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ABSTRACT

Background: Reliable detection and accurate genotyping of structural variants (SVs) and
insertion/deletions (indels) from whole-genome sequence (WGS) data is a significant challenge. We
present a protocol for variant calling, quality control, call merging, sensitivity analysis, in silico genotyping,
and laboratory validation protocols for generating a high-quality deletion call set from whole genome
sequences as part of the Alzheimer’'s Disease Sequencing Project (ADSP). This dataset contains 578
individuals from 111 families.

Methods: We applied two complementary pipelines (Scalpel and Parliament) for SV/indel calling, break-
point refinement, genotyping, and local reassembly to produce a high-quality annotated call set. Sensitivity
was measured in sample replicates (N=9) for all callers using in silico variant spike-in for a wide range of
event sizes. We focused on deletions because these events were more reliably called. To evaluate caller
specificity, we developed a novel metric called the D-score that leverages deletion sharing frequencies
within and outside of families to rank recurring deletions. Assessment of overall quality across size bins
was measured with the kinship coefficient. Individual callers were evaluated for computational cost,
performance, sensitivity, and specificity. Quality of calls were evaluated by Sanger sequencing of predicted
loss-of-function (LOF) variants, variants near AD candidate genes, and randomly selected genome-wide
deletions ranging from 2 to 17,000 bp.

Results: We generated a high-quality deletion call set across a wide range of event sizes consisting of
152,301 deletions with an average of 263 per genome. A total of 114 of 146 predicted deletions (78.1%)
were validated by Sanger sequencing. Scalpel was more accurate in calling deletions <100 bp, whereas for
Parliament, sensitivity was improved for deletions > 900 bp. We validated 83.0% (88/106) and 72.5%
(37/51) of calls made by Scalpel and Parliament, respectively. Eleven deletions called by both Parliament
and Scalpel in the 101-900 bin were tested and all were confirmed by Sanger sequencing.

Conclusions: We developed a flexible protocol to assess the quality of deletion detection across a wide
range of sizes. We also generated a truth set of Sanger sequencing validated deletions with precise

breakpoints covering a wide spectrum of sizes between 1 and 17,000 bp.
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INTRODUCTION

Human genetic variation includes single nucleotide variants (SNVs), small insertions and
deletions (indels) less than 150 bp, and structural variants (SVs) greater than 150 bp. SVs
can result from deletions, insertions, and rearrangements that include balanced inversions
and translocations or unbalanced repeats, insertions and deletions resulting in copy number
variation (CNV) (1-3). SV/indels arise as both single and complex events via germline and
somatic mutations (4) and contribute significantly to genetic diversity and to disease
susceptibility (5-11).

A variety of SV/indel types and sizes can be detected using high-throughput short-read
whole-genome sequencing (WGS). Multiple large-scale SV detection studies have been

performed such as the 1000 Genomes Project (12), the Cancer Genome Atlas project

(13,14), Genome of the Netherlands (15), the UK 10K project (16), gnomAD (17) and

CCDG(18). However, SV/indel calling using short-read sequence data continues to be
challenging. Multiple algorithms and programs (e.g., Breakdancer, CNVnator, DELLY,
Genome Analysis Toolkit (GATK: 3.2) Haplotype Caller, Lumpy, Pindel, Scalpel, and SWAN)
(19-26) are available, but many factors continue to hinder accurate and comprehensive
identification of SV/indels in sequence data. These confounding factors include complex
sequence structure, variability in read depth and coverage across the genome, sequencing
bias and artifacts, biological contamination, and mapping and alignment errors or artifacts.
Also, computational demands can limit the use of some SV/indel calling programs.
Furthermore, SV/indel calling in large samples lacks standards for calling procedures, call-
set merging, and quality control (QC). These challenges become even more daunting when
merging SV/indel calls from samples sequenced at multiple centers that use different
sequencing library designs and protocols. The quality and characteristics of sequence data
may vary considerably among samples within and across centers and can affect SV/indel

calling sensitivity and specificity (27). We present results from analyses of WGS data
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generated by the Alzheimer’'s Disease Sequencing Project (ADSP) for 578 members of 111
families. We focused on deletions because for the programs we examined, deletions were
more reliably called than other SV types. Our work showed that no single caller can
accurately detect a broad range of deletion sizes. We developed two systematic approaches
for evaluating the sensitivity and specificity of different callers and deletions identified from
data generated by different platforms and sequencing centers. Finally, we validated a
comprehensive strategy for calling, merging, QC, and genotyping deletions that has high

sensitivity and minimizes false positive calls.

METHODS
Subjects and generation of WGS data.

