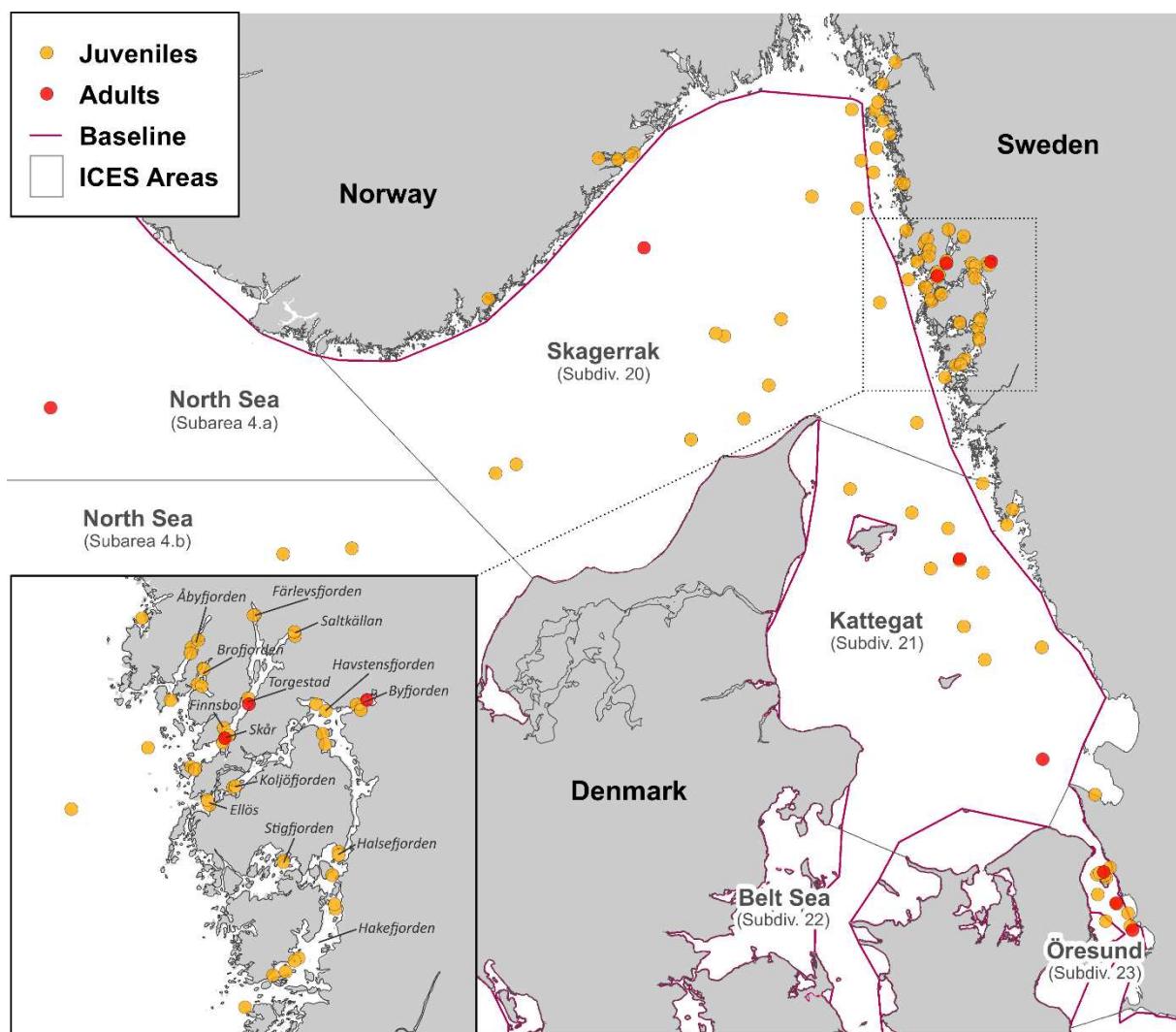
789

790 Thomas, P. D., Kejariwal, A., Guo, N., Mi, H., Campbell, M. J., Muruganujan, A., & Lazareva-Ulitsky, B. (2006). Applications for protein sequence–function
791 evolution data: mRNA/protein expression analysis and coding SNP scoring tools. *Nucleic Acids Research*, 34(suppl_2), W645–W650.
792 <https://doi.org/10.1093/nar/gkl229>

793 Tredennick, A. T., Hooker, G., Ellner, S. P., & Adler, P. B. (2021). A practical guide to selecting models for exploration, inference, and prediction in ecology.
794 *Ecology*, 102(6), e03336. <https://doi.org/10.1002/ecy.3336>

795 Venables, W. N. & Ripley, B. D. (2002). *Modern Applied Statistics with S*. Fourth Edition. Springer, New York. ISBN: 0-387-95457-0

