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The application of genetically encoded fluorophores for microscopy has afforded one of the

biggest revolutions in the biosciences. Bioluminescence microscopy is an appealing alterna-

tive to fluorescence microscopy, because it does not depend on external illumination, and con-

sequently does neither produce spurious background autofluorescence, nor perturb intrinsi-

cally photosensitive processes in living cells and animals. The low quantum yield of known

luciferases, however, limit the acquisition of high signal-noise images of fast biological dy-

namics. To increase the versatility of bioluminescence microscopy, we present an improved

low-light microscope in combination with deep learning methods to increase the signal to

noise ratio in extremely photon-starved samples at millisecond exposures for timelapse and

volumetric imaging. We apply our method to image subcellular dynamics in mouse embry-

onic stem cells, the epithelial morphology during zebrafish development, and DAF-16 FoxO

transcription factor shuttling from the cytoplasm to the nucleus under external stress. Fi-

nally, we concatenate neural networks for denoising and light-field deconvolution to resolve

intracellular calcium dynamics in three dimensions of freely moving Caenorhabditis elegans

with millisecond exposure times. This technology is cost-effective and has the potential to

replace standard optical microscopy where external illumination is prohibitive.
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Main

Fluorescence microscopy has enabled unprecedented discoveries and became the major imaging1

modality in molecular and cellular bioscience. However, significant autofluorescence of the native2

tissues1 often obscures and blurs the signal from specific labels in biological samples2, while in-3

trinsic photosensitivity of cells and animals, such as Caenorhabditis elegans 3, planaria 4 or mouse4

preimplantation embryos 5, interferes with imaging experiments that require an excitation light5

source. In addition, the excitation of a fluorescent protein (e.g. GFP, GCaMP) is often incompat-6

ible with an experimental design, eg. the simultaneous emission of a cyan FP (em 470nm), or if7

the absorption spectrum of the chromophore overlaps with that of a photosensitizers (e.g. 470nm8

for Channelrhodopsin6 and Tulips7). Further, the high excitation intensities that are necessary to9

obtain fluorescent images with extreme photon-starved samples render fluorescence microscopy10

potentially phototoxic and limit the lifetime of the fluorescent probe8. These drawbacks can be11

overcome by implementing bioluminescent probes as contrast labels, that can be genetically en-12

coded to tag any protein of interest, and do not need an external excitation light source. However,13

traditional bioluminescent probes have a slow catalytic turnover9 and require a chemical cofactor,14

e.g. luciferin, as a photon source, which becomes oxidized prior to photon emission. More effi-15

cient luciferases based on deep sea shrimp and termed Nanolanterns, have been engineered10, 11. In16

these enzymes, the luciferase moiety is fused to a fluorescent protein, which increases the quantum17

yield and bears the potential to select the emission wavelength. Thus, a whole spectrum of light-18

emitting proteins can be tailored to a specific need. However, they require chemicals with a poor19

bioavailability due to low solubility in water, which greatly limits the quantum yield and concomi-20

tant signal-to-noise ratio (SNR). Thus, to obtain high-SNR images calls for long exposure times21

in the seconds or even tens of seconds scale which is incompatible with fast biological dynamics.22

Because bioluminescence imaging is widely applied for drug screening and cancer research12, long23

exposure times greatly limit the throughput.24

Deep learning-based neural networks have the potential to transform microscopy research and25
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have aided the design of advanced optical lenses13, autofocus 14, superresolution15, denoising16
26

and speed up complex deconvolution procedures17, 18 and postprocessing pipelines 19, 20. Here, we27

overcome several significant challenges, and demonstrate the use of bioluminescence as an imag-28

ing modality in the millisecond range. We constructed a new microscope with an shortened, opti-29

mized optical path, light field detection and single photo resolution in combination with machine30

learning that takes advantage of the development of novel cofactor chemistry21, 22 and transgenic31

animals. Because an accurate inference from a neural network, high-quality training data of bio-32

logical samples is needed, we built training and inference pipelines deep learning models using two33

concatenated neural networks with the aim to increase the signal-noise ratio and reconstruct four34

dimensional information from a time series of 2D images. Despite the apparent complexity of our35

approach, the individual components are easy to construct, commercially available and pretrained36

neural networks are at everyone’s disposal. We demonstrate this approach to image nuclear dy-37

namics in mouse embryonic stem cells, 3D imaging of zebrafish epithelial tissues and whole-body38