WGS data were obtained from the ADSP, a collaboration between the National Institute
on Aging (NIA), National Human Genome Research Institute (NHGRI), and the Alzheimer’s
disease research community (28). Details of subject selection and WGS data generation and
processing are described elsewhere (28,29). In brief, the sample included 498 AD cases and
84 cognitively normal elderly controls from 44 non-Hispanic Caucasian and 67 Caribbean
Hispanic families. All studies involved were approved by their respective University
Institutional Review Boards (IRBs) and the overall study was approved by the University of
Pennsylvania IRB. WGS data were generated using lllumina’s 2500 HiSeq platform by the
NHGRI’s large-scale sequence and analysis centers (LSACs) at the Baylor College of
Medicine (BCM), the Broad Institute (BI), and the McDonnell Genome Institute at
Washington University (WashU). BCM provided 166 samples with a mean template size of
370 bp (SD=12.4 bp). For the BI, 232 samples were sequenced with a mean template size
of 335 bp (SD=1.4 bp). WU provided 186 samples with three library preparations targeted at
insert sizes of 200, 400, and 550 bp. These three library sizes were chosen to increase SV
calling accuracy by incorporating longer reads; however, there was considerable size

heterogeneity in the 550 bp read group. Three samples from one family were sequenced at
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all three LSACs as triplicates for evaluating and adjusting for center-specific sequencing

effects.

Deletion Variant Calling Protocol

Two complementary pipelines for deletion calling, merging, genotyping, and reassembly
were implemented (Figure 1). In one approach, each genome was divided into 75 regions
excluding telomeres and centromeres and called in parallel using Scalpel (26) to reduce
processing time across the entire genome. Scalpel reassembles gapped alignments using
the de Bruijn graph method to increase calling specificity in regions characterized by
complex repeat structures. Scalpel was also used to generate precise breakpoints via local
assembly within a 1,000 bp capture window for the whole genome. GenomeSTRIP (30) was
used to perform joint-genotyping to provide missing genotype information and further refine
calls. The second deletion calling pipeline was based on Parliament (31), which creates a
unified project-level variant call file (pVCF) by combining and filtering calls based on
consensus and quality metrics from eight indel/SV callers including Scalpel (Table 1).
Parliament also provided gene annotation, genotyping, and local hybrid assembly. Because
Parliament is computationally intensive, we limited the analysis to deletions > 200 bp. The

functional annotation of each variant was determined using SNPeff (32).

Sensitivity Analysis Using Simulated Spike-in Data

We estimated sensitivity by “spiking-in” SV/indels using BAMSurgeon (33) into
triplicated samples (three samples sequenced at all three LSACs). First, we generated a list
of predefined SV/indels, including 4,040 deletions and insertions and 1,560 inversions and
tandem duplications, totaling 11,200 events. SV/indels ranged in size from 2 to 5,000 bp and
were spiked into all autosomes for the three sample replicates (nine files total). Half of the
events were inserted as heterozygotes and half as homozygotes. BAMSurgeon failed to add
in a small fraction (2.92%) of the attempted events, and those sites were excluded from

sensitivity analysis. For sites where BAMSurgeon succeeded, there were minor


https://doi.org/10.1101/2022.05.19.492472
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.19.492472; this version posted May 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

discrepancies in the exact breakpoints of the actual spike-in as compared to its targeted
location. These minor breakpoint discrepancies did not affect the results because we applied
a 50% reciprocal overlap for detecting spiked-in events. Finally, SV/indels were called for the
nine spiked-in samples to measure the sensitivity of each caller across the full range of
sizes. Since the true events were known or spiked-in, the sensitivity (Eq. 1) of each SV/indel

caller was estimated as:

# of Detected Events
# of True Events

Sensitivity =
(Eq. 1)

D-score: A metric for evaluating SV/indel caller specificity in family studies
To ascertain the specificity of deletion calls, we developed the following family-based

metric called the deletion or D-score:

Pys> (V)W) log PBin(N5>NsO(V)‘AO(V))
P(s<s(VIBV))  PBin(Ns<Ns(V)a (V)

S o 05"
S r-a) 0.2

So(V) is the observed sibling sharing frequency for a variant (V) and £(V) = [ f11 foi]'is the

