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The application of genetically encoded fluorophores for microscopy has afforded one of the
biggest revolutions in the biosciences. Bioluminescence microscopy is an appealing alterna-
tive to fluorescence microscopy, because it does not depend on external illumination, and con-
sequently does neither produce spurious background autofluorescence, nor perturb intrinsi-
cally photosensitive processes in living cells and animals. The low quantum yield of known
luciferases, however, limit the acquisition of high signal-noise images of fast biological dy-
namics. To increase the versatility of bioluminescence microscopy, we present an improved
low-light microscope in combination with deep learning methods to increase the signal to
noise ratio in extremely photon-starved samples at millisecond exposures for timelapse and
volumetric imaging. We apply our method to image subcellular dynamics in mouse embry-
onic stem cells, the epithelial morphology during zebrafish development, and DAF-16 FoxO
transcription factor shuttling from the cytoplasm to the nucleus under external stress. Fi-
nally, we concatenate neural networks for denoising and light-field deconvolution to resolve
intracellular calcium dynamics in three dimensions of freely moving Caenorhabditis elegans
with millisecond exposure times. This technology is cost-effective and has the potential to

replace standard optical microscopy where external illumination is prohibitive.
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Main

1+ Fluorescence microscopy has enabled unprecedented discoveries and became the major imaging
> modality in molecular and cellular bioscience. However, significant autofluorescence of the native
s tissues' often obscures and blurs the signal from specific labels in biological samples?, while in-
+ trinsic photosensitivity of cells and animals, such as Caenorhabditis elegans *, planaria * or mouse
s preimplantation embryos °, interferes with imaging experiments that require an excitation light
s source. In addition, the excitation of a fluorescent protein (e.g. GFP, GCaMP) is often incompat-
7 ible with an experimental design, eg. the simultaneous emission of a cyan FP (em 470nm), or if
s the absorption spectrum of the chromophore overlaps with that of a photosensitizers (e.g. 470nm
o for Channelrhodopsin® and Tulips’). Further, the high excitation intensities that are necessary to
10 obtain fluorescent images with extreme photon-starved samples render fluorescence microscopy
11 potentially phototoxic and limit the lifetime of the fluorescent probe®. These drawbacks can be
12 overcome by implementing bioluminescent probes as contrast labels, that can be genetically en-
13 coded to tag any protein of interest, and do not need an external excitation light source. However,
1 traditional bioluminescent probes have a slow catalytic turnover’ and require a chemical cofactor,
15 e.g. luciferin, as a photon source, which becomes oxidized prior to photon emission. More effi-
16 cient luciferases based on deep sea shrimp and termed Nanolanterns, have been engineered'®!!. In
17 these enzymes, the luciferase moiety is fused to a fluorescent protein, which increases the quantum
1e yield and bears the potential to select the emission wavelength. Thus, a whole spectrum of light-
19 emitting proteins can be tailored to a specific need. However, they require chemicals with a poor
20 bioavailability due to low solubility in water, which greatly limits the quantum yield and concomi-
21 tant signal-to-noise ratio (SNR). Thus, to obtain high-SNR images calls for long exposure times
22 in the seconds or even tens of seconds scale which is incompatible with fast biological dynamics.
23 Because bioluminescence imaging is widely applied for drug screening and cancer research'?, long
24 exposure times greatly limit the throughput.

s Deep learning-based neural networks have the potential to transform microscopy research and


https://doi.org/10.1101/2022.05.31.494105
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.31.494105; this version posted June 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

26 have aided the design of advanced optical lenses'?, autofocus !4, superresolution'®, denoising!®

17.18 and postprocessing pipelines '*-?°. Here, we

27 and speed up complex deconvolution procedures
28 overcome several significant challenges, and demonstrate the use of bioluminescence as an imag-
20 ing modality in the millisecond range. We constructed a new microscope with an shortened, opti-
s mized optical path, light field detection and single photo resolution in combination with machine

a1 learning that takes advantage of the development of novel cofactor chemistry?!??

and transgenic
32 animals. Because an accurate inference from a neural network, high-quality training data of bio-
as logical samples is needed, we built training and inference pipelines deep learning models using two
s concatenated neural networks with the aim to increase the signal-noise ratio and reconstruct four
35 dimensional information from a time series of 2D images. Despite the apparent complexity of our
s approach, the individual components are easy to construct, commercially available and pretrained
a7 neural networks are at everyone’s disposal. We demonstrate this approach to image nuclear dy-

38 namics in mouse embryonic stem cells, 3D imaging of zebrafish epithelial tissues and whole-body

s calcium imaging in muscles of free moving C. elegans.

