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Abstract 26 

The involvement of specific basal ganglia-thalamocortical circuits in response inhibition has 27 

been extensively mapped in the last few decades. However, the pivotal brain nodes and 28 

directed casual regulation within this inhibitory circuit in humans remains controversial. Here, 29 

we capitalize on recent progress in robust and biologically plausible directed causal modelling 30 

(DCM-PEB) and a large fMRI response inhibition dataset (n=218) to determine key nodes, 31 

their causal regulation and modulation via biological variables (sex) and inhibitory 32 

performance in the inhibitory control circuit encompassing the right inferior frontal gyrus 33 

(rIFG), caudate nucleus (rCau), globus pallidum (rGP) and thalamus (rThal).The entire neural 34 

circuit exhibited high intrinsic connectivity and an increasing rIFG inflow and its causal 35 

regulation over the rCau and rThal during response inhibition. In addition, sex and 36 

behavioral performance influenced the architecture of the regulatory circuits such that 37 

women displayed increased rThal self-inhibition and decreased rThal to GP 38 

modulation, while better inhibitory performance was associated with stronger rThal to 39 

rIFG communication. Furthermore, control analyses did not reveal a similar key 40 

communication in a left lateralized model. Together these findings indicate a pivotal role 41 

of the rIFG as input and causal regulator of subcortical response inhibition nodes.  42 

Keywords: response inhibition, basal ganglia, thalamus, inferior frontal gyrus, 43 

effective connectivity, DCM, cognitive control, sex difference  44 
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Introduction 47 

Animal models and human neuroimaging studies convergently demonstrated that inhibitory 48 

control critically relies on highly specific basal ganglia-thalamocortical circuits (Alexander et 49 

al., 1986, 1991; Alexander and Crutcher, 1990; Aron et al., 2007; Jahfari et al., 2019; Morein-50 

Zamir and Robbins, 2015; Pfeifer et al., 2022; Schall and Godlove, 2012; Stuphorn, 2015; 51 

Verbruggen and Logan, 2009; Wei and Wang, 2016). Dysregulations in this circuit have been 52 

implicated in disorders characterized by inhibitory control deficits, including addiction 53 

(Klugah‐Brown et al., 2020; Morein-Zamir and Robbins, 2015; Zhou et al., 2018), attention 54 

deficit/hyperactivity (ADHD, Morein‐Zamir et al., 2014; Sonuga-Barke, 2005), schizophrenia 55 

(Camchong et al., 2006; Feng et al., 2018; Mamah et al., 2007) and Parkinson Disorder 56 

(DeLong and Wichmann, 2015; Obeso et al., 2000). The key nodes within this response 57 

inhibition circuitry have been extensively mapped with convergent evidence suggesting 58 

critical contributions from the pre-supplementary motor area (pre-SMA) and lateral prefrontal 59 

cortex (lPFC), particularly inferior frontal gyrus (IFG, Aron et al., 2003; Dambacher et al., 60 

2014; Hampshire et al., 2010; Maizey et al., 2020; Schaum et al., 2021; Verbruggen and 61 

Logan, 2008; Zhang et al., 2017) as well as striatal regions, in particular the caudate and 62 

putamen (Eagle et al., 2011; Ghahremani et al., 2012; Hampton et al., 2017; Kelly et al., 63 

2004; Ott and Nieder, 2019; Robertson et al., 2015; Robbins, 2007).  64 

Anatomical and neurochemical studies further suggest that response inhibitory control 65 

within this circuitry is modulated by dopaminergic and noradrenergic signaling (Bari et al., 66 

2011; Ghahremani et al., 2012; Li et al., 2020; Pfeifer et al., 2022; Rae et al., 2016; Robertson 67 
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et al., 2015). Dopamine receptor availability in the fronto-striatal circuits is significantly 68 

related to inhibition-related neural responses (Ghahremani et al., 2012; Pfeifer et al., 2022) 69 

and dopamine receptor availability in the lPFC modulates motor control via downstream 70 

regulatory projections to the striatum (Ott and Nieder, 2019; Vijayraghavan et al., 2016). 71 

Enhanced norepinephrine signaling facilitates response inhibition via modulation of the IFG 72 

and its connections with the striatum (Chamberlain et al., 2009; Rae et al., 2016), while the 73 

dorsal striatum represents an important locus of dopaminergic control of response inhibition 74 

(Ghahremani et al., 2012; Robertson et al., 2015) and the IFG plays an important role in top-75 

down control of the basal ganglia regions (Buschman and Miller, 2014; Hampshire et al., 76 

