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ABSTRACT 22 

Elucidating the sources of a microbiome can provide insight into the ecological dynamics 23 

responsible for the formation of these communities. “Source tracking” approaches to date 24 

leverage species abundance information, however, single nucleotide variants (SNVs) may be 25 

more informative because of their high specificity to certain sources. To overcome the 26 

computational burden of utilizing all SNVs for a given sample, we introduce a novel method to 27 

identify signature SNVs for source tracking. We show that signature SNVs used as input into a 28 

previously designed source tracking algorithm, FEAST, can more accurately estimate 29 

contributions than species and provide novel insights, demonstrated in three case studies. 30 

 31 
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BACKGROUND 34 

Understanding the sources that could contribute to the formation of a given microbiome 35 

is of great interest in elucidating the ecological processes that give rise to these complex 36 

communities and the impact of these communities on human and environmental health. For 37 

example, a hospital environment may introduce antibiotic resistance genes to an infant gut 38 

microbiome, and local selective pressures may result in vastly different microbial compositions 39 

in different parts of the ocean. Approaches for determining the proportion of a microbiome of 40 

interest (the “sink”) that is attributed to different microbiomes (the “sources”) is known as 41 

“source tracking” (Knights et al., 2011; Shenhav et al., 2019). Source tracking is useful for 42 

forensics, categorization of samples, detecting contamination, and tracing transmissions between 43 

different hosts or environments. While source tracking was developed as a way to quantitatively 44 

characterize a sample based on a set of samples with known origin, in most studies, the true 45 

source of samples may never be collected. In these cases, source tracking approaches are useful 46 

in identifying similarities between microbiome samples even if they cannot be used to 47 

definitively identify the true source of origin.  48 

Current approaches for source tracking include the Bayesian approach, SourceTracker 49 

(Knights et al., 2011) and more recently the expectation-maximization approach, FEAST 50 

(Shenhav et al., 2019). These source tracking methods use species abundance profiles of the 51 

sample of interest (the sink) and of potential sources and compute percentages of sinks that are 52 

attributable to each potential source. However, species abundance profiles miss important sub-53 

species single nucleotide variants (SNVs), which may provide higher resolution information than 54 

species about transmission patterns. For example, (Nayfach et al., 2016) found that the sharing of 55 

microbiome SNVs private to mothers and their infants decreases over the first year of the 56 

infant’s life while species sharing increases. This suggests that while the infant microbiome 57 

increasingly resembles the adult microbiome ecologically, sources other than the mother also 58 

colonize the infant. Thus, species-level resolution may obscure true sources of microbes while 59 

SNVs can reveal actual transmissions to the infant.  60 

While tracking strain transmissions with SNVs has been highly successful in a number of 61 

studies (Asnicar et al., 2017a; Ferretti et al., 2018; Korpela et al., 2018; Li et al., 2016; Nayfach 62 

et al., 2016; Olm et al., 2021; Schmidt et al., 2019) current approaches to strain tracking are 63 

limited. These methods provide binary information by inferring whether or not a strain 64 
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transmission has occurred per species but they do not shed light on the relative proportions of 65 

microbiomes that are similar. A specific example of this is inStrain (Olm et al., 2021) which 66 

computes a pairwise population-level average nucleotide identity (popANI) between two 67 

samples. If an infant harbors several strains derived from the mother at low frequency, these 68 

shared strains will have high popANI values, but they will represent a relatively small proportion 69 

of the infant’s microbiome. By contrast, source tracking allows us to simultaneously infer the 70 

putative proportions for multiple sources contributing to a given sink, integrated over all 71 

community members in the sink. As shown in Figure 1, one may be able to estimate that an 72 

infant microbiome is  explained 25% by the mother, 10% by the dog, and 30% by unknown 73 

sources (Knights et al., 2011; Shenhav et al., 2019). In other words, source tracking with SNVs 74 

leverages not only the genetic variants within species, but also the relative abundances of the 75 

species that carry the SNVs.  76 

Here, we evaluate whether source contributions estimated with SNVs are more accurate 77 

than with only species when provided as inputs to FEAST (Shenhav et al., 2019) (hereafter 78 

referred to as SNV-FEAST and species-FEAST, respectively). FEAST (Shenhav et al., 2019) is 79 

faster and more accurate than previous source tracking tools (Knights et al., 2011), and therefore, 80 

is ideal for adaptation to SNV source tracking since it can accept larger numbers of features and 81 

input sources. Despite this improved computational efficiency, the potentially millions of single 82 

nucleotide variants across all microbiome species in a given host still can computationally 83 

overwhelm FEAST. To address this, we introduce a novel approach to determine signature SNVs 84 

that can be used as input to FEAST. This both reduces memory requirements and computation 85 

time in the FEAST estimation, allowing us to optimally estimate the source contribution of a 86 

sink. We find that SNV-FEAST and species-FEAST yield different outcomes when applied to 87 

simulated data, with SNV-FEAST frequently out-performing species-FEAST. We apply SNV-88 

FEAST to three real-world case studies, including source tracking between infants and their 89 

mothers in the first year of life, between infants and the neonatal intensive care unit (NICU), and 90 

between oceans around the world. We confirm the ability of SNV-FEAST by recapitulating 91 

several previously published findings in our case studies, as well as discover new source tracking 92 

patterns across oceans. In sum, we show that SNVs can be used to estimate potential 93 

transmissions across hosts and across environments. 94 

 95 
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RESULTS 96 

 97 

SNV-FEAST algorithm 98 

Here we adapt FEAST to accept SNV abundance instead of species abundance as input. 99 

A computational challenge in using SNVs instead of species as input to FEAST is that SNVs 100 

contribute a significantly larger feature space. The number of different species comprising a 101 

microbiome can range from a few hundred to a few thousand, while the number of possible 102 

SNVs for a given species alone can be in the thousands (Schloissnig et al., 2013). This difference 103 

in number of input features can result in FEAST runtimes that last several hours instead of a few 104 

minutes and memory intensive storage of read counts at all sites of variation.   105 

We devised a likelihood-based approach for selecting a set of informative or “signature” 106 

SNVs for a given source tracking analysis, allowing us to overcome the time and memory 107 

intensive challenges of utilizing SNV-level data. We identify these informative SNVs by 108 

computing a signature score (Figure 1A) (see Methods) that quantifies the extent to which 109 

SNVs in the sink are most likely derived from one of the potential sources. This is analogous to 110 

identifying SNVs private to sources and their sinks, but more generalized to include SNVs that 111 

may be found in multiple sources, albeit at higher frequency in one of the potential sources (see 112 

