

1 Pharmacological PP2A reactivation overcomes multikinase inhibitor tolerance across

2 brain tumor cell models

3
4 Oxana V. Denisova, Joni Merisaari, Riikka Huhtaniemi, Xi Qiao, Amanpreet Kaur, Laxman
5 Yetukuri, Mikael Jumppanen, Mirva Pääkkönen, Carina von Schantz-Fant, Michael Ohlmeyer,
6 Krister Wennerberg, Otto Kauko, Raphael Koch, Tero Aittokallio, Mikko Taipale, Jukka
7 Westermarck*

8
9 Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
10 (O.V.D., J.M., R.H., X.Q., L.Y., M.J., A.K., M.P., O.K., J.W.); Institute of Biomedicine,
11 University of Turku, Turku, Finland (J.M., J.W.); Institute for Molecular Medicine Finland,
12 HiLIFE, University of Helsinki, Helsinki, Finland (L.Y., C.S-F., K.W., T.A.); Icahn School of
13 Medicine at the Mount Sinai, NY, USA (M.O.); Atux Iskay LLC, Plainsboro, NJ, USA (M.O.);
14 Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
15 (K.W.); University Medical Center Goettingen, Goettingen, Germany (R.K.); Centre for
16 Biostatistics and Epidemiology, University of Oslo, Oslo, Norway (L.Y., T.A.); Institute for
17 Cancer Research, Oslo University Hospital, Oslo, Norway (T.A.); Donnelly Centre, University of
18 Toronto, Toronto, Canada (M.T.)

19
20 **Running title:** Triplet kinase-phosphatase targeting for brain cancers

22 *Corresponding author: Jukka Westermark, MD, PhD, Turku Bioscience Centre, University
23 of Turku and Åbo Akademi University, Tykistökatu 6B, 20521 Turku, Finland
24 (jukka.westermark@bioscience.fi)

25 **ABSTRACT**

26 **Background.** Glioblastoma is characterized by hyperactivation of kinase signaling pathways.
27 Regardless, most glioblastoma clinical trials targeting kinase signaling have failed. We
28 hypothesized that overcoming the glioblastoma kinase inhibitor tolerance requires efficient shut-
29 down of phosphorylation-dependent signaling rewiring by simultaneous inhibition of multiple
30 critical kinases combined with reactivation of Protein Phosphatase 2A (PP2A).

31 **Methods.** Live-cell imaging and colony growth assays were used to determine long-term impact
32 of therapy effects on ten brain tumor cell models. Immunoblotting, MS-phosphoproteomics, and
33 Seahorse metabolic assay were used for analysis of therapy-induced signaling rewiring. BH3
34 profiling was used to understand the mitochondrial apoptosis mechanisms. Medulloblastoma
35 models were used to expand the importance to other brain cancer. Intracranial xenografts were
36 used to validate the *in vivo* therapeutic impact of the triplet therapy.

37 **Results.** Collectively all tested ten glioblastoma and medulloblastoma cell models were
38 effectively eradicated by the newly discovered triplet therapy combining inhibition of AKT and
39 PDK1-4 kinases with pharmacological PP2A reactivation. Mechanistically, the brain tumor cell
40 selective lethality of the triplet therapy could be explained by its combinatorial effects on therapy-
41 induced signaling rewiring, OXPHOS, and apoptosis priming. The brain-penetrant triplet
42 combination had a significant *in vivo* efficacy in intracranial glioblastoma and medulloblastoma
43 models.

44 **Conclusion.** The results confirm highly heterogenous responses of brain cancer cells to mono -
45 and doublet combination therapies targeting phosphorylation-dependent signaling. However, the
46 brain cancer cells cannot escape the triplet therapy targeting of AKT, PDK1-4, and PP2A. The
47 results encourage evaluation of brain tumor PP2A status for design of future kinase inhibitor
48 combination trials.

50 **Keywords:** DBK-1154, MK-2206, DT-061, NZ-8-061, Dichloroacetate, SMAP

51

52 **Key Points:**

53 1. Development of triplet kinase-phosphatase targeting therapy strategy for overcoming
54 therapy tolerance across brain tumor models.

55 2. Identification of interplay between therapy-induced signaling rewiring, OXPHOS, and
56 BH3 protein-mediated apoptosis priming as a cause for kinase inhibitor tolerance in brain
57 cancers.

58 3. Validation of the results in intracranial in vivo models with orally bioavailable and brain
59 penetrant triplet therapy combination.

60

61 **Importance of the Study:** Based on current genetic knowledge, glioblastoma should be
62 particularly suitable target for kinase inhibitor therapies. However, in glioblastoma alone over 180
63 clinical trials with kinase inhibitors have failed. In this manuscript, we recapitulate this clinical
64 observation by demonstrating broad tolerance of brain cancer cell models to kinase inhibitors even
65 when combined with reactivation of PP2A. However, we discover that the therapy-induced
66 signaling rewiring, and therapy tolerance, can be overcome by triplet targeting of AKT, PDK1-4
67 and PP2A. We provide strong evidence for the translatability of the findings by orally dosed brain
68 penetrant triplet therapy combination in intracranial brain cancer models. The results encourage
69 biomarker profiling of brain tumors for their PP2A status for clinical trials with combination of
70 AKT and PDK1-4 inhibitors. Further, the results indicate that rapidly developing PP2A
71 reactivation therapies will constitute an attractive future therapy option for brain tumors when
72 combined with multi-kinase inhibition.

73 INTRODUCTION

74

75 Even though kinase inhibitors have revolutionized cancer therapies, most tumors acquire
76 resistance to kinase inhibitors and their combinations.^{1,2} Especially in cancer types genetically
77 associated with hyperactivation of kinase pathways, such as human glioblastoma, the clinically
78 observed kinase inhibitor resistance is a mechanistic enigma.³⁻⁶ Acquired therapy resistance
79 develops via two phases - first through adaptive development of a drug-tolerant cellular state, and
80 later, stable resistance that often occurs through acquisition of genetic mutations.⁷ The emerging
81 evidence strongly indicates that the drug-tolerance is initiated rapidly after drug exposure by non-
82 mutational signaling rewiring, often mediated by phosphorylation dependent signaling
83 pathways.^{8,9} Thereby, characterization of the phosphorylation-dependent signaling rewiring
84 events, and kinases/phosphatases controlling the rewiring, can provide novel approaches for
85 targeting the brain tumor relapse at its roots.¹⁰

86

87 Glioblastoma (GB) is the most common primary brain tumor in adults associated with high degree
88 of therapy resistance, tumor recurrence and mortality.^{5,11} Extensive genome-wide profiling studies
89 have established receptor tyrosine kinase RTK/RAS/PI3K/AKT signaling as one of the core
90 altered pathways contributing to GB disease progression.^{3,6,12} AKT pathway fuels aerobic
91 glycolysis,¹³ and GB cells are notorious for employing aerobic glycolysis in energy production
92 and survival.^{14,15} However, targeting of the deregulated AKT and mitochondrial metabolism
93 pathways, even by combination therapies, have achieved dismal clinical response rates in GB.^{4,16,17}
94 In addition to challenges with drug delivery across the brain-blood barrier (BBB) with a number
95 of kinase inhibitors, the failure of kinase targeted therapies in GB is linked to the prevalence of
96 kinase pathway-mediated rewiring mechanisms,¹⁷ and general apoptosis-resistance of
97 glioblastoma stem-like cells (GSCs).¹¹ Also the great intratumoral heterogeneity of GB constitutes
98 a significant therapeutic challenge as the therapies should be effective across cells with different

99 lineage and differentiation status as well as different signaling pathway activities.^{11,18} Tumor
100 suppressor PP2A broadly regulates phosphorylation-dependent signaling and its pharmacological
101 reactivation has in other cancer types shown to impact kinase inhibitor tolerance.¹⁹⁻²¹ However, it
102 is unclear whether pharmacological PP2A reactivation would be able to overcome the kinase
103 inhibitor tolerance across heterogenous human brain tumor models.

104

105 **METHODS**

106

107 **Ethics Statement**

108 In vivo experiments have been authorized by the National Animal Experiment Board of Finland
109 (ESAVI/9241/2018 license), and studies were performed according to the instructions given by
110 the Institutional Animal Care and Use Committees of the University of Turku, Turku, Finland.
111 The animal experiments for this study described in Supplementary Methods.

112

113

114 **Cell culture and reagents**

115 Established human GB cell lines T98G, U87MG, A172, U118, U251, E98-FM-Cherry, patient-
116 derived GSCs, BT3-CD133⁺ and BT12, and human fibroblasts were cultured as described in.^{22,23}
117 Medulloblastoma cell lines DAOY and D283-Med were purchased from ATCC and cultured in
118 Eagle MEM. All cell cultures were maintained in a humified atmosphere of 5% CO₂ at 37°C. For
119 assays requiring adherent cell, GSCs were cultured on Matrigel (Becton Dickinson) coated plates.

120

121 *PPME1* knockout T98G cells were generated as described in.²⁴ SV40 small T expressing T98G
122 cells were generated using SV40 small T expressing piggyBac plasmid (pPB-ST, gift from Vera
123 Gorbunova, University of Rochester, NY, USA) by the nucleofection method described in.²⁵

124

125 UCN-01, AKT1/2 inhibitor, sodium salt of dichloroacetate (DCA) were purchased from Sigma-
126 Aldrich and MK-2206 from MedChemExpress. SMAPs (NZ-8-061, DBK-794, DBK-1154 and
127 DBK-1160) were kindly supplied by Prof. Michael Ohlmeyer (Atux Iskay LLC, Plainsboro, NJ,
128 USA), were dissolved in DMSO and stored at room temperature protected from light.