2010; Jahfari et al., 2012; Kim, 2014; Puiu et al., 2020; Renteria et al., 2018; Schaum et al., 77 

2020; Tops and Boksem, 2011). In the basal ganglia-thalamocortical model of response 78 

inhibition (Alexander et al., 1986, 1991; Alexander and Crutcher, 1990) the thalamus relays 79 

information between the basal ganglia and cortex (Collins et al., 2018; Haber and Mcfarland, 80 

2001; Haber and Calzavara, 2009; McFarland and Haber, 2002) - thus facilitating response 81 

inhibition and performance monitoring (Bosch-Bouju et al., 2013; Huang et al., 2018; 82 

Saalmann and Kastner, 2015; Tanaka and Kunimatsu, 2011) - via dense reciprocal 83 

connections with the basal ganglia and PFC (Guillery, 1995; Phillips et al., 2021; Xiao et al., 84 

2009; Tanaka and Kunimatsu, 2011).  85 

Convergent evidence from human lesion studies and neuroimaging meta-analyses 86 

demonstrates a right-lateralized inhibitory control network encompassing the right IFG 87 

(rIFG), right caudate nucleus (rCau), right globus pallidum (rGP) and right thalamus (rThal) 88 
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(Aron et al., 2003; Chevrier et al., 2007; Garavan et al., 1999; Hung et al., 2018; Jahfari et al., 89 

2011; Thompson et al., 2021). However, while extensive research has highlighted the critical 90 

role of these regions within a right-lateralized inhibitory control circuitry, the causal 91 

information flow and critical contribution of single nodes within this network have not been 92 

determined.   93 

 We therefore capitalized on a novel dynamic causal modelling (DCM) approach based 94 

on a priori specification of biologically and anatomically plausible models which allows 95 

estimation of directed causal influences between nodes and their modulation by changing task 96 

demands (Friston et al., 2003; Stephan et al., 2010) in the largest sample to-date (n=218). 97 

DCM further allows comparison of modulatory effective connectivity strength across 98 

different experimental conditions using Bayesian contrasts (Dijkstra et al., 2017) and in 99 

combination with the recently developed Parametrical Empirical Bayes (PEB) hierarchical 100 

framework (DCM-PEB method) allows modeling of both commonalities and differences in 101 

effective connectivity between subjects e.g. to determine the neurobiological basis of sex and 102 

behavioral performance variations (Friston et al., 2016; Zeidman et al., 2019a; Zeidman et al., 103 

2019b).  104 

To determine the causal information flow and critical nodes in the basal ganglia-105 

thalamocortical circuits and whether these are modulated by biological factors (i.e. sex) and 106 

show functional relevance in terms of associations with performance we capitalized on DCM-107 

PEB in combination with functional magnetic resonance imaging (fMRI) data collected in a 108 

large sample of healthy individuals (n=218) during a well-established response inhibition 109 
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paradigm (emotional Go/NoGo task, see also Zhuang et al., 2021). To unravel the key nodes 110 

and causal influences within the inhibitory control network, we firstly estimated the effective 111 

connectivity between and within key regions involved in response inhibitory control within 112 

the rIFG-rCau-rGP-rThal functional circuit (right lateralized model) and secondly estimated 113 

sex differences and behavioral performance effects on connectivity parameters. To validate 114 

the hemispheric asymmetry of the inhibitory control network, an identical model of nodes 115 

was tested in the left hemisphere (left lateralized model).  116 

Given convergent evidence on a pivotal role of the right IFG in mediating top-down 117 

cortical-subcortical control during response inhibition (Aron et al., 2003; Dambacher et al., 118 

2014; Hampshire et al., 2010; Maizey et al., 2020), we predicted a greater modulatory effect 119 

on rIFG and its directed connectivity to both rCau and rThal in the NoGo compared to Go 120 

condition. Additionally, based on previous findings we expected a modulation of the key 121 

pathways by biological (i.e. sex, Li et al., 2006; Ribeiro et al., 2021; Sjoberg and Cole, 2018) 122 

and performance variations (Chang et al., 2020; Jahfari et al., 2011; Wei and Wang, 2016; Xu 123 

et al., 2016) with better response inhibition being associated with stronger causal regulation in 124 

the inhibition circuitry. Finally, we hypothesized a different causal structure for the left and 125 

right models given the hemispheric asymmetry in the inhibitory network (Aron et al., 2003; 126 

