

Volumetric bioluminescence imaging of cellular dynamics with deep learning based light-field reconstruction

Luis Felipe Morales-Curiel¹, Gustavo Castro-Olvera¹, Adriana Gonzalez¹, Lynn Lin¹, Malak El-Quessny¹, Montserrat Porta-de-la-Riva¹, Jacqueline Severino², Laura Battle², Diego Ramallo¹, Verena Ruprecht^{2,3}, Pablo Loza-Alvarez¹, and Michael Krieg^{1,*}

¹ ICFO, Institut de Ciències Fotòniques, Castelldefels, Spain

² Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain

³ Universitat Pompeu Fabra (UPF), Barcelona, Spain

* Correspondence to michael.krieg@icfo.eu

The application of genetically encoded fluorophores for microscopy has afforded one of the biggest revolutions in the biosciences. Bioluminescence microscopy is an appealing alternative to fluorescence microscopy, because it does not depend on external illumination, and consequently does neither produce spurious background autofluorescence, nor perturb intrinsically photosensitive processes in living cells and animals. The low quantum yield of known luciferases, however, limit the acquisition of high signal-noise images of fast biological dynamics. To increase the versatility of bioluminescence microscopy, we present an improved low-light microscope in combination with deep learning methods to increase the signal to noise ratio in extremely photon-starved samples at millisecond exposures for timelapse and volumetric imaging. We apply our method to image subcellular dynamics in mouse embryonic stem cells, the epithelial morphology during zebrafish development, and DAF-16 FoxO transcription factor shuttling from the cytoplasm to the nucleus under external stress. Finally, we concatenate neural networks for denoising and light-field deconvolution to resolve intracellular calcium dynamics in three dimensions of freely moving *Caenorhabditis elegans* with millisecond exposure times. This technology is cost-effective and has the potential to replace standard optical microscopy where external illumination is prohibitive.

Main

1 Fluorescence microscopy has enabled unprecedented discoveries and became the major imaging
2 modality in molecular and cellular bioscience. However, significant autofluorescence of the native
3 tissues¹ often obscures and blurs the signal from specific labels in biological samples², while in-
4 trinsic photosensitivity of cells and animals, such as *Caenorhabditis elegans*³, planaria⁴ or mouse
5 preimplantation embryos⁵, interferes with imaging experiments that require an excitation light
6 source. In addition, the excitation of a fluorescent protein (e.g. GFP, GCaMP) is often incompat-
7 ible with an experimental design, eg. the simultaneous emission of a cyan FP (em 470nm), or if
8 the absorption spectrum of the chromophore overlaps with that of a photosensitizers (e.g. 470nm
9 for Channelrhodopsin⁶ and Tulips⁷). Further, the high excitation intensities that are necessary to
10 obtain fluorescent images with extreme photon-starved samples render fluorescence microscopy
11 potentially phototoxic and limit the lifetime of the fluorescent probe⁸. These drawbacks can be
12 overcome by implementing bioluminescent probes as contrast labels, that can be genetically en-
13 coded to tag any protein of interest, and do not need an external excitation light source. However,
14 traditional bioluminescent probes have a slow catalytic turnover⁹ and require a chemical cofactor,
15 e.g. luciferin, as a photon source, which becomes oxidized prior to photon emission. More effi-
16 cient luciferases based on deep sea shrimp and termed Nanolanters, have been engineered^{10,11}. In
17 these enzymes, the luciferase moiety is fused to a fluorescent protein, which increases the quantum
18 yield and bears the potential to select the emission wavelength. Thus, a whole spectrum of light-
19 emitting proteins can be tailored to a specific need. However, they require chemicals with a poor
20 bioavailability due to low solubility in water, which greatly limits the quantum yield and concomi-
21 tant signal-to-noise ratio (SNR). Thus, to obtain high-SNR images calls for long exposure times
22 in the seconds or even tens of seconds scale which is incompatible with fast biological dynamics.
23 Because bioluminescence imaging is widely applied for drug screening and cancer research¹², long
24 exposure times greatly limit the throughput.
25 Deep learning-based neural networks have the potential to transform microscopy research and

26 have aided the design of advanced optical lenses¹³, autofocus¹⁴, superresolution¹⁵, denoising¹⁶
27 and speed up complex deconvolution procedures^{17,18} and postprocessing pipelines^{19,20}. Here, we
28 overcome several significant challenges, and demonstrate the use of bioluminescence as an imag-
29 ing modality in the millisecond range. We constructed a new microscope with an shortened, opti-
30 mized optical path, light field detection and single photo resolution in combination with machine
31 learning that takes advantage of the development of novel cofactor chemistry^{21,22} and transgenic
32 animals. Because an accurate inference from a neural network, high-quality training data of bio-
33 logical samples is needed, we built training and inference pipelines deep learning models using two
34 concatenated neural networks with the aim to increase the signal-noise ratio and reconstruct four
35 dimensional information from a time series of 2D images. Despite the apparent complexity of our
36 approach, the individual components are easy to construct, commercially available and pretrained
37 neural networks are at everyone's disposal. We demonstrate this approach to image nuclear dy-
38 namics in mouse embryonic stem cells, 3D imaging of zebrafish epithelial tissues and whole-body
39 calcium imaging in muscles of free moving *C. elegans*.