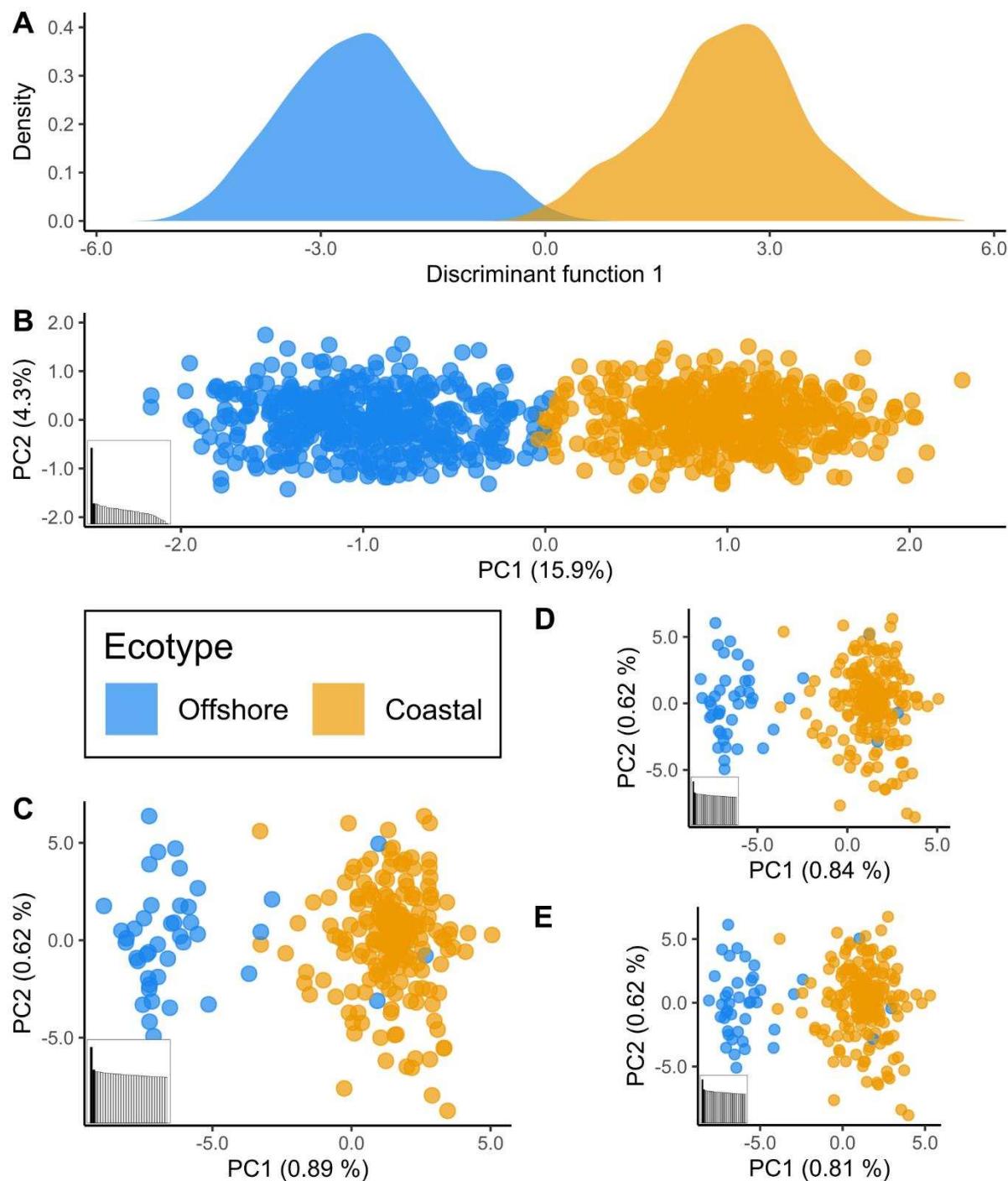
796 Wang, S., Meyer, E., McKay, J., & Matz, M. V. (2012). 2b-RAD: a simple and flexible method for genome-wide genotyping. *Nat Methods* 9, 808–810.
797 <https://doi.org/10.1038/nmeth.2023>


798 Wellenreuther, M., & Bernatchez, L. (2018). Eco-evolutionary genomics of chromosomal inversions. *Trends in ecology & evolution*, 33(6), 427-440.
799 <https://doi.org/10.1016/j.tree.2018.04.002>

800 Whitlock, M. C., & Lotterhos, K. (2014). OutFLANK: Fst outliers with trimming. R package version 0.2. <https://github.com/whitlock/OutFLANK/>

801 Woodhead, A. D. (1959). Variations in the activity of the thyroid gland of the cod, *Gadus callarias* L., in relation to its migrations in the Barents Sea I. Seasonal
802 changes. *Journal of the Marine Biological Association of the United Kingdom*, 38(2), 407-415. <https://doi.org/10.1017/S0025315400006184>

803 Xu, M., & Volkoff, H. (2009). Cloning, tissue distribution and effects of food deprivation on pituitary adenylate cyclase activating polypeptide
804 (PACAP)/PACAP-related peptide (PRP) and preprosomatostatin 1 (PPSS 1) in Atlantic cod (*Gadus morhua*). *Peptides*, 30(4), 766-776.
805 <https://doi.org/10.1016/j.peptides.2008.12.010>