129

130

131 **RNAi-based knockdown**

132 T98G cells (2×10^5 into 6 well plate) were reverse transfected with siRNAs (Table S3) using
133 Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer's instructions. On the next
134 day, optimized numbers of cells were re-plated into either 96- or 12-well plates and used for cell
135 viability or colony formation assays, see Supplementary Methods.

136

137 **Caspase-3 and -7 activity assay**

138 T98G cells (2.5×10^3) were plated in 96-well plates and allowed to adhere. After 24 hours, cells
139 were treated with the indicated drugs in combination with pan-caspase inhibitor Z-VAD-FMK (10
140 mM, Promega). After 24 hours, caspase-3 and -7 activities were measured by Caspase-Glo 3/7
141 assay (Promega) according to the manufacturer's instructions.

142

143 **Long-term growth assay**

144 E98 cells (3×10^3) were plated in 96-well plate. On the next day cells were treated with DMSO,
145 MK-2206 (7 μ M), DCA (20 mM), NZ-8-061 (10 μ M) alone, or in their doublet or triplet
146 combinations (6-12 wells/condition). Every 3-4 days medium was replaced with fresh media with
147 or without drugs. The confluency of the wells was determined daily using an IncuCyte ZOOM live
148 cell analysis system (Essen Bioscience).

149

150 **Immunoblotting**

151 Immunoblotting was performed as previously described.²² Primary antibodies: AKT (Cell
152 Signaling, 9272S, 1:1000), phospho Akt S473 (Cell Signaling, 9271, 1:1000), PME-1 (Santa Cruz
153 Biotechnology, sc-20086, 1:1000), phospho PDHE1 α S300 (Millipore, ABS194, 1:1000), cleaved
154 PARP1 (Abcam, ab32064, 1:1000), SV40 T Ag Antibody (Pab 108) (Santa Cruz Biotechnology,
155 sc-148, 1:1000), β -actin (Sigma-Aldrich, A1978, 1:10 000) and GAPDH (HyTest, 5G4cc,
156 1:10 000). Secondary antibodies were purchased from LI-COR Biotechnology.

157 **Mitochondrial respiration measurement**

158 To assess basal cellular metabolic activity, Agilent Seahorse XF Cell Mito Stress Test (Agilent
159 Seahorse Bioscience) was applied according to the manufacturer's instructions. Details are
160 described in the Supplementary Methods.

161

162 **BH3 profiling**

163 BH3 profiling was performed as previously described.^{26,27} For details, see Supplementary
164 Methods.

165

166 **LC-MS/MS analysis of FFPE samples**

167 The LC-ESI-MS/MS analyses were performed on an Orbitrap Fusion Lumos mass spectrometer
168 (Thermo Fisher Scientific) equipped with a nano-electrospray ionization source and FAIMS
169 interface. Compensation voltages of -40 V, -60 V, and -80 V were used. With Orbitrap Fusion
170 Lumos MS data was acquired automatically by using Thermo Xcalibur 4.4 software (Thermo
171 Fisher Scientific). A DDA method consisted of an Orbitrap MS survey scan of mass range 350–
172 1750 m/z followed by HCD fragmentation for the most intense peptide ions in a top speed mode
173 with cycle time 1 sec for each compensation voltages.

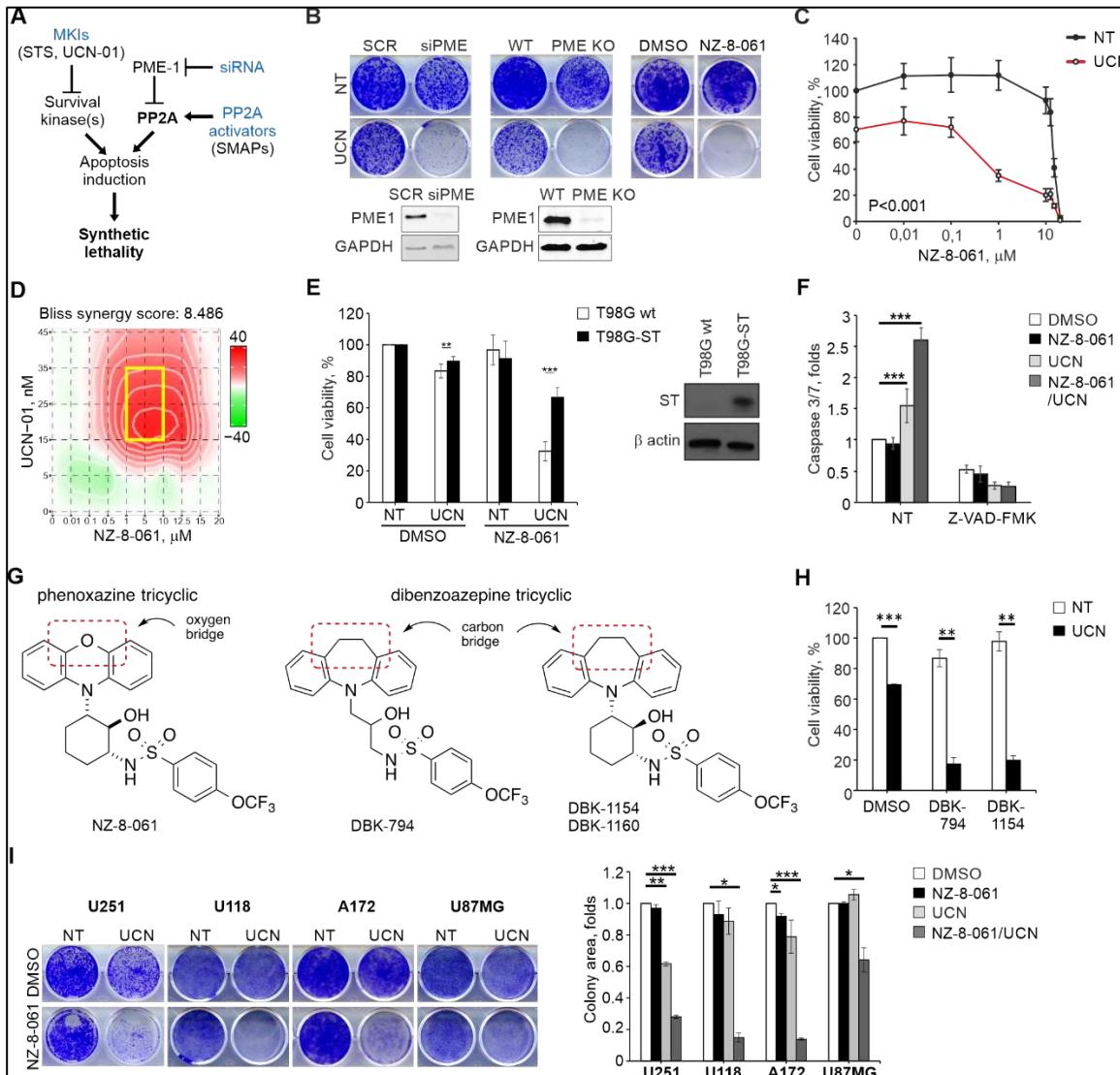
174

175 **Statistical analyses**

176 For cell culture experiments, three biological replicates have been performed, and each condition
177 was tested in triplicate, unless otherwise specified. Data are presented as mean \pm SD and statistical
178 analyses were carried out using a two-tailed Student's t-test assuming unequal variances. For *in*
179 *vivo* experiments, the following statistical tests were chosen depending on the results of the
180 preliminary Shapiro-Wilk test of data normality. Log-rank (Mantel-Cox) test was used in survival
181 analysis. These univariate statistical analyses were performed using GraphPad Prism 9 software.
182 P<0.05 was considered statistically significant.

183 **RESULTS**

184


185 **Pharmacological reactivation of PP2A synergizes with a multi-kinase inhibitor UCN-01**