calcium imaging in muscles of free moving C. elegans.39

Results40

Due to the low quantum yield of luciferases, standard optical microscopes are not suitable to pro-41

duce bioluminescent images and dedicated instruments are commonly used23. Indeed, we were42

not able to observe any signal from Nanolanterns transfected into HeLa cells on a commercial43

compound microscope with the maximum exposure time of an sCMOS camera (not shown). To44

increase the photon collection efficiency, we thus conceived a microscope with an ultra-compact45

optical axis, and with a single photon-resolving qCMOS camera (Fig. 1a). With this new setup,46

we were able to obtain high SNR images for cells transfected with Nanolantern fusions to clathrin,47

actin and the plasma membrane marker lyn11 and supplemented with the cofactor Hikarazine (see48

Methods,21) for exposure times down to 2s (Fig. 1b, top row). Importantly, even without any49

further treatment, these images were comparable to fluorescence images acquired at a similar ex-50
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posure time at higher magnification (Fig. 1b, bottom row) on a conventional, epifluorescence mi-51

croscope. As expected, no autofluorescence was observed in the luminescence images due to the52

absence of external excitation light source, in contrast to the fluorescence images (Fig. 1b). We53

next established that the optimized bioluminescence imaging protocol enhances the photon collec-54

tion efficiency in living animals. We created a transgenic C. elegans line that expresses a turquoise55

Nanolantern in their body wall muscles24 and immobilized individual animals for imaging on a56

agar pad in presence of the luciferin. In agreement with our results from tissue culture cells, we57

observed a strong specific signal at longer exposure time and even for exposure times down to 5058

ms (Fig. 1c). Taken together, these technical improvements dramatically augmented the quantity59

of photons detected allowing us to significantly reduce the exposure time without additional post-60

processing. Capturing the ability to record ultra-photon starved samples, we refer to our setup as61

‘LowLiteScope’.62

Inspired by these positive results, we set out to test the advantages of low-background aut-63

ofluorescence recordings, and established transgenic C. elegans animals that express a green en-64

hanced Nanolantern exclusively in the touch receptor neurons (TRNs). High resolution imaging of65

these neurons is often precluded by the abundant autofluorescence that emanates from the ubiqui-66

tous gut granules under epifluorescent illumination (Fig. 1e). This is of particular concern in old67

animals25, in which the signal of the autofluorescence can become more intense than the specific68

label, which makes it difficult to distinguish between both. Indeed, the fluorescent images derived69

from animals expressing GFP in TRNs on a standard epifluorescence microscope showed exten-70

sive out of focus light due to background autofluorescence of the gut (Fig. 1e). In contrast, living71

animals that express the TRN::luciferase and were supplied with the optimized cofactor, a single,72

specific signal is visible from the monopolar dendrites of these neurons, and no spurious autofluo-73

rescence can be seen (Fig. 1f). However, because of the small size of the TRNs, the obtained SNR74

is very low at exposure times as short as 1s. Because there is no noise inherent to the sample (only75

from the detector), we reasoned that prior knowledge of the underlying sample structure should fa-76
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cilitate superior image reconstruction with dramatically improved SNR using deep learning-based77

content aware image restoration (CARE) algorithms16. To clean up these images and increase the78

effective SNR, we combined these bioluminescent microscopy images with convolutional neural79

network that transforms a degraded image to a desired high quality target given a proper training80

with a known signal distribution16.81

Because CARE models for C. elegans and bioluminescence are in-existent, we first devel-82

oped a generalizable training pipeline to predict high quality, ground truth images from noisy83

input. We thus collected image pairs derived from fluorescence microscopy acquired at extremely84

low exposure times reflecting the noisy input with poor SNR and used high SNR images from85

long exposure times as the ground truth target (Fig. 1d i). The training data set consisted of an-86

imals transgenic for mTurquoise body wall muscles, which showed high specific signal and lack87

of any visible autofluorescence within the region of interest. To achieve a high variety of body88

postures and thus 2D intensity distributions, we recorded the fluorescence signal from the body89

wall muscles in freely moving animals. After data collection and preprocessing, we varied the hy-90

perparameters to find the optimal network configuration16, 26 specific for our training dataset (Fig.91

S1, 1d ii), and evaluated its out-of-sample performance on unseen noisy images using the struc-92

tural similarity (SSIM) and residual squared errors (RSE) metrics for training quality (Fig. 1d iii,93