40 Results

41 Due to the low quantum yield of luciferases, standard optical microscopes are not suitable to pro-
42 duce bioluminescent images and dedicated instruments are commonly used²³. Indeed, we were
43 not able to observe any signal from Nanolanters transfected into HeLa cells on a commercial
44 compound microscope with the maximum exposure time of an sCMOS camera (not shown). To
45 increase the photon collection efficiency, we thus conceived a microscope with an ultra-compact
46 optical axis, and with a single photon-resolving qCMOS camera (Fig. 1a). With this new setup,
47 we were able to obtain high SNR images for cells transfected with Nanolanter fusions to clathrin,
48 actin and the plasma membrane marker lyn¹¹ and supplemented with the cofactor Hikarazine (see
49 Methods,²¹) for exposure times down to 2s (Fig. 1b, top row). Importantly, even without any
50 further treatment, these images were comparable to fluorescence images acquired at a similar ex-

51 posure time at higher magnification (Fig. 1b, bottom row) on a conventional, epifluorescence mi-
52 croscope. As expected, no autofluorescence was observed in the luminescence images due to the
53 absence of external excitation light source, in contrast to the fluorescence images (Fig. 1b). We
54 next established that the optimized bioluminescence imaging protocol enhances the photon collec-
55 tion efficiency in living animals. We created a transgenic *C. elegans* line that expresses a turquoise
56 Nanolatern in their body wall muscles²⁴ and immobilized individual animals for imaging on a
57 agar pad in presence of the luciferin. In agreement with our results from tissue culture cells, we
58 observed a strong specific signal at longer exposure time and even for exposure times down to 50
59 ms (Fig. 1c). Taken together, these technical improvements dramatically augmented the quantity
60 of photons detected allowing us to significantly reduce the exposure time without additional post-
61 processing. Capturing the ability to record ultra-photon starved samples, we refer to our setup as
62 ‘LowLiteScope’.

63 Inspired by these positive results, we set out to test the advantages of low-background aut-
64 ofluorescence recordings, and established transgenic *C. elegans* animals that express a green en-
65 hanced Nanolatern exclusively in the touch receptor neurons (TRNs). High resolution imaging of
66 these neurons is often precluded by the abundant autofluorescence that emanates from the ubiqui-
67 tous gut granules under epifluorescent illumination (Fig. 1e). This is of particular concern in old
68 animals²⁵, in which the signal of the autofluorescence can become more intense than the specific
69 label, which makes it difficult to distinguish between both. Indeed, the fluorescent images derived
70 from animals expressing GFP in TRNs on a standard epifluorescence microscope showed exten-
71 sive out of focus light due to background autofluorescence of the gut (Fig. 1e). In contrast, living
72 animals that express the TRN::luciferase and were supplied with the optimized cofactor, a single,
73 specific signal is visible from the monopolar dendrites of these neurons, and no spurious autoflu-
74 rescence can be seen (Fig. 1f). However, because of the small size of the TRNs, the obtained SNR
75 is very low at exposure times as short as 1s. Because there is no noise inherent to the sample (only
76 from the detector), we reasoned that prior knowledge of the underlying sample structure should fa-

77 cilitate superior image reconstruction with dramatically improved SNR using deep learning-based
78 content aware image restoration (CARE) algorithms¹⁶. To clean up these images and increase the
79 effective SNR, we combined these bioluminescent microscopy images with convolutional neural
80 network that transforms a degraded image to a desired high quality target given a proper training
81 with a known signal distribution¹⁶.

82 Because CARE models for *C. elegans* and bioluminescence are in-existent, we first devel-
83 oped a generalizable training pipeline to predict high quality, ground truth images from noisy
84 input. We thus collected image pairs derived from fluorescence microscopy acquired at extremely
85 low exposure times reflecting the noisy input with poor SNR and used high SNR images from
86 long exposure times as the ground truth target (Fig. 1d i). The training data set consisted of an-
87 imals transgenic for mTurquoise body wall muscles, which showed high specific signal and lack
88 of any visible autofluorescence within the region of interest. To achieve a high variety of body
89 postures and thus 2D intensity distributions, we recorded the fluorescence signal from the body
90 wall muscles in freely moving animals. After data collection and preprocessing, we varied the hy-
91 perparameters to find the optimal network configuration^{16,26} specific for our training dataset (Fig.
92 S1, 1d ii), and evaluated its out-of-sample performance on unseen noisy images using the struc-
93 tural similarity (SSIM) and residual squared errors (RSE) metrics for training quality (Fig. 1d iii,
94 Supplementary Fig. S1 and Methods). We then built an inference pipeline with the model showing
95 the highest confidence and lowest error to predict the ground truth from the noisy bioluminescent
96 images which turned out to be completely clean and devoid of artifacts (Fig. 1d iv). When we
97 applied this model to degraded bioluminescent images derived from transgenic TRNs in aged an-
98 imals, our model was able to effectively enhance the SNR and cleanly visualize the neurons for
99 further inspection (Fig. 1g). Importantly, this approach is not limited to a specific neuron in *C. el-*
100 *egans*, and we have successfully enhanced the degraded bioluminescent images acquired for ASH,
101 PQR and vGLUT EAT-4 expressing neurons in the head (Fig. 1h, ^{24,27}). Strikingly, we found satis-
102 factory performance of the model with exposure times as low as 200 ms taken on ASH, a neuron in

103 the head of *C. elegans* with a diffraction-limited axon caliper. Taken together, the combination of
104 optimized optical path, cofactors^{21,28} and dedicated machine learning algorithms from the CARE
105 family enabled the acquisition of high-SNR images at exposure times as low as 50 ms in living
106 animals and tissue culture. Importantly, we showed that we could achieve high-performance with
107 a small, but diversified training dataset, that resulted in a generalizable and transferrable model to
108 infer noiseless images from severely degraded inputs of different cellular structures in *C. elegans*.
109 Consequently, this allowed us to build our pipelines using free cloud-computing resources, which
110 are accessible to a standard research laboratory²⁶.