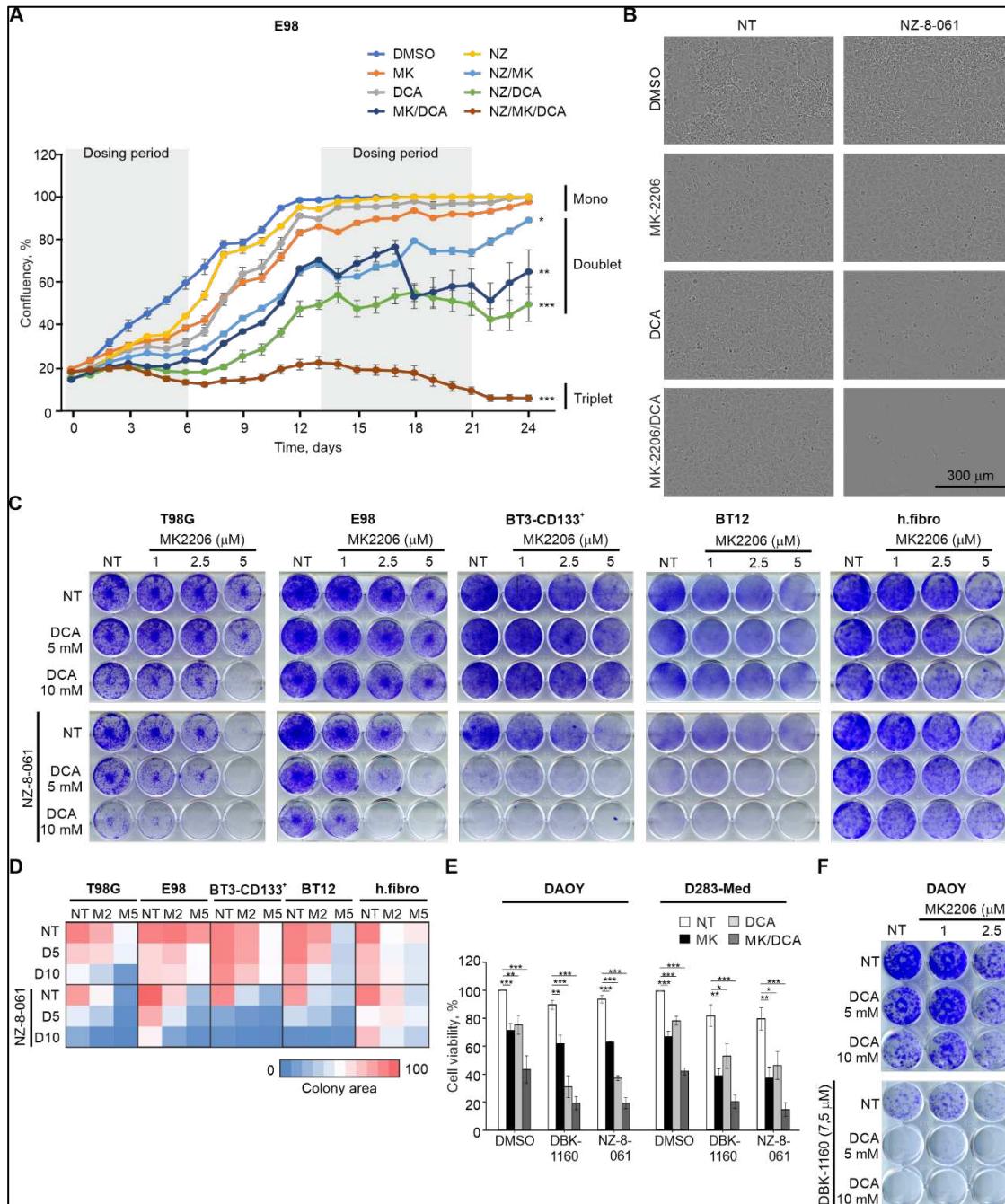
186

187 PP2A is frequently inactivated in GB by non-genetic mechanisms including overexpression of
188 endogenous PP2A inhibitor proteins such as CIP2A, PME-1, SET and ARPP19.^{22,28,29} In a
189 previous study, PP2A reactivation by siRNA-based inactivation of PME-1 was found to sensitize
190 GB cells to several staurosporine multi-kinase inhibitor (MKI) derivatives, including UCN-01.²³
191 However the translational impact of these results was questionable as neither the siRNA therapies
192 for brain tumors are not sufficiently advanced, nor does the UCN-01 cross the BBB. To provide
193 potential translational advance, we hypothesized that the recently developed BBB permeable
194 PP2A reactivating compounds (SMAPs)^{20,22,30}, could be a pharmacological approach to induce
195 synthetic lethal drug interaction³¹ with UCN-01 in GB cells (Fig. 1A). To test the hypothesis, we
196 directly compared the synergy with UCN-01 and PP2A reactivation by either PME-1 depletion,³²
197 or SMAP (NZ-8-061) treatment, on colony growth potential of T98G cells. As shown in Fig. 1B,
198 PME-1 depletion (either by siRNA or by CRISPR/Cas9) or NZ-8-061 did not induce any
199 significant growth defect but induced potent synthetic lethality (SL) with UCN-01. The interaction
200 between NZ-8-061 and UCN-01 was dose dependent and observed by using both compounds at
201 concentrations that showed negligible monotherapy activity (Fig. 1C, D, S1A). Validating the
202 particular potential of PP2A reactivation in kinase inhibitor sensitization,¹⁰ NZ-8-061 displayed
203 synergistic activity with as low as 0.5-2 μ M concentration, that is approximately 10-fold lower
204 concentrations that has been previously shown to be required for monotherapy effects for the
205 compound.^{22,30} NZ-8-061 has been shown in number of publications to directly interact with, and
206 impact PP2A complex composition both *in vitro* and *in cellulo*^{30,33,34}. Consistent with these results,
207 and our observations that low micromolar concentrations of NZ-08-61 are sufficient therapeutic
208 effects in drug sensitization, we observed clear evidence for *in cellulo* target engagement of NZ-

209 08-61 with B56 subunits of PP2A by Proteome Integral Solubility Alteration (PISA) assay³⁵ from
210 T98G cells treated for with 2 μ M of NZ-08-61 for 3 hours (Kauko et al., data not shown). Further,
211 consistently with published data demonstrating rescue of NZ-8-061 effects by overexpression of
212 selective PP2A inhibitor protein SV40 small t-antigen (SV40st)^{30,36}, the drug interaction between
213 UCN-01 and NZ-8-061 was abrogated in SV40st expressing T98G cells (Fig. 1E, S1B). Induction
214 of caspase 3/7 activity indicated that the mode of cell death by SMAP+UCN-01 combination was
215 apoptosis (Fig. 1F). To further rule out that the synergy between NZ-8-061 and UCN-01 would be
216 mediated by any potential non-selective targets of NZ-8-061, we used SMAPs DBK-794 and
217 DBK-1154 derived from dibenzoapine tricyclic family, i.e. chemically different from NZ-8-061
218 (Fig. 1G). Both DBK-794 and DBK-1154 were originally used to demonstrate direct interaction
219 between SMAPs and PP2A, and for mapping of their interaction region.³⁰ Importantly, these
220 chemically diverse PP2A reactivators all resulted in identical drug interaction with UCN-01 (Fig.
221 1H, S1C).

222
223 Together with identical synergy observed by genetic PP2A reactivation (Fig. 1B)²³, target
224 engagement data, rescue with small-t overexpression (Fig. 1A, S1B), and induction of synergy
225 with non-toxic low micromolar SMAP concentration (Fig. 1D), the use of SMAPs with different
226 chemistry mitigate concerns that the SMAP effects would be related to potential non-selective
227 effects reported using toxic (10-30 μ M) concentrations of NZ-8-061 (a.k.a. DT-061).³⁷
228 Additionally, the drug interaction was validated across multiple GB cell lines (Fig. 1I, S1C).
229 Importantly, synergy between UCN-01 and NZ-8-061 was not observed in non-cancerous
230 fibroblasts providing evidence for cancer selectivity of the drug interaction (Fig. S1C, D). The
231 synergistic drug interaction in GB cells was also seen in hypoxic environment, which is a common
232 resistance mechanism in GB (Fig. S1E).

233
234 **Figure 1. PP2A reactivation and UCN-01 exert a synergistic effect in GB.** **A)** Schematic
235 illustrating PP2A reactivation predisposed to MKI-induced SL in GB. **B)** Representative images
236 of colony formation assay in T98G cells under PME-1 deletion (siRNA or CRISPR/Cas9) or NZ-
237 8-061 treatment. Cells were treated with 25 nM UCN-01 (UCN) or left untreated (NT).
238 Immunoblot analysis of PME-1 (lower panel). **C)** Viability of T98G cells treated with increasing
239 concentration of NZ-8-061 either alone or in combination with 25 nM UCN-01 (UCN) for 72 h.
240 ***P<0.001, Student's *t*-test. **D)** Synergy plot showing the most synergistic area (yellow box)
241 between NZ-8-061 and UCN-01 in T98G cells. The Bliss synergy score is calculated over the
242 whole dose-response matrix. **E)** Viability of T98G wt and SV40 small t-antigen-expressing
243 (T98G-ST) cells treated with 25 nM UCN-01 (UCN) and 8 μM NZ-8-061, alone or in combination
244 for 72 h. Immunoblot analysis of SV40 small t-antigen (right panel). **P<0.01, ***P<0.001
245 Student's *t*-test. **F)** Caspase 3/7 activity in T98G cells treated with 8 μM NZ-8-061 alone or in
246 combination with 25 nM UCN-01 (UCN) under caspase inhibitor Z-VAD-FMK (20 μM) for 24
247 h. ***P<0.001, Student's *t*-test. **G)** Structures of two different classes of SMAPs. **H)** Viability of
248 T98G cells treated SMAPs, 10 μM DBK-794 and 5 μM DBK-1154, alone or in combination with
249 25 nM UCN-01 (UCN) for 72 h. **P<0.01, ***P<0.001, Student's *t*-test. **I)** Representative images
250 (left) and quantified data of colony formation assay (right) in U251, U118, A172 and U87MG
251 cells treated with 8 μM NZ-8-061 alone or in combination with UCN-01 (UCN; 200 nM, 25 nM,
252 50 nM and 500 nM, respectively). n=2 independent experiments, *P<0.05, **P<0.01,
253 ***P<0.001, Student's *t*-test.