4 Results

4 Due to the low quantum yield of luciferases, standard optical microscopes are not suitable to pro-
«2 duce bioluminescent images and dedicated instruments are commonly used®’. Indeed, we were
43 not able to observe any signal from Nanolanterns transfected into HeLa cells on a commercial
4« compound microscope with the maximum exposure time of an SCMOS camera (not shown). To
45 increase the photon collection efficiency, we thus conceived a microscope with an ultra-compact
s optical axis, and with a single photon-resolving qCMOS camera (Fig. 1a). With this new setup,
47 we were able to obtain high SNR images for cells transfected with Nanolantern fusions to clathrin,
s actin and the plasma membrane marker lyn!! and supplemented with the cofactor Hikarazine (see
s Methods,?!) for exposure times down to 2s (Fig. 1b, top row). Importantly, even without any

so further treatment, these images were comparable to fluorescence images acquired at a similar ex-
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st posure time at higher magnification (Fig. 1b, bottom row) on a conventional, epifluorescence mi-
s2  croscope. As expected, no autofluorescence was observed in the luminescence images due to the
ss absence of external excitation light source, in contrast to the fluorescence images (Fig. 1b). We
s+ next established that the optimized bioluminescence imaging protocol enhances the photon collec-
ss tion efficiency in living animals. We created a transgenic C. elegans line that expresses a turquoise
ss  Nanolantern in their body wall muscles** and immobilized individual animals for imaging on a
s7 agar pad in presence of the luciferin. In agreement with our results from tissue culture cells, we
ss observed a strong specific signal at longer exposure time and even for exposure times down to 50
se  ms (Fig. 1c). Taken together, these technical improvements dramatically augmented the quantity
s of photons detected allowing us to significantly reduce the exposure time without additional post-
st processing. Capturing the ability to record ultra-photon starved samples, we refer to our setup as

e2 ‘LowLiteScope’.

63 Inspired by these positive results, we set out to test the advantages of low-background aut-
e« ofluorescence recordings, and established transgenic C. elegans animals that express a green en-
s hanced Nanolantern exclusively in the touch receptor neurons (TRNs). High resolution imaging of
es these neurons is often precluded by the abundant autofluorescence that emanates from the ubiqui-
67 tous gut granules under epifluorescent illumination (Fig. 1e). This is of particular concern in old
e animals®, in which the signal of the autofluorescence can become more intense than the specific
o label, which makes it difficult to distinguish between both. Indeed, the fluorescent images derived
70 from animals expressing GFP in TRNs on a standard epifluorescence microscope showed exten-
71 sive out of focus light due to background autofluorescence of the gut (Fig. le). In contrast, living
72 animals that express the TRN::luciferase and were supplied with the optimized cofactor, a single,
73 specific signal is visible from the monopolar dendrites of these neurons, and no spurious autofluo-
74 rescence can be seen (Fig. 1f). However, because of the small size of the TRNs, the obtained SNR
75 1S very low at exposure times as short as 1s. Because there is no noise inherent to the sample (only

76 from the detector), we reasoned that prior knowledge of the underlying sample structure should fa-
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cilitate superior image reconstruction with dramatically improved SNR using deep learning-based
content aware image restoration (CARE) algorithms'®. To clean up these images and increase the
effective SNR, we combined these bioluminescent microscopy images with convolutional neural
network that transforms a degraded image to a desired high quality target given a proper training

with a known signal distribution'®.

Because CARE models for C. elegans and bioluminescence are in-existent, we first devel-
oped a generalizable training pipeline to predict high quality, ground truth images from noisy
input. We thus collected image pairs derived from fluorescence microscopy acquired at extremely
low exposure times reflecting the noisy input with poor SNR and used high SNR images from
long exposure times as the ground truth target (Fig. 1d i). The training data set consisted of an-
imals transgenic for mTurquoise body wall muscles, which showed high specific signal and lack
of any visible autofluorescence within the region of interest. To achieve a high variety of body
postures and thus 2D intensity distributions, we recorded the fluorescence signal from the body
wall muscles in freely moving animals. After data collection and preprocessing, we varied the hy-

perparameters to find the optimal network configuration'®2°

specific for our training dataset (Fig.
S1, 1d ii), and evaluated its out-of-sample performance on unseen noisy images using the struc-
tural similarity (SSIM) and residual squared errors (RSE) metrics for training quality (Fig. 1d iii,
Supplementary Fig. S1 and Methods). We then built an inference pipeline with the model showing
the highest confidence and lowest error to predict the ground truth from the noisy bioluminescent
images which turned out to be completely clean and devoid of artifacts (Fig. 1d iv). When we
applied this model to degraded bioluminescent images derived from transgenic TRNs in aged an-
imals, our model was able to effectively enhance the SNR and cleanly visualize the neurons for
further inspection (Fig. 1g). Importantly, this approach is not limited to a specific neuron in C. el-
egans, and we have successfully enhanced the degraded bioluminescent images acquired for ASH,