Supplementary Fig. S1 and Methods). We then built an inference pipeline with the model showing94

the highest confidence and lowest error to predict the ground truth from the noisy bioluminescent95

images which turned out to be completely clean and devoid of artifacts (Fig. 1d iv). When we96

applied this model to degraded bioluminescent images derived from transgenic TRNs in aged an-97

imals, our model was able to effectively enhance the SNR and cleanly visualize the neurons for98

further inspection (Fig. 1g). Importantly, this approach is not limited to a specific neuron in C. el-99

egans, and we have successfully enhanced the degraded bioluminescent images acquired for ASH,100

PQR and vGLUT EAT-4 expressing neurons in the head (Fig. 1h, 24, 27). Strikingly, we found satis-101

factory performance of the model with exposure times as low as 200 ms taken on ASH, a neuron in102
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the head of C. elegans with a diffraction-limited axon caliper. Taken together, the combination of103

optimized optical path, cofactors21, 28 and dedicated machine learning algorithms from the CARE104

family enabled the acquisition of high-SNR images at exposure times as low as 50 ms in living105

animals and tissue culture. Importantly, we showed that we could achieve high-performance with106

a small, but diversified training dataset, that resulted in a generalizable and transferrable model to107

infer noiseless images from severely degraded inputs of different cellular structures in C. elegans.108

Consequently, this allowed us to build our pipelines using free cloud-computing resources, which109

are accessible to a standard research laboratory26.110

Photo-bleaching during fluorescence microscopy is an indicator for potential photo dam-111

age to the cell8, especially at lower wavelength commonly used for one photon live-cell imaging.112

Without the requirement of an excitation light source, bioluminescence has the advantage to cir-113

cumvent potentially phototoxic effects29. We thus compared the activation of a cellular stress114

reporter in fluorescence and bioluminescence microscopy and generated transgenic animals ex-115

pressing mNeonGreen-NanoLantern fused to DAF-16, a promotor of longevity30 and reporter for116

various stresses, including reactive oxygen species31. To verify that the bioluminescent stress117

reporter signals the animal’s exposure to cytotoxic stresses, we followed cytoplasmic/nuclear shut-118

tling during the application of a heat shock and compared it to the stress response after fluorescence119

imaging. With both reporters, we observed a strong nuclear relocalization immediately after the120

heat shock (Fig. 2a,b; Video S1). Even though we only detected muscle and neuronal cells in121

the bioluminescent animals, the activity of the bioluminescent reporter was more pronounced. We122

reasoned that the absence of autofluorescent background in the bioluminescent images enabled a123

higher dynamic range. When we omitted the heat shock, the unstressed, control animals that were124

recorded with fluorescence microscopy showed a slight but significant increase in nuclear DAF-125

16 localization (Fig. 2b,c; R=0.95, p<1e-15), which was strongly reduced in the bioluminescent126

images (Fig. 2c; R=0.56, p=1e-5). We thus speculated that the spontaneous activity if DAF-16127

might be triggered by the reactive oxygen species during the fluorescence illumination8, 32. Taken128

6

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494105doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494105
http://creativecommons.org/licenses/by-nc/4.0/


together, the application of bioluminescent reporter offers a higher dynamic range in absence of129

background autofluorescence and could possibly guide the discovery of stress pathways that would130

otherwise be obscured by the cellular response to external light.131

To demonstrate that our combination of bioluminescent imaging and deep learning can be132

generalized to other animals and biosystems, we generated bioluminescent zebrafish embryos133

expressing a membrane-bound red shifted nanolantern and mounted them for imaging in our134

LowLiteScope at 4 hours post fertilization. Under fluorescence excitation, the EVL is clearly135

visible as a tessellated epithelial cell layer (Fig. 3a). Under bioluminescence contrast, however,136

strong out-of-focus haze limited the signal strength and SNR, even though we were able to record137

a signal reminiscent of the cell junctions after 100ms exposure time (Fig. 3b, Supplementary Fig.138

S2). We thus combined the final images with a pre-trained CARE model, originally established139

for epithelial monolayers in Drosophila wing discs16, a tissue with similar tessellated morphology140

and signal distribution. Despite the challenging task due to the poor input SNR, we found that141

this model was generalizable and fit our input extremely well, being able to greatly improve the142