D(V) =log

=log

caller sensitivity vector of detecting homozygous and heterozygous variants of the same
type and size as V. Caller sensitivity vectors, £(V), were calculated from the spike-in study
results for each caller. s represents the sharing frequency across all unrelated subjects. Py
and P; represent the probability of observing the null and alternative hypothesis,
respectively. D(V) represents the log likelihood ratio that compares the probability of
observing fo(V) under the assumptions that Ho: V is false or Hi: V' is true. For example, when
s (unrelated sharing frequency) is greater than s,(V) (sharing frequency among siblings) the

null hypothesis is more likely to be supported.
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The allele frequency was computed for V in siblings (f;) and in all samples (fy) based

on the estimated caller sensitivity for each variant by the following

P =—Po1= \//3012 + (ﬁ1 1- 2/501) f, (Eq.3)

Only one of the roots of p; will satisfy the requirement 0<p;<1 and was used to calculate the

mean expected sibling sharing for the two hypotheses using the following equation:

x=|[p° Ap)a-p)] /;1;

(Eq. 4)

The theoretical range of the D-score in this dataset was between -40 and 40. The D-score
metric does not require deletion genotype information and therefore can be used to evaluate
caller specificity in the absence of genotyped calls, as is the case with many SV/indel

callers.

Kinship coefficient.

To assess overall call set quality, a kinship coefficient was calculated using KING (34) for
all sibling pairs with genotype information. Because a kinship coefficient of 0.25 is expected
for the pooled set of heterozygous joint-genotyped calls, departure from this value indicates
systematic errors in SV/indel calling. Because multigenerational data are usually not
available in family studies of AD, the kinship coefficient has greater utility than a check for
mendelian inconsistencies and is useful for measuring the overall quality of the genotypes.
This metric is analogous to the Ts/Tv ratio for SNVs which has an expected value of 2.15 for

high quality SNV data sets.

Quality control.
Many false positives are the result of poor mapping quality between two or more sites
and are characterized by excess heterozygosity. Therefore, a Hardy-Weinberg equilibrium p-

value threshold of 5x10-% was applied to filter calls with excess heterozygosity. The BLAST-
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like Alignment Tool (BLAT) (35) was used to filter deletions with a low predicted mapping
quality or that map to many sites (N>100) in the genome. Finally, deletions with an alternate
allele count of less than five were removed from the final call set. Parliament’s consensus
and QC strategy proved to be useful in improving call quality by combining call set metrics

and applying heuristics to reduce false positives.

Computational performance of SV/indel callers.

Computational performance benchmarks were obtained for the eight SV/indel programs
based on analysis of 20 randomly selected subjects. Performance benchmarks were derived
using automated scripts and include total run time, peak central processing unit (CPU)
usage, peak memory usage, and processing core hours. All data were processed using an ©
Amazon’s Elastic Cloud 2 (EC2) extra-large instance with © Intel © Xeon 2.4 GHz CPUs.
Scalpel benchmarking results were excluded from this analysis due to its extreme

computational demands for processing WGS data.

Laboratory validation of deletion calls.

Subsets of Scalpel and Parliament-derived deletions of different sizes were selected for
validation based on three methods: randomly selected events within specified size bins,
predicted LOF, and proximity to 74 candidate AD loci with strong genome-wide association
signals. These candidate AD loci were curated from GWAS, candidate gene studies, and
multiple family-based studies (36-66). Validation was performed by polymerase chain
reaction (PCR) across the deletion with custom designed primers followed by Sanger
sequencing. For the Scalpel-derived deletions, the variants were binned by base pair length
(2-19 bp, 20-40 bp, 41-60 bp, 61-80 bp, 81-100 bp, and 101-900 bp). The size ranges
examined for the Parliament-derived deletions were 101-900 bp, 901-1,000 bp, and 1,001-
17,000 bp. The BLAST-like alignment tool (BLAT) from University of California, Santa-Cruz
(UCSC) Genome Browser (35) was used to search and align variant sequences and
surrounding sequences to the human genome. Because BLAT has a minimum requirement

of 20 bp, sequences smaller than 20 bp were queried by adding flanking sequences
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upstream and downstream of the test sequence to bring the length up to 20 bp. Both UCSC
HG19 and HG38 reference genomes were queried using BLAT. Additionally, for each
deletion, 100 bp sequences flanking either side of the event were also queried against BLAT
as a contiguous 200 bp sequence (i.e., variant deletion sequence removed). BLAT
alignment allowed visualization of the deletion and surrounding sequence in terms of
proximity to genes and repeat sequence and facilitated the identification of instances of clear
mis-mapping. Sequence surrounding the variants was extracted from HG38 and used for
primer design. For variants where a PCR product of <1,200 bp was expected (including the
variant sequence), primers were designed outside of the breakpoints to amplify across the
deletion sequence. For deletions where the reference allele was too large to be amplified by
a 1,200 bp PCR product, a double PCR approach was used. For the first PCR, one primer
was designed within the putative deletion sequence while the other primer was placed
external to the deletion breakpoint. Samples containing the reference allele and not
containing a deletion would give a product with this PCR. For the second PCR, both primers
flanked the putative deletion. Only samples, which contained the deletion, would yield a
product for this PCR. Samples from three individuals reported as heterozygous or
homozygous deletions were used for sequence validation as well as one control (or

reference) sample. When possible, samples from multiple families were used for validation.