PQR and vGLUT EAT-4 expressing neurons in the head (Fig. 1h, >*27). Strikingly, we found satis-

factory performance of the model with exposure times as low as 200 ms taken on ASH, a neuron in
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10z the head of C. elegans with a diffraction-limited axon caliper. Taken together, the combination of

104 optimized optical path, cofactors®!-?8

and dedicated machine learning algorithms from the CARE
105 family enabled the acquisition of high-SNR images at exposure times as low as 50 ms in living
106 animals and tissue culture. Importantly, we showed that we could achieve high-performance with
17 a small, but diversified training dataset, that resulted in a generalizable and transferrable model to
1e 1nfer noiseless images from severely degraded inputs of different cellular structures in C. elegans.

109 Consequently, this allowed us to build our pipelines using free cloud-computing resources, which

110 are accessible to a standard research laboratory?®.

111 Photo-bleaching during fluorescence microscopy is an indicator for potential photo dam-
12 age to the cell®, especially at lower wavelength commonly used for one photon live-cell imaging.
s Without the requirement of an excitation light source, bioluminescence has the advantage to cir-

114 cumvent potentially phototoxic effects?

. We thus compared the activation of a cellular stress
ns reporter in fluorescence and bioluminescence microscopy and generated transgenic animals ex-
16 pressing mNeonGreen-NanoLantern fused to DAF-16, a promotor of longevity*® and reporter for
117 various stresses, including reactive oxygen species®'. To verify that the bioluminescent stress
11s reporter signals the animal’s exposure to cytotoxic stresses, we followed cytoplasmic/nuclear shut-
19 tling during the application of a heat shock and compared it to the stress response after fluorescence
120 1maging. With both reporters, we observed a strong nuclear relocalization immediately after the
121 heat shock (Fig. 2a,b; Video S1). Even though we only detected muscle and neuronal cells in
122 the bioluminescent animals, the activity of the bioluminescent reporter was more pronounced. We
123 reasoned that the absence of autofluorescent background in the bioluminescent images enabled a
124 higher dynamic range. When we omitted the heat shock, the unstressed, control animals that were
125 recorded with fluorescence microscopy showed a slight but significant increase in nuclear DAF-
126 16 localization (Fig. 2b,c; R=0.95, p<le-15), which was strongly reduced in the bioluminescent

127 1mages (Fig. 2c; R=0.56, p=1e-5). We thus speculated that the spontaneous activity if DAF-16

128 might be triggered by the reactive oxygen species during the fluorescence illumination®32. Taken
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129 together, the application of bioluminescent reporter offers a higher dynamic range in absence of
130 background autofluorescence and could possibly guide the discovery of stress pathways that would

131 otherwise be obscured by the cellular response to external light.

132 To demonstrate that our combination of bioluminescent imaging and deep learning can be
133 generalized to other animals and biosystems, we generated bioluminescent zebrafish embryos
134 expressing a membrane-bound red shifted nanolantern and mounted them for imaging in our
135 LowLiteScope at 4 hours post fertilization. Under fluorescence excitation, the EVL is clearly
136 visible as a tessellated epithelial cell layer (Fig. 3a). Under bioluminescence contrast, however,
137 strong out-of-focus haze limited the signal strength and SNR, even though we were able to record
138 a signal reminiscent of the cell junctions after 100ms exposure time (Fig. 3b, Supplementary Fig.
130 S2). We thus combined the final images with a pre-trained CARE model, originally established
1o for epithelial monolayers in Drosophila wing discs'®, a tissue with similar tessellated morphology
141 and signal distribution. Despite the challenging task due to the poor input SNR, we found that
122 this model was generalizable and fit our input extremely well, being able to greatly improve the
113 SNR (Fig. 3b,c). Critically, these signal restorations and improvements enabled the segmention of
144 1ndividual cells in the embryo (Fig. 3c) which afforded the calculation of their perimeter and cell

145 area (not shown) - a procedure that otherwise would not have been possible.