Methods).  113 

To compute a signature score for a given SNV, two hypotheses are compared for each 114 

potential source: (1) that one source solely explains the observed allele counts in the sink and (2) 115 

all sources except that one source collectively explain the observed allele counts in the sink. For 116 

each hypothesis, we calculate the binomial log-likelihood for the estimate of the allele frequency 117 

in the sink, θ. 118 

Hypothesis 1: Source i with allele frequency ��  explains the allele counts in the sink.  119 

θ� � �� 

Hypothesis 2: A combination of all other sources except i (sources � � i) explain the observed 120 

allele count distribution in the sink. The estimate of the sink allele frequency is computed using a 121 

mixture of the allele frequencies ��from those sources. The mixing parameter α�  is learned using 122 

Sequential Least Squares Programming with the constraint that ∑ α���� � 1. 123 

 124 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2022.05.28.493810doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493810
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

 

The binomial log-likelihood is calculated as follows, where there are n reads with the reference 125 

allele and m reads with the alternative allele in the sink. 126 

 127 

 

 128 

A log likelihood ratio representing the support for hypothesis 1 relative to hypothesis 2 is 129 

calculated per site per potential source. The maximum log likelihood ratio per site is the 130 

signature score for that SNV, representing how favorably one of the sources explains the sink 131 

over all other sources. Signature SNVs are those with scores greater than two standard deviations 132 

over the mean signature score computed for all SNVs (Methods). 133 

 134 

 135 

136 

Figure 1: Signature SNV selection and SNV-FEAST. (A) A signature SNV is present in one or 137 

few but not all sources. By contrast, a non-signature SNV is generically present in multiple 138 

sources and thus provides little discriminating information.  (B) SNV-FEAST estimates the 139 

proportion a given sink derived from various sources using the read counts for each allele in 140 

sinks and sources.  141 

 142 

 143 

Evaluation of SNV-FEAST in simulations 144 

6
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To compare the accuracy of species-FEAST and SNV-FEAST, we performed simulations 145 

mimicking mother-infant transmissions with the goal of estimating contributions of different 146 

sources to an infant sink. Our simulations tested the ability of SNVs and species to recapitulate 147 

the true source composition in synthetic samples comprised of a mixture of reads drawn from 148 

multiple real fecal adult samples. To construct these synthetic infant microbiomes, we mixed 149 

metagenomic data from mothers sampled in a mother-infant dataset (Bäckhed et al., 2015) at 150 

various proportions as described below (Methods). 151 

The difficulty of source tracking increases with the number of contributing sources 152 

(Shenhav et al., 2019). Thus, we simulate infants that have a small (<=5) versus large (6 – 10) 153 

number of contributing sources (Supplementary Table 1), including an unknown source (e.g. a 154 

randomly selected unrelated mother). Known source contributions to the simulated gut 155 

microbiome sample of the infant were varied between 1 and 90% while the unknown 156 

contribution varied between 10 and 90%. The unknown source was not presented to FEAST as a 157 

potential known source. 158 

Additionally, not all species in a mother are transmitted to the infant (Asnicar et al., 159 

2017b; Ferretti et al., 2018; Korpela et al., 2018; Sprockett et al., 2020; Yassour et al., 2018).  160 

Thus, in our simulations, species transmission rates were determined using a beta distribution, 161 

which is a natural model for values between (0,1) and often proposed for microbial abundance 162 

data (E. Z. Chen & Li, 2016; Martin et al., 2020; Sloan et al., 2006, 2007) (see Methods). We 163 

therefore consider four simulated scenarios: a combination of low versus high number of sources 164 

and low versus high transmission rates (see Methods).  165 

Figure 2 compares the performance of SNV-FEAST and species-FEAST in estimating 166 

the true contribution of sources. FEAST using SNVs has equal if not better performance than 167 

species in most scenarios, and performs especially well when transmission rates are low and 168 

unknown source proportions are high. SNVs have a lower root mean squared error (RMSE) 169 

compared to species in three of the four scenarios and higher Pearson correlation between true 170 

and estimated contributions in all four scenarios. The difference in these correlations for SNVs 171 

versus species is significant in all four cases when using a paired Wilcoxon signed rank test (high 172 

transmission: p-value = 0.00560, 0.00251 for small and large number of sources, low 173 

transmission: p-value = 0.00024, 0.002340 for small and large number of sources). These results 174 

suggest that SNVs may offer useful signatures of transmission.  175 
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 176 

 177 

 178 

Figure 2: Ability of SNV and species-FEAST to recapitulate true contributions in 179 

simulations. Estimated known and unknown source proportions for infant microbiomes 180 

simulated with in silico mixtures of real maternal fecal microbiomes under different scenarios: 181 

either low number of contributing sources (<=5) or high number of sources (6-11), and high 182 

transmission rate of species or low transmission rate. Transmission rate is the probability of an 183 

infant being colonized by a given species, simulated using a beta distribution centered on the 184 

relative abundance of species in sources (Methods). 23 infants were simulated with five or fewer 185 

sources and 19 infants were simulated with a large number of sources (Table S1). The black line 186 

indicates the ground truth for proportions. For each simulated infant, there are 11 points plotted, 187 

8
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whereby 10 correspond to known sources (some of which have zero contribution), and one 188 

corresponds to an unknown source which are indicated by a hollow circles in the plot. 189 

 190 

To assess whether all species and all signatures SNVs in the sink are needed for accurate 191 

source tracking, we varied the proportion of species (from 10%, 50% or 100%) and SNVs (from 192 

10%, 50% or 100%) included as inputs to the algorithm (Figure S1). We used Pearson 193 

correlation between the true and estimated proportions to represent accuracy of SNV-FEAST. 194 

When decreasing the percentage of SNVs used, there is no statistically significant change in the 195 

performance. However, when decreasing the percentage of species used, there are statistically 196 

significant decreases in the performance (Figure S1).  197 

To illustrate the advantage of SNV-FEAST over traditional strain tracking approaches 198 

such as inStrain (Olm et al., 2021), we used the same synthetic communities produced in the 199 

above simulation for inStrain profiling between each infant and each of their potential 200 

contributing sources (Figure S2).  InStrain computes a popANI score, which represents the 201 

average nucleotide identity between two different metagenomic samples for a given species. As 202 

per the inStrain paper, popANI values > 99.999% represent the same strain for that species being 203 

shared between samples (Methods). However, this approach provides a binarization as to 204 

whether or not a strain was transmitted, and does not account for the relative abundance of the 205 

strain in the sink. Thus, we computed the fraction of each infant’s species that have popANI 206 