Chevrier et al., 2007; Hung et al., 2018; Jahfari et al., 2011; Thompson et al., 2021). 127 

 128 

Results 129 

Behavioral Results 130 
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The two-way repeated-measures ANOVA on accuracy found a significant main effect of 131 

inhibition (F(1,115)=21.73, p<0.001, ηp
2=0.16), with a higher accuracy for Go compared to 132 

No Go trials (Go trials: mean± SEM=98.47% ±0.31, No Go trials: mean ±SEM=70.34% 133 

±1.44, Cohen’s d=2.48). No sex-differences were found for accuracy or reaction times 134 

(ps>0.18).  135 

BOLD Activation (GLM) Analysis 136 

Examination of domain general inhibition (contrast: NoGo>Go) revealed a widespread 137 

fronto-parietal cortical and thalamo-striatal subcortical network including the IFG, striatal, 138 

pallidal and thalamic regions (Figure 1 and Table 1) during response inhibition. Group-level 139 

peaks in the rIFG, rCau, rGP and rThal were selected as centers of the ROIs for model testing 140 

(Figure 2a). No significant sex difference were observed in BOLD activation.  141 

 142 

Figure 1. Brain activation maps for general response inhibition on whole 143 

brain level (contrast: NoGo > Go; p < 0.05 FWE, peak level). FWE, family-144 

wise error; L, left; R, right.  145 

 146 

 147 
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Table 1. Activation and peak values for key regions included in the right model 148 

Regions Cluster K Coordinates t value 

  X Y Z  

rIFG  611 51 12 18 21.40 

rCau 144 15 -3 15 13.61 

rGP 63 21 3 9 12.43 

rThal 340 15 -6 12 14.30 

Note: These clusters survived from the overlay between image masks of corresponding 149 

regions defined by Human Brainnetome Atlas ([84]) and group level brain activation 150 

maps (peak level, pFWE < 0.05) and thus served as regions of interest combined with 151 

the individual peak location search on the individual level. FWE, family-wise error; 152 

Cau, caudate nucleus; GP, global pallidum; IFG, inferior frontal gyrus; r, right; Thal, 153 

thalamus. 154 

Causal Connectivity (DCM) Analysis 155 

For the A matrix, the diagonal cells represent self-connection which are unitless log scaling 156 

parameters and were multiplied with the default value of -0.5Hz (Zeidman et al., 2019a). 157 

Positive values indicate increased self-inhibition due to task condition and decreased 158 

responsivity to the inputs from the other regions of the network, while negative values 159 

indicate decreased self-inhibition and increased responsivity to the inputs from other nodes of 160 

the network (Zeidman et al., 2019a). Our findings revealed negative self-inhibition values for 161 

the rIFG, rCau and rThal but a positive value for the rGP (Figure 2b, 2f), indicating that the 162 

GP increased self-connection while the other nodes increased interaction with other nodes in 163 

the network.  164 
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 165 

Figure 2. Location of regions included in the right model and group-level 166 

connectivity parameters. (a) Location of regions included in the right model. 167 

The A matrix: intrinsic connectivity across all experimental conditions (b, f). 168 

The B matrix: modulatory effect on effective connectivity between regions 169 

and self-inhibitions from NoGo (c, g) and Go condition (d, h). The C matrix: 170 

Driving inputs in ROIs in the NoGo and Go condition (e, i). Values in 171 

matrices reflect the connectivity parameters. Parameters with stronger 172 

evidence (posterior probability > 95%) are presented and subthreshold 173 

parameters are marked with <n.s.=.  174 

For the off-diagonal cells in the A matrix, the values (in Hz) reflect the rate of change in 175 

the activity of the target region caused by the source region per second. Positive values reflect 176 
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excitatory effects while negative values indicate inhibitory effects. In the forward direction 177 

(e.g. rIFG-rThal-rGP-rCau-rIFG ), we found a significant negative connectivity from rIFG to 178 

rThal and positive connectivity from rThal to rGP as well as rCau to rIFG. In the backward 179 

direction (e.g. rIFG-rCau-rGP-rThal-rIFG), rIFG exhibited a negative inhibitory influence 180 

onto rCau, alongside an excitatory connection from rCau to rGP and rGP to rThal (Figure 2b, 181 

2f). Although the connectivity from rThal to rIFG was not significant, a weak evidence 182 

(posterior probability=57%) for this connection was observed with a more lenient threshold.    183 