SNR (Fig. 3b,c). Critically, these signal restorations and improvements enabled the segmention of143

individual cells in the embryo (Fig. 3c) which afforded the calculation of their perimeter and cell144

area (not shown) - a procedure that otherwise would not have been possible.145

We were next interested to demonstrate subcellular dynamics in mouse embryonic stem cells146

and generated a stably transgenic cell line expressing a nuclear localized luciferase by fusing147

mTurquoise-NL to histone (see Methods, Fig. 3d). After optimization of the co-factor delivery148

(see Methods) we performed timelapse imaging of individual cells in spheroids from mESCs and149

recorded their nuclear dynamics (Fig. 3e, Video S2). Expectedly, the images were noisy, due to150

the low quantum yield. To improve visual quality and the ability to quantify nuclear trajectories,151

we sequentially employed two published convolutional neural networks. We first passed the noisy152

images through a pretrained CARE neural network for denoising nuclear morphologies16 and then153

performed nuclear segmentation with the StarDist algorithm 19 (Fig. 3e, f). This approach allowed154
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us to track the migratory path for each individual nuclei within bioluminescent spheroids. Taken155

together, these approaches demonstrate the possibility to image subsecond dynamics of subcellular156

localized bioluminescent probes in C. elegans, zebrafish and mouse embryonic stem cells.157

Up to this point, the long exposure times in bioluminescence imaging have largely hindered158

the acquisition of three dimensional image stacks, especially in moving animals. Often, it is de-159

sirable or even important to obtain the whole 3D representation of a fast biological process, e.g.160

during calcium imaging of neuron or muscle contraction. We thus sought to establish single-161

exposure volumetric light field imaging33 to quantify calcium dynamics in freely moving animals162

using bioluminescent calcium indicators. To do so, we equipped our LowLiteScope with a mi-163

crolens array that is matched to the magnification and numerical aperture of the imaging lens and164

projected the entire light field onto the qCMOS sensor for plenoptic imaging in three dimensions165

(Fig. 4a). To obtain the 3D information from a 2D image, the light field needs to be decon-166

volved computationally34, 35. Traditionally, however, this process is computationally very demand-167

ing and takes up to several minutes for a single image36 amounting to many hours or even days168

computing time for a whole time series, which makes recording of cellular dynamics unattain-169

able. Several AI-based algorithms have been proposed to speed up the deconvolution and enhance170

performance18, 37, 38, that significantly outperform traditional light field processing. To create a171

neural network for the reconstruction of C. elegans expressing a fluorescent calcium reporter in172

the body wall muscles, we first trained a NN with synthetic light field data37 as the input and173

experimental confocal stacks as the target (Fig. 4b). Both features were derived from the same174

immobilized animal, each stack was convolved with the light field point-spread-function (PSF)175

to generate the synthetics input data (Fig. 4b and Methods). We then extended the model using176

transfer learning with purely experimental data containing fluorescent light field images and z-177

stacks taken from the same sample as just described. This network knowledge expansion allowed178

us to be more specific to the experimental images we got from our setup, gave more flexibility to179

perform well for low and high SNR light field images, reduced the possibility to obtain artifacts180
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and improved the inference quality (Fig. 4 c). As described before37, this approach shortened181

the processing time from 30h to 100ms per full frame image as compared to traditional lightfield182

deconvolution algorithms. We then used this model to reconstruct the bioluminescent light field183

images (Fig. 4d). We found that exposure times of 5s are required to obtain a clear representation184

of the scene, but with blurred dynamics due to sample movement. In order to enable faster frame185

rates to ‘freeze’ animal movement and capture the full dynamics of the calcium dye, we applied the186

CARE pipeline for denoising the low SNR lightfield images obtained at low exposure times prior187

to the light field deconvolution within a sequential application of two neural networks (Fig. 4e).188

The denoising led to a striking increase in SNR of the light field image, and with this approach,189

we were able to obtain significantly better reconstructions than without (Supplementary Fig. 5).190