�99.999%, with each potential source.  207 

As expected, both SNV-FEAST and inStrain produce estimates of sharing that correlate 208 

positively with the ground truth mixture proportions of the contributing source samples in each 209 

infant (Figure S2). We found inStrain results yielded a 0.742 Pearson correlation (p < 1x10-12) 210 

with the true mixture proportions, whereas SNV-FEAST has a 0.866 Pearson correlation (p < 1x 211 

10-12) with the true proportions. The higher correlation values for SNV-FEAST likely reflect that 212 

relative abundances of strains and their genomic identities are simultaneously taken into account 213 

for source tracking, whereas inStrain only accounts for genomic identities. Finally, several of the 214 

shared species in the simulations had popANI values < 99.999%, reflecting the complex 215 

mixtures from multiple sources.  216 

We next compared SNV-FEAST with the strain tracking procedure in Nayfach et al. 217 

2016. Again, we used the same synthetic communities produced in the simulation to determine 218 
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marker alleles as defined in Nayfach et al. 2016 (Methods). Here a marker allele is determined 219 

to be a SNV that is private to mother, infant, or the mother-infant dyad, and absent from the 220 

background population, which consisted of other samples in the dataset as well as samples from 221 

United States adults in the Human Microbiome Project (Methods). Species with � 5% marker 222 

allele sharing between mother and infant were deemed to share a strain (Methods). We found a 223 

high correlation between the true mixture proportions (on x-axis) and the percentage of species 224 

with transmission events (y-axis) (Pearson correlation 0.915 , p < 1 x 10-16). The higher 225 

correlation for the Nayfach et al. 2016 approach compared to the inStrain approach possibly 226 

reflects horizontal gene transfers between lineages residing in infants and mothers. By contrast, 227 

there was a lower correlation between the true mixture proportions (x-axis) and the sharing for 228 

all marker alleles across species present in the infant (y-axis) and (0.575 Pearson correlation, p <  229 

1 x 10-16) (Figure S3B). 230 

 231 

Source tracking in infants over the first year of life 232 

Having assessed the abilities of SNV-FEAST in synthetic data, we next estimated the 233 

contribution from the true mother over time to the true infant with SNV and species-FEAST in 234 

the Backhed et al. 2015 dataset. This dataset is composed of metagenomic samples from infants 235 

collected at four days, four months, and 12 months after birth, as well as their mothers at the time 236 

of delivery.  Previous analyses on this data have shown that even while species similarity 237 

increases, infants and their mothers share fewer proportions of strains over time as revealed by 238 

sharing of SNVs private to mother-infant dyads (Nayfach et al., 2016). Thus, SNVs belonging to 239 

strains shared only by the infant and their mother may be more informative of the true source 240 

compared to species. Here we sought to test whether SNV and species-FEAST recapitulate these 241 

results (Methods).  242 

In applying FEAST to the Backhed et al. 2015 dataset, we estimated the proportion of 243 

infant at birth attributable to mother. For 4 month infants, we estimated the proportion 244 

attributable to the mother and itself at birth. For 12 month infants, we estimated the proportion 245 

attributable to the mother and itself at birth and four months (Shenhav et al. 2019). This allowed 246 

“unknown” to be more strictly defined as the component of the infant microbiome that could not 247 

be explained by the mother. It also allowed us to better discern if completely new strains were 248 
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acquired at the 4th  and 12th months of life (that were not already acquired during previous life 249 

stages).  250 

First, consistent with previous findings made with species and SNVs (Nayfach et al., 251 

2016), species-FEAST estimates an increasing contribution of the mother over time (t-test p-252 

value = 5.1 x 10-4), but SNV-FEAST estimates a decrease over time (p-value = 0.063) (Figure 253 

3).  254 

Second, we assessed the ability of species and SNV-FEAST to distinguish the true 255 

mother from three randomly selected unrelated mothers. Species-FEAST estimates an increasing 256 

contribution of unrelated mothers over time (t-test p-value = 0.014) while SNV-FEAST 257 

estimates no significant change over time (t-test p-value = 0.59) (Figure 3). The increase in 258 

contribution from unrelated mothers with species-FEAST does not suggest that these particular 259 

unrelated mothers are seeding the infant. Rather, the opposing trend observed with SNVs 260 

suggests that similarity at the species level is consistent with the maturation of the infant 261 

microbiome over time.   262 

Finally, we estimated contributions from unknown sources, i.e. the proportion of the 263 

infant microbiome not explainable by the true mother, the three randomly selected unrelated 264 

mothers, or any previous time point. Species-FEAST estimates a sharp decline in contribution of 265 

unknown sources over the first year of life (t-test p-value =7.1 x 10-12) (Figure 3). This 266 

significant decrease in unknown at the species level reflects the infant microbiome maturation 267 

over the first year of life. By contrast, SNV-FEAST estimates little change in the contribution of 268 

unknown sources (t-test p-value = 0.49) (Figure 3). Note that this unknown component reflects 269 

what was gained since a previous time point. In other words, at 12 months, the infant on average 270 

acquired the same fraction of unknown as it did at 4 months and birth. When source tracking is 271 

run without including previous time points as sources, the unknown component increases over 272 

the first year of life for SNVs only (Figure S5).  273 

Next, we sought to understand the effect of swapping sink and source in the re-analysis of 274 

Backhed et al. 2015 data. In Figure 3G and H, the infant at birth is the potential source and 275 

mother is the sink. The estimated contribution from baby to mother is significantly smaller 276 

(species-FEAST: 11.9 difference,  Wilcoxon rank sum test p-value = 0.013; SNV-FEAST: 16.0 277 

difference, p-value = 2.2 x 10-5) compared to that of mother to baby. This trend may be 278 
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suggestive, but is not conclusive, of directionality, whereby a less diverse source is seeded by a 279 

more diverse source. 280 

 281 

 282 

Figure 3. Source tracking in the infant gut microbiome over the first year of life. Species- 283 

and SNV-FEAST were applied to Backhed et al. 2019 data to estimate the contribution of (A, B) 284 

mother, (C, D) unrelated mothers and (E, F) unknown sources to infants sampled at birth, four 285 

months, and twelve months. The black line and inset statistics pertain to the linear regression fit 286 

for the source estimates as a function of age of the infant. (G, H) are flipped source tracking 287 

analyses with mother and infant swapped when using species-FEAST and SNV-FEAST, 288 