111 Photo-bleaching during fluorescence microscopy is an indicator for potential photo dam-
112 age to the cell⁸, especially at lower wavelength commonly used for one photon live-cell imaging.
113 Without the requirement of an excitation light source, bioluminescence has the advantage to cir-
114 cumvent potentially phototoxic effects²⁹. We thus compared the activation of a cellular stress
115 reporter in fluorescence and bioluminescence microscopy and generated transgenic animals ex-
116 pressing mNeonGreen-NanoLantern fused to DAF-16, a promotor of longevity³⁰ and reporter for
117 various stresses, including reactive oxygen species³¹. To verify that the bioluminescent stress
118 reporter signals the animal's exposure to cytotoxic stresses, we followed cytoplasmic/nuclear shut-
119 tling during the application of a heat shock and compared it to the stress response after fluorescence
120 imaging. With both reporters, we observed a strong nuclear relocalization immediately after the
121 heat shock (Fig. 2a,b; Video S1). Even though we only detected muscle and neuronal cells in
122 the bioluminescent animals, the activity of the bioluminescent reporter was more pronounced. We
123 reasoned that the absence of autofluorescent background in the bioluminescent images enabled a
124 higher dynamic range. When we omitted the heat shock, the unstressed, control animals that were
125 recorded with fluorescence microscopy showed a slight but significant increase in nuclear DAF-
126 16 localization (Fig. 2b,c; $R=0.95$, $p<1e-15$), which was strongly reduced in the bioluminescent
127 images (Fig. 2c; $R=0.56$, $p=1e-5$). We thus speculated that the spontaneous activity if DAF-16
128 might be triggered by the reactive oxygen species during the fluorescence illumination^{8,32}. Taken

129 together, the application of bioluminescent reporter offers a higher dynamic range in absence of
130 background autofluorescence and could possibly guide the discovery of stress pathways that would
131 otherwise be obscured by the cellular response to external light.

132 To demonstrate that our combination of bioluminescent imaging and deep learning can be
133 generalized to other animals and biosystems, we generated bioluminescent zebrafish embryos
134 expressing a membrane-bound red shifted nanolantern and mounted them for imaging in our
135 LowLiteScope at 4 hours post fertilization. Under fluorescence excitation, the EVL is clearly
136 visible as a tessellated epithelial cell layer (Fig. 3a). Under bioluminescence contrast, however,
137 strong out-of-focus haze limited the signal strength and SNR, even though we were able to record
138 a signal reminiscent of the cell junctions after 100ms exposure time (Fig. 3b, Supplementary Fig.
139 S2). We thus combined the final images with a pre-trained CARE model, originally established
140 for epithelial monolayers in *Drosophila* wing discs¹⁶, a tissue with similar tessellated morphology
141 and signal distribution. Despite the challenging task due to the poor input SNR, we found that
142 this model was generalizable and fit our input extremely well, being able to greatly improve the
143 SNR (Fig. 3b,c). Critically, these signal restorations and improvements enabled the segmentation of
144 individual cells in the embryo (Fig. 3c) which afforded the calculation of their perimeter and cell
145 area (not shown) - a procedure that otherwise would not have been possible.

146 We were next interested to demonstrate subcellular dynamics in mouse embryonic stem cells
147 and generated a stably transgenic cell line expressing a nuclear localized luciferase by fusing
148 mTurquoise-NL to histone (see Methods, Fig. 3d). After optimization of the co-factor delivery
149 (see Methods) we performed timelapse imaging of individual cells in spheroids from mESCs and
150 recorded their nuclear dynamics (Fig. 3e, Video S2). Expectedly, the images were noisy, due to
151 the low quantum yield. To improve visual quality and the ability to quantify nuclear trajectories,
152 we sequentially employed two published convolutional neural networks. We first passed the noisy
153 images through a pretrained CARE neural network for denoising nuclear morphologies¹⁶ and then
154 performed nuclear segmentation with the StarDist algorithm¹⁹ (Fig. 3e, f). This approach allowed

155 us to track the migratory path for each individual nuclei within bioluminescent spheroids. Taken
156 together, these approaches demonstrate the possibility to image subsecond dynamics of subcellular
157 localized bioluminescent probes in *C. elegans*, zebrafish and mouse embryonic stem cells.

158 Up to this point, the long exposure times in bioluminescence imaging have largely hindered
159 the acquisition of three dimensional image stacks, especially in moving animals. Often, it is de-
160 sirable or even important to obtain the whole 3D representation of a fast biological process, e.g.
161 during calcium imaging of neuron or muscle contraction. We thus sought to establish single-
162 exposure volumetric light field imaging³³ to quantify calcium dynamics in freely moving animals
163 using bioluminescent calcium indicators. To do so, we equipped our LowLiteScope with a mi-
164 crolens array that is matched to the magnification and numerical aperture of the imaging lens and
165 projected the entire light field onto the qCMOS sensor for plenoptic imaging in three dimensions
166 (Fig. 4a). To obtain the 3D information from a 2D image, the light field needs to be decon-
167 volved computationally^{34,35}. Traditionally, however, this process is computationally very demand-
168 ing and takes up to several minutes for a single image³⁶ amounting to many hours or even days
169 computing time for a whole time series, which makes recording of cellular dynamics unattain-
170 able. Several AI-based algorithms have been proposed to speed up the deconvolution and enhance
171 performance^{18,37,38}, that significantly outperform traditional light field processing. To create a
172 neural network for the reconstruction of *C. elegans* expressing a fluorescent calcium reporter in
173 the body wall muscles, we first trained a NN with synthetic light field data³⁷ as the input and
174 experimental confocal stacks as the target (Fig. 4b). Both features were derived from the same
175 immobilized animal, each stack was convolved with the light field point-spread-function (PSF)
176 to generate the synthetics input data (Fig. 4b and Methods). We then extended the model using
177 transfer learning with purely experimental data containing fluorescent light field images and *z*-
178 stacks taken from the same sample as just described. This network knowledge expansion allowed
179 us to be more specific to the experimental images we got from our setup, gave more flexibility to
180 perform well for low and high SNR light field images, reduced the possibility to obtain artifacts