Moreover, we were able to obtain three dimensional calcium recordings from whole animals with191

typically 200-500ms exposure time to create a full 3D stack of the bioluminescent scene which192

corresponded to a z-resolution of 1.5 um and reconstructed 31 z-planes in conventional widefield193

microscopy (Fig. 4f, Supplementary Fig. S5). Strikingly, this is equivalent to 6.4 ms exposure per194

frame in traditional volumetric imaging. In these bioluminescent calcium recordings, we observed195

higher intensity on the concave side of the bend, consistent with high-calcium concentration dur-196

ing muscle contraction (Video S3). Importantly, the reconstructions preserved the relative intensity197

distribution within the sample, as we did not find significant differences between the reconstructed198

forward projection and the ground truth (Supplementary Fig. S3). We also observed that most cal-199

cium signal comes from equatorial region of the muscles and rapidly drops off towards the lateral200

sides (Fig. 4g). This implies that the contractile power is localized to the equatorial regions, where201

the largest bending moment can be applied. Consistent with a high calcium concentration during202

muscle contraction, we observed that the largest intensities mapped to positive body curvatures203

(Fig. 4h).204

Taken together, we have shown that a combination of an optimized optical path and advanced205

computational tools dramatically improves the SNR of bioluminescence microscopy that rivals that206
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of conventional fluorescence microscopy. We have demonstrated the performance on living tissue207

culture cells for subcellular labeling of actin and microtubules, zebrafish epithelial cell organiza-208

tion and nuclear dynamics in mouse embryonic stem cells. Lastly, we combined a sequential neu-209

ronal network composed of content aware image restoration pipelines and light field reconstruction210

to enable high-speed, subsecond volumetric imaging of a genetically encoded calcium sensor in211

freely moving animals. Novel luciferases and cofactors will be needed to obtain single cell res-212

olution at high magnification in crowded tissues, e.g. organoids or for whole brain luminescent213

calcium imaging. In the future, spatiotemporal resolution and light-capturing ability could fur-214

ther be improved through combinations of wavefront coding39, tunable optics40, Fourier-lightfield215

microscopy41, and new transformer networks that are trained to provide a spatially super-resolved216

representation of the scene42. Our results pave new avenues for excitation-free, non-invasive low217

light imaging in microscopy, diagnostics and biomedicine.218

Data and Code availability All training data and bioluminescent source images will be deposited219

on zenodo.org upon acceptance of this article. The code of the training and inference pipelines and220

instructions to run it will be freely available under this link.221
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Fig. 1: Optimized bioluminescence microscopy.

a, Photograph of the optimized Low-Light MicroScope. b, Bioluminescent (top) and fluorescent

(bottom) images of cell expressing the indicated marker taken on the LowLiteScope or a com-

mercial epifluorescence microscope, respectively. Exposure times indicated in the top left of each

image.Scalebar=20µm. c, Bioluminescent images of an immobilized worm expressing a turquoise

enhanced Nanolantern (TeNL) in the body wall muscle at different exposure times. Inset show

the intensity profile across the line indicated in the image. Scalebar=50µm. d, Schematic of the

content aware restoration deep learning pipeline. i, pairs of images were collected in an epifluores-

cent microscope at different exposure times to create a low and high SNR training dataset. Note,

the network was trained with pictures of animal in different body postures to avoid overfitting and

memorization. ii, After subpixel registration, a deep neural network is trained to restore the test im-

age from the high SNR ground truth. iii) Structural similarity (SSIM) and root squared error (RSE)

of the predicted images vs the ground truth (see also Fig. S1). iv, The trained network is then used

to restore low-SNR bioluminescent images. Scalebar=50µm.e-g, Suppression of autofluorescence

in bioluminescent restoration microscopy. Lower panel shows intensity profile through the lines

indicated in the upper micrographs. e) Fluorescence picture of a worm expression mNeonGreen-

enhanced Nanolantern (GeNL) in touch receptor neurons; the same transgenic in bioluminescent

contrast f) before and g) after AI-denoising. Scalebar=50µm. h, Versatility of the neuronal recon-

struction as shown on several neurons in C. elegans, such as ASH, a neuronal ensemble expressing

the Turquoise-enhanced Nanolantern in glutamatergic neurons (eat-4p:TeNL) and PQR.

Scalebar=15-30µm.
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Fig. 2: Stress reporter activation under external illumination

a,b Bioluminescent (a) and fluorescent (b) DAF-16::GeNL before (0’) and after (15’) exposure

to 37C heat stress. Inset shows animals at the same timepoints without external heat stress.c

Quantification of the nuclear/cytoplasmic DAF-16 ratio over 18 min of the experiment in the four

tested conditions. Scale bars = 40µm.
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Fig. 3: Seamless denoising and segmentation of bioluminescent samples

a, Laser scanning confocal fluorescence image of a 4hpf embryo expressing membrane bound GPI-