12
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respectively. Figure S4 shows the species that were included in species-FEAST and species that 289 

had SNVs included in SNV-FEAST. Figure S5 shows the estimate of the unknown component 290 

when previous time points of the infant are excluded from the sources. 291 

 292 

Contribution of the NICU built environment to infant microbiomes 293 

Next, we re-analyzed a metagenomic dataset studying the contribution of the hospital 294 

environment to the infant gut microbiome in the neonatal intensive care unit (NICU) (Brooks et 295 

al. 2017). This dataset is composed of microbiomes of infant stool, as well as the NICU rooms of 296 

the same infants at frequently touched surfaces, sink basins, the floor, and isolette-top sampled 297 

over an 11-month period (Brooks et al., 2017). We applied SNV and species-FEAST to assess 298 

the contribution of the infant’s own NICU room as well as a different NICU room in the vicinity 299 

of the infant’s gut microbiome (see Methods). 300 

Concordant with the findings of Brooks et al., both SNV and species-FEAST detected 301 

that the most common source contributing to the infant microbiome was the floor and isolette-top 302 

from the infant’s own room (Figures 4A and B). SNV-FEAST found Infant 18 also had large 303 

contributions from their own room’s touched surfaces at multiple time points (Figure 4B), which 304 

is consistent with a finding by Brooks et al. that three strains found in Infant 18 perfectly 305 

matched (> 99.999% average nucleotide identity) strains found in the touched surfaces samples 306 

of Infant 18’s own room. Lastly, both species-FEAST and SNV-FEAST found Infant 6’s 307 

microbiome was explained almost entirely by samples from a different room with SNV-FEAST 308 

finding a sizeable contribution from both the floor and isolette top and the sink basin in this 309 

different room. This is concordant with Brooks et al.’s finding of multiple cases of strain sharing 310 

across rooms of Infant 6 and 12 for the different surfaces. FEAST with both data types is able to 311 

quantify the extent to which Infant 6’s microbiome was influenced by strains present in the built 312 

environment.  313 

Through application of SNV and species-FEAST, we are able to quantify any trends over 314 

time the influence of the built environment on the infant microbiome (Figures 4A and B). SNV-315 

FEAST more consistently finds that contribution from the infant’s own room exceeds 316 

contributions from a different room over time (paired Wilcoxon signed rank test for same room > 317 

different room: Infant 3: p-value = 1.95 x 10-9, Infant 6: 1, Infant 12: 3.05 x 10-5, Infant 18: 3.81 318 

x 10-6) as compared to species-FEAST (Infant 3: p-value = 0.41, Infant 6: 1, Infant 12: 5.8 x 10-4, 319 
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Infant 18: 3.81 x 10-6). Interestingly, species-FEAST assigns one dominant source primarily, 320 

whereas SNV-FEAST more often finds a combination of sources for a given sample.   321 

Additionally, both SNV and species-FEAST estimated a large unknown component for 322 

all four infants, with Infant 18 showing the largest mean unknown component across the NICU 323 

stay based on SNVs (Figure S6). This unknown component is important because it signifies the 324 

extent to which other sources such as the mother and diet impact infant gut colonization.  325 

We then asked the question: is the infant more explained by the built environment rather 326 

than vice-versa, the built environment is more explained by the infant. We tested this by 327 

swapping the infant and each of the three built environment sources (Figure 4C and D). The 328 

estimated contribution of room to infant is significantly higher than the estimated contribution of 329 

infant to room, but this asymmetry is more pronounced with SNV-FEAST. SNV-FEAST showed 330 

significantly higher contribution of room to infant for two of the three surface types (floor and 331 

isolette top: Wilcoxon rank sum test p-value = 7.00x 10-9, touched surface: p-value = 0.0058, 332 

sink basin: p-value = 0.274) while species-FEAST found this to be true for one of the three 333 

surface types (floor and isolette top: Wilcoxon rank sum test p-value = 7.1x 10-5, touched 334 

surface: p-value = 0.968, sink basin: p-value =  0.998). Interestingly, the built environments of 335 

different rooms highly resemble each other. This is especially apparent with species-FEAST, 336 

suggestive of similar ecological forces operating in similar built environments. By contrast, 337 

SNV-FEAST reveals a higher diversity of contributing sources of the built environment samples 338 

to other NICU built environments, once again highlighting the utility of performing source 339 

tracking with SNVs.  340 

 341 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2022.05.28.493810doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493810
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

342 

Figure 4: Source tracking of infant gut microbiome in the NICU. (A) species-FEAST and 343 

(B) SNV-FEAST applied to infants in the NICU. Each bar represents one sampling day in the 344 

NICU stay of an infant. Infants 3 and 6 stayed in the same room, but at different times. The same 345 

applies to Infants 12 and 18. The contribution of a different room was determined by using 346 

samples from Infant 12’s room for Infants 3 and 6, and samples from Infants 6’s room for Infants 347 

12 and 18 for each of the categories of surfaces per infant: touched surface, sink basin, or floor 348 

15
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and isolette top surface. The asterisks represent the result of a paired Wilcoxon signed rank test  349 

indicating whether the total contribution of surfaces from the infant’s own room were higher than 350 

contributions from the other room:  **** for p-value < 0.0001, *** for p-value < 0.001, ** for p-351 

value < 0.001, * for p-value < 0.05, and n.s. for p-value > 0.05. Iterative swapping of the infant 352 

sink and each potential source for source tracking with (C) species-FEAST and (D) SNV-353 

FEAST. The first column shows source tracking results in which the infant was treated as the 354 

sink. In each column after the first column, a different environmental source was swapped with 355 

the infant and considered as a sink.  356 

 357 

Global source tracking of ocean microbiomes 358 

The ocean microbiome is a complex community that displays biogeography at the species 359 

and functional levels (Nayfach et al., 2016; Sunagawa et al., 2015). To further understand global 360 

patterns of ocean microbiomes, we applied SNV and species-FEAST to the Tara Oceans 361 

microbiome dataset (Sunagawa et al., 2015). In the source tracking context, rather than defining 362 

sharing as evidence of a transmission event (which is more likely in mother-infant data), 363 

estimated source contributions at best explain the extent to which a given ocean sample 364 

resembles other ocean samples. On one extreme, an ocean sample might be entirely explainable 365 

by a single ocean’s samples, and at the other extreme, an ocean sample might be explainable by 366 

multiple oceans at the same time. Another alternative is for an ocean sample to not be 367 

explainable by any of the provided sources, resulting in a high unknown component and 368 

potentially suggesting high endemism. These source tracking estimates could be indicative of the 369 

extent to which oceans mix or may be reflective of similar niches.  370 

 Tara Oceans is composed of 182 whole metagenomic sequencing samples derived from 371 