Values in the B matrix represent the rate of change, in Hz, in the connectivity from 184 

source area to target area induced by the experimental conditions (Zeidman et al., 2019a). 185 

During inhibitory control (NoGo condition) the rIFG exerted a negative influence onto the 186 

rCau and rThal whereas the rGP exerted a negative influence on the rCau (Figure 2c, 2g). In 187 

addition, we found negative self-inhibition values in both rCau and rThal respectively. During 188 

the Go condition a negative influence of the rIFG on both rCau and rThal was observed 189 

(Figure 2d, 2h), while the positive influence was observed from the rGP to rCau and from 190 

rThal to rIFG. Moreover, we found a positive self-inhibition value in rIFG and a negative 191 

value in rCau. A Bayesian contrast (NoGo > Go) allowed us to compare the connectivity 192 

strength modulation during the different experimental conditions and revealed a very strong 193 

evidence (posterior probability >99%) that the causal influence of the rIFG to both, the rCau 194 

and rThal was stronger during inhibitory control (NoGo vs Go condition). This reflects that 195 

response inhibition critically requires a causal top-down cortical-subcortical regulation via the 196 

right IFG. We additionally found a very strong evidence (posterior probability >99%) for a 197 
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considerably stronger inhibitory connectivity from rGP to rCau in the NoGo compared to Go 198 

condition. 199 

The C matrix represents the rate of change in neural response of one brain region due to 200 

the driving input from an experimental condition (Zeidman et al., 2019a). During inhibitory 201 

control (NoGo) all regions (rIFG, rCau, rGP and rThal) exhibited excitatory driving input 202 

while during the Go condition only the rIFG exhibited excitatory input (Figure 2e, 2i). 203 

Bayesian contrasts directly comparing the conditions (NoGo > Go) demonstrated an 204 

increasing driving input specifically in the rIFG during engagement of cognitive control 205 

(NoGo > Go condition) with a 100% posterior probability.  206 

Sex Differences in Connectivity Parameters 207 

Examining sex effects on intrinsic connectivity showed a negative influence from rThal to 208 

rGP in female compared to male subjects across all experimental conditions (Figure 3a). For 209 

the modulatory effects on connectivity, we found a greater self-inhibition in rThal in female 210 

than male subjects in the NoGo condition (Figure 3b). This suggests that for female subjects, 211 

rThal exhibits reduced sensitivity to inputs from the other regions of the selected network 212 

during response inhibition.  213 

 214 

Figure 3. Sex effect on connectivity parameters in terms of A matrix and B 215 
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matrix. (a) For intrinsic connectivity in A matrix, female subjects showed a 216 

more negative influence from rThal to rGP compared to male subjects. (b) In 217 

the NoGo condition, there is a greater self-inhibition in rThal in female than 218 

male subjects in terms of B matrix. Parameters with stronger evidence 219 

(posterior probability > 95%) are presented. 220 

Brain Behavior Associations: Inhibitory Behavioral Performance and Connectivity 221 

Parameters  222 

Examining associations between inhibitory performance on the behavioral level (NoGo 223 

performance) and connectivity parameters revealed very strong evidence (posterior 224 

probability > 99%) that NoGo accuracy was positively associated with the directed 225 

connectivity from rThal to rIFG.  226 

DCM Analyses in the Left Hemisphere 227 

To further validate the hemispheric asymmetry of the inhibitory control network, an identical 228 

model for the left hemisphere including lIFG, lCau, lGP and lThal was tested. In contrast to 229 

the right model, no directed influences from IFG to subcortical regions were observed in 230 

terms of matrix A in the left model, and the hemispheric models different in terms of 231 

inhibition induced connectivity changes and differed in terms of the driving inputs. The 232 

different causal structure in the left and right model indicated a hemispheric asymmetry in the 233 

inhibition network (details see Supplementary Materials Figure S3). Additional Bayesian 234 

analyses confirmed the lack of a robust cortical-subcortical pathway in the left hemisphere 235 

(Supplementary Material). 236 
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 237 

Discussion 238 

We capitalized on a combination of recent progress in biologically plausible causal 239 

hierarchical modelling (DCM-PEB) and a comparably large fMRI response inhibition dataset 240 

to determine causal information flow and key nodes within the extensively described basal 241 

ganglia-thalamocortical response inhibition circuits (Alexander et al., 1986, 1991; Alexander 242 

and Crutcher, 1990; Aron et al., 2007; Jahfari et al., 2019; Morein-Zamir and Robbins, 2015; 243 