GFP. The red box indicates the close-up below.b, Unprocessed bioluminescence image of a 4hpf

zebrafish embryo expressing GPI:GFP targeted to the plasma membrane. The red square indicates

the high magnification close up below. c, The same bioluminescent signal of the embryo was re-

stored using a pre-trained CARE pipeline optimized for epithelial monolayers. The bottom picture

shows the segmented bioluminescent image. No segmentation was possible on the raw image. d,

Brightfield (top) and fluorescence image (bottom) of a spheroid of mouse embryonic stem cells. e,

Unprocessed raw (top) and denoised (bottom) bioluminescence image of similar spheroids. f, Seg-

mented nuclei (top) after denoising, overlayed with their individual tracks throughout the timelapse

(bottom).
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Fig. 4: Single-exposure, volumetric bioluminescence microscopy

a, Schematic and photograph of the optimized Low-LightField MicroScope. 1) Sample, 2) Objec-

tive, 3) Tube lens, 4) Microlens array, 5) Relay lens. b-d, Training pipeline to obtain fast deconvo-

lution of 2D experimental lightfield data into 3D image stacks. b) A 3D image stack was acquired

on fluorescent samples representative of the bioluminescent signal in the final experiment. The

stack was convolved with the lightfield PSF, to obtain a synthetic lightfield image, which was sub-

sequently used to map onto the 3D ground-truth stack. The training quality of the individual mod-

els (c) was tested against unseen samples by calculating the difference and similarity to the ground

truth. d) The best model with the lowest error and highest similarity was used to reconstruct exper-

imental bioluminescence images. e, Pipeline for bioluminescence reconstruction is composed. An

initial i) CARE denoising step is used to increase the SNR of ii) noisy bioluminescent lightfield

images. The individual layers are color coded according to their function. The clean images (iii)

are fed into the VCD network37 (iv) after perspective extraction to reconstruct the 3D information.

Scalebar = 50µm. f, Sequence of reconstructed 3D images of a moving animal showing high cal-

cium activity at its contracted side. Images show a single plane of the reconstructed z-stack. Inset

corresponds to the raw lightfield image. g, Sideview image of the curvature-dependent calcium

signal in muscles during ventral and dorsal body bends. The polar plot shows the intensity distri-

bution on the ventral and dorsal side. Dotted line corresponds to the circumference of the animal.

h, Intensity of the bioluminescent calcium indicator and curvature variation on the ventral side

during animal crawling under the lightfield microscope. Black=curvature, yellow=calcium signal.
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Supplementary Videos520

Supplementary Video 1 Dynamics of the DAF-16 transcription factor in response to external521

heat. For display purposes, the video was denoised using the deep learning pipelines developed in522

this manuscript.523

Supplementary Video 2 Dynamics of mouse embryonic stem cells within a spheroid. For display524

purposes, the video was denoised using the deep learning pipelines developed in this manuscript.525

Supplementary Video 3 Three dimensional calcium dynamics of a freely moving animal. The526

video was denoised and reconstructed from a 2D lightfield image using the deep learning pipelines527

developed in this manuscript.528

References529

530

1. Laissue, P. P., Roberson, L., Gu, Y., Qian, C., Smith, D. J., Long-term imaging of the pho-531

tosensitive , reef-building coral Acropora muricata using light-sheet illumination. Scientific532

Reports 1–12 (2020).533

2. Teuscher, A., Ewald, C., Overcoming Autofluorescence to Assess GFP Expression During534

Normal Physiology and Aging in Caenorhabditis elegans. Bio-Protocol 8 (2018).535

3. Nekimken, A. L., et al., Pneumatic stimulation of C. elegans mechanoreceptor neurons in a536

microfluidic trap. Lab Chip 17, 1116–1127 (2017).537

4. Shettigar, N., et al., Hierarchies in light sensing and dynamic interactions between ocular and538

extraocular sensory networks in a flatworm. Science Advances 3 (2017).539

5. Schultz, R. M., Of light and mouse embryos: Less is more. Proceedings of the National540

Academy of Sciences of the United States of America 104, 14547–14548 (2007).541

36

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494105doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494105
http://creativecommons.org/licenses/by-nc/4.0/


