

1 **Long-duration and non-invasive photoacoustic imaging of multiple anatomical
2 structures in a live mouse using a single contrast agent**

3
4 **Anjul Khadria¹, Chad D. Paavola², Yang Zhang¹, Samuel P. X. Davis¹, Patrick Grealish²,
5 Konstantin Maslov¹, Junhui Shi¹, John M. Beals^{3*}, Sunday S Oladipupo^{2*}, Lihong V.
6 Wang^{1*}**

7
8 ¹Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical
9 Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena,
10 California, 91125, USA

11 ²Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
12 Indiana, 46285, USA

13 ³Lilly Research Laboratories, Eli Lilly and Company, Lilly Biotechnology Center, San Diego,
14 California, 92121, USA

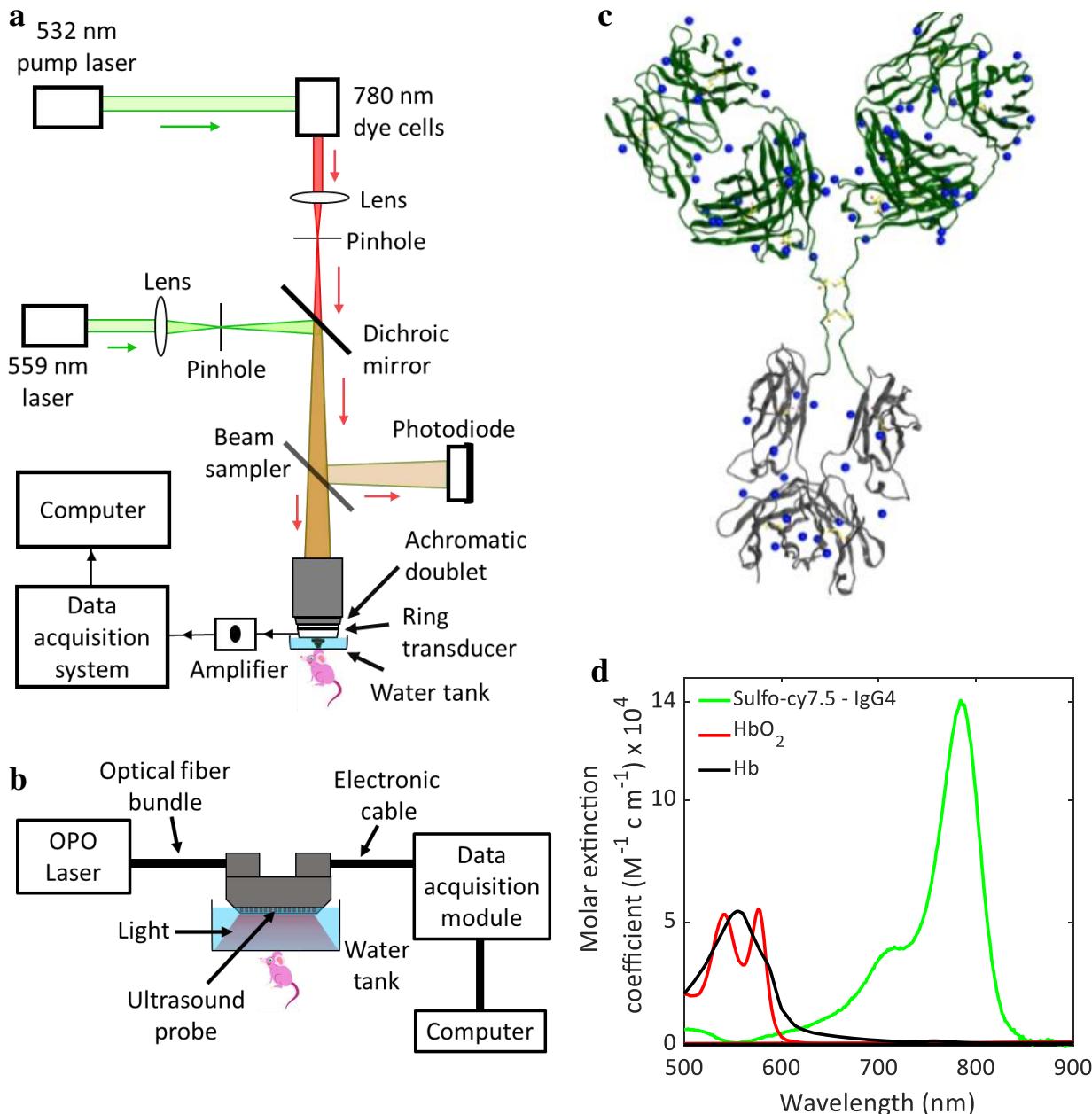
15

16 **Abstract**

17 Long-duration *in vivo* simultaneous imaging of multiple anatomical structures is useful for
18 understanding physiological aspects of diseases, informative for molecular optimization in
19 preclinical models, and has potential applications in surgical settings to improve clinical outcomes.
20 Previous studies involving simultaneous imaging of multiple anatomical structures, e.g., blood and
21 lymphatic vessels as well as peripheral nerves and sebaceous glands, have used genetically
22 engineered mice, which require expensive and time-consuming methods. Here, an IgG4 isotype
23 control antibody is labeled with a near-infrared dye and injected into a mouse ear to enable
24 simultaneous visualization of blood and lymphatic vessels, peripheral nerves, and sebaceous
25 glands for up to 3 hours using photoacoustic microscopy. For multiple anatomical structure
26 imaging, peripheral nerves and sebaceous glands are imaged inside the injected dye-labeled
27 antibody mass while the lymphatic vessels are visualized outside the mass. The efficacy of the
28 contrast agent to label and localize deep medial lymphatic vessels and lymph nodes using
29 photoacoustic computed tomography is demonstrated. The capability of a single injectable contrast
30 agent to image multiple structures for several hours will potentially improve preclinical therapeutic
31 optimization, shorten discovery timelines, and enable clinical treatments.

32

33 **Keywords:** Photoacoustic imaging, lymphatic imaging, nerve imaging, contrast agents.


34

35 Main

36 Concurrent long-duration live animal imaging of different anatomical structures, including blood
37 and lymphatic vessels, peripheral nerves, and sebaceous glands can underpin an improved
38 understanding of disease progression, study effects of therapeutics, and guide molecular
39 optimization in preclinical models.^[1-3] Fluorescence microscopy has been shown to
40 simultaneously image the above-mentioned anatomical structures using mice genetically
