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ABSTRACT

Elucidating the sources of a microbiome can provide insight into the ecological dynamics
responsible for the formation of these communities. “ Source tracking” approaches to date
leverage species abundance information, however, single nucleotide variants (SNV's) may be
more informative because of their high specificity to certain sources. To overcome the
computational burden of utilizing all SNVs for a given sample, we introduce a novel method to
identify signature SNVs for source tracking. We show that signature SNVs used as input into a
previously designed source tracking algorithm, FEAST, can more accurately estimate

contributions than species and provide novel insights, demonstrated in three case studies.
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BACKGROUND

Understanding the sources that could contribute to the formation of a given microbiome
isof great interest in elucidating the ecological processes that give rise to these complex
communities and the impact of these communities on human and environmental health. For
example, a hospital environment may introduce antibiotic resistance genes to an infant gut
microbiome, and local selective pressures may result in vastly different microbial compositions
in different parts of the ocean. Approaches for determining the proportion of a microbiome of
interest (the “sink”) that is attributed to different microbiomes (the “sources’) is known as
“sourcetracking” (Knights et al., 2011; Shenhav et al., 2019). Source tracking is useful for
forensics, categorization of samples, detecting contamination, and tracing transmissions between
different hosts or environments. While source tracking was developed as away to quantitatively
characterize a sample based on a set of samples with known origin, in most studies, the true
source of samples may never be collected. In these cases, source tracking approaches are useful
in identifying similarities between microbiome samples even if they cannot be used to
definitively identify the true source of origin.

Current approaches for source tracking include the Bayesian approach, SourceTracker
(Knights et al., 2011) and more recently the expectation-maximization approach, FEAST
(Shenhav et al., 2019). These source tracking methods use species abundance profiles of the
sample of interest (the sink) and of potential sources and compute percentages of sinks that are
attributable to each potential source. However, species abundance profiles miss important sub-
species single nucleotide variants (SNV's), which may provide higher resolution information than
species about transmission patterns. For example, (Nayfach et a., 2016) found that the sharing of
microbiome SNV s private to mothers and their infants decreases over the first year of the
infant’s life while species sharing increases. This suggests that while the infant microbiome
increasingly resembles the adult microbiome ecologically, sources other than the mother also
colonize the infant. Thus, species-level resolution may obscure true sources of microbes while
SNV's can reveal actual transmissions to the infant.

While tracking strain transmissions with SNV's has been highly successful in a number of
studies (Asnicar et a., 2017a; Ferretti et al., 2018; Korpela et a., 2018; Li et a., 2016; Nayfach
et a., 2016; Olm et al., 2021; Schmidt et al., 2019) current approaches to strain tracking are

limited. These methods provide binary information by inferring whether or not a strain


https://doi.org/10.1101/2022.05.28.493810
http://creativecommons.org/licenses/by-nc-nd/4.0/

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.28.493810; this version posted January 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

transmission has occurred per species but they do not shed light on the relative proportions of
microbiomes that are similar. A specific example of thisisinStrain (Olm et a., 2021) which
computes a pai rwise population-level average nucleotide identity (popANI) between two
samples. If an infant harbors several strains derived from the mother at low frequency, these
shared strains will have high popANI values, but they will represent arelatively small proportion
of the infant’s microbiome. By contrast, source tracking allows us to smultaneously infer the
putative proportions for multiple sources contributing to a given sink, integrated over all
community membersin the sink. As shown in Figure 1, one may be able to estimate that an
infant microbiomeis explained 25% by the mother, 10% by the dog, and 30% by unknown
sources (Knights et al., 2011; Shenhav et al., 2019). In other words, source tracking with SNV's
leverages not only the genetic variants within species, but also the relative abundances of the
species that carry the SNVs.

Here, we evaluate whether source contributions estimated with SNV's are more accurate
than with only species when provided as inputsto FEAST (Shenhav et al., 2019) (hereafter
referred to as SNV-FEAST and species-FEAST, respectively). FEAST (Shenhav et al., 2019) is
faster and more accurate than previous source tracking tools (Knights et al., 2011), and therefore,
isideal for adaptation to SNV source tracking since it can accept larger numbers of features and
input sources. Despite thisimproved computational efficiency, the potentially millions of single
nucleotide variants across all microbiome speciesin agiven host still can computationally
overwhelm FEAST. To address this, we introduce a novel approach to determine signature SNV's
that can be used as input to FEAST. This both reduces memory requirements and computation
timein the FEAST estimation, allowing us to optimally estimate the source contribution of a
sink. Wefind that SNV-FEAST and species-FEAST yield different outcomes when applied to
simulated data, with SNV-FEAST frequently out-performing species-FEAST. We apply SNV -
FEAST to three real-world case studies, including source tracking between infants and their
mothersin the first year of life, between infants and the neonatal intensive care unit (NICU), and
between oceans around the world. We confirm the ability of SNV-FEAST by recapitulating
several previously published findingsin our case studies, as well as discover new source tracking
patterns across oceans. In sum, we show that SNV's can be used to estimate potential

transmissions across hosts and across environments.
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96 RESULTS

97
98 SNV-FEAST algorithm
99 Here we adapt FEAST to accept SNV abundance instead of species abundance as inpui.

100 A computational challengein using SNVsinstead of species asinput to FEAST isthat SNVs
101  contribute asignificantly larger feature space. The number of different species comprising a
102  microbiome can range from a few hundred to a few thousand, while the number of possible
103  SNVsfor agiven species alone can be in the thousands (Schloissnig et al., 2013). This difference
104  innumber of input features can result in FEAST runtimes that last several hoursinstead of afew
105 minutes and memory intensive storage of read counts at all sites of variation.
106 We devised alikelihood-based approach for selecting a set of informative or “signature”
107  SNVsfor a given source tracking analysis, allowing us to overcome the time and memory
108 intensive challenges of utilizing SNV-level data. We identify these informative SNV's by
109 computing a signature score (Figure 1A) (see M ethods) that quantifies the extent to which
110 SNVsinthesink are most likely derived from one of the potential sources. Thisis analogous to
111  identifying SNV s private to sources and their sinks, but more generalized to include SNV s that
112  may befound in multiple sources, abeit at higher frequency in one of the potential sources (see
113  Methods).
114 To compute a signature score for a given SNV, two hypotheses are compared for each
115 potential source: (1) that one source solely explains the observed allele countsin the sink and (2)
116  all sources except that one source collectively explain the observed alele counts in the sink. For
117  each hypothesis, we calculate the binomial log-likelihood for the estimate of the allele frequency
118 inthesink, 6.
119 Hypothesis 1: Sourcei with alele frequency p; explains the allele countsin the sink.