181 and improved the inference quality (Fig. 4 c). As described before³⁷, this approach shortened
182 the processing time from 30h to 100ms per full frame image as compared to traditional lightfield
183 deconvolution algorithms. We then used this model to reconstruct the bioluminescent light field
184 images (Fig. 4d). We found that exposure times of 5s are required to obtain a clear representation
185 of the scene, but with blurred dynamics due to sample movement. In order to enable faster frame
186 rates to ‘freeze’ animal movement and capture the full dynamics of the calcium dye, we applied the
187 CARE pipeline for denoising the low SNR lightfield images obtained at low exposure times prior
188 to the light field deconvolution within a sequential application of two neural networks (Fig. 4e).
189 The denoising led to a striking increase in SNR of the light field image, and with this approach,
190 we were able to obtain significantly better reconstructions than without (Supplementary Fig. 5).
191 Moreover, we were able to obtain three dimensional calcium recordings from whole animals with
192 typically 200-500ms exposure time to create a full 3D stack of the bioluminescent scene which
193 corresponded to a z-resolution of 1.5 um and reconstructed 31 z-planes in conventional widefield
194 microscopy (Fig. 4f, Supplementary Fig. S5). Strikingly, this is equivalent to 6.4 ms exposure per
195 frame in traditional volumetric imaging. In these bioluminescent calcium recordings, we observed
196 higher intensity on the concave side of the bend, consistent with high-calcium concentration dur-
197 ing muscle contraction (Video S3). Importantly, the reconstructions preserved the relative intensity
198 distribution within the sample, as we did not find significant differences between the reconstructed
199 forward projection and the ground truth (Supplementary Fig. S3). We also observed that most cal-
200 cium signal comes from equatorial region of the muscles and rapidly drops off towards the lateral
201 sides (Fig. 4g). This implies that the contractile power is localized to the equatorial regions, where
202 the largest bending moment can be applied. Consistent with a high calcium concentration during
203 muscle contraction, we observed that the largest intensities mapped to positive body curvatures
204 (Fig. 4h).

205 Taken together, we have shown that a combination of an optimized optical path and advanced
206 computational tools dramatically improves the SNR of bioluminescence microscopy that rivals that

207 of conventional fluorescence microscopy. We have demonstrated the performance on living tissue
208 culture cells for subcellular labeling of actin and microtubules, zebrafish epithelial cell organiza-
209 tion and nuclear dynamics in mouse embryonic stem cells. Lastly, we combined a sequential neu-
210 ronal network composed of content aware image restoration pipelines and light field reconstruction
211 to enable high-speed, subsecond volumetric imaging of a genetically encoded calcium sensor in
212 freely moving animals. Novel luciferases and cofactors will be needed to obtain single cell res-
213 olution at high magnification in crowded tissues, e.g. organoids or for whole brain luminescent
214 calcium imaging. In the future, spatiotemporal resolution and light-capturing ability could fur-
215 ther be improved through combinations of wavefront coding³⁹, tunable optics⁴⁰, Fourier-lightfield
216 microscopy⁴¹, and new transformer networks that are trained to provide a spatially super-resolved
217 representation of the scene⁴². Our results pave new avenues for excitation-free, non-invasive low
218 light imaging in microscopy, diagnostics and biomedicine.

219 **Data and Code availability** All training data and bioluminescent source images will be deposited
220 on zenodo.org upon acceptance of this article. The code of the training and inference pipelines and
221 instructions to run it will be freely available under [this link](#).

222 **Acknowledgments** We would like to thank the NMSB and SLN lab for discussions and suggestion
223 on optical design and imaging procedures. We thank Senda Jiménez-Delgado and Neus Sanfeliu-
224 Cerdan for help with molecular biology and Valeria Venturini for zebrafish injections. MK ac-
225 knowledges financial support from the ERC (MechanoSystems, 715243), HFSP (CDA00023/2018),
226 Spanish Ministry of Economy and Competitiveness through the Plan Nacional (PGC2018-097882-
227 A-I00), FEDER (EQC2018-005048-P), “Severo Ochoa” program for Centres of Excellence in
228 R&D (CEX2019-000910-S; RYC-2016-21062), from Fundació Privada Cellex, Fundació Mir-
229 Puig, and from Generalitat de Catalunya through the CERCA and Research program (2017 SGR
230 1012), the Laserlab-Europe (H2020 GA no. 871124) in addition to funding through H2020 Marie
231 Skłodowska-Curie Actions (754510 to AG, and 847517 to LFMC).

232 **Author contribution** LFMC, GC and MK built the microscope; LFMC, ACG, MPR, LL and
233 MEQ performed experiments; LFMC wrote software and performed the deep learning; JS, LB,
234 MPR performed transgenesis of mESCs and *C. elegans*; LB, VR, DR, PLA, MK supervised and
235 MK conceived the project. LFMC and MK wrote the first draft, with input from all authors.