41 engineered with fluorescent proteins. However, such methods are expensive, time-consuming, and
42 are not currently translatable clinically.^[4-6] The discovery of lymphatic vessels in the mouse and
43 human brain has made the need for long-duration simultaneous imaging of lymphatic vessels and
44 other anatomical structures at cellular-level resolution ever more critical to better understand the
45 brain-related diseases and optimize new therapies.^[7,8] Previous work involving preclinical imaging
46 of lymphatic vessels has used standalone dyes such as Evans blue or indocyanine green (ICG),
47 which are not photostable, get absorbed by the blood vessels, and cannot be used for long-duration
48 imaging.^[3,9,10] The clearance of these dyes in less than 30 – 60 minutes after injection is well
49 documented in both preclinical and clinical studies.^[10,11] Deep lymphatic vessels in mice have been
50 previously imaged using near-infrared fluorescence imaging; however, those studies did not image
51 the blood vessels simultaneously and utilized Evans blue or ICG.^[12,13] Previous photoacoustic
52 imaging-based studies involving simultaneous imaging of blood and lymphatic vessels have used
53 Evans blue or ICG, or required up to five wavelengths, which is expensive and complex.^[3,10,14,15]
54 Peripheral nerves are an integral part of the nervous system linking the brain to the rest of the body.
55 Imaging of peripheral nerves is of utmost importance, for example, to study the nervous system to
56 develop strategies to prevent accidental injuries during surgeries.^[16,17] Previous work on
57 photoacoustic imaging of peripheral nerves has been limited to only *ex vivo* studies.^[18,19] Studies
58 reporting *in vitro* and *ex vivo* multi-feature photoacoustic imaging have pushed the limits of
59 bioimaging; however, no *in vivo* studies have been reported that demonstrate simultaneous
60 photoacoustic imaging of lymphatic vessels, peripheral nerves, and sebaceous glands along with
61 blood vessels.^[20-22] Contrast agents that can facilitate long-duration and non-invasive *in vivo*
62 photoacoustic imaging of multiple anatomical structures can benefit several preclinical and
63 potentially clinical physiological studies and diagnoses such as peripheral neuropathy, lymphoma,
64 vasculitis, sebaceoma, etc.^[23-25]
65 Several photoacoustic-based contrast agents have been reported in recent years; however, most
66 agents are based on tumor imaging using organic or inorganic small molecules or nanoparticles.^{[26-}

67 ^{28]} Notably, little or no advancement has taken place in contrast agents for long-duration
68 photoacoustic imaging of lymphatic vessels and other anatomical structures such as peripheral
69 nerves and sebaceous glands.