6. Nagel, G., et al., Channelrhodopsin-2, a directly light-gated cation-selective membrane chan-542

nel. Proceedings of the National Academy of Sciences 100, 13940–13945 (2003).543

7. Strickland, D., et al., TULIPs: Tunable, light-controlled interacting protein tags for cell biol-544

ogy. Nature Methods 9, 379–384 (2012).545

8. Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G., Shroff, H., Assessing photo-546

toxicity in live fluorescence imaging. Nature Methods 14, 657–661 (2017).547

9. Woodroofe, C. C., et al., Novel heterocyclic analogues of firefly luciferin. Biochemistry 51,548

9807–9813 (2012).549

10. Hall, M. P., et al., Engineered luciferase reporter from a deep sea shrimp utilizing a novel550

imidazopyrazinone substrate. ACS chemical biology 7, 1848–57 (2012).551

11. Suzuki, K., et al., Five colour variants of bright luminescent protein for real-time multicolour552

bioimaging. Nature Communications 7, 1–10 (2016).553

12. Kelkar, M., De, A., Bioluminescence based in vivo screening technologies. Current Opinion554

in Pharmacology 12, 592–600 (2012).555

13. Côté, G., Lalonde, J.-F., Thibault, S., Deep learning-enabled framework for automatic lens556

design starting point generation. Optics Express 29, 3841 (2021).557

14. Pinkard, H., Phillips, Z., Babakhani, A., Fletcher, D. A., Waller, L., Deep learning for single-558

shot autofocus microscopy. Optica 6, 794 (2019).559

15. Fang, L., et al., Deep learning-based point-scanning super-resolution imaging. Nature Methods560

18, 406–416 (2021).561

16. Weigert, M., et al., Content-aware image restoration: pushing the limits of fluorescence mi-562

croscopy. Nature Methods 15, 1090–1097 (2018).563

37

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494105doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494105
http://creativecommons.org/licenses/by-nc/4.0/


17. Guo, M., et al., Rapid image deconvolution and multiview fusion for optical microscopy.564

Nature Biotechnology 38, 1337–1346 (2020).565

18. Wagner, N., et al., Deep learning-enhanced light-field imaging with continuous validation.566

Nature Methods 18, 557–563 (2021).567

19. Schmidt, U., Weigert, M., Broaddus, C., Myers, G., Cell detection with star-convex polygons,568

vol. 11071 LNCS. Springer International Publishing (2018).569

20. Minaee, S., et al., Image Segmentation Using Deep Learning: A Survey. IEEE Transactions570

on Pattern Analysis and Machine Intelligence 1–22 (2021).571

21. Coutant, E. P., et al., Bioluminescence Profiling of NanoKAZ/NanoLuc Luciferase Using a572

Chemical Library of Coelenterazine Analogues. Chemistry - A European Journal 26, 948–958573

(2020).574

22. Su, Y., et al., Novel NanoLuc substrates enable bright two-population bioluminescence imag-575

ing in animals. Nature Methods 17, 852–860 (2020).576

23. Ogoh, K., et al., Bioluminescence microscopy using a short focal-length imaging lens. Journal577

of Microscopy 253, 191–197 (2014).578

24. Porta-de-la Riva, M., et al., Deploying photons for communication within neuronal networks.579

bioRxiv (2021).580

25. Pincus, Z., Mazer, T. C., Slack, F. J., Autofluorescence as a measure of senescence in C.581

elegans: Look to red, not blue or green. Aging 8, 889–898 (2016).582

26. von Chamier, L., et al., Democratising deep learning for microscopy with ZeroCostDL4Mic.583

Nature Communications 12, 1–18 (2021).584

27. Lee, R. Y., Sawin, E. R., Chalfie, M., Horvitz, H. R., Avery, L., EAT-4, a homolog of a mam-585

malian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic586

38

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494105doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494105
http://creativecommons.org/licenses/by-nc/4.0/


neurotransmission in caenorhabditis elegans. The Journal of neuroscience : the official jour-587

nal of the Society for Neuroscience 19, 159–167 (1999).588

28. Coutant, E. P., et al., Gram-scale synthesis of luciferins derived from coelenterazine and orig-589

inal insights into their bioluminescence properties. Organic and Biomolecular Chemistry 17,590

3709–3713 (2019).591

29. Tung, J. K., Berglund, K., Gross, R. E., Optogenetic Approaches for Controlling Seizure592

Activity. Brain Stimulation 1–10 (2016).593

30. Lin, K., Dorman, J. B., Rodan, A., Kenyon, C., daf-16 : An HNF-3 / forkhead family member594

that can function to double ... Science 278, 1319–1322 (1997).595

31. Senchuk, M. M., et al., Activation of DAF-16/FOXO by reactive oxygen species contributes to596

longevity in long-lived mitochondrial mutants in Caenorhabditis elegans. PLoS Genetics 14,597