236 **Figures**

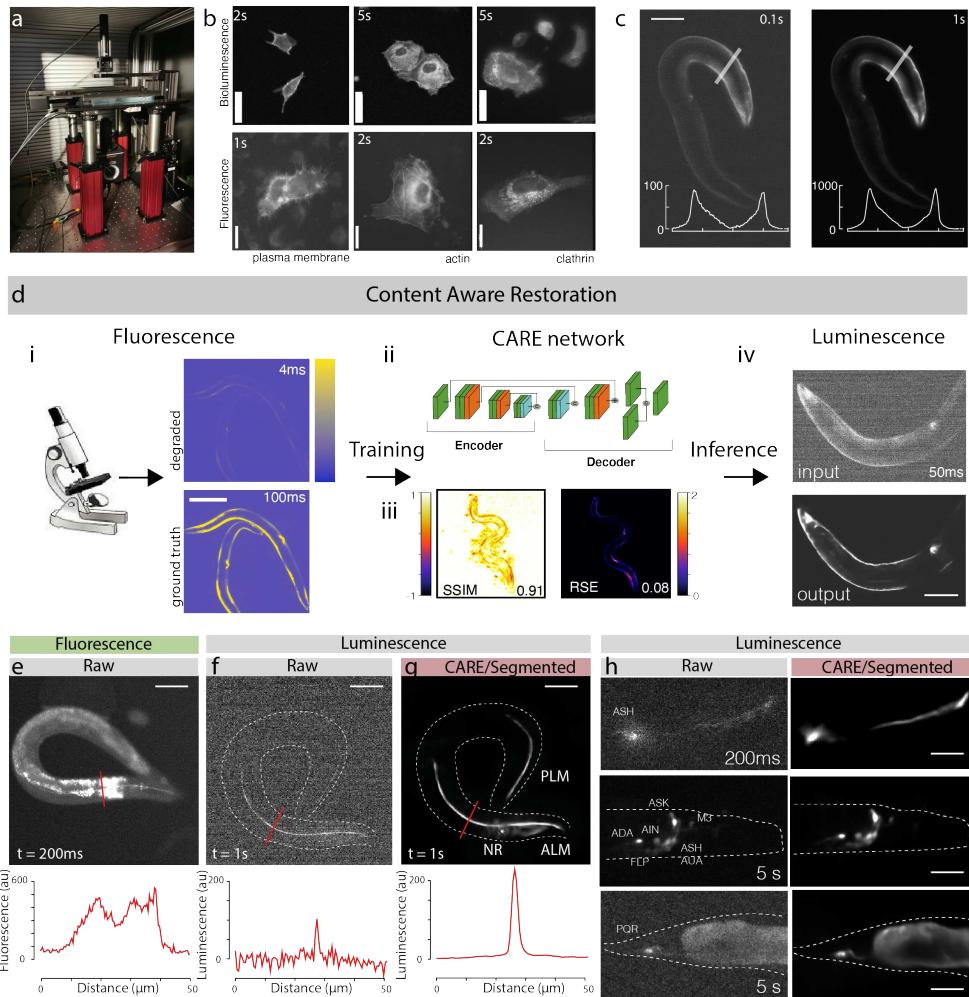


Fig. 1: Optimized bioluminescence microscopy.

a, Photograph of the optimized Low-Light MicroScope. **b**, Bioluminescent (top) and fluorescent (bottom) images of cell expressing the indicated marker taken on the LowLiteScope or a commercial epifluorescence microscope, respectively. Exposure times indicated in the top left of each image. Scalebar=20 μ m. **c**, Bioluminescent images of an immobilized worm expressing a turquoise enhanced Nanolantern (TeNL) in the body wall muscle at different exposure times. Inset show the intensity profile across the line indicated in the image. Scalebar=50 μ m. **d**, Schematic of the content aware restoration deep learning pipeline. **i**, pairs of images were collected in an epifluorescent microscope at different exposure times to create a low and high SNR training dataset. Note, the network was trained with pictures of animal in different body postures to avoid overfitting and memorization. **ii**, After subpixel registration, a deep neural network is trained to restore the test image from the high SNR ground truth. **iii**, Structural similarity (SSIM) and root squared error (RSE) of the predicted images vs the ground truth (see also Fig. S1). **iv**, The trained network is then used to restore low-SNR bioluminescent images. Scalebar=50 μ m. **e-g**, Suppression of autofluorescence in bioluminescent restoration microscopy. Lower panel shows intensity profile through the lines indicated in the upper micrographs. **e**) Fluorescence picture of a worm expression mNeonGreen-enhanced Nanolantern (GeNL) in touch receptor neurons; the same transgenic in bioluminescent contrast **f**) before and **g**) after AI-denoising. Scalebar=50 μ m. **h**, Versatility of the neuronal reconstruction as shown on several neurons in *C. elegans*, such as ASH, a neuronal ensemble expressing the Turquoise-enhanced Nanolantern in glutamatergic neurons (*eat-4p:TeNL*) and PQR. Scalebar=15-30 μ m.

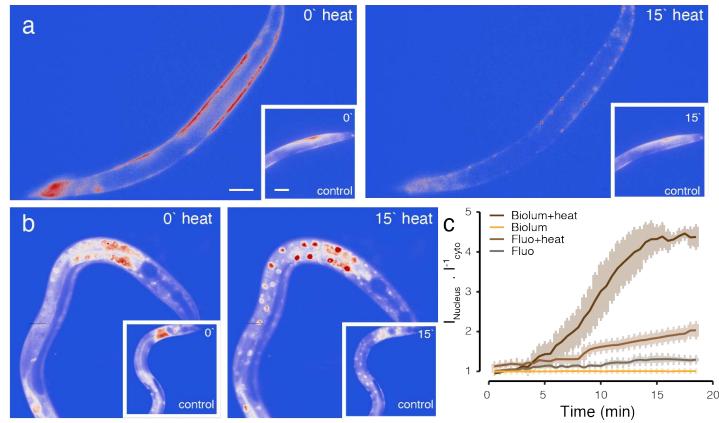


Fig. 2: Stress reporter activation under external illumination

a,b Bioluminescent (a) and fluorescent (b) DAF-16::GeNL before (0') and after (15') exposure to 37C heat stress. Inset shows animals at the same timepoints without external heat stress. **c** Quantification of the nuclear/cytoplasmic DAF-16 ratio over 18 min of the experiment in the four tested conditions. Scale bars = 40 μ m.