70

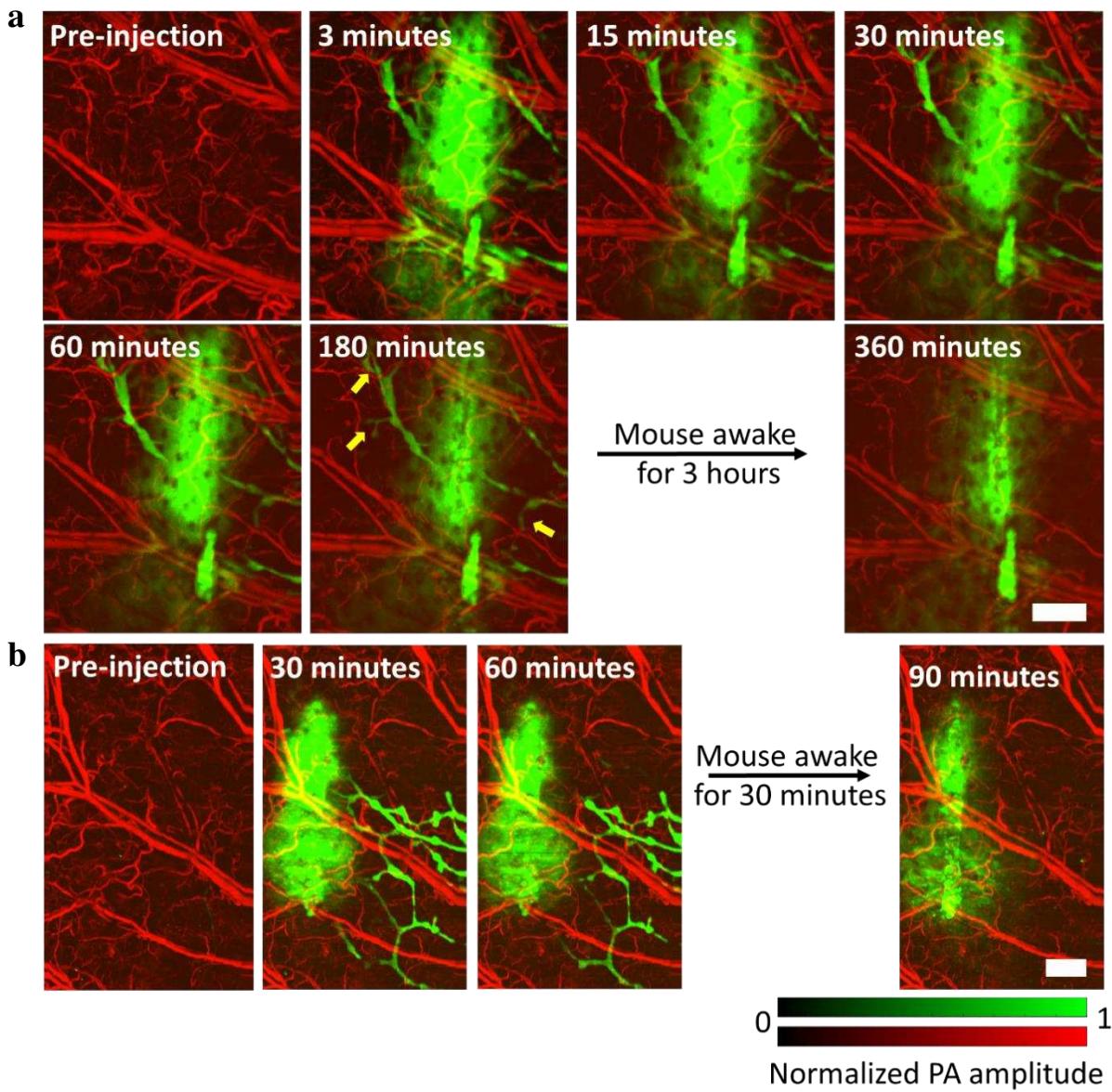
Figure 1: (a) Schematic of the OR-PAM system. (b) Schematic of the linear array-based PACT system. (c) Scheme of IgG4 isotype control antibody with the available sites (as blue dots) for the conjugation of sulfo-cy7.5 dye. (d) Light absorption spectra of sulfo-cy7.5 dye-labeled IgG4 antibody, oxygenated hemoglobin (HbO_2) and deoxygenated hemoglobin (Hb).