146 We were next interested to demonstrate subcellular dynamics in mouse embryonic stem cells
117 and generated a stably transgenic cell line expressing a nuclear localized luciferase by fusing
128 mTurquoise-NL to histone (see Methods, Fig. 3d). After optimization of the co-factor delivery
s (see Methods) we performed timelapse imaging of individual cells in spheroids from mESCs and
150 recorded their nuclear dynamics (Fig. 3e, Video S2). Expectedly, the images were noisy, due to
151 the low quantum yield. To improve visual quality and the ability to quantify nuclear trajectories,
152 we sequentially employed two published convolutional neural networks. We first passed the noisy
1ss images through a pretrained CARE neural network for denoising nuclear morphologies!'® and then

15« performed nuclear segmentation with the StarDist algorithm '° (Fig. 3e, f). This approach allowed
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155 us to track the migratory path for each individual nuclei within bioluminescent spheroids. Taken
156 together, these approaches demonstrate the possibility to image subsecond dynamics of subcellular

157 localized bioluminescent probes in C. elegans, zebrafish and mouse embryonic stem cells.

158 Up to this point, the long exposure times in bioluminescence imaging have largely hindered
159 the acquisition of three dimensional image stacks, especially in moving animals. Often, it is de-
10 sirable or even important to obtain the whole 3D representation of a fast biological process, e.g.
161 during calcium imaging of neuron or muscle contraction. We thus sought to establish single-
162 exposure volumetric light field imaging?® to quantify calcium dynamics in freely moving animals
163 using bioluminescent calcium indicators. To do so, we equipped our LowLiteScope with a mi-
1« crolens array that is matched to the magnification and numerical aperture of the imaging lens and
s projected the entire light field onto the qCMOS sensor for plenoptic imaging in three dimensions
s (Fig. 4a). To obtain the 3D information from a 2D image, the light field needs to be decon-
167 volved computationally**3>. Traditionally, however, this process is computationally very demand-
s ing and takes up to several minutes for a single image*® amounting to many hours or even days
6o computing time for a whole time series, which makes recording of cellular dynamics unattain-
170 able. Several Al-based algorithms have been proposed to speed up the deconvolution and enhance
171 performance'®3738 that significantly outperform traditional light field processing. To create a
172 neural network for the reconstruction of C. elegans expressing a fluorescent calcium reporter in
173 the body wall muscles, we first trained a NN with synthetic light field data®’ as the input and
172 experimental confocal stacks as the target (Fig. 4b). Both features were derived from the same
175 immobilized animal, each stack was convolved with the light field point-spread-function (PSF)
176 to generate the synthetics input data (Fig. 4b and Methods). We then extended the model using
177 transfer learning with purely experimental data containing fluorescent light field images and z-
17s  stacks taken from the same sample as just described. This network knowledge expansion allowed
179 us to be more specific to the experimental images we got from our setup, gave more flexibility to

180 perform well for low and high SNR light field images, reduced the possibility to obtain artifacts
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1 and improved the inference quality (Fig. 4 c). As described before®’, this approach shortened
1.2 the processing time from 30h to 100ms per full frame image as compared to traditional lightfield
1ea  deconvolution algorithms. We then used this model to reconstruct the bioluminescent light field
18¢ 1mages (Fig. 4d). We found that exposure times of 5s are required to obtain a clear representation
1ss  of the scene, but with blurred dynamics due to sample movement. In order to enable faster frame
186 rates to ‘freeze’ animal movement and capture the full dynamics of the calcium dye, we applied the
187 CARE pipeline for denoising the low SNR lightfield images obtained at low exposure times prior
188 to the light field deconvolution within a sequential application of two neural networks (Fig. 4e).
180 The denoising led to a striking increase in SNR of the light field image, and with this approach,
190 we were able to obtain significantly better reconstructions than without (Supplementary Fig. 5).
191 Moreover, we were able to obtain three dimensional calcium recordings from whole animals with
122 typically 200-500ms exposure time to create a full 3D stack of the bioluminescent scene which
13 corresponded to a z-resolution of 1.5 um and reconstructed 31 z-planes in conventional widefield
1e« microscopy (Fig. 4f, Supplementary Fig. S5). Strikingly, this is equivalent to 6.4 ms exposure per
195 frame in traditional volumetric imaging. In these bioluminescent calcium recordings, we observed
1s6 higher intensity on the concave side of the bend, consistent with high-calcium concentration dur-
1e7 Ing muscle contraction (Video S3). Importantly, the reconstructions preserved the relative intensity
19s  distribution within the sample, as we did not find significant differences between the reconstructed
199 forward projection and the ground truth (Supplementary Fig. S3). We also observed that most cal-
200 cium signal comes from equatorial region of the muscles and rapidly drops off towards the lateral
201 sides (Fig. 4g). This implies that the contractile power is localized to the equatorial regions, where
202 the largest bending moment can be applied. Consistent with a high calcium concentration during
203 muscle contraction, we observed that the largest intensities mapped to positive body curvatures