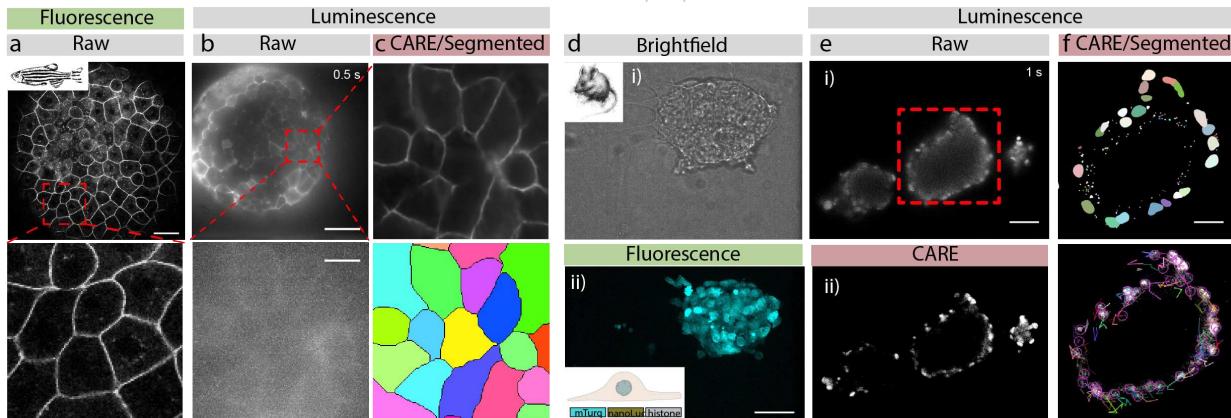


Fig. 3: Seamless denoising and segmentation of bioluminescent samples

a, Laser scanning confocal fluorescence image of a 4hpf embryo expressing membrane bound GPI-GFP. The red box indicates the close-up below. **b**, Unprocessed bioluminescence image of a 4hpf zebrafish embryo expressing GPI:GFP targeted to the plasma membrane. The red square indicates the high magnification close up below. **c**, The same bioluminescent signal of the embryo was restored using a pre-trained CARE pipeline optimized for epithelial monolayers. The bottom picture shows the segmented bioluminescent image. No segmentation was possible on the raw image. **d**, Brightfield (top) and fluorescence image (bottom) of a spheroid of mouse embryonic stem cells. **e**, Unprocessed raw (top) and denoised (bottom) bioluminescence image of similar spheroids. **f**, Segmented nuclei (top) after denoising, overlaid with their individual tracks throughout the timelapse (bottom).

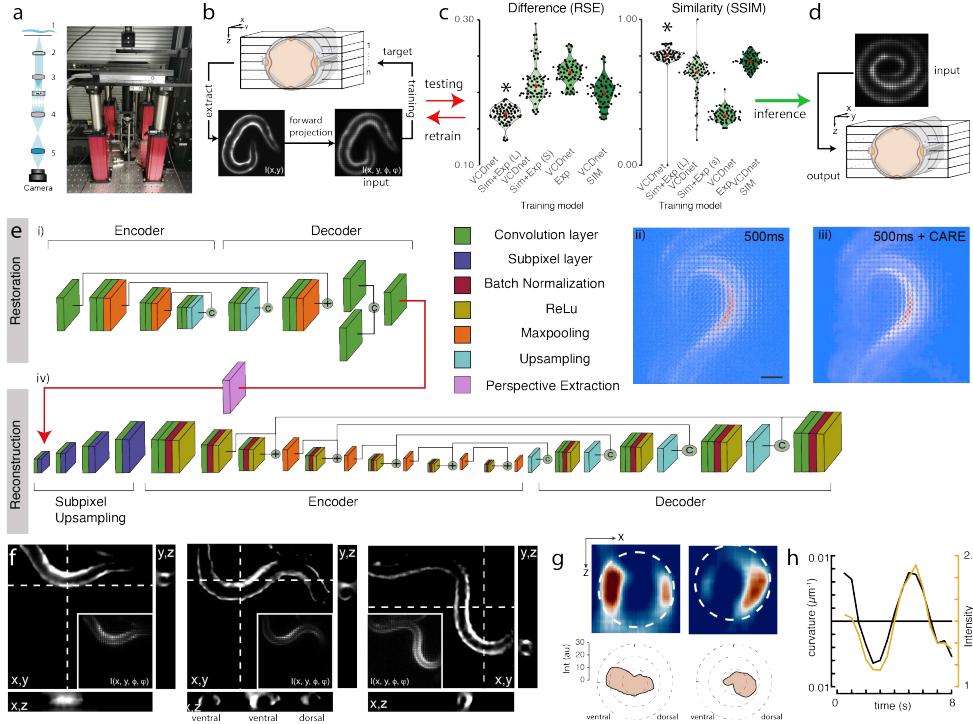


Fig. 4: Single-exposure, volumetric bioluminescence microscopy

a, Schematic and photograph of the optimized Low-LightField MicroScope. 1) Sample, 2) Objective, 3) Tube lens, 4) Microlens array, 5) Relay lens. **b-d**, Training pipeline to obtain fast deconvolution of 2D experimental lightfield data into 3D image stacks. **b**) A 3D image stack was acquired on fluorescent samples representative of the bioluminescent signal in the final experiment. The stack was convolved with the lightfield PSF, to obtain a synthetic lightfield image, which was subsequently used to map onto the 3D ground-truth stack. The training quality of the individual models (c) was tested against unseen samples by calculating the difference and similarity to the ground truth. **d**) The best model with the lowest error and highest similarity was used to reconstruct experimental bioluminescence images. **e**, Pipeline for bioluminescence reconstruction is composed. An initial **i**) CARE denoising step is used to increase the SNR of **ii**) noisy bioluminescent lightfield images. The individual layers are color coded according to their function. The clean images (**iii**) are fed into the VCD network³⁷ (**iv**) after perspective extraction to reconstruct the 3D information. Scalebar = 50 μ m. **f**, Sequence of reconstructed 3D images of a moving animal showing high calcium activity at its contracted side. Images show a single plane of the reconstructed z-stack. Inset corresponds to the raw lightfield image. **g**, Sideview image of the curvature-dependent calcium signal in muscles during ventral and dorsal body bends. The polar plot shows the intensity distribution on the ventral and dorsal side. Dotted line corresponds to the circumference of the animal. **h**, Intensity of the bioluminescent calcium indicator and curvature variation on the ventral side during animal crawling under the lightfield microscope. Black=curvature, yellow=calcium signal.