71

72 In this report, we use optical-resolution photoacoustic microscopy (OR-PAM) (Figure 1a)^[29] to

73 simultaneously image blood and lymphatic vessels along with peripheral nerves and sebaceous
74 glands at cellular-level resolution in the mouse ear skin. We used photoacoustic imaging to
75 visualize blood (label-free); however, to image lymphatic vessels, sebaceous glands, and axonal
76 peripheral nerves, we subcutaneously injected the near-infrared light absorbing sulfo-cy7.5 dye-
77 labeled monoclonal human IgG4 isotype control antibody. In addition, we injected the dye-labeled
78 antibody in the mouse hind-paw to observe its deep medial lymphatic vessel and lymph node
79 through a hand-held photoacoustic computed tomography (PACT) probe (Figure 1b).^[30] Dye-
80 labeled antibodies are used widely to fluorescently label and image anatomical structures through
81 epitope bindings; however, in this report, we use an IgG4 isotype control antibody, which does not
82 have any specific binding epitope.^[31,32]

83 **Results and Discussion**

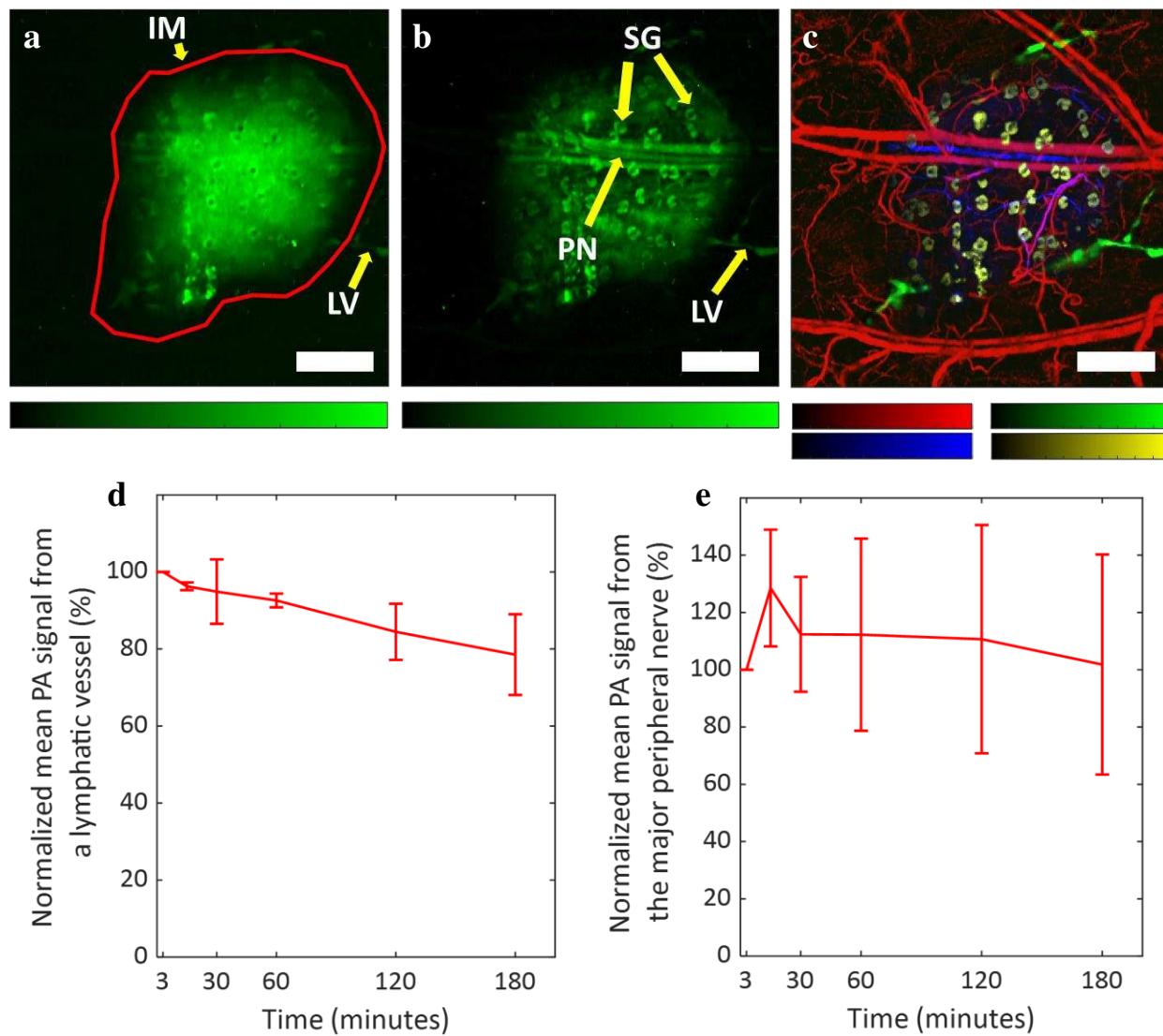

84 ***Dye-labeling of the IgG4 isotype control antibody***

85 The IgG4 antibody was labeled with the sulfo-cy7.5 dye (Figure 1c) and characterized by SEC-
86 HPLC and MALDI mass spectrometry (see Methods). The labeled antibody was found to have
87 approximately 4.5 dyes per molecule and exhibited size exclusion behavior consistent with a
88 monomeric, well-behaved antibody (Figure S1 in SI). The antibody has no specific antigen binding
89 and incorporates S228P/L234A/L235A sequence changes in the Fc region to reduce immune
90 effector function.^[33] While the current study does not employ any specific paratope, antibodies
91 with specific binding could alternatively be employed to image other anatomical structures
92 offering tissue specificity advantage as the case may be. We further characterized the dye-labeled