RESULTS

We generated deletion calls for the ADSP Discovery Phase WGS using 8 different
programs (GATK haplotype caller, Scalpel, Breakdancer, CNVnator, Lumpy, Pindel, Swan,
and DELLY)(Figure. 1). These programs use different sequence features and analyze
different event sizes (Tables 1 and 2). To determine the properties of the data generated by
each program, we systematically evaluated sensitivity and specificity. Because the
sequence data was generated at three different LSAC sites using libraries with different
characteristics, we evaluated data from each site. We also benchmarked the computational

resources needed for each program.
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Sensitivity Analysis. Sensitivity was evaluated by inserting deletions and insertions into
WGS data generated at each LSAC. Sensitivity for detecting the inserted deletions varied
among callers and, to a lesser extent, the source of the sequence data, and was dependent
on the size of the deletion (Figure 2). For short deletions (30-500 bp), Scalpel showed the
best sensitivity (~85%) and was closely followed by Pindel. Pindel showed good sensitivity
up to 1000 bp. GATK-haplotype caller showed a sensitivity of ~75% for events up to 100 bp
but fell off rapidly above this size range. For larger events, Lumpy and SWAN both showed
good performance up to 5,000 bp with SWAN able to detect even larger events. DELLY
showed reasonable sensitivity in the 500 to 5,000 bp range but when compared to other
programs, results were more influenced by the source of the data. For example, DELLY had
lower sensitivity when calling genomes sequenced by BCM in the 200-500 bp bin as
compared to those from WashU and Bl. SWAN was the most sensitive caller across all sizes
and sequencing centers, perhaps because it accounts for various sequencing characteristics
such as multiple insert-size libraries and soft-clipped reads (24,67). CNVnator and
Breakdancer showed poor sensitivity for all size ranges. Our results show that sensitivity
varies among callers and for different size ranges but is relatively insensitive to the

sequencing site.

Specificity analysis. We assessed caller specificity using the D-score method.
LUMPY was the best performing program with D-scores between 5 and 10 for deletions from
30 to 10,000 bp (Figure 3). The results were independent of the sequencing center. Scalpel
also yielded highly specific calls, particularly in the 200 to 1,000 bp range with D-scores
ranging from 5-8. Median D-scores for deletion calls from SWAN, Pindel and Breakdancer
were between 3 and 5, but the results were dependent on the sequencing center. Other
programs yielded calls with lower specificity that were greatly influenced by sequence
source. We also applied the kinship coefficient to evaluate and calibrate the quality of
deletion calls and measure the impact of QC steps on call specificity (Figure 4). Prior to data

cleaning, the kinship coefficient was much greater than the expected value of 0.25 for

10
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siblings for events ranging from 21-350 bp. After removing deletions showing excess
heterozygosity, the kinship coefficient of the Scalpel genotypes approached 0.25 for all
deletion sizes (Figure 4a). Comparison of kinship coefficient metrics also showed that the
quality of GATK Haplotype calls decreased as the deletion size increased and the coefficient
was 0 at >50 bp. In contrast, a kinship coefficient of 0.25 was maintained for Scalpel calls for
deletion sizes between 20 bp and 400 bp, showing that the Scalpel calls are more reliable in
this size range. This work shows that the specificity of calls from different programs varies
depending on the size of the event detected and can be influenced by the source of the

sequence data.

Assessment of SV/indel caller computational requirements. We measured
computational performance metrics for seven of the eight callers used in this study (Figure 5,
Supplementary. Table 1). Scalpel was excluded from performance benchmarking due to its
extreme CPU demands and total runtime. To generate these benchmark metrics, we
processed 10 BAM files (mean size of 209.05 MB) from the ADSP’s discovery (disc) phase
and 10 BAM files (mean size of 54.58 MB) from the discovery extension (disc+ext) phase.
Among the tested callers, SWAN had the highest memory demands and required more than
10-times greater run time compared to other programs. Breakdancer was the second
longest running SV caller evaluated. DELLY, Lumpy, GATK, and SWAN all had similar CPU
demands. While Scalpel and SWAN ranked high in terms of sensitivity and specific, the run

time computational requirements preclude the use of these programs on large datasets.