806 **Figures**

807

808
809
810

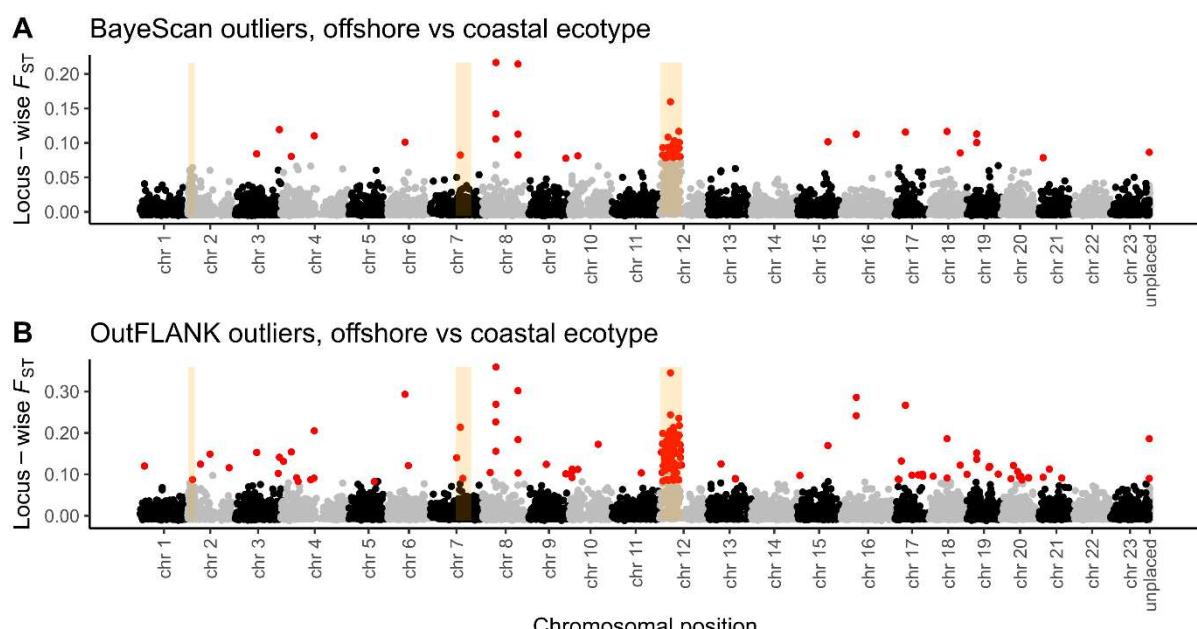
Figure 1. Map of the study area. Sampling stations are indicated with points, with colour indicating the type of sample (juvenile/adult). The national baselines of Norway, Sweden, and Denmark, which define the outer coastline, are indicated with purple lines. ICES subareas and subdivisions are indicated with narrow black lines.