254 **Triplet kinase/PP2A targeting is required for cytotoxic cell killing across heterogenous brain
255 tumor cell lines**

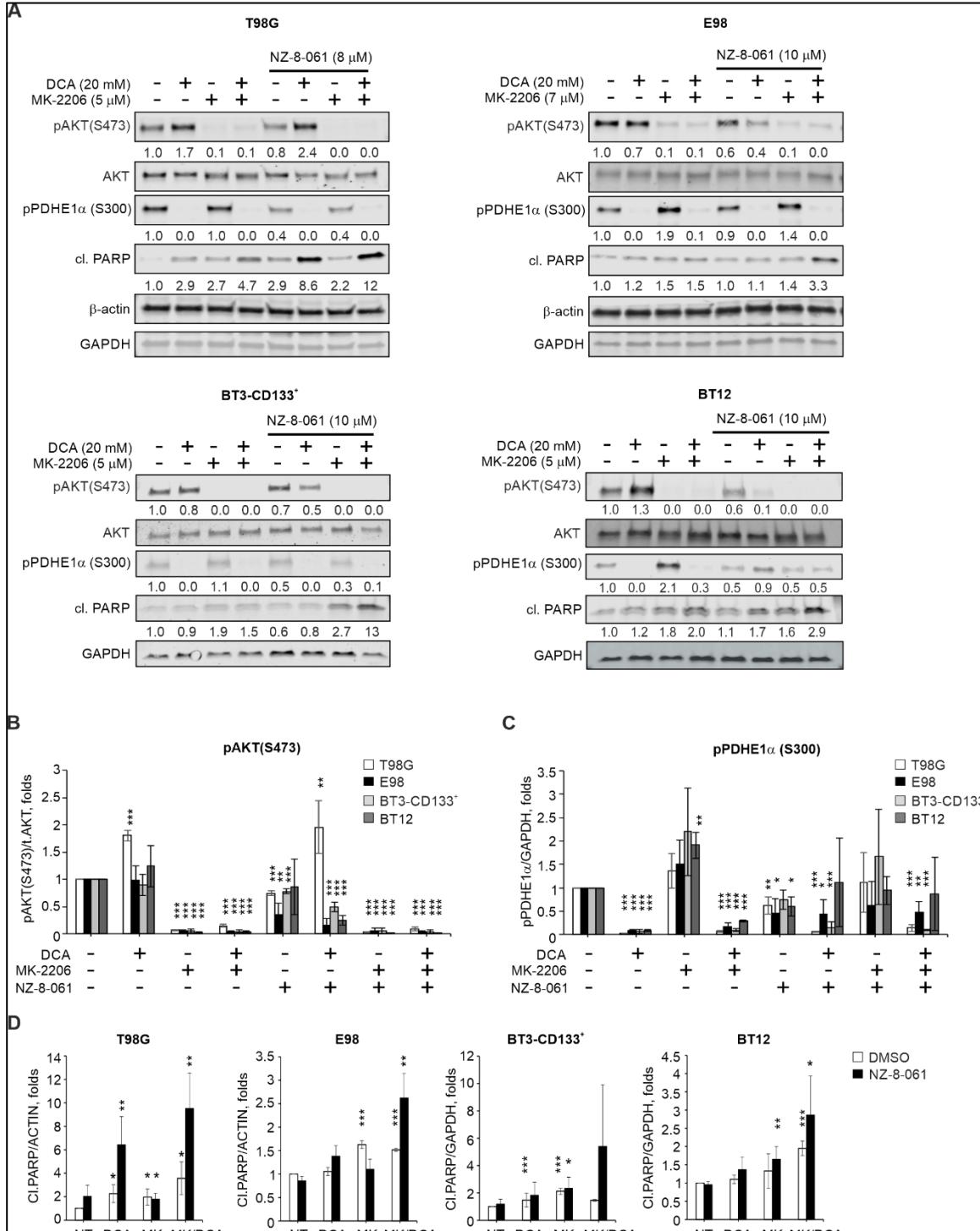
256

257 Results above demonstrate strong synergistic activity between BBB-permeable pharmacological
258 PP2A reactivation and multi-kinase inhibition by UCN-01. However, as UCN-01 targets
259 approximately 50 different kinases at nanomolar concentrations,^{38,39} it was necessary to identify
260 kinases that are specifically involved in SL phenotype observed in combination with PP2A
261 reactivation. To facilitate this, we developed a generalizable target kinase screening strategy
262 designated as Actionable Targets of Multi-kinase Inhibitors (AToMI). Detailed description of the
263 AToMI approach can be found from a separate publication.²⁴ Based on AToMI screening, both
264 PI3K/AKT/mTOR pathway, as well as mitochondrial pyruvate dehydrogenase kinases (PDK1 and
265 PDK4) were identified as candidate UCN-01 targets that preferentially synergized with either
266 pharmacological or genetic PP2A reactivation.²⁴ Notably, immunoblot analysis revealed
267 constitutive, but highly heterogeneous AKT and PDK1-4 activity across most of the brain tumor
268 cell models used in this study (Fig. S2A). The validation results²⁴ across three established GB cell
269 lines (T98G, E98, U87MG) and two patient-derived mesenchymal type GSC lines (BT-CD133⁺,
270 BT12) showed that either genetic (PME-1 inhibition), or pharmacological (NZ-8-061 and DBK-
271 1154), PP2A reactivation sensitized the cells to selective AKT (MK-2206 or AKT1/2i) or PDK1-
272 4 inhibitors (DCA or lipoic acid).^{15,40} However, illustrative of the challenge with heterogeneity of
273 GB cell therapy responses, maximal inhibition of cell viability with kinase inhibitor/PP2A
274 reactivator doublet combinations (NZ-8-061+MK-2206, or NZ-8-061+DCA) was highly variable
275 across the cell lines, and in most cases only reached cytostatic effect i.e., about 50% inhibition
276 (Fig. S2B). As cytostasis is generally not considered to be sufficient for durable therapeutic
277 response,⁴¹ these results indicate that unlike suggested for other cancer types,¹⁹ PP2A reactivation
278 combined with either AKT or PDK1-4 inhibition cannot be used as a general strategy to kill
279 heterogeneous GB cell populations.

280 Therefore, we decided to combine both kinase inhibitors together with PP2A reactivation as a
281 triplet therapy (NZ-8-061+MK-2206+DCA). The rationale behind the triplet combination was that
282 non-genetic signaling rewiring induced by single and doublet therapies^{8,9} could be avoided by
283 simultaneous targeting of two major kinase signaling nodes and lowering of the serine/threonine
284 phosphorylation by PP2A activation. To be able to assess GB cell responses to mono, doublet, and
285 triplet therapies both quantitatively and qualitatively, we performed an Incucyte long-term
286 confluence analysis in E98 cells treated with drugs twice for one week, with one week drug
287 holiday in between (Fig. 2A). Consistent with short-term viability assay results,²⁴ the E98 cells
288 displayed cytostatic responses to monotherapies during the first 6-day dosing period (Fig. 2A).
289 However, the long-term data confirmed that E98 cells fully escaped all these monotherapy effects.
290 Further, although doublet combinations were found to be more efficient than monotherapies, the
291 cells were able to regain their proliferation after the drug wash out, indicating for only cytostatic
292 effects also with doublet combinations (Fig. 2A, see days 6-13 and 21-24). However, fully
293 supportive of our hypothesis, the triplet therapy treated cells were not able to escape the therapy
294 during the follow up, and showed clear signs of cytotoxic response after initiation of the second
295 dosing period (Fig. 2A, B). These results were validated across the heterogenous GB and GSC
296 lines by using colony growth assays. Notably, regardless of importance of AKT-PDK axis in GB
297 tumor growth,⁴² all cell lines, except for T98G, were resistant to combined AKT and PDK1-4
298 inhibition (DCA+MK-2206) (Fig. 2C, D). On the other hand, although NZ-8-061 was found to
299 potentiate effects of MK-2206 or DCA to some degree across the cell lines, the triplet therapy
300 (NZ-8-061+DCA+MK-2206) was again the only drug combination that was found effectively
301 eradicating all GB and GSC lines, and without notable effects on fibroblasts (Fig. 2C, D). Fully
302 validating PP2A reactivation as the mechanism inducing the synergistic drug interaction also in
303 the context of triplet therapy, PME-1 inhibition induced synergism with combination of MK-2206
304 and DCA (Fig. S2C).

305

306
307 **Figure 2. Triplet combination of NZ-8-061 with DCA and MK-2206 exerts a synergistic**
308 **cytotoxic effect in molecularly heterogeneous GB and MB cell lines. A)** Proliferation of E98
309 cells treated with DMSO, 7 μM MK-2206 (MK), 20 mM DCA, 10 μM NZ-8-061 (NZ) alone or
310 in doublet or triplet combinations. Data as mean ± SEM (n = 6–12 wells per condition). *P<0.05,
311 **P<0.01, ***P<0.001, Kruskal-Wallis test. **B)** Representative pictures of E98 cells from (A) at
312 day 24. **C)** Representative images of colony growth assay in T98G, E98, BT3-CD133⁺, BT12 and
313 fibroblasts under triplet combination treatment as indicated. **D)** Heat map representation of
314 quantified colony growth assay data in the indicated cell lines treated with MK-2206 (MK; 2.5
315 and 5 μM), DCA (D; 5 and 10 mM) or NZ-8-061 alone or in doublet or triplet combination. Human
316 fibroblasts were used as a negative control cell line. n=2 independent experiments. **E)** Cell
317 viability in DAOY and D283-Med cells treated with DMSO, 8 μM DBK-1160 or 10 μM NZ-8-
318 061 alone or in combination with 5 μM MK-2206 (MK), 20 mM DCA, or MK+DCA for 72 h.
319 *P<0.05, **P<0.01, ***P<0.001, Student's t-test. **F)** Representative images of colony growth
320 assay in DAOY cells under the triplet combination as indicated.