Generating an ADSP deletion call set. All 584 samples were called in parallel via two
independent production pipelines, Scalpel+GenomeSTRIP and the Parliament toolkit (Figure
1). Given that the sensitivity and quality for the GATK haplotype caller dropped off
significantly with deletions of size greater than 20 bp, the pipelines focused on deletions
greater than that size range. Localized assembly and break-point refinement on gapped
alignments was performed with Scalpel to increase calling accuracy of deletions as large as

approximately 900 bp. Of the 123,581 deletions detected by Scalpel and genotyped with

11
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GenomeSTRIP, 100,678 sites remained after removal of excess heterozygotes (N=17,286),
homozygous reference (N=5,014), and call rate <less than 90% (N=603). The number of
deletions called dropped off exponentially as the deletion size increased except for a spike in
the number of deletions related to Alu retrotransposons (Figure 6). The frequency of these
events peaked around 350 bp which corresponds to lengths of Alu transposons, and this
size distribution is expected and consistent with that observed in other studies(17). The
Parliament pipeline genotyped more than 14 million SVs from the eight callers listed in Table
2. The mean number of calls per program was slightly greater than 1.8 million. Due to
computational requirements, the sites genotyped were limited to those greater than or equal
to 100bp. A total of 32,122 remained post-QC and the size distribution of these calls shows
the Alu peak at ~350 bp (Figure 7). The distribution of functional annotations of these
variants is shown in Table 3. Comparison of the deletion calls generated by the two pipelines
in the size ranges that overlapped (100-900 bp) identified 3,401 deletions (mean size = 330
bp, range 207 - 620 bp) that shared a base location for at least one breakpoint

(Supplementary Figure 1) in the size bin with deletions common to both callers.

Laboratory Validation of Deletion Calls. To validate deletion calls, we performed Sanger
sequencing on putative deletions. We sequenced 106 deletions called by Scalpel ranging in
size from 2 — 900 bp (Table 4 and Supplementary Table 3). When smaller deletions were
randomly selected, 87.5% of events between 2 and 100 bp were validated by Sanger
sequencing (100% of the events under 20 bp and 80% of events between 80-100 bp were
confirmed by Sanger sequencing). For loss of function deletions and those near AD genes
(+/- 500 kb, Supplementary Table 2) in this size range, slightly higher validation rates were
observed (average 93% and 95%, respectively). For randomly selected large events
(between 101-900 bp), the validation rate fell to 17%. However, when large SV/indel calls
were pre-screened to remove deletion sequences found at multiple regions of the genome,
the validation rate increased to 50%. Deletions near AD genes and LOF variants had a

higher validation rate (83% and 75%, respectively).

12
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For Parliament pipeline calls, 20% of randomly selected deletions in the 101-900 size
range could be validated. For Parliament calls near AD genes and LOF variants, calls were
validated at a higher rate (33% and 83%, respectively). For larger SVs calls, the validation
rate ranged from 73% - 83%. When we examined calls made by both Parliament and
Scalpel, all deletions tested (n = 11) could be validated. The mean D-score for validated
deletions (8.12, sd = 10.98, n = 114) was significantly greater than the mean for deletions
that were not validated (2.52, sd = 4.98, n = 19, p = 0.0075). This Sanger sequencing
validation of deletions demonstrates that the variants called by Scalpel, particularly within

the 2-100 bp size range, are highly reliable and are suitable for genetic association studies.

Deletions near AD genes. To detect possible AD pathogenic variants, we looked for
deletions in a +/- 500 kb window bracketing candidate AD genes, focusing on deletions in
gene functional units (coding regions, 5 and 3'UTRs, promoters, and splice junctions). This
window was selected to capture genes regulated by cis-acting elements impacted by peak
GWAS variants that influence expression of causal AD genes. We identified deletions in the
vicinity of 24 AD candidate genes (Supplementary Table 5) that could be validated by
Sanger sequencing. One pathogenic deletion identified using Scalpel was a 44 bp deletion
in exon 14 of ABCA7 (rs142076058, p.Arg578 fs). Subsequent work in a larger sample
showed that the deletion was associated with AD in African American populations (68). For
the remaining confirmed SVs, we tested the segregation of the SVs in the families by

requiring that at least 75% of the patients with LOAD and WGS data in the families were

carriers. We found segregation of six SVs in at least one family near IQCK, FBXL7, INPP5D,
SPDYE3, and SERPINB1 (Supplementary Table 6). A 21 bp coding deletion was identified