64 stations at multiple depths. Previous research indicates that temperature is one of the highest 372 

drivers of variability in microbial composition in the ocean (Ladau et al., 2013; Sunagawa et al., 373 

2015). For this reason, we restricted the source tracking analysis to sinks and sources from the 374 

same temperature and depth range: above 20 degrees Celsius and within an average of 5 meters 375 

below the surface.  376 

 377 
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378 

Figure 5. Microbial source tracking in the Tara Oceans dataset with SNV and species-379 

FEAST. World map indicating the location of sampling sites (A). Source tracking estimates for 380 

the contribution of different oceans to the South Pacific (n=16) (B) and Indian Oceans (n=16) 381 

(C) are depicted with vertical bars. In each experiment, all stations around the world excluding 382 

those from the “sink” ocean are considered potential sources. Light blue, for example, represents 383 

the total contribution of the four stations from the Mediterranean Sea that had samples in the 384 

surface layer that were also greater than 20°C in temperature.  385 

 386 
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387 

Figure 6. Source tracking with ocean samples.  Distance decay in contribution of a “source” 388 

ocean to a “sink” ocean when using (A) species-FEAST and (B) SNV-FEAST. In each 389 

experiment, only stations from one ocean were considered as sources for a given sink station. For 390 

example, when performing source tracking between the mediterranean and north atlantic, for 391 

each mediterranean station, the 10 available north atlantic stations were considered as potential 392 

sources. Thus, plotted are 10 points for a given mediterranean sink, where each point represents 393 

the contribution of a source station from the North Atlantic to the Mediterranean sink station in 394 

question. Shown in inset text are the slope and t-test p-value for the slope. (C) and (D) are 395 

flipped source tracking analysis with the Red Sea and Mediterranean, as well as the South Pacific396 

Ocean and North Atlantic Ocean using species-FEAST and SNV-FEAST, respectively.  397 

 398 
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First, we performed source tracking between oceans using SNV and species-FEAST. We 399 

treated each station around the world as a sink and estimated the contribution of different oceans 400 

around the world to that sink (Methods). Unknown represents any portion of the microbiome in 401 

these sink samples that cannot be explained by any of the provided source samples. We found 402 

that species and SNV-FEAST estimate different amounts of sharing between oceans, where 403 

SNVs estimate a higher unknown on average, potentially indicative of endemism. The finding 404 

that SNV-FEAST estimates a higher unknown contribution on average is most evident in the 405 

North Pacific, North Atlantic, South Atlantic, and Mediterranean oceans (Figure S7). 406 

Additionally, in some oceans, SNVs identify contributions from oceans that species-FEAST does 407 

not detect (Figure 5, Figure S7).  For example, in applying FEAST to Indian Ocean samples we 408 

find that there is measurable sharing of microbes with the Mediterranean Sea, but this is not 409 

detected with species (Figure 5C). Such differences were found in samples from other oceans as 410 

well (Figure S7).  411 

Next, we assessed whether source tracking estimates display a distance-decay 412 

relationship. Previous studies found that genetic distance, such as that represented by fixation 413 

index FST, increases with geographic distance between populations (Cavalli-Sforza & Feldman, 414 

2003; DeGiorgio & Rosenberg, 2013). Based on these findings, our expectation was that samples 415 

that are further away from a given station will have reduced resemblance to that station. To 416 

assess this distance-decay relationship, we plotted pairwiseh source tracking results across all 417 

possible pairs of ocean samples (Figure 6A and B). We found that indeed as the distance 418 

increases, the % explainability of a given source ocean decreases -0.23 % per thousand km 419 

according to species-FEAST (t-test p-value < 1 x 10-16), and -0.5% per thousand km according to 420 

SNV-FEAST (t-test p-value = 0.0018 ). The steeper slope for SNV-FEAST suggests that SNVs 421 

may be more sensitive to distance decay signals on a global level. 422 

Finally, we investigated whether some oceans have higher estimated contributions to 423 

other oceans than vice versa, potentially indicative of the directionality of transmissions (though 424 

see Discussion).  Specifically, we investigated the relationship between the Red Sea to the 425 

Mediterranean Sea (Figure 6C and D). Migration from the Red Sea to the Mediterranean, 426 

known as Lessepsian migration, is well-documented for not only microorganisms but also 427 

macroorganisms like fish (Bentur et al., 2008; Bianchi & Morri, 2003; Golani, 2009). Anti-428 

Lessepsian migration (Red Sea to Mediterranean), on the other hand, has been primarily thought 429 
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to be rare due to the Additionally, recent studies suggest that there is also evidence for anti-430 

Lessepsian migration of bacteria (Mediterranean to Red Sea) may be more common than 431 

Lessepsian migration (Elsaeed et al., 2021). Research studies find that Mediterranean has brine 432 

pools that produce similar a similar environment to the Red Sea’s (Antunes et al., 2011), 433 

allowing for bacteria from the MS to potentially thrive in the RS.  434 

By swapping the Red Sea and Mediterranean as source and sink, we found that there was 435 

indeed a significant difference in the estimated contribution from one direction to another with 436 

SNVs but not species (Figure 6C and D). SNV-FEAST found the Mediterranean explained an 437 

average of 15% of the Red Sea, while the Red Sea explained an average of 1.8% of the 438 

Mediterranean (Wilcoxon rank sum test, p-value =0.02), consistent with anti-Lessepsian 439 

migration.  Meanwhile, a similar analysis with species-FEAST found the Mediterranean 440 

explained 2.5% of the Red Sea and the Red Sea explained 4.9% of the Mediterranean (Wilcoxon 441 

rank sum test, p-value = 0.25). In a similar analysis between North Atlantic and South Pacific we 442 

found that both species and SNVs supported significantly greater contributions from the North 443 

Atlantic to the South Pacific, with SNV-FEAST estimating a greater contribution (17%, 444 

Wilcoxon rank sum test p-value = 5.1 x 10-11) than species-FEAST (10%, Wilcoxon rank sum 445 

test p-value =1.8 x 10-4).  446 

Together, these results suggest that on average, SNV and species FEAST generate similar 447 

source tracking results in the Tara Oceans dataset, with SNVs displaying stronger signals of 448 

endemism, distance-decay relationships, and potential directionality of transmission.  449 