321 Medulloblastoma (MB) is another brain tumor in which AKT and PDK kinase inhibitors have
322 been proven clinically ineffective.⁴³ Therefore, we studied whether the results above could be
323 expanded from GB to MB. Reassuringly, when tested on two MB cell models, DAOY and D283-
324 Med, representing SHH subtype and Group 3, respectively, we observed similar synergistic drug
325 interaction between MK-2206, DCA and SMAPs (NZ-8-061 and DBK-1160) as across the GB
326 cell lines (Fig. 2E). In addition, in colony growth assay in DAOY cells, we confirmed that
327 combination of AKT and PDK inhibition was not sufficient for potent cytotoxicity, whereas
328 combination with SMAP DBK-1160 resulted in very potent SL phenotype (Fig. 2F).

329
330 Collectively, these results demonstrate the brain tumor cells can escape kinase/PP2A targeting
331 doublet combinations but cannot escape the triplet targeting of AKT, PDK1-4 and PP2A.
332

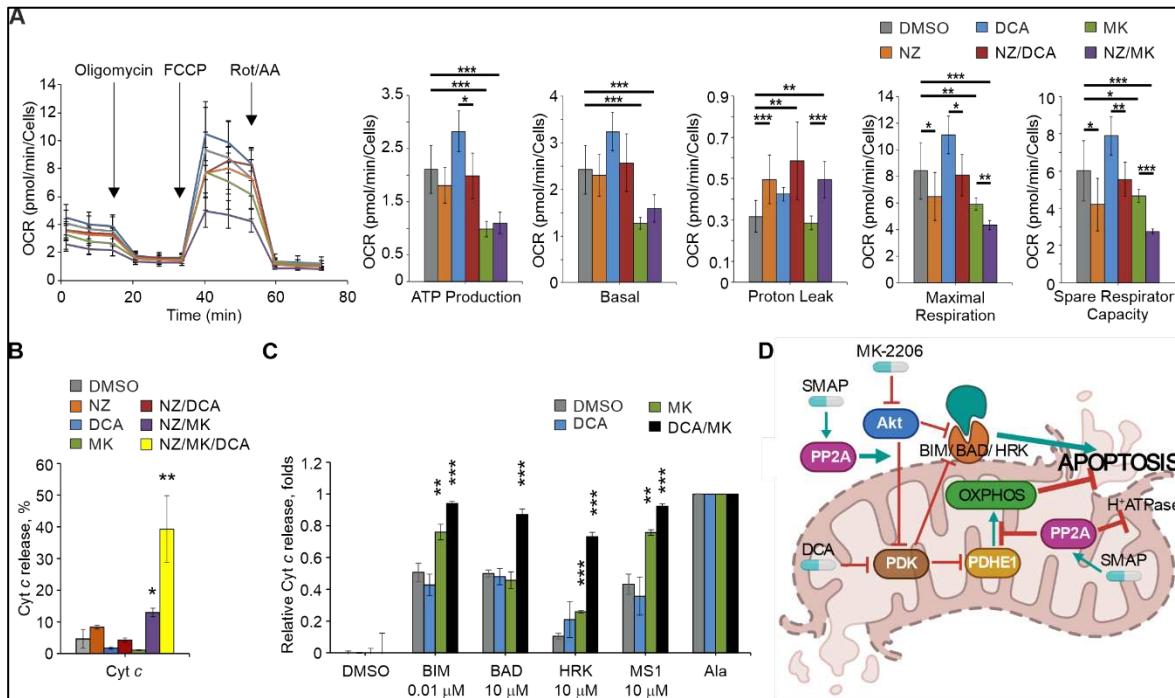
333 **The triplet therapy blunts therapy-induced signaling rewiring and potentiates apoptosis
334 induction**

335
336 Fully consistent with the therapy-induced signaling rewiring hypothesis behind inefficacy of
337 kinase inhibitor therapies,^{1,8,10} we found that while MK-2206 efficiently inhibited the AKT S473
338 phosphorylation, it simultaneously enhanced phosphorylation of a direct mitochondrial PDK1-4
339 target PDHE1 α (Pyruvate Dehydrogenase E1 Subunit Alpha 1)⁴⁰ (Fig. 3A-C). In contrast,
340 inhibition of PDK by DCA completely abolished phosphorylation of PDHE1 α S300, but enhanced
341 phosphorylation of AKT in T98G cells (Fig. 3A-C). However, combination of MK-2206 and DCA
342 was able to shut-down phosphorylation of both proteins across all cell lines (Fig. 3A-C). NZ-8-
343 061 treatment instead affected AKT and PDK signaling in very heterogeneous manner, depending
344 on the kinase inhibitor combination, and the cell line. In other cell lines except for T98G,
345 DCA+NZ-8-061 combination inhibited AKT S473 phosphorylation, but instead resulted in less
346 efficient PDHE1 α S300 inhibition than with DCA alone (Fig. 3C). On the other hand, NZ-8-061

347 did rescue the compensatory PDHE1 α S300 phosphorylation induced by MK-2206. NZ-8-061
 348 also expectedly inhibited AKT phosphorylation across the cell lines, but very interestingly also
 349 synergized with DCA in AKT inhibition (Fig. 3A-C).

350
 351 **Figure 3. Inhibition of drug-induced signaling rewiring and apoptosis sensitization by the**
 352 **triplet therapy. A)** Immunoblot assessment of phosphorylated AKT (S473), phosphorylated
 353 PDHE1 α (S300), and cleaved PARP after treatment with DCA, MK-2206 or NZ-8-061 alone or
 354 in doublet or triplet combination for 24 h in T98G, E98, BT3-CD133⁺ and BT12 cells. Normalized
 355 quantifications from (A) for (B) phosphorylated AKT (S473), (C) phosphorylated PDHE1 α , and (D)
 356 cleaved PARP. *P<0.05, **P<0.01, ***P<0.001, Student's *t*-test.

357 To correlate these findings to the apoptotic potential of the combination therapies, we examined
358 PARP cleavage from the same cellular lysates. The data reveals that neither total shutdown of
359 AKT and PDK axis (MK-2206+DCA) or NZ-8-061 at doses that synergize in drug combinations
360 (Fig. 3B, C), was sufficient for maximal apoptosis induction in any of the studied GB cell lines
361 (Fig. 3D). However, the highest apoptotic response was consistently seen across all cell lines upon
362 the triplet therapy treatment (Fig. 3D). DAOY MB cells also displayed similar therapy-induced
363 signaling rewiring between AKT and PDK pathways, but combination with DBK-1160 blunted
364 the rewiring and resulted in potent apoptosis induction (Fig. S2D).


365
366 These observations confirm prevalent therapy-induced signaling rewiring and heterogeneity in the
367 combinatorial drug responses across the GB cells. Importantly, the triplet therapy was found to
368 inhibit therapy-induced signaling rewiring, and thereby convert cytostatic kinase inhibitor
369 responses to cytotoxic effects across GB cells.

370
371 **Triplet therapy inhibits mitochondrial OXPHOS and primes to BH3 protein-mediated**
372 **apoptosis**

373
374 The results above revealed that pharmacological PP2A reactivation can impact mitochondrial
375 PDK signaling. To assess basal cellular metabolic activity, T98G cells were exposed to either MK-
376 2206, DCA or NZ-8-061 alone or in combination, and Seahorse XF Cell Mito Stress Test was
377 applied. As expected, DCA alone increased ATP production, as it reactivates the OXPHOS in the
378 mitochondria (Fig. 4A).^{40,44} On the contrary, MK-2206 reduced ATP production and
379 mitochondrial-linked respiration (Fig. 4A). Interestingly, NZ-8-061 used at SL inducing non-toxic
380 concentration had a broad-spectrum effect on mitochondrial metabolism. Especially interesting
381 drug interaction was inhibition of DCA-induced OXPHOS (Basal, Maximal, and Spare),
382 indicating that PP2A reactivation can prevent compensatory mitochondrial survival mechanism.

383 NZ-8-061 alone, and in combination with MK-2206, also profoundly increased proton leak
384 indicating for mitochondrial membrane damage (Fig. 4A). Further, in line with only cytostatic
385 effects with mono- and doublet therapies there was no mitochondrial cytochrome *c* release by any
386 single drug treatments, or with doublet combinations (Fig. 4B). In contrast, the triplet therapy
387 induced strong cytochrome *c* release (Fig. 4B). As cytochrome *c* release is controlled by BH3-
388 only proteins on the outer mitochondrial membrane,⁴⁵ we clarified the functional interaction
389 between cytoplasmic AKT, and mitochondrial PDK1-4 kinases on regulation of mitochondrial
390 apoptosis by dynamic BH3 profiling.^{26,27} BH3 profiling revealed a limited impact on apoptotic
391 priming by PDK1-4 inhibition, but a marked increase in the cells' susceptibility towards BIM,
392 HRK, and MS1 mediated cytochrome *c* release when AKT was inhibited (Fig. 4C). Notably, there
393 was a marked enhancement and broadening of BH3-mediated apoptosis priming when AKT and
394 PDK1-4 were co-inhibited, providing an additional explanation for their synergistic pro-apoptotic
395 effect (Fig. 4D). Results related to the impact of triplet therapy on BH3 profiling were inconclusive
396 presumably due to high apoptotic activity (data not shown).