(rs527464858) in GIGYF2, a gene that encodes GRB10 interacting GYF protein 2. This
protein regulates tyrosine kinase receptor signaling. The GIGYF2 deletion is in an imperfect
CAG repeat sequence and is ~270 kb from rs10933431, the top SNV for INPP5D (P = 3.4 x

10, OR = 0.91 CI 0.88-0.97) (36). This deletion was observed in 46 cases and 3 controls in
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both NHW and CH populations. Note that in our study, there were more cases (n = 498)
than controls (n = 86) and some of these subjects are related (n = 111 families). This
deletion was observed in 10 CH and 13 NHW families. Co-segregation showed that the
variant segregated with AD status in three NHW families and one Hispanic family. A
number of studies found variants in G/IGYF2 potentially associated with an autosomal
dominant form of Parkinson’s disease (69-71), particularly in European populations but not
in Asian cohorts (69-72). While several SNVs in GIGYF2 may be associated with PD, most
studies do not confirm an association of this gene with PD (71), and a large meta-analysis

did not find that PD was associated with the poly Q region deletion described here (72).

DISCUSSION

We developed novel approaches for detecting deletions and evaluating them for
sensitivity, specificity, and validity. These methods were applied to WGS data obtained from
578 participants of the ADSP. We evaluated eight SV/indel callers on data generated at
three sequencing centers, each of which generated sequence libraries using different
protocols. Although sequencing library heterogeneity did not appreciably influence results
obtained with most programs, call validity (deletion detection by an orthogonal method)
varied by size and calling program. Our results revealed that no single calling program could
reliably and accurately detect deletions in all size rangers. Ultimately, we effectively
detected and genotyped deletions in the WGS dataset using a combination of SV/indel

callers, applying several QC filters, and validating calls by Sanger sequencing.

We evaluated the sensitivity of multiple SV/indel callers by in silico insertion of
deletions and insertions into ADSP biologic replicate sequence data. This simulation
exercise suggests that Scalpel has the highest sensitivity for deletions in the 30-500 bp
range. The sensitivity performance was closely matched by the programs Pindel and GATK

Haplotype caller, but the latter only for smaller events. Also, the specificity of calls by Pindel
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was much less than Scalpel because of the excess number of events called by this program.
We measured specificity of the SV/indel programs using the D-score, a measure that
compares deletion sharing between related and unrelated individuals, and the kinship
coefficient which allows a comparison of the observed number of deletion calls with the
number of expected calls among individuals with a defined degree of relationship. Scalpel
and Lumpy showed the best specificity across a broad size range from 30 — 1,000 bp and
were relatively insensitive to sequence library differences. In contrast, output from other

callers was more sensitive to the source of the sequence data.

We developed a comprehensive pipeline for calling, merging, QC, genotyping, and
break-point refinement of deletions using Scalpel and GenomeSTRIP (Fig. 1). As expected,
the most common deletions were small and we observed an excess of deletions of
approximately 350 bp in length, many of which are likely Alu repeat sequences (Figs 5 and
6). For the size bin 20-100 bp, Sanger sequencing validated more than 87.5% of randomly
selected deletions and 90.1% of all deletions (random, near AD genes, LOF variants) (Table
4). This size bracket included 82,180 deletions and accounts for 88.7% of all deletions
detected by Scalpel (n = 92,659 total deletions, Supplementary Table 4). In addition, the
Scalpel dataset had a kinship coefficient near the expected value of 0.25 for siblings after

the removal of sites with excess heterozygosity.

Our study has several noteworthy strengths. First, we developed methods for
evaluating deletion specificity in family-based studies (D score). This allowed us to directly
compare different methods of deletion calling directly using study sequence data. Also, the
D-score can be used to prioritize SVs for targeted validation. Second, we used the kinship
coefficient metric as a method to measure the overall quality of the call set genotypes and
evaluate quality control measures applied to family-based data. Third, we generated spiked-
in data sets that allowed for the evaluation of sensitivity in the sequence data used in this

study. Fourth, an orthogonal method (Sanger sequencing) was used to validate candidate
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deletions and to identify characteristics of true calls. Fifth, the high-quality deletion calls from
Scalpel, particularly those under 100 bp, can be used as a gold standard for comparison
with calls from other programs that are computationally less intensive. Sixth, we cataloged
deletion sites with precise breakpoints that can be directly genotyped in WGS CRAMS with
other genotyping tools such as Graphtyper and Paragraph. Last, we detected a deletion in
ABCAY7 that was subsequently shown to be pathogenic. This illustrates the validity of our

approach for identifying AD-related deletions..