Pfeifer et al., 2022; Schall and Godlove, 2012; Stuphorn, 2015; Verbruggen and Logan, 2009; 244 

Wei and Wang, 2016). Our neurocomputational model successfully validated a right-245 

lateralized inhibitory control causal circuit and the best model showed significant intrinsic 246 

connectivity within this functional loop and captured an increasing causal influence of the 247 

cortical rIFG node on both the rCau and rThal as well as from the rGP to the rCau during 248 

inhibition. Direct comparison between different experimental conditions (e.g. NoGo and Go) 249 

revealed enhanced input into rIFG in terms of matrix C and increased connectivity from rIFG 250 

to rCau and rThal in the NoGo compared to the Go condition in terms of matrix B, suggesting 251 

a higher engagement of causal top-down cortical-to-subcortical control via the rIFG during 252 

inhibitory control. Although no sex differences were observed in inhibitory performance or 253 

BOLD activation, females exhibited decreased intrinsic connectivity from rThal to rGP and 254 

increased self-inhibition in rThal during the NoGo condition as compared to males. This 255 

indicates that similar behavioral performance in response inhibition might be mediated by 256 

different brain processes in men and women, particularly in thalamic loops. Moreover, a 257 
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higher NoGo response accuracy was associated with stronger causal information flow from 258 

the rThal to rIFG in the NoGo condition, suggesting a particular behavioral inhibitory 259 

relevance of this pathway. Finally, our findings showed different left and right model 260 

structures, suggesting a hemispheric asymmetry in the inhibitory control network and 261 

confirming a critical role of the rIFG in implementing response inhibition. Together these 262 

findings identified a pivotal role of the rIFG and its effective connectivity with the rCau/rThal 263 

within the basal ganglia-thalamocortical circuit during response inhibition.  264 

 Causal modelling successfully determined a right lateralized inhibitory control causal 265 

circuit encompassing the rIFG, rCau, rGP and rThal (Aron et al., 2003; Chevrier et al., 2007; 266 

Hung et al., 2018; Jahfari et al., 2011; Thompson et al., 2021). In terms of the A matrix, a 267 

significant rIFG-rCau-rGP-rThal loop was observed with rIFG exhibiting a negative influence 268 

onto rThal, alongside a positive information flow from from rThal to rGP and rCau to rIFG in 269 

the forward direction. In the backward direction, we found significant negative connectivity 270 

from rIFG to rCau and positive connectivity from rCau to rGP as well as rGP to rThal. A 271 

more lenient threshold additionally revealed rThal to rIFG connections (posterior probability 272 

= 57%). Importantly, accounting for behavioral task context revealed a significant positive 273 

modulatory effect on rIFG in both NoGo and Go condition in terms of matrix C which was 274 

considerably stronger during response inhibition. The direct driving inputs into the rIFG are 275 

in line with its role in top-down target detection and attentional control in the context of 276 

response inhibition (Hampshire et al., 2010; Krämer et al., 2013) and indicate that the rIFG 277 

represents the key regulator of other nodes. In line with this hypothesis the best model in 278 
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terms of matrix B revealed strong evidence for causal effective connectivity from the rIFG to 279 

both rCau and rThal during response inhibition (posterior probability >95%). This inhibitory 280 

pathway is consistent with previous reports on negative coupling between the rIFG and 281 

striatal regions during behavior control (Behan et al., 2015; Diekhof and Gruber, 2010). 282 

Notably, direct comparison using Bayesian contrast revealed a very strong evidence (posterior 283 

probability >99%) for increased modulatory connectivity from rIFG to rCau and rThal in the 284 

NoGo condition compared to the Go condition, suggesting the rIFG driven engagement of 285 

cortical-to-subcortical top-down control during response inhibition. Previous animal models 286 

and human neuroimaging meta-analyses have consistently identified the rIFG, as a key region 287 

implicated in dopaminergic and noradrenergic modulated inhibitory regulation (Bari et al., 288 

2011; Hauber, 2010; Ott and Nieder, 2019; Pfeifer et al., 2022; Terra et al., 2020; 289 

Vijayraghavan et al., 2016; Zhukovsky et al., 2021) in particular during motor control and 290 

inhibition (Aron et al., 2003; Chamberlain and Sahakian, 2007; Puiu et al., 2020; Xu et al., 291 

2016), while both, fronto-striatal and fronto-thalamic projections have been extensively 292 

involved in response inhibition (Ahissar and Oram, 2015; Bosch-Bouju et al., 2013; 293 