204 (Flg 41’1)

205 Taken together, we have shown that a combination of an optimized optical path and advanced

206 computational tools dramatically improves the SNR of bioluminescence microscopy that rivals that
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207 of conventional fluorescence microscopy. We have demonstrated the performance on living tissue
208 culture cells for subcellular labeling of actin and microtubules, zebrafish epithelial cell organiza-
200 tion and nuclear dynamics in mouse embryonic stem cells. Lastly, we combined a sequential neu-
210 ronal network composed of content aware image restoration pipelines and light field reconstruction
211 to enable high-speed, subsecond volumetric imaging of a genetically encoded calcium sensor in
212 freely moving animals. Novel luciferases and cofactors will be needed to obtain single cell res-
213 olution at high magnification in crowded tissues, e.g. organoids or for whole brain luminescent
214 calcium imaging. In the future, spatiotemporal resolution and light-capturing ability could fur-
215 ther be improved through combinations of wavefront coding®®, tunable optics*, Fourier-lightfield
216 microscopy*!, and new transformer networks that are trained to provide a spatially super-resolved
217 representation of the scene*”. Our results pave new avenues for excitation-free, non-invasive low

218 light imaging in microscopy, diagnostics and biomedicine.

219 Data and Code availability All training data and bioluminescent source images will be deposited
220 on zenodo.org upon acceptance of this article. The code of the training and inference pipelines and

221 instructions to run it will be freely available under this link.
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Fig. 1: Optimized bioluminescence microscopy.

a, Photograph of the optimized Low-Light MicroScope. b, Bioluminescent (top) and fluorescent
(bottom) images of cell expressing the indicated marker taken on the LowLiteScope or a com-
mercial epifluorescence microscope, respectively. Exposure times indicated in the top left of each
image.Scalebar=20pm. ¢, Bioluminescent images of an immobilized worm expressing a turquoise
enhanced Nanolantern (TeNL) in the body wall muscle at different exposure times. Inset show
the intensity profile across the line indicated in the image. Scalebar=50pm. d, Schematic of the
content aware restoration deep learning pipeline. i, pairs of images were collected in an epifluores-
cent microscope at different exposure times to create a low and high SNR training dataset. Note,
the network was trained with pictures of animal in different body postures to avoid overfitting and
memorization. ii, After subpixel registration, a deep neural network is trained to restore the test im-
age from the high SNR ground truth. iii) Structural similarity (SSIM) and root squared error (RSE)
of the predicted images vs the ground truth (see also Fig. S1). iv, The trained network is then used
to restore low-SNR bioluminescent images. Scalebar=50um.e-g, Suppression of autofluorescence
in bioluminescent restoration microscopy. Lower panel shows intensity profile through the lines
indicated in the upper micrographs. e) Fluorescence picture of a worm expression mNeonGreen-
enhanced Nanolantern (GeNL) in touch receptor neurons; the same transgenic in bioluminescent
contrast f) before and g) after Al-denoising. Scalebar=50um. h, Versatility of the neuronal recon-
struction as shown on several neurons in C. elegans, such as ASH, a neuronal ensemble expressing
the Turquoise-enhanced Nanolantern in glutamakérgic neurons (eat-4p:TeNL) and PQR.

Scalebar=15-30pm.
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Fig. 2: Stress reporter activation under external illumination
a,b Bioluminescent (a) and fluorescent (b) DAF-16::GeNL before (0’) and after (15’) exposure
to 37C heat stress. Inset shows animals at the same timepoints without external heat stress.c

Quantification of the nuclear/cytoplasmic DAF-16 ratio over 18 min of the experiment in the four
tested conditions. Scale bars = 40um.
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Fluorescence Luminescence - Luminescence
a Raw b Raw C CARE/Segmented d Brightfield e Raw f CARE/Segmented