Our conclusions and recommendations for deletion calling have some limitations.
Although the D-score and kinship coefficient are useful specificity measures, they require
family-based data. Also, because the D-score method relies on comparison of the deletion
frequency in the general population (i.e., unrelated individuals) versus related individuals, it
does not perform well for deletions that are very rare (less than 20 instances in a data set) or
very common with allele frequencies approaching 50%. A minimum of two SVs are needed
to compute a D-score. In both cases, the resulting D-score will be close to zero. Second,
computational requirements need to be considered. Scalpel, while yielding high-quality calls,
is not practical when applied to WGS data sets containing more than a few thousand
subjects because this program is computationally intensive. However, the Scalpel calls
generated here can be used as a benchmark for evaluating sensitivity and specificity of
other programs such as more recent versions of GATK haplotype caller (unpublished data).
The utility of callers with longer runtimes can be improved by splitting larger chromosomes
and processing them in parallel. However, the cost of using some programs such as Scalpel
and SWAN may be prohibitive when applied to datasets much larger than the one used in
this study. Another limitation of our study is that for associations of deletions with AD, our
study is underpowered. Thus we can nominate deletions as candidate pathogenic variants
(e.g. Supplementary Table 5) but will need larger follow up studies to confirm true
associations (e.g. the ABCA7 deletion). Finally, we only evaluated deletions in this study due

to the poor performance of the callers used to detecting insertions and other types of events.
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Future studies will use other programs that better detect insertions, rearrangements, and

copy-number changes.

Findings from this study have multiple important implications. Small deletions represent a
substantial portion of genetic variation.(17,73) Larger deletions are rarer and account for a
small fraction of total genetic variability but are more likely to be deleterious because they
may involve large portions of one or more genes. Given the challenges of accurate SV/indel
detection and genotyping, SV/indels larger than a few base pairs are typically not included in
genetic association studies. Accurately called and genotyped indels/SVs can increase the
scope of both hypothesis-driven and genome-wide association studies. Moreover, similar to
single nucleotide variants, SV/indels in the context of a large WGS or WES dataset can be
imputed reliably into GWAS datasets derived from SNP arrays. Studies of SV/indels in the
future will likely increase and improve our understanding of the genetic architecture of many

diseases as more reliable and efficient calling algorithms are developed and validated.
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Figure Legends

Figure 1. Overview of ADSP’s SV/indel calling and analysis pipeline. Two parallel
pipelines, Scalpel+GenomeSTRIP (orange) and Parliament (green), were combined to
perform SV/indel call merging, QC, genotyping, and re-assembly for 584 samples from three
sequencing centers. Nine replicated samples were used to measure individual SV/indel

caller sensitivity via variant spike-in studies.

Figure 2. SV/indel caller sensitivity stratified by sequencing center and caller.
Sensitivity rates were derived for all eight callers using in silico variant spike-in on nine
sample replicates. Sensitivity is provided for all three centers (Baylor, Broad, and WashU).
Biological replicates are three individuals in one family that were sequenced at the three
centers. Sensitivity rates are provided across a large range of event sizes [30 bp-10 kb].

Sensitivity rates are largely consistent across centers.

Figure 3. SV/indel caller specificity using the D-score stratified by sequencing center
and caller. Specificity rates are provided for all eight callers from 30 bp to 10 kbp using our
D-score method. D-scores were calculated for each of three sequencing centers (Baylor,

Broad, and WashU). D-scores are quite consistent across centers.

Figure 4. Kinship coefficient by deletion size. A. pre- and post-QC. Kinship coefficients
for pre- (left) and post-QC (right) calls ranging from 20-400 bp were calculated for all sibling
pairs. QC filtering to reduce excess heterozygosity resulted in coefficients that approximated
the expected value of 0.25. B. Kinship coefficients for GATK Haplotype Caller (left) and
Scalpel (right) were calculated using all sib pairs. The coefficient is 0.25 for SNVs called by
the GATK Haplotype Caller but declines progressively to 0 with increasing deletion sizes. In

contrast, the coefficient approximated 0.25 for Scalpel calls across all SV/indel bin sizes.

Figure 5. Three performance metrics for seven SV/indel callers. Top row provides total

runtime in hours, middle row provides peak CPU percentage, and bottom row provides peak
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memory in gigabytes for 10 discovery phase (left column) and 10 discovery-extension phase

(right column) samples.

Figure 6. Histogram of Scalpel deletions by size. All Scalpel deletions (N=123,581),

ranging from 20 to 900 bp. Y-axis is truncated at 2,000 calls. Alu peak is seen near 350 bp.