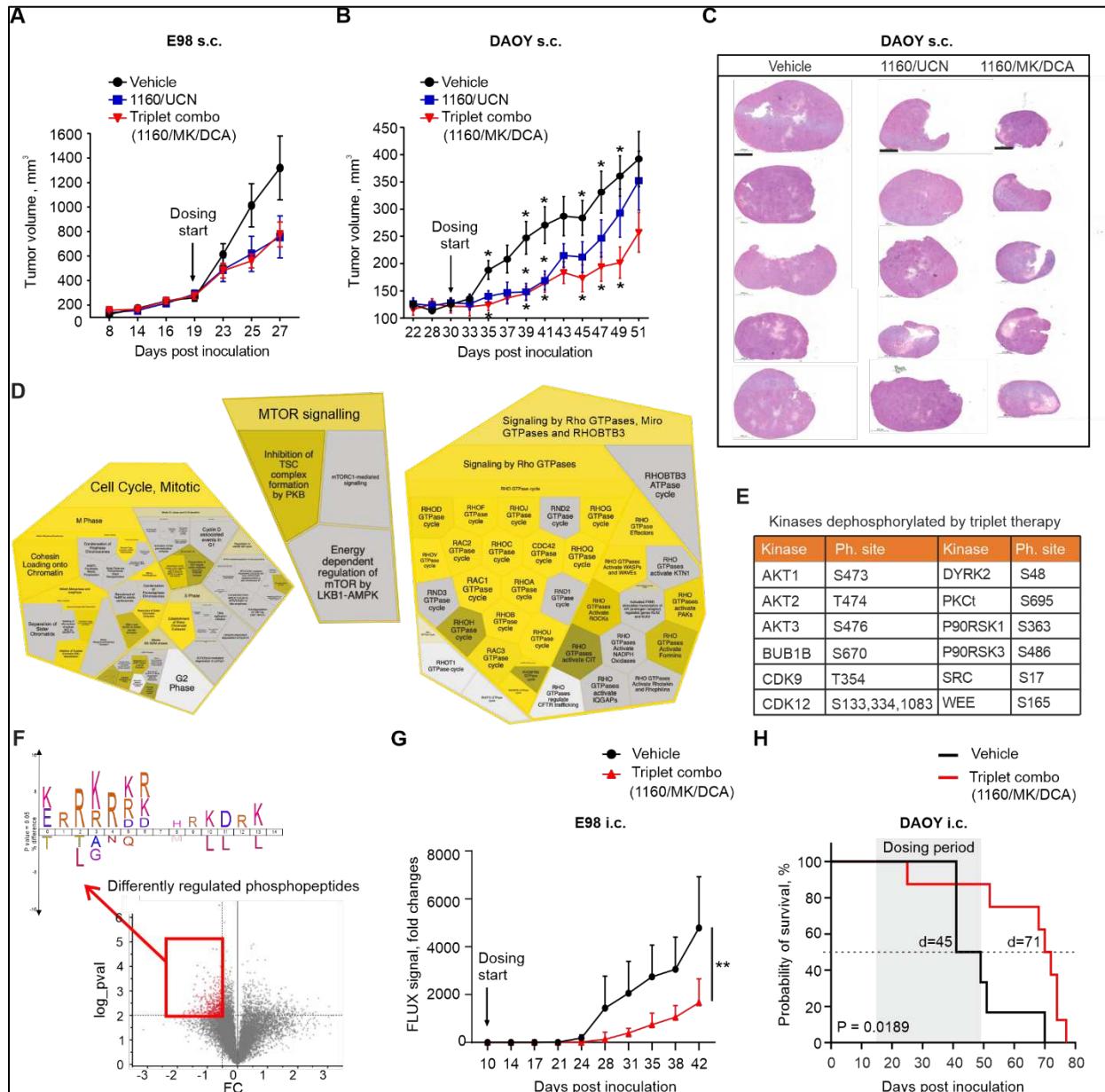
397
398 Collectively, these data reveal the mechanistic basis for the high apoptotic activity of the triplet
399 therapy. We conclude that the cytotoxicity is mediated by PP2A-elicited inhibition of the
400 compensatory OXPHOS and induction of inner mitochondrial membrane proton leakage,
401 combined with synergism between MK-2206 and DCA on BH3 priming.

Fig. 4. Triplet therapy inhibits mitochondrial OXPHOS and primes to BH3 protein-mediated apoptosis **A)** Mitochondrial stress test Seahorse profile and mitochondrial parameters in T98G cells treated with 10 mM DCA or 7 μ M MK-2206 (MK) alone or in combination with 10 μ M NZ-8-061 (NZ) for 24 h. *P<0.05, **P<0.01, ***P<0.001, Student's *t*-test. **B)** Cytochrome *c* release from T98G cells treated with 5 μ M MK-2206 (MK), 20 mM DCA or 8 μ M NZ-8-061 (NZ) alone or in doublet or triplet combination for 24 h. *P<0.05, **P<0.01, ***P<0.001, Student's *t*-test. **C)** Priming of T98G cells to apoptosis induction by indicated BH3 peptides. T98G cells treated with 5 μ M MK-2206 (MK), 20 mM DCA alone or combination for 24 h. *P<0.05, **P<0.01, ***P<0.001, Student's *t*-test. **D)** Schematic illustration of mitochondrial mechanisms for the triplet therapy-induced apoptosis. Inhibition of PDK1-4 induces compensatory OXPHOS but this is blunted by SMAP treatment which additionally induces mitochondrial membrane proton leakage. PDK1-4 and AKT inhibition synergizes on BH3-mediated apoptosis priming and SMAP treatment inhibits signaling rewiring between the kinases. Whereas in response to doublet drug combinations cells can induce some compensatory survival mechanism, these are simultaneously inhibited in triplet therapy treated cells resulting in terminal apoptosis induction.

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

419 Validation of therapeutic potential of the triplet therapy in orthotopic GB and MB models

420
421 *In vivo* relevance of the results was investigated in subcutaneous and intracranial models using
422 both E98 GB cells and DAOY MB cells. First, we wanted to provide *in vivo* validation to AToMI
423 screening results²⁴ that the SL effects of SMAPs with UCN-01 can be recapitulated by
424 combination of AKT and PDK inhibition. As UCN-01 does not cross the BBB, these first *in vivo*
425 experiments were performed using subcutaneous xenografts, and instead of NZ-8-061, we used
426 DBK-1160 as a SMAP due to its better pharmacokinetic profile based on our previous studies


427 (data not shown). Fully validating the *in vitro* results, the orally dosed triplet therapy (DBK-
428 1160+MK-2206+DCA) was equally efficient, or even superior to combination of DBK-1160 and
429 UCN-01 (Fig. 5A, B). The robust *in vivo* antitumor effect of the triplet therapy in DAOY model
430 was readily seen also when comparing the sizes of the excised tumors (Fig. 5C).

431
432 To molecularly profile the triplet therapy effect in the treated tumors, the vehicle and the triplet
433 therapy treated tumors (n=5 for both) were subjected to MS-phosphoproteomics analysis. Upon
434 filtering the data for those phosphopeptides there were quantifiable from at least three tumors per
435 group, and with FDR of 5% for significance of the difference in phosphopeptide expression
436 between the groups (Table S1), the Reactome pathway analysis validated the impact triplet therapy
437 on both apoptosis and cell cycle, but on the other hand revealed a very strong enrichment of targets
438 involved in “Signaling by Rho GTPases” (Fig. 5D, S3, Table S2). Furthermore, fully consistent
439 with our model that efficient therapy response in brain tumors requires wide-spread kinase
440 inhibition, we found inhibition of phosphorylation of several kinases from the triplet therapy
441 treated tumors (Fig. 5E, Table S1). Notably, among those were inhibition of the phosphorylation
442 of the activation loop of AKT1, 2 and 3 (Fig. 5E), which together with enrichment of mTOR
443 signaling based on phosphopeptide data (Fig. 5E, Table S1), perfectly supports our mechanistic
444 data demonstrating importance of the shutdown of rewiring to AKT signaling (Fig. 3). Inhibition
445 of AKT signaling was evident also based on kinase target motif enrichment analysis where
446 canonical AKT target motifs (R-x-R-x-x-S/T and R-x-x-S/T) were clearly enriched in the
447 phosphopeptides downregulated by the triplet therapy (Fig. 5F). Beside AKT, among the
448 dephosphorylated kinases were also transcriptional elongation promoting kinase CDK9, that is
449 essential for brain tumor-initiating cells,⁴⁶ and a synergistic drug target with SMAPs.²¹
450 Interestingly, but consistent with the therapy-induced non-genetic signaling rewiring, we also
451 identified a number of phosphopeptides upregulated in triplet therapy treated tumors (Fig. 5F
452 upper right corner, Table S1). Related to kinase signaling, we noticed that several kinases involved

453 in the pro-apoptotic JNK and p38 MAPK signaling were hyperphosphorylated in the treated
454 tumors (Fig. S4), and both JNK1 and JNK2 were among the top enriched kinase target motifs
455 based on NetworKIN analysis (Fig. S4A). As both JNK and p38 are involved apoptosis regulation
456 by BH3 proteins,⁴⁷ these data provide a plausible link between the proposed mechanism for triplet
457 therapy induced brain tumor cell killing, and the observed *in vivo* therapeutic effects.