1–27 (2018).598

32. Dixit, R., Cyr, R., Cell damage and reactive oxygen species production induced by fluores-599

cence microscopy: Effect on mitosis and guidelines for non-invasive fluorescence microscopy.600

Plant Journal 36, 280–290 (2003).601

33. Levoy, M., Ng, R., Andrew, A., Footer, M., Mark, H., Light Field Microscopy. ACM Transac-602

tions on Graphics 25, 1–11 (2006).603

34. Bimber, O., Schedl, D., Light-Field Microscopy: A Review. Journal of Neurology & Neu-604

romedicine 4, 1–6 (2019).605

35. Broxton, M., et al., Wave optics theory and 3-D deconvolution for the light field microscope.606

Optics Express 21, 25418 (2013).607

36. Stefanoiu, A., Page, J., Symvoulidis, P., Westmeyer, G. G., Lasser, T., Artifact-free deconvo-608

lution in light field microscopy. Optics Express 27, 31644 (2019).609

39

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494105doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494105
http://creativecommons.org/licenses/by-nc/4.0/


37. Wang, Z., et al., Real-time volumetric reconstruction of biological dynamics with light-field610

microscopy and deep learning. Nature Methods 18, 551–556 (2021).611

38. Vizcaino, J. P., et al., Learning to Reconstruct Confocal Microscopy Stacks from Single Light612

Field Images. IEEE Transactions on Computational Imaging 7, 775–788 (2021).613

39. Cohen, N., et al., Enhancing the performance of the light field microscope using wavefront614

coding. Optics Express 22, 727–730 (2014).615

40. Berto, P., et al., Tunable and free-form planar optics. Nature Photonics 13, 649–656 (2019).616

41. Hua, X., Liu, W., Jia, S., High-resolution Fourier light-field microscopy for volumetric multi-617

color live-cell imaging. Optica 8, 614 (2021).618

42. Wang, S., Zhou, T., Lu, Y., Di, H., Detail-Preserving Transformer for Light Field Image Super-619

Resolution. arXiv arXiv:2201 (2022).620

43. Stiernagle, T., Maintenance of C. elegans. WormBook : the online review of C. elegans biology621

1–11 (2006).622

44. Porta-de-la Riva, M., Fontrodona, L., Villanueva, A., Cerón, J., Basic Caenorhabditis elegans623

methods: Synchronization and observation. Journal of Visualized Experiments e4019 (2012).624

45. George, S. H., et al., Developmental and adult phenotyping directly from mutant embryonic625

stem cells. Proceedings of the National Academy of Sciences of the United States of America626

104, 4455–4460 (2007).627

46. Westerfield, M., No Title. University of Oregon Press, 4 edn. (2000).628

47. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F., Stages of embry-629

onic development of the zebrafish. Dev Dyn 203, 253–310 (1995).630

48. Pinkard, H., et al., Pycro-Manager: open-source software for customized and reproducible631

microscope control. Nature Methods 18, 226–228 (2021).632

40

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494105doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494105
http://creativecommons.org/licenses/by-nc/4.0/


49. Bray, M.-a., Fraser, A. N., Hasaka, T. P., Carpenter, A. E., Workflow and Metrics for Image633

Quality Control in Large-Scale High-Content Screens. Journal of Biomolecular Screening 17,634

266 (2012).635

50. Tinevez, J. Y., et al., TrackMate: An open and extensible platform for single-particle tracking.636

Methods 115, 80–90 (2017).637

51. Legland, D., Arganda-carreras, I., Andrey, P., Biopolymers, U. R., Bourgin, I. J.-p., Mor-638

phoLibJ : integrated library and plugins for mathematical morphology with ImageJ. Bioinfor-639

matics 32, 3532–3534 (2016).640

52. Prevedel, R., et al., Simultaneous whole-animal 3D imaging of neuronal activity using light-641

field microscopy. Nature Methods 11, 727–730 (2014).642

53. Wang, Z., et al., Image Quality Assessment : From Error Visibility to Structural Similarity.643

IEEE TRANSACTIONS ON IMAGE PROCESSING 13, 600–612 (2004).644

41

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494105doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494105
http://creativecommons.org/licenses/by-nc/4.0/