Fluorescence

Fig. 3: Seamless denoising and segmentation of bioluminescent samples

a, Laser scanning confocal fluorescence image of a 4hpf embryo expressing membrane bound GPI-
GFP. The red box indicates the close-up below.b, Unprocessed bioluminescence image of a 4hpf
zebrafish embryo expressing GPI:GFP targeted to the plasma membrane. The red square indicates
the high magnification close up below. ¢, The same bioluminescent signal of the embryo was re-
stored using a pre-trained CARE pipeline optimized for epithelial monolayers. The bottom picture
shows the segmented bioluminescent image. No segmentation was possible on the raw image. d,
Brightfield (top) and fluorescence image (bottom) of a spheroid of mouse embryonic stem cells. e,
Unprocessed raw (top) and denoised (bottom) bioluminescence image of similar spheroids. f, Seg-
mented nuclei (top) after denoising, overlayed with their individual tracks throughout the timelapse
(bottom).
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Fig. 4: Single-exposure, volumetric bioluminescence microscopy

a, Schematic and photograph of the optimized Low-LightField MicroScope. 1) Sample, 2) Objec-
tive, 3) Tube lens, 4) Microlens array, 5) Relay lens. b-d, Training pipeline to obtain fast deconvo-
lution of 2D experimental lightfield data into 3D image stacks. b) A 3D image stack was acquired
on fluorescent samples representative of the bioluminescent signal in the final experiment. The
stack was convolved with the lightfield PSF, to obtain a synthetic lightfield image, which was sub-
sequently used to map onto the 3D ground-truth stack. The training quality of the individual mod-
els (c) was tested against unseen samples by calculating the difference and similarity to the ground
truth. d) The best model with the lowest error and highest similarity was used to reconstruct exper-
imental bioluminescence images. e, Pipeline for bioluminescence reconstruction is composed. An
initial i) CARE denoising step is used to increase the SNR of ii) noisy bioluminescent lightfield
images. The individual layers are color coded according to their function. The clean images (iii)
are fed into the VCD network®’ (iv) after perspective extraction to reconstruct the 3D information.
Scalebar = 50pum. f, Sequence of reconstructed 3D images of a moving animal showing high cal-
cium activity at its contracted side. Images show a single plane of the reconstructed z-stack. Inset
corresponds to the raw lightfield image. g, Sideview image of the curvature-dependent calcium
signal in muscles during ventral and dorsal body bends. The polar plot shows the intensity distri-
bution on the ventral and dorsal side. Dotted line corresponds to the circumference of the animal.
h, Intensity of the bioluminescent calcium indicator and curvature variation on the ventral side
during animal crawling under the lightfield microscope. Black=curvature, yellow=calcium signal.
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s20 Supplementary Videos

st Supplementary Video 1 Dynamics of the DAF-16 transcription factor in response to external
s22  heat. For display purposes, the video was denoised using the deep learning pipelines developed in

s23  this manuscript.

s2+  Supplementary Video 2 Dynamics of mouse embryonic stem cells within a spheroid. For display

525 purposes, the video was denoised using the deep learning pipelines developed in this manuscript.

s2s  Supplementary Video 3 Three dimensional calcium dynamics of a freely moving animal. The
s27  video was denoised and reconstructed from a 2D lightfield image using the deep learning pipelines

s2s  developed in this manuscript.

529  References

531 1. Laissue, P. P., Roberson, L., Gu, Y., Qian, C., Smith, D. J., Long-term imaging of the pho-
532 tosensitive , reef-building coral Acropora muricata using light-sheet illumination. Scientific

533 Reports 1-12 (2020).

ss¢ 2. Teuscher, A., Ewald, C., Overcoming Autofluorescence to Assess GFP Expression During

535 Normal Physiology and Aging in Caenorhabditis elegans. Bio-Protocol 8 (2018).

sss 3. Nekimken, A. L., et al., Pneumatic stimulation of C. elegans mechanoreceptor neurons in a

537 microfluidic trap. Lab Chip 17, 1116-1127 (2017).

sss 4. Shettigar, N., et al., Hierarchies in light sensing and dynamic interactions between ocular and

539 extraocular sensory networks in a flatworm. Science Advances 3 (2017).

so0 5. Schultz, R. M., Of light and mouse embryos: Less is more. Proceedings of the National

541 Academy of Sciences of the United States of America 104, 14547-14548 (2007).

36


https://doi.org/10.1101/2022.05.31.494105
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.31.494105; this version posted June 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

s2 6. Nagel, G., et al., Channelrhodopsin-2, a directly light-gated cation-selective membrane chan-

543 nel. Proceedings of the National Academy of Sciences 100, 13940-13945 (2003).

s« 7. Strickland, D., et al., TULIPs: Tunable, light-controlled interacting protein tags for cell biol-

545 ogy. Nature Methods 9, 379-384 (2012).

s¢6 8. Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G., Shroff, H., Assessing photo-