6=p
120 Hypothesis2: A combination of all other sources except i (sourcesj #+ i) explain the observed
121  allele count distribution in the sink. The estimate of the sink allele frequency is computed using a

122 mixture of the allele frequencies p;from those sources. The mixing parameter «; is learned using
123 Sequential Least Squares Programming with the constraint that ¥ ;..; a; = 1.
124
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125  Thebinomial log-likelihood is calculated as follows, where there are n reads with the reference
126  alleleand mreads with the alternative allele in the sink.
127

128

129  Alog likeihood ratio representing the support for hypothesis 1 relative to hypothesis 2 is

130 calculated per site per potential source. The maximum log likelihood ratio per siteisthe

131  signature score for that SNV, representing how favorably one of the sources explains the sink
132  over al other sources. Signature SNV's are those with scores greater than two standard deviations

133  over the mean signature score computed for all SNV's (M ethods).
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137  Figurel: Signature SNV selection and SNV-FEAST. (A) A signature SNV is present in one or
138 few but not all sources. By contrast, a non-signature SNV is generically present in multiple
139  sources and thus provides little discriminating information. (B) SNV-FEAST estimates the
140  proportion agiven sink derived from various sources using the read counts for each allelein
141  sinksand sources.

142

143

144  Evaluation of SNV-FEAST in simulations
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145 To compare the accuracy of species-FEAST and SNV-FEAST, we performed simulations
146  mimicking mother-infant transmissions with the goal of estimating contributions of different

147  sourcesto aninfant sink. Our simulations tested the ability of SNV's and species to recapitulate
148  thetrue source composition in synthetic samples comprised of a mixture of reads drawn from
149  multiplereal fecal adult samples. To construct these synthetic infant microbiomes, we mixed
150  metagenomic datafrom mothers sampled in a mother-infant dataset (Béckhed et al., 2015) at
151  various proportions as described below (M ethods).

152 The difficulty of source tracking increases with the number of contributing sources

153 (Shenhav et al., 2019). Thus, we simulate infants that have a small (<=5) versuslarge (6 — 10)
154  number of contributing sources (Supplementary Table 1), including an unknown source (e.g. a
155 randomly selected unrelated mother). Known source contributions to the simulated gut

156  microbiome sample of the infant were varied between 1 and 90% while the unknown

157  contribution varied between 10 and 90%. The unknown source was not presented to FEAST asa
158  potential known source.

159 Additionally, not all speciesin amother are transmitted to the infant (Asnicar et al.,

160 2017b; Ferretti et al., 2018; Korpela et al., 2018; Sprockett et al., 2020; Y assour et al., 2018).
161  Thus, in our smulations, species transmission rates were determined using a beta distribution,
162  whichisanatural model for values between (0,1) and often proposed for microbial abundance
163 data(E. Z. Chen & Li, 2016; Martin et al., 2020; Sloan €t al., 2006, 2007) (see M ethods). We
164  therefore consider four simulated scenarios: a combination of low versus high number of sources
165 and low versus high transmission rates (see M ethods).

166 Figure 2 compares the performance of SNV-FEAST and species-FEAST in estimating
167  thetrue contribution of sources. FEAST using SNVs has equal if not better performance than
168  speciesin most scenarios, and performs especially well when transmission rates are low and

169  unknown source proportions are high. SNVs have alower root mean squared error (RM SE)

170  compared to speciesin three of the four scenarios and higher Pearson correlation between true
171 and estimated contributionsin all four scenarios. The difference in these correlations for SNV's
172  versus speciesissignificant in al four cases when using a paired Wilcoxon signed rank test (high
173  transmission: p-value = 0.00560, 0.00251 for small and large number of sources, low

174  transmission: p-vaue = 0.00024, 0.002340 for small and large number of sources). These results
175  suggest that SNV's may offer useful signatures of transmission.
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179  Figure 2: Ability of SNV and species-FEAST to recapitulate true contributionsin

180 simulations. Estimated known and unknown source proportions for infant microbiomes

181  simulated with in silico mixtures of real maternal fecal microbiomes under different scenarios:
182  either low number of contributing sources (<=5) or high number of sources (6-11), and high

183  transmission rate of species or low transmission rate. Transmission rate is the probability of an
184  infant being colonized by a given species, smulated using a beta distribution centered on the
185 relative abundance of speciesin sources (Methods). 23 infants were simulated with five or fewer
186  sources and 19 infants were simulated with a large number of sources (Table S1). The black line

187 indicates the ground truth for proportions. For each smulated infant, there are 11 points plotted,
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188  whereby 10 correspond to known sources (some of which have zero contribution), and one

189  corresponds to an unknown source which are indicated by a hollow circlesin the plot.

190

191 To assess whether all species and all signatures SNVsin the sink are needed for accurate
192  sourcetracking, we varied the proportion of species (from 10%, 50% or 100%) and SNV's (from
193  10%, 50% or 100%) included as inputs to the algorithm (Figur e S1). We used Pearson

194  correlation between the true and estimated proportions to represent accuracy of SNV-FEAST.
195  When decreasing the percentage of SNV's used, there is no statistically significant change in the
196 performance. However, when decreasing the percentage of species used, there are statistically
197  significant decreases in the performance (Figure S1).

198 To illustrate the advantage of SNV-FEAST over traditional strain tracking approaches
199 suchasinStrain (Olm et al., 2021), we used the same synthetic communities produced in the
200 above simulation for inStrain profiling between each infant and each of their potential

201  contributing sources (Figure S2). InStrain computes a popANI score, which represents the

202  average nucleotide identity between two different metagenomic samples for a given species. As
203  per theinStrain paper, popANI values > 99.999% represent the same strain for that species being
204  shared between samples (M ethods). However, this approach provides a binarization asto

205  whether or not a strain was transmitted, and does not account for the relative abundance of the
206  straininthe sink. Thus, we computed the fraction of each infant’s species that have popANI

207  =>99.999%, with each potential source.