520 **Supplementary Videos**

521 **Supplementary Video 1** Dynamics of the DAF-16 transcription factor in response to external
522 heat. For display purposes, the video was denoised using the deep learning pipelines developed in
523 this manuscript.

524 **Supplementary Video 2** Dynamics of mouse embryonic stem cells within a spheroid. For display
525 purposes, the video was denoised using the deep learning pipelines developed in this manuscript.

526 **Supplementary Video 3** Three dimensional calcium dynamics of a freely moving animal. The
527 video was denoised and reconstructed from a 2D lightfield image using the deep learning pipelines
528 developed in this manuscript.

529 **References**

- 530 1. Laissue, P. P., Roberson, L., Gu, Y., Qian, C., Smith, D. J., Long-term imaging of the photo-
531 tosensitive, reef-building coral *Acropora muricata* using light-sheet illumination. *Scientific
532 Reports* 1–12 (2020).
- 533 2. Teuscher, A., Ewald, C., Overcoming Autofluorescence to Assess GFP Expression During
534 Normal Physiology and Aging in *Caenorhabditis elegans*. *Bio-Protocol* 8 (2018).
- 535 3. Nekimken, A. L., et al., Pneumatic stimulation of *C. elegans* mechanoreceptor neurons in a
536 microfluidic trap. *Lab Chip* 17, 1116–1127 (2017).
- 537 4. Shettigar, N., et al., Hierarchies in light sensing and dynamic interactions between ocular and
538 extraocular sensory networks in a flatworm. *Science Advances* 3 (2017).
- 539 5. Schultz, R. M., Of light and mouse embryos: Less is more. *Proceedings of the National
540 Academy of Sciences of the United States of America* 104, 14547–14548 (2007).

542 6. Nagel, G., et al., Channelrhodopsin-2, a directly light-gated cation-selective membrane chan-
543 nel. *Proceedings of the National Academy of Sciences* **100**, 13940–13945 (2003).

544 7. Strickland, D., et al., TULIPs: Tunable, light-controlled interacting protein tags for cell biol-
545 ogy. *Nature Methods* **9**, 379–384 (2012).

546 8. Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G., Shroff, H., Assessing photo-
547 toxicity in live fluorescence imaging. *Nature Methods* **14**, 657–661 (2017).

548 9. Woodroffe, C. C., et al., Novel heterocyclic analogues of firefly luciferin. *Biochemistry* **51**,
549 9807–9813 (2012).

550 10. Hall, M. P., et al., Engineered luciferase reporter from a deep sea shrimp utilizing a novel
551 imidazopyrazinone substrate. *ACS chemical biology* **7**, 1848–57 (2012).

552 11. Suzuki, K., et al., Five colour variants of bright luminescent protein for real-time multicolour
553 bioimaging. *Nature Communications* **7**, 1–10 (2016).

554 12. Kelkar, M., De, A., Bioluminescence based in vivo screening technologies. *Current Opinion*
555 in *Pharmacology* **12**, 592–600 (2012).

556 13. Côté, G., Lalonde, J.-F., Thibault, S., Deep learning-enabled framework for automatic lens
557 design starting point generation. *Optics Express* **29**, 3841 (2021).

558 14. Pinkard, H., Phillips, Z., Babakhani, A., Fletcher, D. A., Waller, L., Deep learning for single-
559 shot autofocus microscopy. *Optica* **6**, 794 (2019).

560 15. Fang, L., et al., Deep learning-based point-scanning super-resolution imaging. *Nature Methods*
561 **18**, 406–416 (2021).

562 16. Weigert, M., et al., Content-aware image restoration: pushing the limits of fluorescence mi-
563 croscopy. *Nature Methods* **15**, 1090–1097 (2018).

564 17. Guo, M., et al., Rapid image deconvolution and multiview fusion for optical microscopy.

565 *Nature Biotechnology* **38**, 1337–1346 (2020).

566 18. Wagner, N., et al., Deep learning-enhanced light-field imaging with continuous validation.

567 *Nature Methods* **18**, 557–563 (2021).

568 19. Schmidt, U., Weigert, M., Broaddus, C., Myers, G., *Cell detection with star-convex polygons*,
569 vol. 11071 LNCS. Springer International Publishing (2018).

570 20. Minaee, S., et al., Image Segmentation Using Deep Learning: A Survey. *IEEE Transactions*
571 *on Pattern Analysis and Machine Intelligence* 1–22 (2021).

572 21. Coutant, E. P., et al., Bioluminescence Profiling of NanoKAZ/NanoLuc Luciferase Using a
573 Chemical Library of Coelenterazine Analogues. *Chemistry - A European Journal* **26**, 948–958
574 (2020).

575 22. Su, Y., et al., Novel NanoLuc substrates enable bright two-population bioluminescence imag-
576 ing in animals. *Nature Methods* **17**, 852–860 (2020).

577 23. Ogoh, K., et al., Bioluminescence microscopy using a short focal-length imaging lens. *Journal*
578 *of Microscopy* **253**, 191–197 (2014).

579 24. Porta-de-la Riva, M., et al., Deploying photons for communication within neuronal networks.
580 *bioRxiv* (2021).