547 toxicity in live fluorescence imaging. Nature Methods 14, 657-661 (2017).

s« 9. Woodroofe, C. C., et al., Novel heterocyclic analogues of firefly luciferin. Biochemistry 51,

549 9807-9813 (2012).

sso  10. Hall, M. P, et al., Engineered luciferase reporter from a deep sea shrimp utilizing a novel

551 imidazopyrazinone substrate. ACS chemical biology 7, 1848-57 (2012).

ss2 11. Suzuki, K., et al., Five colour variants of bright luminescent protein for real-time multicolour

553 bioimaging. Nature Communications 7, 1-10 (2016).

ss« 12, Kelkar, M., De, A., Bioluminescence based in vivo screening technologies. Current Opinion

555 in Pharmacology 12, 592-600 (2012).

sse  13. Coté, G., Lalonde, J.-F., Thibault, S., Deep learning-enabled framework for automatic lens

557 design starting point generation. Optics Express 29, 3841 (2021).

sss 14, Pinkard, H., Phillips, Z., Babakhani, A., Fletcher, D. A., Waller, L., Deep learning for single-

559 shot autofocus microscopy. Optica 6, 794 (2019).

seo 15. Fang, L., et al., Deep learning-based point-scanning super-resolution imaging. Nature Methods

g 18, 406-416 (2021).

se2 16, Weigert, M., et al., Content-aware image restoration: pushing the limits of fluorescence mi-

563 croscopy. Nature Methods 15, 1090-1097 (2018).

37


https://doi.org/10.1101/2022.05.31.494105
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.31.494105; this version posted June 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

ss¢« 17. Guo, M., et al., Rapid image deconvolution and multiview fusion for optical microscopy.

565 Nature Biotechnology 38, 1337-1346 (2020).

see  18. Wagner, N., et al., Deep learning-enhanced light-field imaging with continuous validation.

567 Nature Methods 18, 557-563 (2021).

ses  19. Schmidt, U., Weigert, M., Broaddus, C., Myers, G., Cell detection with star-convex polygons,
569 vol. 11071 LNCS. Springer International Publishing (2018).

so 20. Minaee, S., et al., Image Segmentation Using Deep Learning: A Survey. IEEE Transactions

571 on Pattern Analysis and Machine Intelligence 1-22 (2021).

sz 21. Coutant, E. P., et al., Bioluminescence Profiling of NanoKAZ/NanoLuc Luciferase Using a
573 Chemical Library of Coelenterazine Analogues. Chemistry - A European Journal 26, 948-958
574 (2020).

ss 22. Su, Y., et al., Novel NanoLuc substrates enable bright two-population bioluminescence imag-

576 ing in animals. Nature Methods 17, 852—-860 (2020).

s7 23. Ogoh, K., et al., Bioluminescence microscopy using a short focal-length imaging lens. Journal

578 of Microscopy 253, 191-197 (2014).

s9  24. Porta-de-la Riva, M., et al., Deploying photons for communication within neuronal networks.

580 bioRxiv (2021).

ss1 25. Pincus, Z., Mazer, T. C., Slack, F. J., Autofluorescence as a measure of senescence in C.

582 elegans: Look to red, not blue or green. Aging 8, 889-898 (2016).

ss3 26. von Chamier, L., et al., Democratising deep learning for microscopy with ZeroCostDL4Mic.

584 Nature Communications 12, 1-18 (2021).

sss 27. Lee, R. Y., Sawin, E. R., Chalfie, M., Horvitz, H. R., Avery, L., EAT-4, a homolog of a mam-

586 malian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic

38


https://doi.org/10.1101/2022.05.31.494105
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.31.494105; this version posted June 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

587 neurotransmission in caenorhabditis elegans. The Journal of neuroscience : the official jour-

588 nal of the Society for Neuroscience 19, 159-167 (1999).

ss9  28. Coutant, E. P, et al., Gram-scale synthesis of luciferins derived from coelenterazine and orig-
590 inal insights into their bioluminescence properties. Organic and Biomolecular Chemistry 117,

501 3709-3713 (2019).

s 29. Tung, J. K., Berglund, K., Gross, R. E., Optogenetic Approaches for Controlling Seizure

593 Activity. Brain Stimulation 1-10 (2016).

s« 30. Lin, K., Dorman, J. B., Rodan, A., Kenyon, C., daf-16 : An HNF-3 / forkhead family member

595 that can function to double ... Science 278, 1319-1322 (1997).

s6  31. Senchuk, M. M., et al., Activation of DAF-16/FOXO by reactive oxygen species contributes to
597 longevity in long-lived mitochondrial mutants in Caenorhabditis elegans. PLoS Genetics 14,

598 1-27 (2018).

seo  32. Dixit, R., Cyr, R., Cell damage and reactive oxygen species production induced by fluores-
600 cence microscopy: Effect on mitosis and guidelines for non-invasive fluorescence microscopy.