208 As expected, both SNV-FEAST and inStrain produce estimates of sharing that correlate
209  positively with the ground truth mixture proportions of the contributing source samples in each
210  infant (Figure S2). We found inStrain results yielded a 0.742 Pearson correlation (p < 1x10™*%)
211  with the true mixture proportions, whereas SNV-FEAST has a 0.866 Pearson correlation (p < 1x
212 10 with the true proportions. The higher correlation values for SNV-FEAST likely reflect that
213  relative abundances of strains and their genomic identities are simultaneously taken into account
214  for source tracking, whereas inStrain only accounts for genomic identities. Finally, several of the
215  shared speciesin the simulations had popANI values < 99.999%, reflecting the complex

216  mixtures from multiple sources.

217 We next compared SNV-FEAST with the strain tracking procedure in Nayfach et al.

218  2016. Again, we used the same synthetic communities produced in the simulation to determine
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219 marker alleles as defined in Nayfach et al. 2016 (M ethods). Here amarker aleleis determined
220 tobeaSNV that is private to mother, infant, or the mother-infant dyad, and absent from the

221  background population, which consisted of other samplesin the dataset aswell as samples from
222  United States adults in the Human Microbiome Project (M ethods). Specieswith > 5% marker
223  allele sharing between mother and infant were deemed to share a strain (M ethods). We found a
224 high correlation between the true mixture proportions (on x-axis) and the percentage of species
225  with transmission events (y-axis) (Pearson correlation 0.915, p < 1 x 10"°). The higher

226  correlation for the Nayfach et al. 2016 approach compared to the inStrain approach possibly

227  reflects horizontal gene transfers between lineages residing in infants and mothers. By contrast,
228 therewas alower correlation between the true mixture proportions (x-axis) and the sharing for
229  dl marker alleles across species present in the infant (y-axis) and (0.575 Pearson correlation, p <
230  1x10™) (Figure S3B).

231

232  Sourcetracking in infantsover thefirst year of life

233 Having assessed the abilities of SNV-FEAST in synthetic data, we next estimated the
234 contribution from the true mother over time to the true infant with SNV and species-FEAST in
235 theBackhed et al. 2015 dataset. This dataset is composed of metagenomic samples from infants
236  collected at four days, four months, and 12 months after birth, as well as their mothers at the time
237  of delivery. Previous analyses on this data have shown that even while species similarity

238  increases, infants and their mothers share fewer proportions of strains over time as revealed by
239  sharing of SNV's private to mother-infant dyads (Nayfach et al., 2016). Thus, SNV's belonging to
240  strains shared only by the infant and their mother may be more informative of the true source
241  compared to species. Here we sought to test whether SNV and species-FEAST recapitulate these
242  results (Methods).

243 In applying FEAST to the Backhed et al. 2015 dataset, we estimated the proportion of
244  infant at birth attributable to mother. For 4 month infants, we estimated the proportion

245  atributable to the mother and itself at birth. For 12 month infants, we estimated the proportion
246  attributable to the mother and itself at birth and four months (Shenhav et a. 2019). This allowed
247  “unknown” to be more strictly defined as the component of the infant microbiome that could not

248  beexplained by the mother. It also allowed usto better discern if completely new strains were

10
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249  acquired a the 4™ and 12™ months of life (that were not already acquired during previous life
250 stages).

251 First, consistent with previous findings made with species and SNV's (Nayfach et al.,

252  2016), species-FEAST estimates an increasing contribution of the mother over time (t-test p-
253  vaue=5.1x 10, but SNV-FEAST estimates a decrease over time (p-value = 0.063) (Figure
254 3).

255 Second, we assessed the ability of species and SNV-FEAST to distinguish the true

256  mother from three randomly selected unrelated mothers. Species-FEAST estimates an increasing
257  contribution of unrelated mothers over time (t-test p-value = 0.014) while SNV-FEAST

258  estimates no significant change over time (t-test p-value = 0.59) (Figure 3). Theincreasein

259  contribution from unrelated mothers with species-FEAST does not suggest that these particular
260 unrelated mothers are seeding the infant. Rather, the opposing trend observed with SNV's

261  suggeststhat similarity at the species level is consistent with the maturation of the infant

262  microbiome over time.

263 Finally, we estimated contributions from unknown sources, i.e. the proportion of the

264  infant microbiome not explainable by the true mother, the three randomly selected unrelated

265  mothers, or any previous time point. Species-FEAST estimates a sharp decline in contribution of
266  unknown sources over the first year of life (t-test p-value =7.1 x 10*) (Figure 3). This

267  significant decrease in unknown at the species level reflects the infant microbiome maturation
268  over thefirst year of life. By contrast, SNV-FEAST estimates little change in the contribution of
269  unknown sources (t-test p-value = 0.49) (Figure 3). Note that this unknown component reflects
270  what was gained since a previous time point. In other words, at 12 months, the infant on average
271  acquired the same fraction of unknown asit did at 4 months and birth. When source tracking is
272 run without including previous time points as sources, the unknown component increases over
273  thefirst year of lifefor SNVsonly (Figure S5).

274 Next, we sought to understand the effect of swapping sink and source in the re-analysis of
275 Backhed et a. 2015 data. In Figure 3G and H, the infant at birth is the potential source and

276  mother isthe sink. The estimated contribution from baby to mother is significantly smaller

277  (species-FEAST: 11.9 difference, Wilcoxon rank sum test p-value = 0.013; SNV-FEAST: 16.0
278  difference, p-value = 2.2 x 10™) compared to that of mother to baby. Thistrend may be

11
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279  suggestive, but is not conclusive, of directionality, whereby aless diverse source is seeded by a

280 morediverse source.
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283  Figure3. Sourcetrackingin theinfant gut microbiome over thefirst year of life. Species-
284  and SNV-FEAST were applied to Backhed et a. 2019 data to estimate the contribution of (A, B)
285 mother, (C, D) unrelated mothers and (E, F) unknown sources to infants sampled at birth, four
286  months, and twelve months. The black line and inset statistics pertain to the linear regression fit
287  for the source estimates as a function of age of the infant. (G, H) are flipped source tracking

288  analyses with mother and infant swapped when using species-FEAST and SNV-FEAST,
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289  respectively. Figure $4 shows the species that were included in species-FEAST and species that
290 had SNVsincluded in SNV-FEAST. Figure S5 shows the estimate of the unknown component
291  when previous time points of the infant are excluded from the sources.