 450 

 451 

DISCUSSION 452 

Source tracking provides insight into potential source contributions to a metagenomic 453 

sample as well as similarities between metagenomic samples. While species abundances have 454 

been informative in source tracking in several studies (Flores et al., 2011; Knights et al., 2011; 455 

McGhee et al., 2020; Shenhav et al., 2019), they may be limited in their resolution. SNVs 456 

provide a potential alternative because of their ability to distinguish sources of strain 457 

transmissions. Here we compared the ability of a previously published source tracking algorithm 458 

FEAST using species versus SNVs as input data. In application of species and SNV-FEAST to 459 

simulations as well as three case studies, we demonstrate that the two input types can provide 460 
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distinct insights into microbial sharing and similarities across different environments. As a 461 

hypothetical example, two unrelated samples may have very similar species composition due to 462 

similar colonization processes and similar environmental influences without any actual microbial 463 

sharing. It would be unlikely for these two unrelated samples to share rare SNVs, however. This 464 

distinction suggests that SNVs indeed can provide insight into the ecological processes shaping 465 

microbial communities that species information alone cannot, and our three case studies are able 466 

to demonstrate this. 467 

In the first case study, we confirmed previous findings that SNV sharing between 468 

mothers and infants decreases over the first year of life while species sharing increases (Nayfach 469 

et al., 2016), suggesting that while the infant microbiome matures to resemble adults at the 470 

species level, sources other than the mother may seed the infant over time. In the second case 471 

study, we confirmed source contributions from the NICU built environment to the infant 472 

microbiome (Brooks et al., 2017), and found that SNVs detect a more consistent estimate in 473 

source contributions overtime compared to species as well as detecting contribution from sources 474 

not detectable by species-FEAST.  475 

In the third case study, we perform source tracking in the Tara oceans dataset and found 476 

SNVs display a stronger distance decay relationship. These distance-decay results parallel recent 477 

findings made with gene content (Dlugosch et al., 2022). While previous studies have examined 478 

the biogeography of the ocean using species profiles, genes (Dlugosch et al., 2022; Nayfach et 479 

al., 2016) or amino acid variants from a single species (SAR11) (Delmont et al., 2019), for the 480 

first time, we leverage the use of SNVs across all detected prevalent species in the ocean 481 

microbiome to identify proportions of sharing across oceans. A benefit of using SNVs in the 482 

ocean microbiome is that SNVs can track fragments of DNA that have moved due to horizontal 483 

gene transfer in the distant past rather than relying on inference of whole genomes or presence of 484 

private SNVs that may been transmitted in the recent past. This global-level source tracking is 485 

analogous to admixture estimation with human genotypes (Alexander et al., 2009; Chiu et al., 486 

2022).  487 

We note that source tracking provides insights into similarities between microbiomes and 488 

potential transmissions, though the directionality is less conclusive. It is possible that increased 489 

contributions in one direction but not the other is suggestive of directionality of transmission. For 490 

example, in the case of the mother-infant data from Backhed et al. 2015, FEAST predicted 491 
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higher contribution from mother to baby than vice versa. This is consistent with work done on 492 

crAss-like phage transmissions between mother and infant in the same dataset that showed 493 

evidence of directionality by tracking the accumulation of mutations over time that are private to 494 

the infant and absent from the mother (Siranosian et al., 2020).  But in the case of the ocean, it is 495 

possible that over longer time periods, differences in relative contributions from one part of the 496 

world to another (e.g. Mediterranean to Red Sea) are more reflective of local selection pressures 497 

that permit certain species and genotypes (Delmont et al., 2019). Thus, source tracking in certain 498 

instances, such as the ocean microbiome, at best reflects the extent of similarity between samples 499 

and is less conclusive about directionality.   500 

A popular approach used to track strain transmissions is by detecting high average 501 

nucleotide identity (ANI) for species shared between source and sink. For example, inStrain 502 

(Olm et al., 2021) identifies a match between samples for a given species when ANI exceeds 503 

99.999%. However, it is to be noted that inStrain provides distinct and complementary 504 

information from FEAST given its binarization of whether or not a strain is shared. For 505 

illustration purposes, if an infant harbors 100 species, of which only 1 came from their mother, 506 

but that species’ strain’s relative abundance is 50% of the infant’s microbiome, SNV-FEAST 507 

would infer that the mother’s contribution is 50%, while inStrain would infer that only 1/100th of 508 

the species are derived from the mother.  509 

Other studies rely on tracking transmissions of strains with private SNVs shared only 510 

between the sink and putative source (Bäckhed et al., 2015; Korpela et al., 2018; Nayfach et al., 511 

2016; Schmidt et al., 2019). The private marker allele tracking approach in Nayfach et al. 2016 512 

provides an improved estimate of true percentage of species that share some portion of their 513 

genome with putative sources compared to inStrain (Figure S2, S3). It is possible that requiring 514 

only 5% of marker alleles to be shared rather than a 99.999% ANI permits detection of 515 

horizontal gene transfers between lineages residing in mothers and infants (D. W. Chen & 516 

Garud, 2022; Vatanen et al., 2022). However, in FEAST, by using any SNV with an informative 517 

distribution across sources as determined by our signature scoring method, we are able to 518 

quantify the relative contribution of all the sampled environments and assign a proportion to 519 

these putative sources. Another advantage to FEAST is that the contribution of unknown sources 520 

can be quantified. For example, the significant fraction of marine biodiversity estimated to be 521 
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‘unknown’ may be endemic, as previously noted in the Mediterranean (Katsanevakis et al., 522 

2014).  523 

A drawback, however, with using SNVs over species is deeper, whole genome 524 

sequencing is required to accurately call SNVs. Moreover, even when there is sufficient 525 

coverage, there is still the challenge of a large number of SNVs. We demonstrate one way to 526 

subset SNVs that uses a scoring method for informativeness, but there may yet be other methods 527 

for filtering SNVs to the most informative set. Another potential caveat of SNV filtering is that 528 

not all species present will be represented in the final signature SNV set (Figure S4).  Species 529 

with higher abundance are more likely to be represented in the signature SNV set.  However, we 530 

show that not all species need to contribute signature SNVs in order to make accurate inferences, 531 

and likewise, not all SNVs are needed to make accurate inferences (Figure S1).  532 