458

459 Finally, the triplet therapy was tested in intracranial model with luciferase-expressing E98 cells
460 that carry characteristics of GSCs and have very infiltrative growth pattern *in vivo*.²² In addition
461 to these faithful human GB characteristics, E98 cells displayed indistinguishable triplet therapy
462 response as compared to patient derived GSC cell lines *in vitro* (Fig. 2). Importantly, we observed
463 significant inhibition of tumor growth by orally dosed triplet therapy initiated upon appearance of
464 detectable tumors at day 10 (Fig. 5G). For DAOY cells, we relied on mouse survival as the end-
465 point measurement of the therapy effect, since no tumor growth visualization approaches were
466 available for these tumors. Remarkably, more than 50% of the vehicle treated mice died during
467 the therapy, whereas in the triplet therapy group only one mouse had to be sacrificed due to local
468 neurological symptoms (Fig. 5H). Following cessation of therapy after 30 days, due to local
469 regulations, we observed a significant increase in mouse survival in the triplet therapy group,
470 associated with 26-day prolongation of the median probability of survival (Fig 5H). No obvious
471 toxicities were observed during triplet therapy treatment periods in either subcutaneous or
472 intracranial models (Fig. S5). However, as expected, the SMAP treatment resulted in reversible
473 increase in liver weight, as has been reported earlier.³⁰

474 **Fig. 5. Validation triplet combination therapy *in vivo*.** Quantification of tumor volume from
475 E98 (A) and DAOY (B) s.c. tumors in mice treated with DBK-1160 (1160; 100 mg/kg twice a
476 day) and UCN-01 (UCN; 3 mg/kg once a day) or MK-2206 (MK; 100 mg/kg every second day)
477 and DCA (100 mg/kg twice a day), or vehicle control. Each group had n=8 mice in E98, n=10
478 mice in DAOY experiments. *P<0.05, two-way ANOVA test. C) Representative images of H&E
479 staining DAOY s.c. tumors from (B, n=5). Scale bar, 1000 μ m. D) Reactome processes based on
480 significantly (*P<0.05) regulated phosphopeptides from triplet therapy treated DAOY xenografts
481 in (B). E) Kinases dephosphorylated by the triplet therapy in DAOY xenografts from (B). F)
482 Volcano plot showing differentially regulated phosphopeptides from (B). Icelogo kinase motif
483 enrichment analysis from the dephosphorylated peptides (in red) (**P≤0.01, log2FC≤-0.5)
484 revealed enrichment of canonical AKT sites (R-x-R-x-x-S/T and R-x-x-S/T). G) Bioluminescence
485 follow up of an orthotopic E98 glioblastoma tumor comparing the vehicle or triplet combination
486 therapies (DBK-1160 (100 mg/kg twice a day) + MK-2206 (100 mg/kg every second day) + DCA
487 (100 mg/kg twice a day)). Mean \pm SEM. n=10 mice per group. **P<0.01, Student's *t*-test. H)
488 Kaplan-Meier survival analysis of xenograft orthotopic DAOY model treated with triplet
489 combination (DBK-1160 (100 mg/kg twice a day) + MK-2206 (100 mg/kg every second day) +
490 DCA (100 mg/kg twice a day)). Vehicle n=6, Triplet combo n=8 mice. *P<0.05, Mantel-Cox test.

492 **DISCUSSION**

493

494 Kinase inhibitor resistance of brain tumors is a notable unmet clinical challenge.^{4,17,43} Considering
495 that hyperactivated kinase signaling is one of the hallmarks of GB,^{3,11} clinical resistance of GB to
496 kinase inhibitors constitutes also a clear mechanistic enigma. There is a strong theoretical basis
497 for synergistic activities of simultaneous kinase inhibition and phosphatase activation in
498 phosphorylation-dependent cancers,^{10,20} but the therapeutic impact of such combinatorial
499 approach in brain cancers has been thus far unclear. Here we demonstrate that heterogeneous GB
500 and MB cell lines have astonishing capacity to escape combination of inhibition of one kinase and
501 PP2A reactivation. However, our results clearly demonstrate that kinase inhibitor tolerance in
502 brain cancers can be overcome by targeting simultaneously three phosphorylation-dependent
503 signaling nodes: AKT, PDK1-4 and PP2A.

504

505 MKIs provide an attractive approach to simultaneously inhibit several oncogenic kinases, and
506 some MKIs (e.g., Sunitinib, PKC412), are clinically used as cancer therapies.⁴⁸ However, similar
507 to more selective kinase inhibitors, all tested MKIs have thus far failed in GB clinical trials.⁴ To
508 better understand GB relevant STS target kinases, we developed the AToMI approach²⁴ and found
509 several kinases which synergized with PP2A reactivation by either PME-1 inhibition or by
510 SMAPs. Notably, the kinases which synergized with PP2A reactivation represent the commonly
511 hyper activated pathways in GB. For example, AKT pathway is one of the most dysregulated
512 pathways in GB whereas PDK1-4 kinases have a critical role in GB mitochondrial glycolysis.
513 However, AKT and PDK1-4 targeting monotherapies have failed to demonstrate significant
514 survival effects in clinical trials for GB.^{40,49-51} Our subsequent kinase inhibitor combination
515 experiments, using inhibitors at doses that inhibit their target kinases, validate the ineffectiveness
516 of even combinatorial targeting of AKT and PDK1-4 in eradicating heterogeneous GB cell lines.
517 This was regardless that the therapy-induced signaling rewiring between AKT and PDK pathways

518 was abolished when MK-2206 and DCA were combined. Regardless of importance of AKT-PDK
519 axis in GB tumor growth,⁴² these results challenge the concept that targeting of AKT-PDK1-4 axis
520 would be sufficient for GB therapy. Instead, our data undeniably demonstrate the triplet therapy
521 including, in addition to AKTi and PDK1-4i, also PP2A reactivation eradicates all tested cell
522 models.

523

524 Collectively, our data identity a strategy for killing of heterogeneous brain tumor cells based on
525 triplet kinase/phosphatase targeting of critical GB and MB signaling nodes. Notably, our results
526 are relevant across heterogeneous GB and MB models including patient-derived GSCs. Based on
527 our results, the uniform kinase inhibitor resistance observed in GB and MB clinical trials,⁴ could
528 be to significant extent contributed to non-genetic PP2A inhibition by PME-1.³² In this regard, the
529 current results encourage future brain tumor clinical trials in a significant proportion of brain
530 cancer patients with low tumor expression of PME-1²³ with combinations of clinically tested AKT
531 and PDK1-4 inhibitors.^{16,49,51} Importantly, diagnostic definition of PME-1 status would greatly
532 simplify biomarker-based analysis of PP2A activity in brain tumors because it sidesteps the need
533 for analyzing all the possibly relevant PP2A subunits. Finally, our results strongly indicate that
534 rapidly developing PP2A reactivation therapies²⁰ will constitute an attractive future therapy option
535 for brain tumors when combined with multi-kinase inhibition.

536

537 **Funding:** Sigrid Juselius Foundation (J.W.); K. Albin Johanssons Foundation (J.W.); Aamu
538 Pediatric Cancer Foundation (201900013, O.V.D.); Turku Doctoral Programme of Molecular
539 Medicine (J.M.); Academy of Finland (T.A.); Finnish Cancer Foundation (180157, J.W.).

540

541 **Acknowledgements:** Authors want to acknowledge Biocenter Finland infrastructures, especially
542 Turku Proteomics Facility, and Genome Editing Core at Turku Bioscience Centre, High
543 Throughput Biomedicine Unit at Institute for Molecular Medicine Finland, Turku Center for

544 Disease Modelling at University of Turku. Personal acknowledges to Nikhil Gupta for help with
545 nucleofection technique, William Eccleshall and Mung Kwan Long for help with Seahorse
546 experiments, Kari Kurppa for expert help with Incucyte experiments and for helpful discussions,
547 Johanna Ivaska for useful comments on the manuscript, Taina Kalevo-Mattila for excellent
548 technical support as well as the entire Turku Bioscience personnel for excellent working
549 environment.

550

551 **Authorship:** Conception and design: O.V.D., J.M., A.K., J.W. Development of methodology:
552 O.V.D., R.H., O.K., J.W. Experimental work: O.V.D., J.M., X.Q., M.T., C.S-F., K.W., R.K., M.P.
553 Bioinformatic analysis: M.J., L.Y., O.K., T.A. In vivo work: O.V.D., J.M., R.H. Resources: M.O.
554 Writing: O.V.D., J.M., T.A., J.W.

555

556 **Conflict of Interest:** Authors declare no competing interests.

557

558 **Data and materials availability:** All data associated with this study are present in the paper or
559 the Supplementary Materials.