292

293  Contribution of the NICU built environment to infant microbiomes

294 Next, we re-analyzed a metagenomic dataset studying the contribution of the hospital

295  environment to the infant gut microbiome in the neonatal intensive care unit (NICU) (Brooks et
296 al. 2017). Thisdataset is composed of microbiomes of infant stool, as well as the NICU rooms of
297 the sameinfantsat frequently touched surfaces, sink basins, the floor, and isolette-top sampled
298  over an 11-month period (Brooks et al., 2017). We applied SNV and species-FEAST to assess
299 the contribution of the infant’s own NICU room as well as adifferent NICU room in the vicinity
300 of theinfant’s gut microbiome (see M ethods).

301 Concordant with the findings of Brooks et al., both SNV and species-FEAST detected
302 that the most common source contributing to the infant microbiome was the floor and isolette-top
303 fromtheinfant’s own room (Figures4A and B). SNV-FEAST found Infant 18 also had large
304  contributions from their own room’s touched surfaces at multiple time points (Figure 4B), which
305 isconsistent with afinding by Brooks et al. that three strains found in Infant 18 perfectly

306 matched (> 99.999% average nucleotide identity) strains found in the touched surfaces samples
307  of Infant 18 s own room. Lastly, both species-FEAST and SNV-FEAST found Infant 6's

308  microbiome was explained almost entirely by samples from a different room with SNV-FEAST
309 finding a sizeable contribution from both the floor and isolette top and the sink basin in this

310 different room. Thisisconcordant with Brooks et a.’s finding of multiple cases of strain sharing
311 acrossroomsof Infant 6 and 12 for the different surfaces. FEAST with both datatypesisableto
312  quantify the extent to which Infant 6’ s microbiome was influenced by strains present in the built
313  environment.

314 Through application of SNV and species-FEAST, we are able to quantify any trends over
315 timetheinfluence of the built environment on the infant microbiome (Figures4A and B). SNV-
316  FEAST more consistently finds that contribution from the infant’ s own room exceeds

317  contributions from a different room over time (paired Wilcoxon signed rank test for same room >
318  different room: Infant 3: p-value = 1.95 x 10, Infant 6: 1, Infant 12: 3.05 x 10, Infant 18: 3.81
319  x 10°) ascompared to species-FEAST (Infant 3: p-value = 0.41, Infant 6: 1, Infant 12; 5.8 x 10,
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320 Infant 18: 3.81 x 10°). Interestingly, species-FEAST assigns one dominant source primarily,
321  whereas SNV-FEAST more often finds a combination of sources for a given sample.

322 Additionally, both SNV and species-FEAST estimated a large unknown component for
323  dl four infants, with Infant 18 showing the largest mean unknown component across the NICU
324  stay based on SNV's (Figure S6). This unknown component isimportant because it signifiesthe
325  extent to which other sources such as the mother and diet impact infant gut colonization.

326 We then asked the question: is the infant more explained by the built environment rather
327  thanvice-versa, the built environment is more explained by the infant. We tested this by

328  swapping the infant and each of the three built environment sources (Figure 4C and D). The
329 estimated contribution of room to infant is significantly higher than the estimated contribution of
330 infant to room, but this asymmetry is more pronounced with SNV-FEAST. SNV-FEAST showed
331  ggnificantly higher contribution of room to infant for two of the three surface types (floor and
332  isolette top: Wilcoxon rank sum test p-value = 7.00x 10°°, touched surface: p-value = 0.0058,
333  sink basin: p-value = 0.274) while species-FEAST found thisto be true for one of the three

334  surfacetypes (floor and isolette top: Wilcoxon rank sum test p-value = 7.1x 10°°, touched

335 surface: p-value = 0.968, sink basin: p-value= 0.998). Interestingly, the built environments of
336 different rooms highly resemble each other. Thisis especially apparent with species-FEAST,
337  suggestive of similar ecological forces operating in similar built environments. By contrast,

338 SNV-FEAST reveals a higher diversity of contributing sources of the built environment samples
339 toother NICU built environments, once again highlighting the utility of performing source

340  tracking with SNVs.

341
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Figure 4: Source tracking of infant gut microbiome in the NICU. (A) species-FEAST and

(B) SNV-FEAST applied to infantsin the NICU. Each bar represents one sampling day in the

NICU stay of an infant. Infants 3 and 6 stayed in the same room, but at different times. The same

appliesto Infants 12 and 18. The contribution of a different room was determined by using

samples from Infant 12's room for Infants 3 and 6, and samples from Infants 6's room for Infants

12 and 18 for each of the categories of surfaces per infant: touched surface, sink basin, or floor
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349  andisolette top surface. The asterisks represent the result of a paired Wilcoxon signed rank test
350 indicating whether the total contribution of surfaces from theinfant’s own room were higher than
351  contributions from the other room: **** for p-value < 0.0001, *** for p-value < 0.001, ** for p-
352 value<0.001, * for p-value < 0.05, and n.s. for p-value > 0.05. Iterative swapping of the infant
353 sink and each potential source for source tracking with (C) species-FEAST and (D) SNV-

354  FEAST. Thefirst column shows source tracking results in which the infant was treated as the
355 sink. In each column after the first column, a different environmental source was swapped with
356 theinfant and considered asasink.

357

358  Global sourcetracking of ocean microbiomes

359 The ocean microbiome isacomplex community that displays biogeography at the species
360 and functional levels (Nayfach et al., 2016; Sunagawa et al., 2015). To further understand global
361  patterns of ocean microbiomes, we applied SNV and species-FEAST to the Tara Oceans

362  microbiome dataset (Sunagawa et al., 2015). In the source tracking context, rather than defining
363  sharing as evidence of atransmission event (which is more likely in mother-infant data),

364  estimated source contributions at best explain the extent to which a given ocean sample

365 resembles other ocean samples. On one extreme, an ocean sample might be entirely explainable
366 by asingle ocean’s samples, and at the other extreme, an ocean sample might be explainable by
367 multiple oceans at the same time. Another alternative isfor an ocean sample to not be

368 explainable by any of the provided sources, resulting in a high unknown component and

369  potentialy suggesting high endemism. These source tracking estimates could be indicative of the
370  extent to which oceans mix or may be reflective of similar niches.