Marzinzik et al., 2008; Phillips et al., 2021; Schmitt et al., 2017; Sommer, 2003; Tanaka and 294 

Kunimatsu, 2011). 295 

 In addition to the cortical-subcortical pathways significant excitatory connectivity was 296 

observed from the rGP to rCau during the Go condition and switched to inhibitory 297 

connectivity when response inhibition was required during the NoGo condition. Direct 298 

comparison confirmed a considerably stronger inhibitory influence of the rGP on the rCau 299 
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during response inhibition (posterior probability >99%), suggesting that communication 300 

between basal ganglia nodes is crucial for context-appropriate behavioral response control. 301 

The involvement of this pathway is in line with extensive neurophysiological evidence 302 

showing that GABA inhibitory projections from the external segment of the GP to the 303 

striatum play an essential role in cancelling a planned response when it is inappropriate 304 

(Mallet et al., 2016; Wei and Wang, 2016) (but see also subthalamic nucleus to substantia 305 

nigra pars reticulata pathways in Hikosaka et al., 2006; Mallet et al., 2016).  306 

With respect to sex differences we observed that females exhibited decreased intrinsic 307 

connectivity from rThal to rGP and increased modulation by NoGo condition on self-308 

inhibition in rThal compared to male subjects in the absence of performance differences. 309 

While previous findings on sex differences in response inhibition remained inconsistent 310 

(Chung et al., 2020; Gaillard et al., 2020; Gaillard et al., 2021; Li et al., 2006; Ribeiro et al., 311 

2021; Sjoberg and Cole, 2018) the present findings suggest that our model was sensitive to 312 

biological variables and that separable information processes may underly response inhibition 313 

in men and women (see also Chung et al., 2020; Li et al., 2006). The functional relevance of 314 

the identified pathways was further underscored by a significant association between response 315 

inhibition performance and the causal influence from the rThal to rIFG in the NoGo condition 316 

demonstrating that this pathway involved in motor inhibition critically mediates behavioral 317 

success during inhibition (Wei and Wang, 2016).  318 

Finally, our modelling tests confirmed a hemispheric asymmetry and support the critical 319 

role of right IFG circuit in response inhibition (Hung et al., 2018; Jahfari et al., 2011; Maizey 320 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.05.26.493546doi: bioRxiv preprint 

https://www.sciencedirect.com/topics/neuroscience/subthalamic-nucleus
https://www.sciencedirect.com/topics/neuroscience/substantia-nigra
https://www.sciencedirect.com/topics/neuroscience/substantia-nigra
https://www.sciencedirect.com/topics/neuroscience/pars-reticulata
https://doi.org/10.1101/2022.05.26.493546
http://creativecommons.org/licenses/by-nc/4.0/


17 

 

et al., 2020). The different causal structures suggest a strong cortical-subcortical intrinsic 321 

connectivity and rIFG control on the right side. The left model revealed a different causal 322 

structure and null hypothesis tests showed moderate evidence for the difference between 323 

NoGo and Go condition’s modulatory effects on effective connectivity from lIFG to lCau and 324 

to rThal (e.g. lIFG to lCau: Bayes factor = 5.47; lIFG to lThal: Bayes factor = 8.20).  325 

Response inhibition impairments have been observed in several disorders and 326 

identification of the rIFG as critical input and top-down regulator for response inhibition 327 

opens new targets for regional or connectivity-based neuromodulation such as real-time 328 

neurofeedback which has been established for these regions (Li et al., 2019; Weiss et al., 329 

2022; Zhao et al., 2019). For instance, rIFG and response inhibition deficits have been 330 

determined in ADHD (Clark et al., 2007; Morein‐Zamir et al., 2014) and targeting the rIFG in 331 

ADHD may be a promising treatment. 332 

 There are several limitations in the current study. First, in line with our main aim we did 333 

not account for emotional valence in the DCM model which may affect response 334 

inhibition(Schimmack and Derryberry, 2005). Second, we focused on specific nodes that 335 

were based on established basal ganglia-thalamocortical circuits proposed by Alexander 336 

(Alexander et al., 1986, 1991; Alexander and Crutcher, 1990) (see also neuroimaging meta-337 

analysis (Hung et al., 2018). Other regions such as the STN (Aron et al., 2016; Aron and 338 