811

812

813

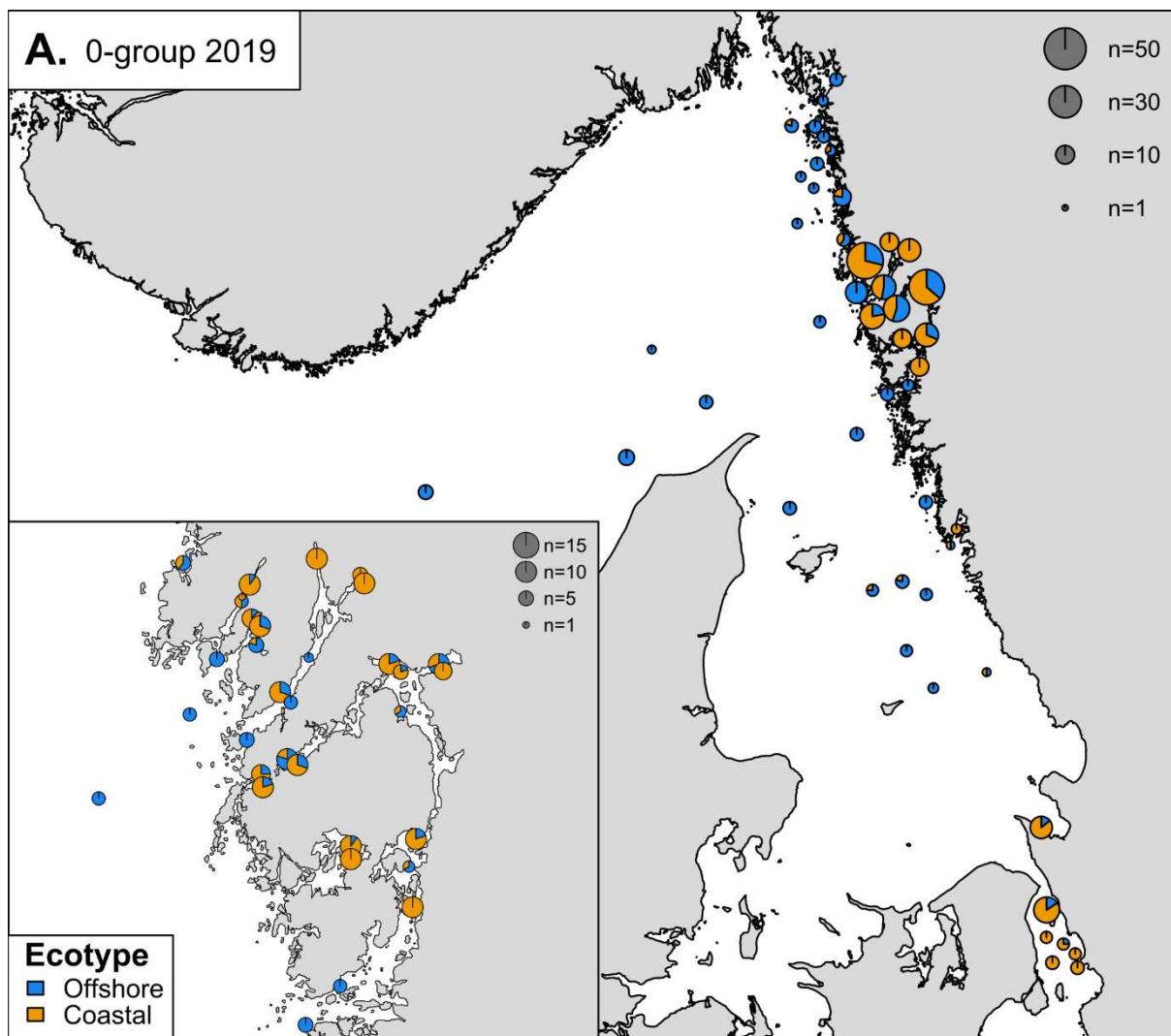
814

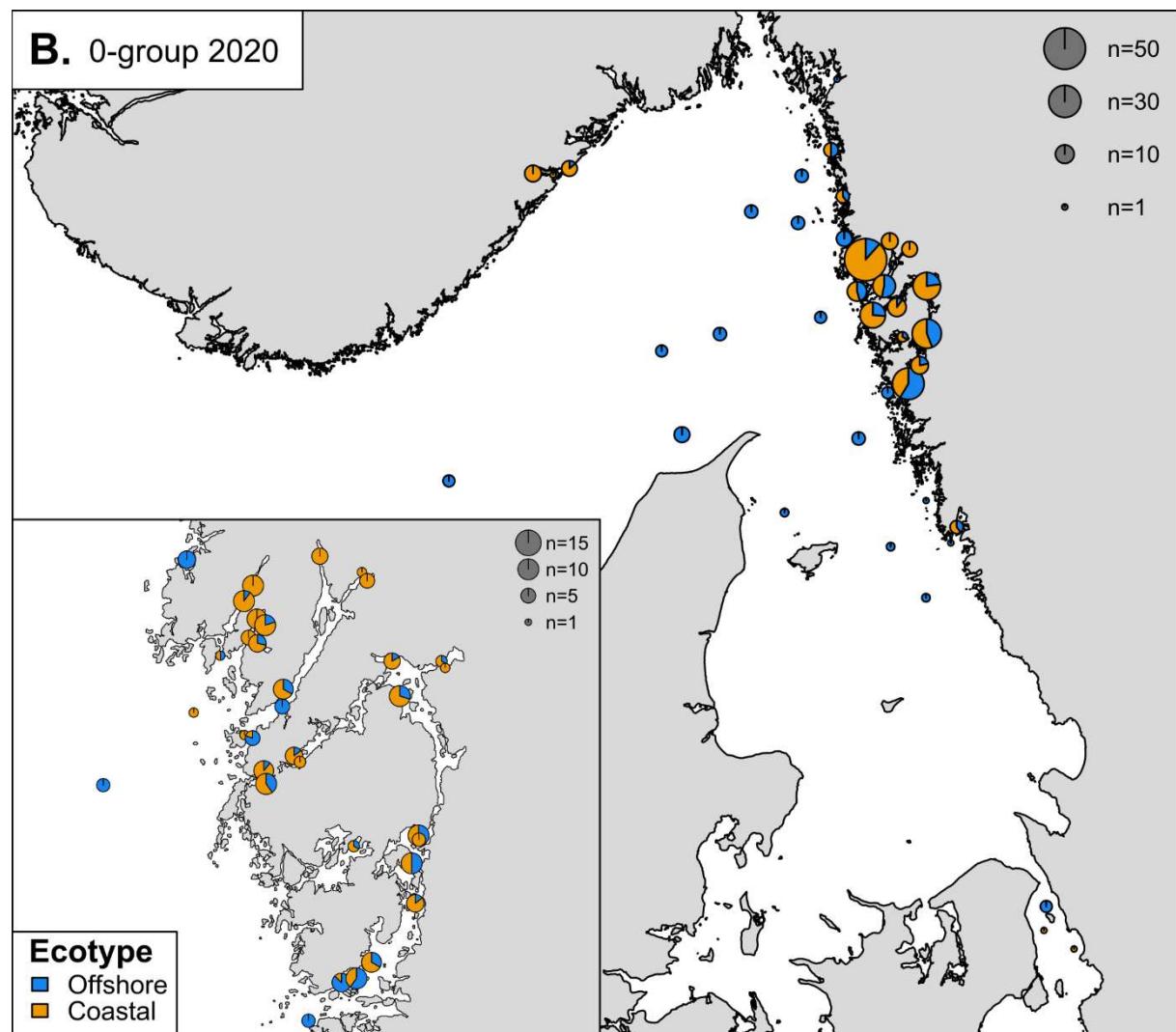

815

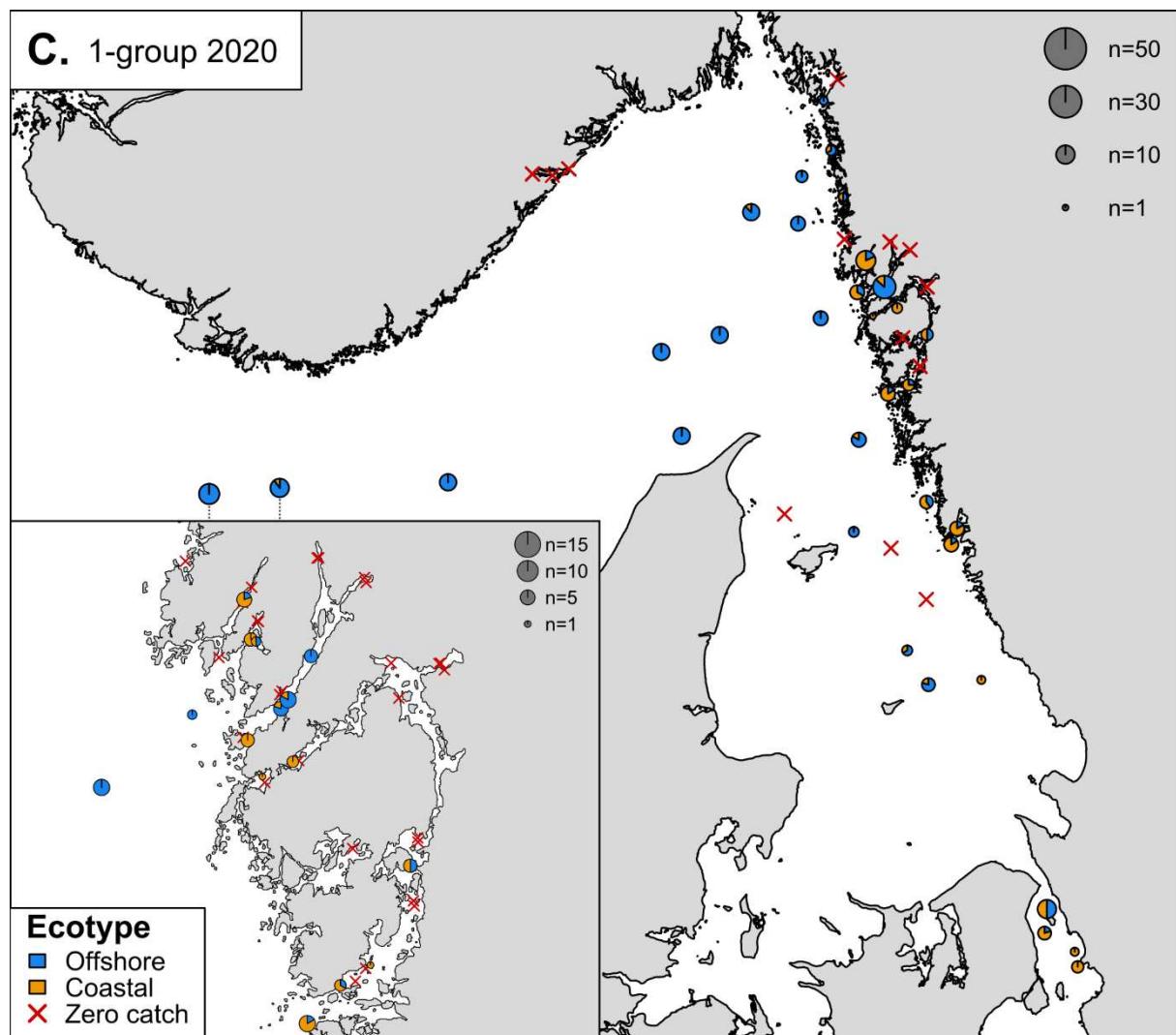
816

817

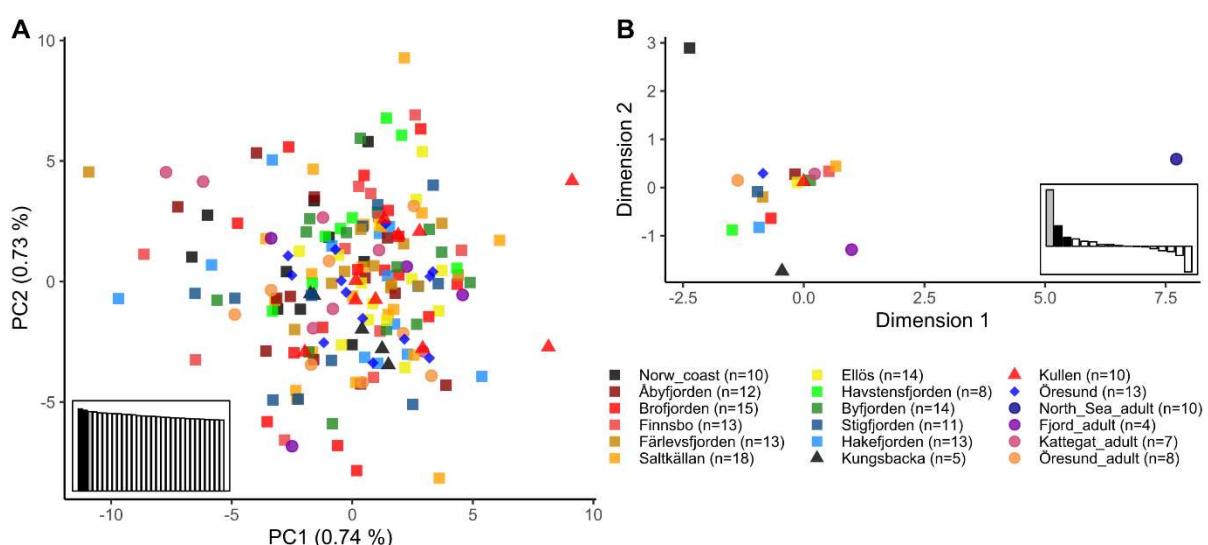
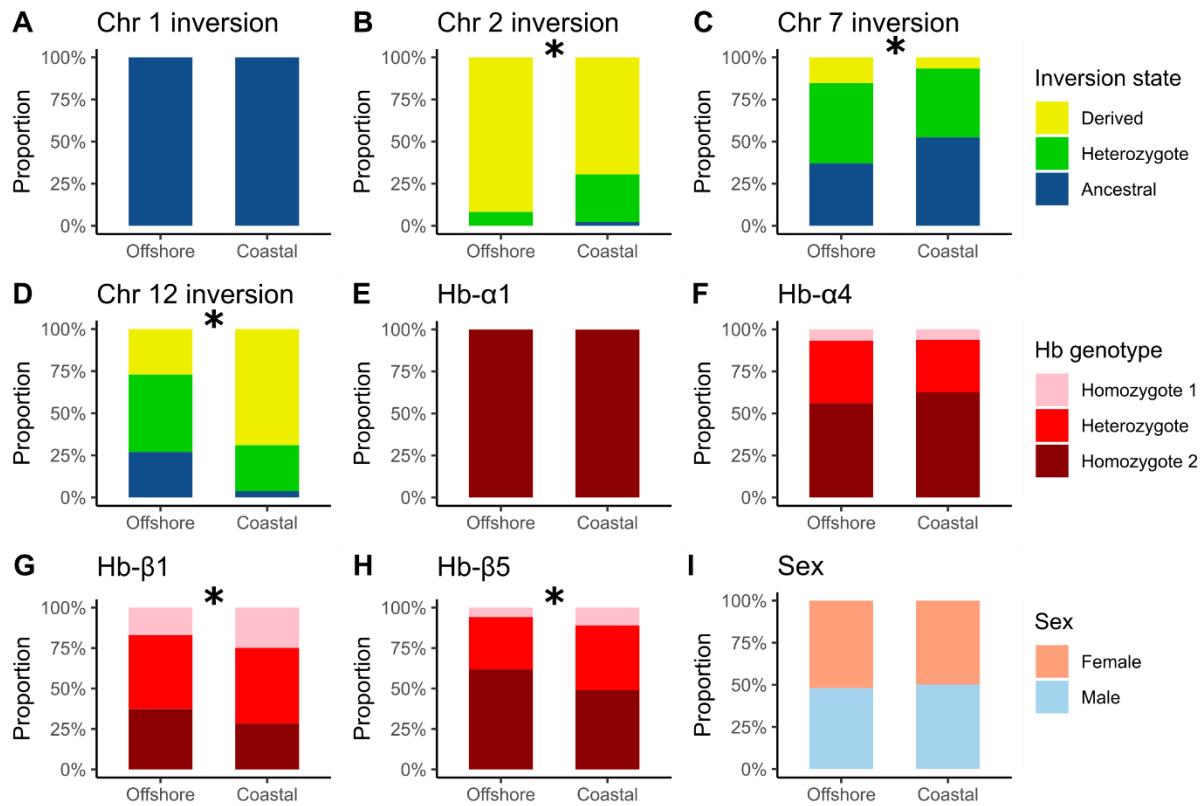
Figure 2. A) DAPC scores along discriminant function 1 and **B)** PCA score plot for all 987 individuals, based on genotypes at the 33 ecotype-diagnostic loci. Subplots **C-E**) show PCA score plots based on the genome-wide loci located outside of inversions, with **C)** showing all these loci, **D)** excluding BAYESCAN outliers, and **E)** excluding OUTFLANK outliers. Colour corresponds to the assigned ecotype of each individual, according to the ecotype-diagnostic SNP panel. The aspect ratio between PC1 and 2 is scaled against the relative proportions of variance explained by each PC (in parentheses).


818




819

820
821
822
823



Figure 3. Manhattan plots of pairwise F_{ST} between the two ecotypes for all 2b-RAD SNP loci, with outlier loci detected by **A**) BAYESCAN and **B**) OUTFLANK indicated as red points. Note that the F_{ST} values shown in **B**) are not corrected for sample size differences, as these are the input values for the OUTFLANK algorithm. The inverted regions detected by the INVERSION scans are highlighted in orange.