371 Tara Oceansis composed of 182 whole metagenomic sequencing samples derived from
372 64 stations at multiple depths. Previous research indicates that temperature is one of the highest
373  driversof variability in microbial composition in the ocean (Ladau et al., 2013; Sunagawa et al.,
374  2015). For this reason, we restricted the source tracking analysis to sinks and sources from the
375 sametemperature and depth range: above 20 degrees Celsius and within an average of 5 meters
376  below the surface.

377
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Figure 5. Microbial sourcetracking in the Tara Oceans dataset with SNV and species-
FEAST. World map indicating the location of sampling sites (A). Source tracking estimates for
the contribution of different oceans to the South Pacific (n=16) (B) and Indian Oceans (n=16)
(C) are depicted with vertical bars. In each experiment, all stations around the world excluding
those from the “sink” ocean are considered potential sources. Light blue, for example, represents
the total contribution of the four stations from the Mediterranean Seathat had samplesin the

surface layer that were also greater than 20°C in temperature.
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387
388 Figure6. Sourcetracking with ocean samples. Distance decay in contribution of a*source’

389 oceantoa“sink” ocean when using (A) species-FEAST and (B) SNV-FEAST. In each

390 experiment, only stations from one ocean were considered as sources for a given sink station. For
391 example, when performing source tracking between the mediterranean and north atlantic, for

392 each mediterranean station, the 10 available north atlantic stations were considered as potential
393  sources. Thus, plotted are 10 points for a given mediterranean sink, where each point represents
394  the contribution of a source station from the North Atlantic to the Mediterranean sink station in
395 question. Shown ininset text are the dlope and t-test p-value for the slope. (C) and (D) are

396 flipped source tracking analysis with the Red Sea and Mediterranean, as well as the South Pacific
397  Ocean and North Atlantic Ocean using species-FEAST and SNV-FEAST, respectively.

398
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399 First, we performed source tracking between oceans using SNV and species-FEAST. We
400 treated each station around the world as a sink and estimated the contribution of different oceans
401  around the world to that sink (M ethods). Unknown represents any portion of the microbiomein
402  these sink samples that cannot be explained by any of the provided source samples. We found
403  that species and SNV-FEAST estimate different amounts of sharing between oceans, where

404  SNVsestimate a higher unknown on average, potentially indicative of endemism. The finding
405  that SNV-FEAST estimates a higher unknown contribution on average is most evident in the
406  North Pacific, North Atlantic, South Atlantic, and Mediterranean oceans (Figure S7).

407  Additionally, in some oceans, SNV s identify contributions from oceans that species-FEAST does
408  not detect (Figure5, Figure S7). For example, in applying FEAST to Indian Ocean samples we
409 find that there is measurable sharing of microbes with the Mediterranean Sea, but thisis not

410 detected with species (Figur e 5C). Such differences were found in samples from other oceans as
411 well (Figure S7).

412 Next, we assessed whether source tracking estimates display a distance-decay

413  relationship. Previous studies found that genetic distance, such as that represented by fixation
414  index Fsr, increases with geographic distance between populations (Cavalli-Sforza & Feldman,
415  2003; DeGiorgio & Rosenberg, 2013). Based on these findings, our expectation was that samples
416 that are further away from a given station will have reduced resemblance to that station. To

417  assessthis distance-decay relationship, we plotted pairwiseh source tracking results across all
418 possible pairs of ocean samples (Figure 6A and B). We found that indeed as the distance

419  increases, the % explainability of a given source ocean decreases -0.23 % per thousand km

420  according to species-FEAST (t-test p-value < 1 x 10™*%), and -0.5% per thousand km according to
421  SNV-FEAST (t-test p-value = 0.0018 ). The steeper slope for SNV-FEAST suggests that SNV's
422  may be more sensitive to distance decay signals on a global level.

423 Finally, we investigated whether some oceans have higher estimated contributions to

424  other oceansthan vice versa, potentially indicative of the directionality of transmissions (though
425 seeDiscussion). Specifically, weinvestigated the relationship between the Red Seato the

426  Mediterranean Sea (Figure 6C and D). Migration from the Red Sea to the Mediterranean,

427  known as Lessepsian migration, is well-documented for not only microorganisms but also

428  macroorganismslike fish (Bentur et al., 2008; Bianchi & Morri, 2003; Golani, 2009). Anti-

429  Lessepsian migration (Red Seato Mediterranean), on the other hand, has been primarily thought

19


https://doi.org/10.1101/2022.05.28.493810
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.28.493810; this version posted January 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

430 to berareduetothe Additionally, recent studies suggest that there is also evidence for anti-

431  Lessepsian migration of bacteria (Mediterranean to Red Sea) may be more common than

432  Lessepsian migration (Elsaeed et al., 2021). Research studies find that M editerranean has brine
433  poolsthat produce similar asimilar environment to the Red Sea's (Antunes et al., 2011),

434  alowing for bacteria from the M S to potentially thrive in the RS.

435 By swapping the Red Sea and M editerranean as source and sink, we found that there was
436  indeed a significant difference in the estimated contribution from one direction to another with
437  SNVsbut not species (Figure 6C and D). SNV-FEAST found the Mediterranean explained an
438  average of 15% of the Red Sea, while the Red Sea explained an average of 1.8% of the

439  Mediterranean (Wilcoxon rank sum test, p-value =0.02), consistent with anti-Lessepsian

440  migration. Meanwhile, asimilar analysis with species-FEAST found the Mediterranean

441  explained 2.5% of the Red Sea and the Red Sea explained 4.9% of the Mediterranean (Wilcoxon
442  rank sum test, p-value = 0.25). In asimilar analysis between North Atlantic and South Pacific we
443  found that both species and SNV's supported significantly greater contributions from the North
444  Atlantic to the South Pacific, with SNV-FEAST estimating a greater contribution (17%,

445  Wilcoxon rank sum test p-value = 5.1 x 10™) than species-FEAST (10%, Wilcoxon rank sum
446  test p-value=1.8x 10™).

447 Together, these results suggest that on average, SNV and species FEAST generate similar
448  source tracking resultsin the Tara Oceans dataset, with SNV s displaying stronger signals of

449  endemism, distance-decay relationships, and potential directionality of transmission.