560 **References**

- 561 1. Cohen, P., Cross, D. & Janne, P.A. Kinase drug discovery 20 years after imatinib: progress
562 and future directions. *Nat Rev Drug Discov* **20**, 551-569 (2021).
- 563 2. Attwood, M.M., Fabbro, D., Sokolov, A.V., Knapp, S. & Schiöth, H.B. Trends in kinase drug
564 discovery: targets, indications and inhibitor design. *Nat Rev Drug Discov* **20**, 839-861
565 (2021).
- 566 3. Brennan, C.W. *et al.* The somatic genomic landscape of glioblastoma. *Cell* **155**, 462-77
567 (2013).
- 568 4. Cruz Da Silva, E., Mercier, M.C., Etienne-Selloum, N., Dontenwill, M. & Choulier, L. A
569 Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials.
570 *Cancers (Basel)* **13**(2021).
- 571 5. Dunn, G.P. *et al.* Emerging insights into the molecular and cellular basis of glioblastoma.
572 *Genes Dev* **26**, 756-84 (2012).
- 573 6. Eskilsson, E. *et al.* EGFR heterogeneity and implications for therapeutic intervention in
574 glioblastoma. *Neuro Oncol* **20**, 743-752 (2018).
- 575 7. Shen, S., Vagner, S. & Robert, C. Persistent Cancer Cells: The Deadly Survivors. *Cell* **183**,
576 860-874 (2020).
- 577 8. Konieczkowski, D.J., Johannessen, C.M. & Garraway, L.A. A Convergence-Based
578 Framework for Cancer Drug Resistance. *Cancer Cell* **33**, 801-815 (2018).
- 579 9. Smith, M.P. & Wellbrock, C. Molecular Pathways: Maintaining MAPK Inhibitor Sensitivity
580 by Targeting Nonmutational Tolerance. *Clin Cancer Res* **22**, 5966-5970 (2016).
- 581 10. Westerman, J. Targeted therapies don't work for a reason; the neglected tumor
582 suppressor phosphatase PP2A strikes back. *FEBS J* **285**, 4139-4145 (2018).
- 583 11. Gimple, R.C., Bhargava, S., Dixit, D. & Rich, J.N. Glioblastoma stem cells: lessons from the
584 tumor hierarchy in a lethal cancer. *Genes Dev* **33**, 591-609 (2019).
- 585 12. Patel, A.P. *et al.* Single-cell RNA-seq highlights intratumoral heterogeneity in primary
586 glioblastoma. *Science* **344**, 1396-401 (2014).
- 587 13. Hoxhaj, G. & Manning, B.D. The PI3K-AKT network at the interface of oncogenic signalling
588 and cancer metabolism. *Nature Reviews Cancer* **20**, 74-88 (2020).
- 589 14. Agnihotri, S. & Zadeh, G. Metabolic reprogramming in glioblastoma: the influence of
590 cancer metabolism on epigenetics and unanswered questions. *Neuro Oncol* **18**, 160-72
591 (2016).
- 592 15. Michelakis, E.D. *et al.* Metabolic modulation of glioblastoma with dichloroacetate. *Sci
593 Transl Med* **2**, 31ra34 (2010).
- 594 16. Wang, Z., Peet, N.P., Zhang, P., Jiang, Y. & Rong, L. Current Development of Glioblastoma
595 Therapeutic Agents. *Mol Cancer Ther* **20**, 1521-1532 (2021).
- 596 17. Alexandru, O. *et al.* Receptor tyrosine kinase targeting in glioblastoma: performance,
597 limitations and future approaches. *Contemp Oncol (Pozn)* **24**, 55-66 (2020).
- 598 18. Furnari, F.B., Cloughesy, T.F., Cavenee, W.K. & Mischel, P.S. Heterogeneity of epidermal
599 growth factor receptor signalling networks in glioblastoma. *Nat Rev Cancer* **15**, 302-10
600 (2015).
- 601 19. Allen-Petersen, B.L. *et al.* Activation of PP2A and Inhibition of mTOR Synergistically
602 Reduce MYC Signaling and Decrease Tumor Growth in Pancreatic Ductal
603 Adenocarcinoma. *Cancer Res* **79**, 209-219 (2019).
- 604 20. Vainonen, J.P., Momeny, M. & Westerman, J. Druggable cancer phosphatases. *Sci Transl
605 Med* **13**(2021).
- 606 21. Vervoort, S.J. *et al.* The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be
607 targeted therapeutically in cancer. *Cell* **184**, 3143-3162 e32 (2021).

608 22. Merisaari, J. *et al.* Monotherapy efficacy of blood-brain barrier permeable small molecule
609 reactivators of protein phosphatase 2A in glioblastoma. *Brain Communications* **2**(2020).
610 23. Kaur, A. *et al.* PP2A Inhibitor PME-1 Drives Kinase Inhibitor Resistance in Glioma Cells.
611 *Cancer Res* **76**, 7001-7011 (2016).
612 24. Denisova, O.V. *et al.* Development of Actionable Targets of Multi-kinase Inhibitors
613 (AToMI) screening platform to dissect kinase targets of staurosporines in glioblastoma
614 cells. *bioRxiv* (2022).
615 25. Tian, X. *et al.* Evolution of telomere maintenance and tumour suppressor mechanisms
616 across mammals. *Philos Trans R Soc Lond B Biol Sci* **373**(2018).
617 26. Koch, R. *et al.* Biomarker-driven strategy for MCL1 inhibition in T-cell lymphomas. *Blood*
618 **133**, 566-575 (2019).
619 27. Ryan, J., Montero, J., Rocco, J. & Letai, A. iBH3: simple, fixable BH3 profiling to determine
620 apoptotic priming in primary tissue by flow cytometry. *Biol Chem* **397**, 671-8 (2016).
621 28. Qin, S. *et al.* Cucurbitacin B induces inhibitory effects via CIP2A/PP2A/Akt pathway in
622 glioblastoma multiforme. *Mol Carcinog* **57**, 687-699 (2018).
623 29. Puustinen, P. *et al.* PME-1 Protects Extracellular Signal-Regulated Kinase Pathway Activity
624 from Protein Phosphatase 2A-Mediated Inactivation in Human Malignant Glioma. *Cancer*
625 *Research* **69**, 2870-2877 (2009).
626 30. Sangodkar, J. *et al.* Activation of tumor suppressor protein PP2A inhibits KRAS-driven
627 tumor growth. *J Clin Invest* **127**, 2081-2090 (2017).
628 31. Akimov, Y. & Aittokallio, T. Re-defining synthetic lethality by phenotypic profiling for
629 precision oncology. *Cell Chem Biol* **28**, 246-256 (2021).
630 32. Kaur, A. & Westermarck, J. Regulation of protein phosphatase 2A (PP2A) tumor
631 suppressor function by PME-1. *Biochem Soc Trans* **44**, 1683-1693 (2016).
632 33. Leonard, D. *et al.* Selective PP2A Enhancement through Biased Heterotrimer Stabilization.
633 *Cell* **181**, 688-701 e16 (2020).
634 34. Morita, K. *et al.* Allosteric Activators of Protein Phosphatase 2A Display Broad Antitumor
635 Activity Mediated by Dephosphorylation of MYBL2. *Cell* **181**, 702-715 e20 (2020).
636 35. Gaetani, M. *et al.* Proteome Integral Solubility Alteration: A High-Throughput Proteomics
637 Assay for Target Deconvolution. *J Proteome Res* **18**, 4027-4037 (2019).
638 36. Sablina, A.A. & Hahn, W.C. SV40 small T antigen and PP2A phosphatase in cell
639 transformation. *Cancer Metastasis Rev* **27**, 137-46 (2008).
640 37. Vit, G. *et al.* Cellular toxicity of iHAP1 and DT-061 does not occur through PP2A-B56
641 targeting. *bioRxiv*, 2021.07.08.451586 (2021).
642 38. Klaeger, S. *et al.* The target landscape of clinical kinase drugs. *Science* **358**(2017).
643 39. Gani, O.A. & Engh, R.A. Protein kinase inhibition of clinically important staurosporine
644 analogues. *Nat Prod Rep* **27**, 489-98 (2010).
645 40. Stacpoole, P.W. Therapeutic Targeting of the Pyruvate Dehydrogenase
646 Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer. *J Natl Cancer Inst*
647 **109**(2017).
648 41. Rixe, O. & Fojo, T. Is cell death a critical end point for anticancer therapies or is cytostasis
649 sufficient? *Clin Cancer Res* **13**, 7280-7 (2007).
650 42. Chae, Y.C. *et al.* Mitochondrial Akt Regulation of Hypoxic Tumor Reprogramming. *Cancer*
651 *Cell* **30**, 257-272 (2016).
652 43. Wen, J. & Hadden, M.K. Medulloblastoma drugs in development: Current leads, trials and
653 drawbacks. *Eur J Med Chem* **215**, 113268 (2021).
654 44. Atas, E., Oberhuber, M. & Kenner, L. The Implications of PDK1-4 on Tumor Energy
655 Metabolism, Aggressiveness and Therapy Resistance. *Front Oncol* **10**, 583217 (2020).

656 45. Potter, D.S. & Letai, A. To Prime, or Not to Prime: That Is the Question. *Cold Spring Harb*
657 *Symp Quant Biol* **81**, 131-140 (2016).

658 46. Xie, Q. *et al.* RBPJ maintains brain tumor-initiating cells through CDK9-mediated
659 transcriptional elongation. *J Clin Invest* **126**, 2757-72 (2016).

660 47. Dhanasekaran, D.N. & Reddy, E.P. JNK signaling in apoptosis. *Oncogene* **27**, 6245-51
661 (2008).

662 48. Montoya, S. *et al.* Targeted Therapies in Cancer: To Be or Not to Be, Selective. *Biomedicines* **9**(2021).

664 49. Kaley, T.J. *et al.* Phase II trial of an AKT inhibitor (perifosine) for recurrent glioblastoma. *J*
665 *Neurooncol* **144**, 403-407 (2019).

666 50. Wen, P.Y. *et al.* Buparlisib in Patients With Recurrent Glioblastoma Harboring
667 Phosphatidylinositol 3-Kinase Pathway Activation: An Open-Label, Multicenter, Multi-
668 Arm, Phase II Trial. *J Clin Oncol* **37**, 741-750 (2019).

669 51. Dunbar, E.M. *et al.* Phase 1 trial of dichloroacetate (DCA) in adults with recurrent
670 malignant brain tumors. *Invest New Drugs* **32**, 452-64 (2014).

671