832

845 **Tables**

846 **Table 1.** AIC table for the 10 highest-ranked linear regression models fitted against the station-wise proportion of
 847 coastal 0-group juveniles. The top-ranked models ($\Delta\text{AICc} < 2$) are indicated in bold.

Model	R ²	BIC	AIC	AICc	ΔAICc
1. prop_coast ~ Subdiv + log(Depth_m)	0.59	55.52	40.71	41.15	-
2. prop_coast ~ Subdiv + Dist_baseline_km + log(Depth_m)	0.59	59.32	41.54	42.16	1.01
3. prop_coast ~ Subdiv + log(Depth_m) + Dist_baseline_km:log(Depth_m)	0.59	59.63	41.86	42.47	1.33
4. prop_coast ~ Year + Subdiv + log(Depth_m)	0.59	60.42	42.64	43.26	2.11
5. prop_coast ~ Year + Subdiv + log(Depth_m) + Dist_baseline_km:log(Depth_m)	0.59	64.57	43.83	44.66	3.51
6. prop_coast ~ Year + Subdiv:log(Depth_m)	0.58	62.63	44.85	45.47	4.32
7. prop_coast ~ log(Depth_m)	0.54	61.36	52.48	52.65	11.50
8. prop_coast ~ log(Depth_m) + Dist_baseline_km:log(Depth_m)	0.54	65.99	54.14	54.43	13.28
9. prop_coast ~ Year + log(Depth_m)	0.54	66.08	54.23	54.52	13.37
10. prop_coast ~ Dist_baseline_km + log(Depth_m)	0.54	66.30	54.45	54.74	13.59

848

849 **Table 2.** AIC table for the 10 highest-ranked ordinal logistic regression models fitted against the individual chr 2
 850 inversion state genotypes for 0-group juveniles. The top-ranked models ($\Delta\text{AICc} < 2$) are indicated in bold.
 851 “Accuracy” refers to the proportion of correctly assigned genotypes for each model.

Model	Accuracy	BIC	AIC	AICc	ΔAICc
1. INV02 ~ Dist_baseline_km + Eco	0.80	741.48	723.22	723.24	-
2. INV02 ~ Dist_baseline_km + Eco + Sex	0.80	746.18	723.36	723.39	0.14
3. INV02 ~ Year + Dist_baseline_km + Eco	0.80	747.12	724.30	724.33	1.09
4. INV02 ~ Year + Dist_baseline_km + Eco + Sex	0.80	751.86	724.48	724.52	1.27
5. INV02 ~ log.Depth_m + Eco	0.80	743.62	725.36	725.38	2.14
6. INV02 ~ log.Depth_m + Eco + Sex	0.80	748.32	725.50	725.52	2.28
7. INV02 ~ Subdiv + Eco + Sex	0.80	752.97	725.59	725.63	2.39
8. INV02 ~ Subdiv + Eco	0.80	748.44	725.62	725.65	2.41
9. INV02 ~ Subdiv + Dist_baseline_km + Eco + Sex	0.80	757.67	725.72	725.77	2.53
10. INV02 ~ Subdiv + Dist_baseline_km + Eco	0.80	753.12	725.74	725.78	2.53

852

853 **Table 3.** AIC table for the 10 highest-ranked ordinal logistic regression models fitted against the individual chr 7
 854 inversion state genotypes for all 0-group juveniles. The top-ranked models ($\Delta\text{AICc} < 2$) are indicated in bold.
 855 “Accuracy” refers to the proportion of correctly assigned genotypes for each model.

Model	Accuracy	BIC	AIC	AICc	ΔAICc
1. INV07 ~ Subdiv:Dist_baseline_km + log.Depth_m:Eco	0.54	1342.54	1310.57	1310.62	-
2. INV07 ~ log.Depth_m + Subdiv:Dist_baseline_km	0.53	1338.56	1311.15	1311.19	0.57
3. INV07 ~ log.Depth_m + Dist_baseline_km:Eco	0.52	1334.91	1312.07	1312.10	1.48
4. INV07 ~ log.Depth_m:Eco	0.53	1330.55	1312.28	1312.30	1.68
5. INV07 ~ Year + Dist_baseline_km + Subdiv:Dist_baseline_km + log.Depth_m:Eco	0.53	1348.94	1312.39	1312.46	1.84
6. INV07 ~ Sex + Subdiv:Dist_baseline_km + log.Depth_m:Eco	0.55	1349.00	1312.46	1312.53	1.90
7. INV07 ~ Dist_baseline_km + log.Depth_m:Eco	0.53	1335.83	1312.99	1313.02	2.40
8. INV07 ~ Year + log.Depth_m + Subdiv:Dist_baseline_km	0.53	1344.95	1312.97	1313.03	2.40
9. INV07 ~ log.Depth_m + Sex + Subdiv:Dist_baseline_km	0.53	1345.03	1313.06	1313.11	2.49
10. INV07 ~ Subdiv:log.Depth_m + log.Depth_m:Eco	0.54	1340.66	1313.25	1313.29	2.67