450

451
452 DISCUSSION
453 Source tracking provides insight into potential source contributions to a metagenomic

454  sample as well as similarities between metagenomic samples. While species abundances have
455  been informative in source tracking in several studies (Floreset al., 2011; Knights et al., 2011,
456  McGheeet a., 2020; Shenhav et al., 2019), they may be limited in their resolution. SNVs

457  provide apotential alternative because of their ability to distinguish sources of strain

458  transmissions. Here we compared the ability of a previously published source tracking algorithm
459  FEAST using species versus SNVs as input data. In application of species and SNV-FEAST to

460 simulations aswell as three case studies, we demonstrate that the two input types can provide
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461  distinct insghtsinto microbial sharing and similarities across different environments. Asa

462  hypothetical example, two unrelated samples may have very similar species composition due to
463  similar colonization processes and similar environmental influences without any actual microbial
464  sharing. It would be unlikely for these two unrelated samples to share rare SNV's, however. This
465  distinction suggests that SNV'sindeed can provide insight into the ecological processes shaping
466  microbial communities that speciesinformation alone cannot, and our three case studies are able
467  to demondgratethis.

468 In the first case study, we confirmed previous findings that SNV sharing between

469  mothers and infants decreases over thefirst year of life while species sharing increases (Nayfach
470 et al., 2016), suggesting that while the infant microbiome matures to resemble adults at the

471  specieslevel, sources other than the mother may seed the infant over time. In the second case
472  study, we confirmed source contributions from the NICU built environment to the infant

473  microbiome (Brooks et al., 2017), and found that SNV's detect a more consistent estimate in

474 source contributions overtime compared to species as well as detecting contribution from sources
475  not detectable by species-FEAST.

476 In the third case study, we perform source tracking in the Tara oceans dataset and found
477  SNVsdisplay a stronger distance decay relationship. These distance-decay results parallel recent
478  findings made with gene content (Dlugosch et al., 2022). While previous studies have examined
479  thebiogeography of the ocean using species profiles, genes (Dlugosch et al., 2022; Nayfach et
480 a., 2016) or amino acid variants from a single species (SAR11) (Delmont et al., 2019), for the
481  first time, we leverage the use of SNVs across all detected prevalent speciesin the ocean

482  microbiome to identify proportions of sharing across oceans. A benefit of using SNVsin the
483  ocean microbiomeisthat SNVs can track fragments of DNA that have moved due to horizontal
484  genetransfer in the distant past rather than relying on inference of whole genomes or presence of
485  private SNVsthat may been transmitted in the recent past. This global-level sourcetracking is
486  analogous to admixture estimation with human genotypes (Alexander et al., 2009; Chiu et al.,
487  2022).

488 We note that source tracking provides insights into similarities between microbiomes and
489  potential transmissions, though the directionality isless conclusive. It is possible that increased
490  contributionsin one direction but not the other is suggestive of directionality of transmission. For
491  example, in the case of the mother-infant data from Backhed et al. 2015, FEAST predicted
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492  higher contribution from mother to baby than vice versa. Thisis consistent with work done on
493  crAss-like phage transmissions between mother and infant in the same dataset that showed

494  evidence of directionality by tracking the accumulation of mutations over time that are private to
495 theinfant and absent from the mother (Siranosian et al., 2020). But in the case of the ocean, it is
496  possiblethat over longer time periods, differences in relative contributions from one part of the
497  world to another (e.g. Mediterranean to Red Sea) are more reflective of local selection pressures
498 that permit certain species and genotypes (Delmont et al., 2019). Thus, source tracking in certain
499  instances, such asthe ocean microbiome, at best reflects the extent of similarity between samples
500 andislessconclusive about directionality.

501 A popular approach used to track strain transmissions is by detecting high average

502 nucleotide identity (ANI) for species shared between source and sink. For example, inStrain

503 (Olmet al., 2021) identifies a match between samples for a given species when ANI exceeds
504  99.999%. However, it isto be noted that inStrain provides distinct and complementary

505 information from FEAST given its binarization of whether or not a strain is shared. For

506 illustration purposes, if aninfant harbors 100 species, of which only 1 came from their mother,
507  but that species strain’srelative abundance is 50% of the infant’s microbiome, SNV-FEAST
508  would infer that the mother’ s contribution is 50%, while inStrain would infer that only 1/ 100™ of
509 the species are derived from the mother.

510 Other studies rely on tracking transmissions of strains with private SNV's shared only
511  between the sink and putative source (Backhed et al., 2015; Korpela et al., 2018; Nayfach et al.,
512  2016; Schmidt et al., 2019). The private marker alele tracking approach in Nayfach et a. 2016
513  provides an improved estimate of true percentage of species that share some portion of their

514  genome with putative sources compared to inStrain (Figure S2, S3). It is possible that requiring
515 only 5% of marker alleles to be shared rather than a 99.999% ANI permits detection of

516  horizontal gene transfers between lineages residing in mothers and infants (D. W. Chen &

517  Garud, 2022; Vatanen et al., 2022). However, in FEAST, by using any SNV with an informative
518  distribution across sources as determined by our signature scoring method, we are able to

519 quantify the relative contribution of all the sampled environments and assign a proportion to

520 these putative sources. Another advantage to FEAST is that the contribution of unknown sources
521  can be quantified. For example, the significant fraction of marine biodiversity estimated to be
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522 ‘unknown’ may be endemic, as previously noted in the Mediterranean (Katsanevakis et al .,

523  2014).

524 A drawback, however, with using SNVs over species is deeper, whole genome

525  seguencing isrequired to accurately call SNVs. Moreover, even when there is sufficient

526  coverage, thereis still the challenge of alarge number of SNV's. We demonstrate one way to

527  subset SNVsthat uses a scoring method for informativeness, but there may yet be other methods
528 for filtering SNVsto the most informative set. Another potential caveat of SNV filtering isthat
529 not all species present will be represented in the final signature SNV set (Figure $4). Species
530  with higher abundance are more likely to be represented in the signature SNV set. However, we
531  show that not all species need to contribute signature SNVsin order to make accurate inferences,
532 and likewise, not all SNVs are needed to make accurate inferences (Figure S1).