581 25. Pincus, Z., Mazer, T. C., Slack, F. J., Autofluorescence as a measure of senescence in *C.*
582 *elegans*: Look to red, not blue or green. *Aging* **8**, 889–898 (2016).

583 26. von Chamier, L., et al., Democratising deep learning for microscopy with ZeroCostDL4Mic.
584 *Nature Communications* **12**, 1–18 (2021).

585 27. Lee, R. Y., Sawin, E. R., Chalfie, M., Horvitz, H. R., Avery, L., EAT-4, a homolog of a mam-
586 malian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic

587 neurotransmission in *caenorhabditis elegans*. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **19**, 159–167 (1999).

588

589 28. Coutant, E. P., et al., Gram-scale synthesis of luciferins derived from coelenterazine and orig-
590 inal insights into their bioluminescence properties. *Organic and Biomolecular Chemistry* **17**,
591 3709–3713 (2019).

592 29. Tung, J. K., Berglund, K., Gross, R. E., Optogenetic Approaches for Controlling Seizure
593 Activity. *Brain Stimulation* 1–10 (2016).

594 30. Lin, K., Dorman, J. B., Rodan, A., Kenyon, C., daf-16 : An HNF-3 / forkhead family member
595 that can function to double ... *Science* **278**, 1319–1322 (1997).

596 31. Senchuk, M. M., et al., Activation of DAF-16/FOXO by reactive oxygen species contributes to
597 longevity in long-lived mitochondrial mutants in *Caenorhabditis elegans*. *PLoS Genetics* **14**,
598 1–27 (2018).

599 32. Dixit, R., Cyr, R., Cell damage and reactive oxygen species production induced by fluores-
600 cence microscopy: Effect on mitosis and guidelines for non-invasive fluorescence microscopy.
601 *Plant Journal* **36**, 280–290 (2003).

602 33. Levoy, M., Ng, R., Andrew, A., Footer, M., Mark, H., Light Field Microscopy. *ACM Transac-
603 tions on Graphics* **25**, 1–11 (2006).

604 34. Bimber, O., Schedl, D., Light-Field Microscopy: A Review. *Journal of Neurology & Neu-
605 romedicine* **4**, 1–6 (2019).

606 35. Broxton, M., et al., Wave optics theory and 3-D deconvolution for the light field microscope.
607 *Optics Express* **21**, 25418 (2013).

608 36. Stefanou, A., Page, J., Symvoulidis, P., Westmeyer, G. G., Lasser, T., Artifact-free deconvolu-
609 tion in light field microscopy. *Optics Express* **27**, 31644 (2019).

610 37. Wang, Z., et al., Real-time volumetric reconstruction of biological dynamics with light-field
611 microscopy and deep learning. *Nature Methods* **18**, 551–556 (2021).

612 38. Vizcaino, J. P., et al., Learning to Reconstruct Confocal Microscopy Stacks from Single Light
613 Field Images. *IEEE Transactions on Computational Imaging* **7**, 775–788 (2021).

614 39. Cohen, N., et al., Enhancing the performance of the light field microscope using wavefront
615 coding. *Optics Express* **22**, 727–730 (2014).

616 40. Berto, P., et al., Tunable and free-form planar optics. *Nature Photonics* **13**, 649–656 (2019).

617 41. Hua, X., Liu, W., Jia, S., High-resolution Fourier light-field microscopy for volumetric multi-
618 color live-cell imaging. *Optica* **8**, 614 (2021).

619 42. Wang, S., Zhou, T., Lu, Y., Di, H., Detail-Preserving Transformer for Light Field Image Super-
620 Resolution. *arXiv arXiv:2201* (2022).

621 43. Stiernagle, T., Maintenance of *C. elegans*. *WormBook : the online review of C. elegans biology*
622 1–11 (2006).

623 44. Porta-de-la Riva, M., Fontrodona, L., Villanueva, A., Cerón, J., Basic *Caenorhabditis elegans*
624 methods: Synchronization and observation. *Journal of Visualized Experiments* e4019 (2012).

625 45. George, S. H., et al., Developmental and adult phenotyping directly from mutant embryonic
626 stem cells. *Proceedings of the National Academy of Sciences of the United States of America*
627 **104**, 4455–4460 (2007).

628 46. Westerfield, M., *No Title*. University of Oregon Press, 4 edn. (2000).

629 47. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F., Stages of embry-
630 onic development of the zebrafish. *Dev Dyn* **203**, 253–310 (1995).

631 48. Pinkard, H., et al., Pycro-Manager: open-source software for customized and reproducible
632 microscope control. *Nature Methods* **18**, 226–228 (2021).

633 49. Bray, M.-a., Fraser, A. N., Hasaka, T. P., Carpenter, A. E., Workflow and Metrics for Image
634 Quality Control in Large-Scale High-Content Screens. *Journal of Biomolecular Screening* **17**,
635 266 (2012).

636 50. Tinevez, J. Y., et al., TrackMate: An open and extensible platform for single-particle tracking.
637 *Methods* **115**, 80–90 (2017).

638 51. Legland, D., Arganda-carreras, I., Andrey, P., Biopolymers, U. R., Bourgin, I. J.-p., Mor-
639 phoLibJ : integrated library and plugins for mathematical morphology with ImageJ. *Bioinfor-
640 matics* **32**, 3532–3534 (2016).

641 52. Prevedel, R., et al., Simultaneous whole-animal 3D imaging of neuronal activity using light-
642 field microscopy. *Nature Methods* **11**, 727–730 (2014).

643 53. Wang, Z., et al., Image Quality Assessment : From Error Visibility to Structural Similarity.
644 *IEEE TRANSACTIONS ON IMAGE PROCESSING* **13**, 600–612 (2004).