Figure 7. Histograms of Parliament deletion frequencies by size. A) Bottom-left:
Histogram of Parliament deletions (N=32,122) ranging from 20 to 1,000 bp. Alu peak is seen
at ~350 bp; and B) Upper-right: Full histogram of all Parliament calls (N=32,122) ranging

from 1-10,000 bp.
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Histogram of Parliament Deletions (N=32,122)
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TABLES
Caller Software Sequence Calling Range Exact Precise
Version Feature (bp) Genotype Breakpoint
Breakdancer 1.1 RP 1-10,000 Yes No
CNVnator 0.3 RD 200 - 10,000 No No
DELLY 0.5.6 RP and SR 15-10,000 Yes Partial
GATK HC 3.2 RP 2-300 Yes Yes
LUMPY 0.2.10 RP, SR and RD 1-10,000 No No
PINDEL 0.2.5a3 RP and SR 1-10,000 Yes No
Scalpel 0.5.3 AS 1-1,000 Yes Yes
SWAN 0.3.0 RP, SR, and SC 1-10,000 No Partial

Table 1. Overview of SV/indel callers evaluated. Column 1 provides the caller evaluated.

The second column provides the software version used for each caller. ‘Sequence Feature’

provides the method used to determine events such as read-pair (RP), split-read (SR), read-

depth (RD), soft-clip (SC), and local assembly (AS). Columns 5 and 6 provide whether each

caller supplies precise genotypes and breakpoints.
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Caller Number of Calls
Breakdancer 3,484,082
CNVnator 2,572,070
DELLY 1,685,852

GATK Haplotype Caller 232,366

LUMPY 1,003,953
PINDEL 2,613,604
SWAN 1,945,009
Scalpel 1,441,659

Total 14,709,212

Table 2. Total calls by eight SV/indel callers. Number of pre-QC calls for all eight callers.
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Functional Annotation Term Scalpel Parliament Parliament + Scalpel
Intergenic 59,595 15,238 1,900

Coding 51,849 14,724 28

Splice site 339 959 0

Intronic 492 151 1,475

5 prime UTR 201 113 0

3 prime UTR 739 201 0

Other 10,857 887 0

Totals 124,072 32,273 3,403

Table 3. SNPEff functional annotation categories for Scalpel and Parliament calls.
Breakdown of genomic functional annotation terms provided by SNPEff. There are slightly

more annotation terms than loci as some loci overlap more than one region.
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Table 4. Deletion validation results.

Sﬁzzt;?jn Workflow Size Bin (bp) Sequenced? | Validated® | Failed* Allztsgr:]?:e ;lrz::clfﬁ Percent Validated
20-50 12 11 0 1 1 92%
Scalpel 51-100 3 3 0 0 0 100% 90%
Near AD 101-800 6 5 1 0 0 83%
. 101-900 2 1 3 0 33%
Parliament 59%
1001-17,000 11 8 3 - 0 73%
20-50 13 13 0 0 0 100%
Scalpel 51-100 3 2 1 0 0 67% 90%
101-400 4 3 1 0 1 75%
SNPEfF LOF 100-200 3 2 1 - - 67%
Parliament 201-400 6 6 - - 1 100% 83%
501-900 3 2 1 - 1 67%
2-19 11 11 0 0 2 100%
20-40 6 5 0 1 1 83%
Scalpel 41-60 6 5 1 0 2 83% 8%
Anywhere in 61-80 7 6 1 0 2 86%
the genome 81-100 10 8 1 1 1 80%
101-900 6 1 3 2 0 17%
. 101-900 5 1 1 3 4 20%
Parliament 55%
900-1,000 6 5 1 0 1 83%
Cleaned’ Scalpel 101-900 (Cleaned) 8 4 2 2 0 50% 50%
In Common? | Scalpel & Parliament | 101-900 11 11 0 0 0 100% 100%
Totals® 146 114 19 13 17 78%
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' The AD gene list used is in Supplementary Table 2. Deletions tested were within +/-
500 kb bp of the target gene.

2. “Sequenced” are deletions where PCR products were produced that could be
sequenced.

3. "Validated” is the number of deletions where Sanger sequencing yielded the
predicted deletion.

4 “Failed’ is the number of confirmed false positive calls.

5 “Alternate Events” indicates that a deletion other than the predicted event was
observed.

6. “No PCR Product” are the number of events that could not be amplified and thus
could not be tested.

7= “Cleaned’ indicates that BLAT was used to exclude events that mapped to multiple
places in the genome.

8 “In common” were randomly selected from a list of identical deletions called by both
the Scalpel and Parliament pipelines.

% “Totals”. For total Scalpel and Parliament, calls "in common” events were included in

the final total for each pipeline.
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