533 Ascertainment of SNV's from metagenomic data in a high-throughput manner, especially
534  common SNV s with microbiome genotyping technology (Shi et al., 2021), is becoming an

535 increasing priority for the field as metagenomic datasets become more abundant. A genotyper for
536  prokaryotes has already been developed and tested on a catalog of over 100 million SNVsin

537  order to characterize population structure (Shi et al., 2021). Such a catalog of informative SNV's
538  could beinvaluable for source tracking. With source tracking enabling us to characterize samples
539 by their relationship to known samples, we have a powerful tool to explore samplesin new

540  contexts we have yet to discover.

541

542 METHODS

543 Data

544 For ssimulations and analyses of infant microbiomesin thefirst year of life (Béackhed et

545  al., 2015), we downloaded the raw shotgun metagenomic sequencing reads from public read
546  archives under accession number PRIEB6456. We downloaded the raw sequence reads for the
547  NICU analysis (Brooks et al., 2017) from accession number PRIEB323631, and the equivalent
548  for the Tara Oceans analyses (Sunagawa et a., 2015) were downloaded from accession number
549 PRJEB402. Datafrom the HMP Consortium (Methé et al., 2012) and Lloyd-Price et a (LIoyd-
550 Priceet a., 2017) was downloaded from the following

551  URL: https://aws.amazon.com/datasets/human-microbiome-project/.

552
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553  Estimation of species and SNV content of metagenomic samples

554 We used MIDAS (Metagenomic Intra-Species Diversity Analysis System, version 1.2,

555  downloaded on November 21, 2016 (Nayfach et al., 2016) to estimate species abundance and SNV
556  content per speciesin each metagenomic shotgun sequencing sample. The database we used to apply
557  MIDAS consisted of 31,007 bacterial genomes that are clustered into 5,952 species. The parameters we
558  used to estimate species abundances and SNV s were described in (Garud et al., 2019). A specieswas
559  considered present if there are at least 3 reads mapping to a set of single copy marker genes on average.
560 Tocal SNVs, we used the default MIDAS settings in order to map reads to a single representative

561 reference genome. The mapping was done with Bowtie 2 (Langmead & Salzberg, 2012): global

562  aignment, MAPID>94.0%, READQ>20, ALN_COV>0.75, and MAPQ>20, where species with reads
563  mapped to less than 40% of the genome were excluded from the SNV calls. We excluded samples with
564  depth lower than 5 reads, and excluded genetic sites using the default site filters of MIDAS (e.g.

565 ALLELE_FREQ>0.01, with the exception of SITE_DEPTH which was set to 3.

566
567  Application of FEAST algorithm
568 FEAST, originally introduced by Shenhav et a., is an R-based method that models the

569  mixture proportions for various “source” microbial samplesfor agiven “sink” (Shenhav et al.,
570 2019). This method utilizes expectation maximization to estimate the proportions when given
571  any sort of count-based feature matrix representing the potential sources and sinks. The intuition
572  behind the estimation process is that a source with a similar species distribution to the sink would
573  have ahigher contribution estimate to the sink. A species with non-zero counts only in sourcej
574  and the sink would increase the estimated contribution of source j. However, in many cases, the
575  same species are found in multiple sources simultaneous. The algorithm does not uniquely assign
576  aspeciesto asource but rather ssmultaneously utilizes all speciesinformation to infer the source
577  contributions. The method was originally tested and evaluated on species and not on more fine
578  scale genetic data such as SNVs. The number of different species, on average, range in number
579  from afew hundred to a few thousand, while the number of possible nucleotide sites that vary
580 acrossdifferent sources can number in millions. For this reason, a SNV-filtering processis

581 necessary so that the algorithm can run within a reasonable time and with reasonable memory
582  requirements.

583

584  Application of FEAST to the Backhed et al. 2015 dataset:
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585 For both species and SNV-FEAST, the same set of sources and sinks were fed into the
586  FEAST algorithm. In the case study of infantsin the first year of life (Backhed et al., 2015), the
587  sink conssted of the infant fecal sample at either four days, four months, or 12 months and the
588  potential sources conssted of fecal samples from the true mother, three randomly selected

589  mothers from the same dataset, and also any previous time points for the infant.

590 Species-FEAST utilized al species present in the infant whereas SNV-FEAST used

591  signature SNV's from the subset of species that had signature SNV's. Shown in Figure S3 are the
592  digribution of speciesincluded in species and SNV-FEAST.

593
594  Application of FEAST to the Brooks et al. 2017 dataset:
595 For the case study of infantsin the NICU (Brooks et al., 2017), the sink consisted of the

596 fecal sample of theinfant at a given time point and the potential sources consisted of pooled
597 readsfrom the touched surfaces, the sink basin and the floor and isolette top from both the
598 infant’s own room aswell as adifferent room. The different room was Infant 12's room for
599 Infants 3 and 6, Infants 6’'s room for Infants 12 and 18.

600

601  Application of FEAST to the Sunagawa et al. 2015 dataset: Determining the signature SNV set
602  Signature SNVswere identified as described in the main text. We provide specific steps for
603  determining signature SNVs:

604 (1) Filter sites: only sites of the genome with at least the required number of reads mapping

605 to the site are considered. In the case study of infantsin thefirst year of life (Backhed et

606 al., 2015) and infantsin the NICU (Brooks et al., 2017), the minimum coverage

607 requirement is 10 across the sink and J sources. For the Tara Ocean (Sunagawa et al.,

608 2015) samples, the minimum coverage is five reads (Sunagawa et al., 2015).

609 Additionally, sites that are biallelic must have more than one read mapped to each alele

610 to be considered.

611 (2) Perform per site per source parameter estimates. for each potential source compute the

612 estimated allele frequency in the sink 6 under two different hypotheses:

613 Hypothesis 1. Sourcei with alele frequency p; explains the allele countsin the sink.
0=p
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614 Hypothesis 2: A combination of al other sources except i (sources;j # i) explain the
615 observed allele count distribution in the sink. The estimate of the sink allele frequency is
616 computed using a mixture of the allele frequencies p;from those sources. The mixing
617 parameter o islearned using Sequential Least Squares Programming (scipy.minimize() )
618 with the constraint of summing to 1 with bounds of Oto 1inclusive: };.; o; = 1.
619

6= ap,

j=i

620 (3) Compute per site per source log likelihoods: Compute the binomial log-likelihood under
621 hypotheses 1 and 2, given n reads with the reference allele and m reads with the
622 aternative alelein the sink:
623

[(8) =nlogd+mlog(1-9)
624 (4) Compute per site per source log likelihood ratio:
1(6) — 1,(6)

625

626 (5) Compute per site summary signature score: The maximum log likelihood ratio per siteis
627 the signature score for that SNV, representing how favorably one of the sources explains
628 the sink over all other sources

629 (6) Filtering of SNV's using signature score: One signature score for that SNV represents
630 how favorably one source explains the sink better than all other sources. All the scores
631 are ranked across SNVs and SNV s with scores that are greater than two standard

632 deviations over the mean signature score within each 200 kbp window of the genome are
633 retained as signature SNV's. Thiswindow size was chosen for to optimize run time and
634 memory requirements.