856

857

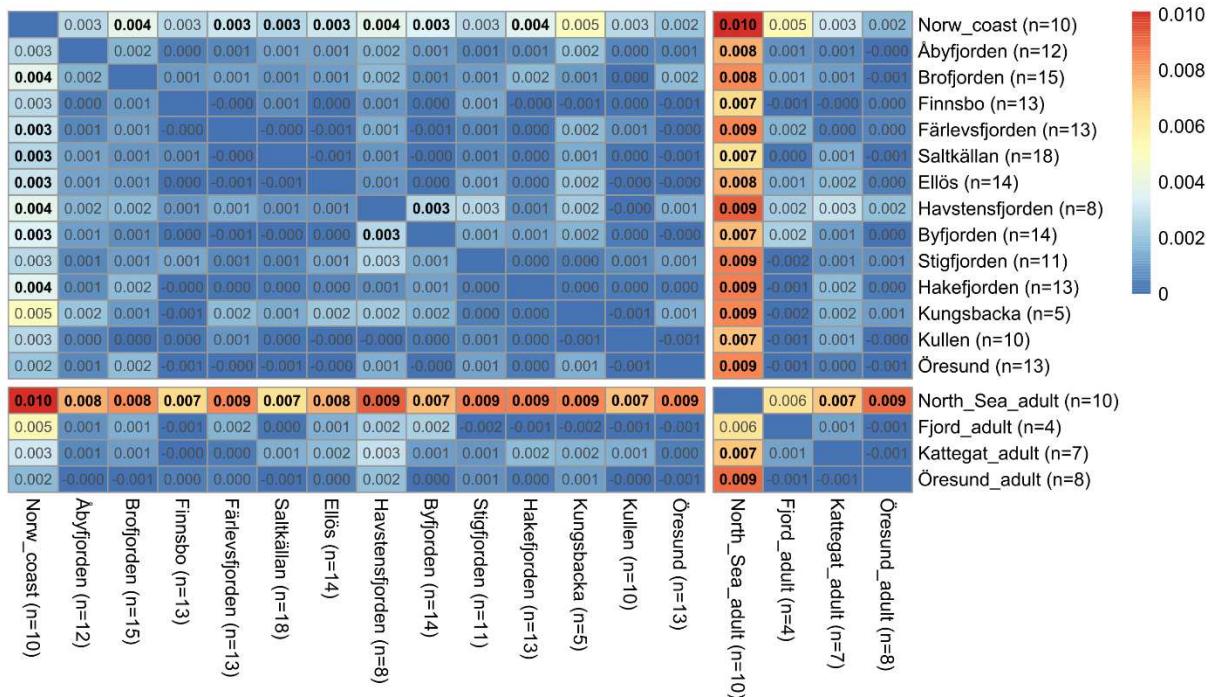

858
859
860

Table 4. AIC table for the 10 highest-ranked ordinal logistic regression models fitted against the individual chr 12 inversion state genotypes for all 0-group juveniles. The top-ranked models ($\Delta\text{AICc} < 2$) are indicated in bold. “Accuracy” refers to the proportion of correctly assigned genotypes for each model.

Model	Accuracy	BIC	AIC	AICc	ΔAICc
1. INV12 ~ log.Depth_m + Dist_baseline_km:log.Depth_m + log.Depth_m:Eco	0.61	1225.39	1202.65	1202.68	-
2. INV12 ~ log.Depth_m + Eco + Dist_baseline_km:log.Depth_m	0.60	1225.89	1203.15	1203.18	0.51
3. INV12 ~ log.Depth_m + Dist_baseline_km:log.Depth_m + Dist_baseline_km:Eco + log.Depth_m:Eco	0.61	1231.17	1203.88	1203.92	1.24
4. INV12 ~ Year + log.Depth_m + Dist_baseline_km:log.Depth_m + log.Depth_m:Eco	0.61	1231.29	1204.01	1204.05	1.37
5. INV12 ~ Dist_baseline_km + log.Depth_m:Eco	0.61	1226.86	1204.12	1204.14	1.47
6. INV12 ~ Year + log.Depth_m + Eco + Dist_baseline_km:log.Depth_m	0.60	1231.65	1204.36	1204.40	1.72
7. INV12 ~ log.Depth_m + Sex + Dist_baseline_km:log.Depth_m + log.Depth_m:Eco	0.61	1231.75	1204.46	1204.50	1.82
8. INV12 ~ log.Depth_m + Eco + Subdiv:Eco + Dist_baseline_km:log.Depth_m	0.61	1245.37	1204.44	1204.53	1.85
9. INV12 ~ log.Depth_m + Eco + Sex + Dist_baseline_km:log.Depth_m	0.60	1232.30	1205.01	1205.05	2.38
10. INV12 ~ Subdiv + log.Depth_m + Eco + Dist_baseline_km:log.Depth_m	0.60	1237.06	1205.23	1205.28	2.60

861
862
863
864
865
866

Table 5. Pairwise F_{ST} between stations, including only coastal ecotype individuals from each station, and North Sea adults as an outgroup. The F_{ST} values are based on the genome-wide loci located outside of inversions, and significant values after FDR-correction ($q < 0.05$) are indicated in bold font. Individuals have been grouped based on their sampling station, irrespective of survey and year. The total number of individuals included per station is given within parentheses. The four adult populations are located at the bottom and right-hand side of the table.

867