Ascertainment of SNVs from metagenomic data in a high-throughput manner, especially 533 

common SNVs with microbiome genotyping technology (Shi et al., 2021), is becoming an 534 

increasing priority for the field as metagenomic datasets become more abundant. A genotyper for 535 

prokaryotes has already been developed and tested on a catalog of over 100 million SNVs in 536 

order to characterize population structure (Shi et al., 2021). Such a catalog of informative SNVs 537 

could be invaluable for source tracking. With source tracking enabling us to characterize samples 538 

by their relationship to known samples, we have a powerful tool to explore samples in new 539 

contexts we have yet to discover. 540 

 541 

METHODS 542 

Data 543 

For simulations and analyses of infant microbiomes in the first year of life (Bäckhed et 544 

al., 2015), we downloaded the raw shotgun metagenomic sequencing reads from public read 545 

archives under accession number PRJEB6456. We downloaded the raw sequence reads for the 546 

NICU analysis (Brooks et al., 2017) from accession number PRJEB323631, and the equivalent 547 

for the Tara Oceans analyses (Sunagawa et al., 2015) were downloaded from accession number 548 

PRJEB402. Data from the HMP Consortium (Methé et al., 2012) and Lloyd-Price et al (Lloyd-549 

Price et al., 2017) was downloaded from the following 550 

URL: https://aws.amazon.com/datasets/human-microbiome-project/. 551 

 552 
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Estimation of species and SNV content of metagenomic samples 553 

We used MIDAS (Metagenomic Intra-Species Diversity Analysis System, version 1.2, 554 

downloaded on November 21, 2016 (Nayfach et al., 2016) to estimate species abundance and SNV 555 

content per species in each metagenomic shotgun sequencing sample. The database we used to apply 556 

MIDAS consisted of 31,007 bacterial genomes that are clustered into 5,952 species. The parameters we 557 

used to estimate species abundances and SNVs were described in (Garud et al., 2019). A species was 558 

considered present if there are at least 3 reads mapping to a set of single copy marker genes on average. 559 

To call SNVs, we used the default MIDAS settings in order to map reads to a single representative 560 

reference genome. The mapping was done with Bowtie 2 (Langmead & Salzberg, 2012): global 561 

alignment, MAPID≥94.0%, READQ≥20, ALN_COV≥0.75, and MAPQ≥20, where species with reads 562 

mapped to less than 40% of the genome were excluded from the SNV calls. We excluded samples with 563 

depth lower than 5 reads, and excluded genetic sites using the default site filters of MIDAS (e.g. 564 

ALLELE_FREQ≥0.01, with the exception of SITE_DEPTH which was set to 3. 565 

 566 

Application of FEAST algorithm 567 

FEAST, originally introduced by Shenhav et al., is an R-based method that models the 568 

mixture proportions for various “source” microbial samples for a given “sink” (Shenhav et al., 569 

2019). This method utilizes expectation maximization to estimate the proportions when given 570 

any sort of count-based feature matrix representing the potential sources and sinks. The intuition 571 

behind the estimation process is that a source with a similar species distribution to the sink would 572 

have a higher contribution estimate to the sink. A species with non-zero counts only in source j 573 

and the sink would increase the estimated contribution of source j. However, in many cases, the 574 

same species are found in multiple sources simultaneous. The algorithm does not uniquely assign 575 

a species to a source but rather simultaneously utilizes all species information to infer the source 576 

contributions. The method was originally tested and evaluated on species and not on more fine 577 

scale genetic data such as SNVs. The number of different species, on average, range in number 578 

from a few hundred to a few thousand, while the number of possible nucleotide sites that vary 579 

across different sources can number in millions. For this reason, a SNV-filtering process is 580 

necessary so that the algorithm can run within a reasonable time and with reasonable memory 581 

requirements.  582 

 583 

Application of FEAST to the Backhed et al. 2015 dataset: 584 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2022.05.28.493810doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493810
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

For both species and SNV-FEAST, the same set of sources and sinks were fed into the 585 

FEAST algorithm. In the case study of infants in the first year of life (Bäckhed et al., 2015), the 586 

sink consisted of the infant fecal sample at either four days, four months, or 12 months and the 587 

potential sources consisted of fecal samples from the true mother, three randomly selected 588 

mothers from the same dataset, and also any previous time points for the infant. 589 

Species-FEAST utilized all species present in the infant whereas SNV-FEAST used 590 

signature SNVs from the subset of species that had signature SNVs. Shown in Figure S3 are the 591 

distribution of species included in species and SNV-FEAST. 592 

 593 

Application of FEAST to the Brooks et al. 2017 dataset: 594 

For the case study of infants in the NICU (Brooks et al., 2017),  the sink consisted of the 595 

fecal sample of the infant at a given time point and the potential sources consisted of pooled 596 

reads from the touched surfaces, the sink basin and the floor and isolette top from both the 597 

infant’s own room as well as a different room. The different room was Infant 12’s room for 598 

Infants 3 and 6, Infants 6’s room for Infants 12 and 18. 599 

 600 

Application of FEAST to the Sunagawa et al. 2015 dataset: Determining the signature SNV set 601 

Signature SNVs were identified as described in the main text. We provide specific steps for 602 

determining signature SNVs: 603 

(1) Filter sites: only sites of the genome with at least the required number of reads mapping 604 

to the site are considered. In the case study of infants in the first year of life (Bäckhed et 605 

al., 2015) and infants in the NICU (Brooks et al., 2017), the minimum coverage 606 

requirement is 10 across the sink and J sources. For the Tara Ocean (Sunagawa et al., 607 

2015) samples, the minimum coverage is five reads (Sunagawa et al., 2015). 608 

Additionally, sites that are biallelic must have more than one read mapped to each allele 609 

to be considered.  610 

(2) Perform per site per source parameter estimates: for each potential source compute the 611 

estimated allele frequency in the sink θ under two different hypotheses: 612 

Hypothesis 1: Source i with allele frequency ��  explains the allele counts in the sink.  613 

θ� � �� 
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Hypothesis 2: A combination of all other sources except i (sources � � i) explain the 614 

observed allele count distribution in the sink. The estimate of the sink allele frequency is 615 

computed using a mixture of the allele frequencies ��from those sources. The mixing 616 

parameter α�  is learned using Sequential Least Squares Programming (scipy.minimize() ) 617 

with the constraint of summing to 1 with bounds of 0 to 1 inclusive: ∑ α���� � 1.  618 

 619 

θ� � � α���
���

 