635

636 Note, if only one source passes minimum coverage filtering, [, () = 0 resultingina
637 very high likelihood ratio as represented by [, (8) for the one source. These SNVs are
638 more likely to pass the signature score filtering. One exception for SNV sthat are

639 included in the signature SNV set without passing signature score filtering are SNVs with
640 an allele that is completely unique to the infant, as these represent SNV sthat are
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641 potentially derived from an unknown source. Signature SNV's are obtained from the SNV
642 profile of every species for which thereis MIDAS outpui.
643

644  Smulating mother to infant transmission

645 The mixture proportions for 28 smulated infantsis shown in Table S1. Four possible
646  scenarios are ssimulated using a combination of either low or high number of sources and low or
647  high transmission probabilities of species. High transmission of species was simulated by

648  drawing separate transmission probabilities for each speciesin each contributing source based on
649 abetadistribution with amean equal to the species relative abundance and variance equal t0 0.1,
650 avalue selected to emulate Backhed et al.’s mean relative abundance and variance. For the low
651 transmission scenario, transmission probabilities were drawn from a beta distribution with mean
652 0.1 timestherelative abundance and variance at 0.1. To determine if a species from each source
653  was transmitted to a given infant, a binomial draw was performed J times, where J = number of
654  sources, and the probability of a mother transmitting the speciesis p; based on the beta-drawn
655 transmission probability. If any of the draws yields a one, that speciesis transmitted to the infant
656  from all sources. The same simulated data under these scenarios is used for both SNV and

657  Species source tracking.

658 The source tracking estimates are compared to the true mixing proportions using

659  Spearman correlation. The significance of correlation is calculated using the stat_cor function in
660 the‘ggpubr’ package (CRAN - Package Ggpubr, n.d.).

661

662 ComparisontoinStrain

663 Weran inStrain (Olm et al., 2021) on the same synthetic samples as described above.
664 InStrain “profile’ (Olm et a., 2021) and inStrain “compare” (Olm et al., 2021) were run for
665 every possibleinfant-source pair. For example, for smulated infant 1 there were 10 putative
666  sources, therefore inStrain compare was run 10 times for each putative source. InStrain reports
667  popANI calculated per scaffold for a given species. To compute a single statistic per species, we
668  computed the average popANI across scaffolds for a given species. The percent infant

669  microbiome speciesthat had strains shared with mother was computed as the number of species
670  inwhich popANI was >= 99.999% divided by the total number of specieswith coverage >= 5.
671  PopANI was only calculated in scaffolds that had >=5 coverage in both samples of the pair.
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672

673  Comparison with strain tracking approach in Nayfach et al. 2016

674 We applied the strain tracking approach in Nayfach et al. 2016 on the same synthetic
675 communities described above. In Nayfach et al. 2016, strain transmissions are tracked by

676 identifying ‘marker alleles’ which are private to the infant, mother, or infant-mother dyad, and
677  absent from the broader population. A strain is considered to be shared if at least 5% of all

678 marker alelesfor a mother-infant dyad are shared. Note that the approach for strain tracking

679  proposed in Nayfach et al. 2016 utilizes SNV information outputted by MIDAS, but is not a part
680 of MIDAS.

681 Each smulated infant had up to 10 sources that were real maternal samples from

682 Backhed et al. 2015 For each possible pair of infants and maternal sources (10 pairings per

683 infant, with 48 infants), we found the set of infant-only marker alleles, mother-only marker

684  dleles, and mother-infant dyad marker aleles. As described in Nayfach et a, 2016, only sites
685  with minimum 30 reads and only alleles that were supported by at least 10% of the total reads
686  alignedto that site were considered. The infant marker allele and mother marker allele were
687 defined asalleles that were present only in the focal sample and absent from the background

688  samples (or below 3 reads = 10% * 30 reads). For the infant, the background consisted of all

689  mothers (including mothers that were used to simulate the infant), real infant samples (excluding
690 infants of mothers used to simulate the infant), and 337 samples of adults from the United States
691  inthe HMP (which includes 180 unique adults) that were obtained from the metagenomics

692  repository of HMP under project ID SRP002163 and SRP056641 (Lloyd-Price et al., 2017,

693 Methéet al., 2012). For the mother, the background consisted of all mother and infant samplesin
694  addition to the HMP samples. For computing shared marker aleles, an allele must be present in
695  both the mother and infant but absent from the background, which consisted of all mothers and
696 the HMP samples.

697 To compute sharing, two quantities were considered: “total sharing”, defined as % shared
698 marker adleled (infant marker aleles + mother marker alleles + shared marker alleles) and

699  proportion of infant marker alleles that are shared: % shared marker alleles/ (infant marker

700 aleles + shared marker aleles). Thefirst quantity compared to FEAST estimates was the

701  percentage of infant speciesin which the “total sharing” was at least 5%. The second quantity
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702  compared to FEAST was the pooled proportion of infant marker alleles that are shared across all
703  gpecies.

704

705  Distance Decay Analysis

706 To study the relationship between source tracking estimates and geographic distance, we
707  analyzed al oceans as either a sink or source against all other possible oceans. To compute

708  geographic distance between stations, we applied the Haversine distance to the longitude and
709 latitude of the sampling sites provided by (Sunagawa et al., 2015) using the package “geosphere”
710 (Hijmanset al., 2021). Source tracking estimates were computed as described above using either
711  SNV-FEAST or Species FEAST. The regression line for the distance decay analysis was

712  computed using a linear mixed model “contribution ~ distance + (1| sink_ocean)”.
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