Poldrack, 2006; Chen et al., 2020) could be integrated in future studies.  339 

 In conclusion, our findings demonstrated a critical role of the rIFG as well as top-down 340 

cortical-subcortical control from the rIFG to rCau and rThal in response inhibition. The nodes 341 
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and pathways of the model were sensitive to biological and performance variations. The 342 

nodes and pathways may represent promising targets to improve response inhibition in mental 343 

disorders.  344 

 345 

Materials and Methods 346 

Participants  347 

N=250 healthy right-handed participants were enrolled in the current study and underwent a 348 

validated Go/NoGo fMRI paradigm. The data has been previously used to examine undirected 349 

functional connectivity within domain-general and emotion-specific inhibitory brain systems 350 

(Zhuang et al., 2021) and was part of larger neuroimaging project examining pain empathy 351 

(Li et al., 2018; Zhou et al., 2020), emotional face memory (Liu et al., 2022) and mirror 352 

neuron processing (Xu et al., 2022). After quality assessment n=218 subjects were included 353 

(104 males, Supplementary Materials). The study was approved by the local ethics 354 

committee and in accordance with the latest version of the Declaration of Helsinki.  355 

Response Inhibition Paradigm 356 

A validated mixed event-related block design linguistic emotional Go/NoGo fMRI paradigm 357 

was employed (Goldstein et al., 2007; Protopopescu et al., 2005, details see Zhuang et al., 358 

2021). Participants were required to make responses as accurately and quickly as possible 359 

based on orthographical cues, i.e. words were presented in normal or italic font. For normal 360 

font words subjects were instructed to perform a button-press (Go trials), while inhibiting 361 

their response to words presented in italic font (NoGo trials). Positive, negative and neutral 362 
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words were included, however, given that the present study aimed to examine the causal 363 

influence within the general inhibition network and to increase statistical power in this respect 364 

the different emotional contexts were not further accounted for in the DCM analysis. Stimuli 365 

were presented in 2 runs and each run included 12 blocks (6 blocks: Go; 6 blocks: NoGo). 366 

Each Go block encompassed 18 normal font words (100% Go trials) while each NoGo block 367 

encompassed 12 normal font words (66.7% Go trials) and 6 italicized font words (33.3% 368 

NoGo trials). Further details in (Zhuang et al., 2021) and Supplementary Materials.  369 

Behavioral Data Analysis 370 

In our previous study we demonstrated that subjects exhibited more errors during inhibitory 371 

control (i.e., NoGo>Go) as well as faster responses in positive Go contexts and lower 372 

accuracy in positive NoGo contexts (Zhuang et al., 2021). Given that sex-differences were 373 

examined in the DCM model the present analyses additionally examined sex-differences on 374 

accuracy and reaction times (Supplementary Materials). Given age-related effects on 375 

inhibition (Rey-Mermet et al., 2018; Rubia et al., 2007) age was included as covariate.  376 

MRI Data Acquisition and Preprocessing  377 

MRI data were collected on a 3T MRI system using standard sequences and were initially 378 

preprocessed using validated protocols in SPM 12 (details see Supplementary Materials)  379 

GLM Analysis 380 

An event-related general linear model (GLM) was established in SPM12. To examine domain 381 

general inhibitory control (irrespective of emotional context) the overarching inhibitory 382 

control contrast was modelled (e.g. all NoGo>all Go trials) and convolved with the canonical 383 
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hemodynamic response function (HRF). Six head motion parameters were included in the 384 

design matrix to control movement-related artifacts and a high-pass filter (1/128Hz) was 385 

applied to remove low frequency components. The contrast of interest (contrast: NoGo>Go) 386 

was created and subjected to one-sample t-test at the second level. In line with previous 387 

studies (Aron et al., 2003; Chevrier et al., 2007; Hung et al., 2018; Jahfari et al., 2011; 388 

Thompson et al., 2021), group-level (contrast: NoGo>Go) peaks in the IFG, Cau, GP and Thal 389 

within the identified general inhibition network were then used to define individual-specific 390 

regions of interest (ROIs) for the DCM analysis. Additionally, a two-sample t-test was 391 

conducted (contrast: NoGo>Go) to examine sex-dependent effects on the response inhibition 392 

network. Analyses were corrected for multiple comparisons using a conservative peak-level 393 

threshold on the whole brain level (p<0.05 family-wise error, FWE). 394 

Dynamic Causal Modeling and Node Definition  395 

A DCM analysis was employed to determine directed causal influences according to the 396 

circuitry model proposed by Alexander et al. (Alexander et al., 1986, 1991; Alexander and 397 