601 Plant Journal 36, 280-290 (2003).

s2 33. Levoy, M., Ng, R., Andrew, A., Footer, M., Mark, H., Light Field Microscopy. ACM Transac-

603 tions on Graphics 25, 1-11 (2006).

s« 34. Bimber, O., Schedl, D., Light-Field Microscopy: A Review. Journal of Neurology & Neu-

605 romedicine 4, 1-6 (2019).

es 35. Broxton, M., et al., Wave optics theory and 3-D deconvolution for the light field microscope.

607 Optics Express 21, 25418 (2013).

sos 36. Stefanoiu, A., Page, J., Symvoulidis, P., Westmeyer, G. G., Lasser, T., Artifact-free deconvo-

609 lution in light field microscopy. Optics Express 27, 31644 (2019).

39


https://doi.org/10.1101/2022.05.31.494105
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.31.494105; this version posted June 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

st0 37. Wang, Z., et al., Real-time volumetric reconstruction of biological dynamics with light-field

611 microscopy and deep learning. Nature Methods 18, 551-556 (2021).

s12 38. Vizcaino, J. P, et al., Learning to Reconstruct Confocal Microscopy Stacks from Single Light

613 Field Images. IEEE Transactions on Computational Imaging 7, 775-788 (2021).

st 39. Cohen, N., et al., Enhancing the performance of the light field microscope using wavefront

615 coding. Optics Express 22, 727-730 (2014).

ste 40. Berto, P, et al., Tunable and free-form planar optics. Nature Photonics 13, 649-656 (2019).

si7 41. Hua, X., Liu, W., Jia, S., High-resolution Fourier light-field microscopy for volumetric multi-

618 color live-cell imaging. Optica 8, 614 (2021).

st9 42. Wang, S., Zhou, T., Lu, Y., Di, H., Detail-Preserving Transformer for Light Field Image Super-
620 Resolution. arXiv arXiv:2201 (2022).

et 43. Stiernagle, T., Maintenance of C. elegans. WormBook : the online review of C. elegans biology

622 1-11 (2006).

s2s 44. Porta-de-la Riva, M., Fontrodona, L., Villanueva, A., Cer6n, J., Basic Caenorhabditis elegans

624 methods: Synchronization and observation. Journal of Visualized Experiments 4019 (2012).

e 45. George, S. H., et al., Developmental and adult phenotyping directly from mutant embryonic

626 stem cells. Proceedings of the National Academy of Sciences of the United States of America

627 104, 44554460 (2007).

e 46. Westerfield, M., No Title. University of Oregon Press, 4 edn. (2000).

e 47. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F., Stages of embry-

630 onic development of the zebrafish. Dev Dyn 203, 253-310 (1995).

st 48. Pinkard, H., et al., Pycro-Manager: open-source software for customized and reproducible

632 microscope control. Nature Methods 18, 226-228 (2021).

40


https://doi.org/10.1101/2022.05.31.494105
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.31.494105; this version posted June 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

ss 49. Bray, M.-a., Fraser, A. N., Hasaka, T. P., Carpenter, A. E., Workflow and Metrics for Image
634 Quality Control in Large-Scale High-Content Screens. Journal of Biomolecular Screening 17,

635 266 (2012).

s 0. Tinevez, J. Y., et al., TrackMate: An open and extensible platform for single-particle tracking.

637 Methods 115, 80-90 (2017).

ss J1. Legland, D., Arganda-carreras, 1., Andrey, P., Biopolymers, U. R., Bourgin, 1. J.-p., Mor-
639 phoLib] : integrated library and plugins for mathematical morphology with Imagel. Bioinfor-

640 matics 32, 3532-3534 (2016).

st 52. Prevedel, R., et al., Simultaneous whole-animal 3D imaging of neuronal activity using light-

642 field microscopy. Nature Methods 11, 727-730 (2014).

ss 53. Wang, Z., et al., Image Quality Assessment : From Error Visibility to Structural Similarity.

644 IEEE TRANSACTIONS ON IMAGE PROCESSING 13, 600-612 (2004).

41


https://doi.org/10.1101/2022.05.31.494105
http://creativecommons.org/licenses/by-nc/4.0/