(3) Compute per site per source log likelihoods: Compute the binomial log-likelihood under 620 

hypotheses 1 and 2, given n reads with the reference allele and m reads with the 621 

alternative allele in the sink: 622 

 623 

�
θ�� � � ��� θ� � � ���
1 � θ�� 

(4) Compute per site per source log likelihood ratio: 624 

����� � �����  
 625 

(5) Compute per site summary signature score: The maximum log likelihood ratio per site is 626 

the signature score for that SNV, representing how favorably one of the sources explains 627 

the sink over all other sources 628 

(6)  Filtering of SNVs using signature score: One signature score for that SNV represents 629 

how favorably one source explains the sink better than all other sources. All the scores 630 

are ranked across SNVs and SNVs with scores that are greater than two standard 631 

deviations over the mean signature score within each 200 kbp window of the genome are 632 

retained as signature SNVs. This window size was chosen for to optimize run time and 633 

memory requirements. 634 

 635 

Note, if only one source passes minimum coverage filtering, ����� � 0  resulting in a 636 

very high likelihood ratio as represented by ����� for the one source. These SNVs are 637 

more likely to pass the signature score filtering. One exception for SNVs that are 638 

included in the signature SNV set without passing signature score filtering are SNVs with 639 

an allele that is completely unique to the infant, as these represent SNVs that are 640 
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potentially derived from an unknown source. Signature SNVs are obtained from the SNV 641 

profile of every species for which there is MIDAS output.  642 

 643 

Simulating mother to infant transmission 644 

The mixture proportions for 28 simulated infants is shown in Table S1. Four possible 645 

scenarios are simulated using a combination of either low or high number of sources and low or 646 

high transmission probabilities of species. High transmission of species was simulated by 647 

drawing separate transmission probabilities for each species in each contributing source based on 648 

a beta distribution with a mean equal to the species relative abundance and variance equal to 0.1, 649 

a value selected to emulate Backhed et al.’s mean relative abundance and variance. For the low 650 

transmission scenario, transmission probabilities were drawn from a beta distribution with mean 651 

0.1 times the relative abundance and variance at 0.1. To determine if a species from each source 652 

was transmitted to a given infant, a binomial draw was performed J times, where J = number of 653 

sources, and the probability of a mother transmitting the species is pj based on the beta-drawn 654 

transmission probability. If any of the draws yields a one, that species is transmitted to the infant 655 

from all sources. The same simulated data under these scenarios is used for both SNV and 656 

species source tracking.  657 

The source tracking estimates are compared to the true mixing proportions using 658 

Spearman correlation. The significance of correlation is calculated using the stat_cor function in 659 

the ‘ggpubr’ package (CRAN - Package Ggpubr, n.d.).  660 

 661 

Comparison to inStrain 662 

We ran inStrain (Olm et al., 2021) on the same synthetic samples as described above. 663 

InStrain “profile” (Olm et al., 2021)  and inStrain “compare” (Olm et al., 2021) were run for 664 

every possible infant-source pair. For example, for simulated infant 1 there were 10 putative 665 

sources, therefore inStrain compare was run 10 times for each putative source. InStrain reports 666 

popANI calculated per scaffold for a given species. To compute a single statistic per species, we 667 

computed the average popANI across scaffolds for a given species. The percent infant 668 

microbiome species that had strains shared with mother was computed as the number of species 669 

in which popANI was >= 99.999% divided by the total number of species with coverage >= 5. 670 

PopANI was only calculated in scaffolds that had >=5 coverage in both samples of the pair.  671 
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 672 

Comparison with strain tracking approach in Nayfach et al. 2016  673 

We applied the strain tracking approach in Nayfach et al. 2016 on the same synthetic 674 

communities described above. In Nayfach et al. 2016, strain transmissions are tracked by 675 

identifying ‘marker alleles’ which are private to the infant, mother, or infant-mother dyad, and 676 

absent from the broader population. A strain is considered to be shared if at least 5% of all 677 

marker alleles for a mother-infant dyad are shared. Note that the approach for strain tracking 678 

proposed in Nayfach et al. 2016 utilizes SNV information outputted by MIDAS, but is not a part 679 

of MIDAS.  680 

Each simulated infant had up to 10 sources that were real maternal samples from 681 

Backhed et al. 2015 For each possible pair of infants and maternal sources (10 pairings per 682 

infant, with 48 infants), we found the set of infant-only marker alleles, mother-only marker 683 

alleles, and mother-infant dyad marker aleles. As described in Nayfach et al, 2016, only sites 684 

with minimum 30 reads and only alleles that were supported by at least 10% of the total reads 685 

aligned to that site were considered.  The infant marker allele and mother marker allele were 686 

defined as alleles that were present only in the focal sample and absent from the background 687 

samples (or below 3 reads = 10% * 30 reads). For the infant, the background consisted of all 688 

mothers (including mothers that were used to simulate the infant), real infant samples (excluding 689 

infants of mothers used to simulate the infant), and 337 samples of adults from the United States 690 

in the HMP (which includes 180 unique adults) that were obtained from the metagenomics 691 

repository of HMP under project ID SRP002163 and SRP056641 (Lloyd-Price et al., 2017; 692 

Methé et al., 2012). For the mother, the background consisted of all mother and infant samples in 693 

addition to the HMP samples. For computing shared marker alleles, an allele must be present in 694 

both the mother and infant but absent from the background, which consisted of all mothers and 695 

the HMP samples. 696 

 To compute sharing, two quantities were considered: “total sharing”, defined as % shared 697 

marker alleles/ (infant marker alleles + mother marker alleles + shared marker alleles) and 698 

proportion of infant marker alleles that are shared: % shared marker alleles/ (infant marker 699 

alleles + shared marker alleles). The first quantity compared to FEAST estimates was the 700 

percentage of infant species in which the “total sharing” was at least 5%.  The second quantity 701 
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compared to FEAST was the pooled proportion of infant marker alleles that are shared across all 702 

species.  703 

 704 

Distance Decay Analysis 705 

To study the relationship between source tracking estimates and geographic distance, we 706 

analyzed all oceans as either a sink or source against all other possible oceans. To compute 707 

geographic distance between stations, we applied the Haversine distance to the longitude and 708 

latitude of the sampling sites provided by (Sunagawa et al., 2015) using the package “geosphere” 709 

(Hijmans et al., 2021). Source tracking estimates were computed as described above using either 710 

SNV-FEAST or Species FEAST. The regression line for the distance decay analysis was 711 

computed using a linear mixed model “contribution ~ distance + (1| sink_ocean)”.   712 
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