Crutcher, 1990). The DCM approach allows to construct a realistic neuronal model of 398 

interacting regions and to predict the underlying neuronal activity from the measured 399 

hemodynamic response (Friston et al., 2003; Stephan et al., 2007). To this end directed causal 400 

influences between the key regions including IFG, Cau, GP and Thal in the basal ganglia-401 

thalamocortical loop and their modulation via experimental manipulations (engagement of 402 

motor inhibitory control) were examined. In line with previous neuroimaging studies and 403 

meta-analyses demonstrating a right-lateralized inhibition model (right model) encompassing 404 
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the rIFG, rCau, rGP, rThal (Aron et al., 2003; Chevrier et al., 2007; Hung et al., 2018; Jahfari 405 

et al., 2011; Thompson et al., 2021) our main hypothesis testing focused on the right 406 

lateralized network. To further validate the hemispheric asymmetry of the inhibitory control 407 

network an identical model was tested for the left hemisphere including the lIFG, lCau, lGP, 408 

and lThal. In line with previous studies, we combined atlas-based masks (Human 409 

Brainnetome Atlas, Fan et al., 2016) with group-level and individual level activity maps to 410 

generate the corresponding nodes (Fernández-Espejo et al., 2015; Holmes et al., 2021; Qiao et 411 

al., 2020; Van Overwalle et al., 2020).  412 

Model Specification and Estimation   413 

A two-step DCM analysis was performed using the DCM-parametric empirical Bayes (PEB) 414 

approach (Zeidman et al., 2019a; Zeidman et al., 2019b). On the first-level, time-series from 415 

four ROIs (rIFG, rCau, rGP, rThal) were extracted. A full DCM model was specified for each 416 

subject and all connectivity parameters in both forward (e.g. rIFG-rThal-rGP-rCau-rIFG ) 417 

and backward (e.g. rIFG-rCau-rGP-rThal-rIFG) directions were estimated. We estimated 418 

three key DCM parameters: (1) the A matrix reflecting all connections including forward and 419 

backward connectivity between ROIs and self-inhibitions in each ROI, (2) the B matrix 420 

representing modulatory effects of Go and NoGo condition on all connections, (3) the C 421 

matrix representing the driving inputs into ROIs from Go and NoGo conditions separately. 422 

Given that all inputs in the model were mean-centered, intrinsic connectivity in the A matrix 423 

indicates mean effective connectivity independent of all experimental conditions. The model 424 

was estimated using Variational Laplace (Friston et al., 2007). Further details Supplementary 425 
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Material. At the second (group) level, we constructed a PEB model over the first-level 426 

estimated parameters. In accordance with previous studies (Bencivenga et al., 2021; 427 

Rupprechter et al., 2020), we evaluated the explained variance by the model on the individual 428 

level - higher values reflect better model inversion (Zeidman et al., 2019a) – and then we only 429 

included subjects with >10% of explained variance in the PEB model. A total of 118 subjects 430 

(56 males, age: mean ± SEM = 21.57 ± 0.21 years) were included for further analyses. The 431 

differences on behavioral performance were examined between the excluded and included 432 

subjects and no significant differences were found (all ps≥0.23, for details see 433 

Supplementary Material), suggesting no evidence of biased selection.  434 

The primary aim of the present study was to establish a causal neurobiological model for 435 

response inhibition and to determine the interaction between key players in this circuitry. To 436 

evaluate the model three PEB analyses were carried out separately for A, B and C matrices. 437 

Separate analyses examined sex and performance variations (details see Supplementary 438 

Material).  439 

Next, to identify the model that best represented our data, Bayesian Model Reduction 440 

(BMR) was performed to compare the free energy of the full model with numerous reduced 441 

models for which specific parameters were <switched off= (Friston et al., 2016). An automatic 442 

greedy search procedure (iterative procedure) was employed to facilitate an efficient 443 

comparison of thousands of models. In this procedure parameters which do not contribute to 444 

free energy were pruned away. Next, Bayesian Model Average (BMA), performing a 445 

weighted average of the parameters of each model, was calculated over the 256 models 446 
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obtained from the final iteration (Friston et al., 2016).  447 

Finally, to compare the effective connection strength, especially the cortical-subcortical 448 

connectivity and driving inputs into each region from different experimental conditions 449 

(NoGo and Go condition), Bayesian contrasts (Dijkstra et al., 2017) were computed over 450 

parameters from the B and C matrices. Group-level estimated parameters were thresholded at 451 

posterior probability > 95% (indicating strong evidence, Kass and Raftery, 1995) based on 452 

free energy.  453 
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