93 IgG4 antibody with UV-Vis spectroscopy and found that it has an absorption maximum at 780 nm
94 with a molar extinction coefficient of around 14,000 M⁻¹cm⁻¹, which is orders of magnitude higher
95 than that of both oxygenated and deoxygenated blood at the same wavelength (Figure 1d). A higher
96 extinction coefficient at 780 nm will ensure high contrast signals from the dye-labeled IgG4
97 antibody.

98 ***Long-duration OR-PAM of lymphatic vessels in mouse ear***

99 We performed the OR-PAM at 559 nm and 780 nm to visualize the blood and the dye-labeled
100 antibody, respectively, based on their absorption spectra (Figure 1d). We injected the dye-labeled
101 antibody (0.2 μ L, 20 mg/mL) into the mouse ear under anesthesia and performed photoacoustic
102 imaging using OR-PAM. We rely on the high molecular weight (~ 147 kDa) of the antibody to

103 drive lymphatic absorption at the point of injection since molecules greater than 20 – 25 kDa
104 weight are predominantly absorbed by lymphatic vessels.^[34,35] Antibodies, due to their large size,
105 have a slow absorption rate from the subcutaneous injection site, which we utilize to perform long-
106 duration imaging.^[36,37] The lymphatic vessels continuously absorbed the dye-labeled antibody
107 over the first 3 hours of imaging, leading to the visualization of new lymphatic vessels while the
108 mouse was under anesthesia (Figure 2a, Movies V1 and V2). After the first 3 hours of imaging,
109 the mouse was allowed to recover from anesthesia and kept in an enclosure until the injection site


Figure 2: OR-PAM of lymphatic vessels in mouse ear. (a) Visualization of lymphatic vessels for up to 180 minutes upon injection of sulfo-cy7.5 dye labeled IgG4 antibody. (b) Imaging of the dye-labeled IgG4 antibody performed in the mouse ear while keeping the mouse under anesthesia for a shorter period. Yellow arrows show lymphatic vessels lighting up. PA, photoacoustic. Scale bars, 500 μ m.

110

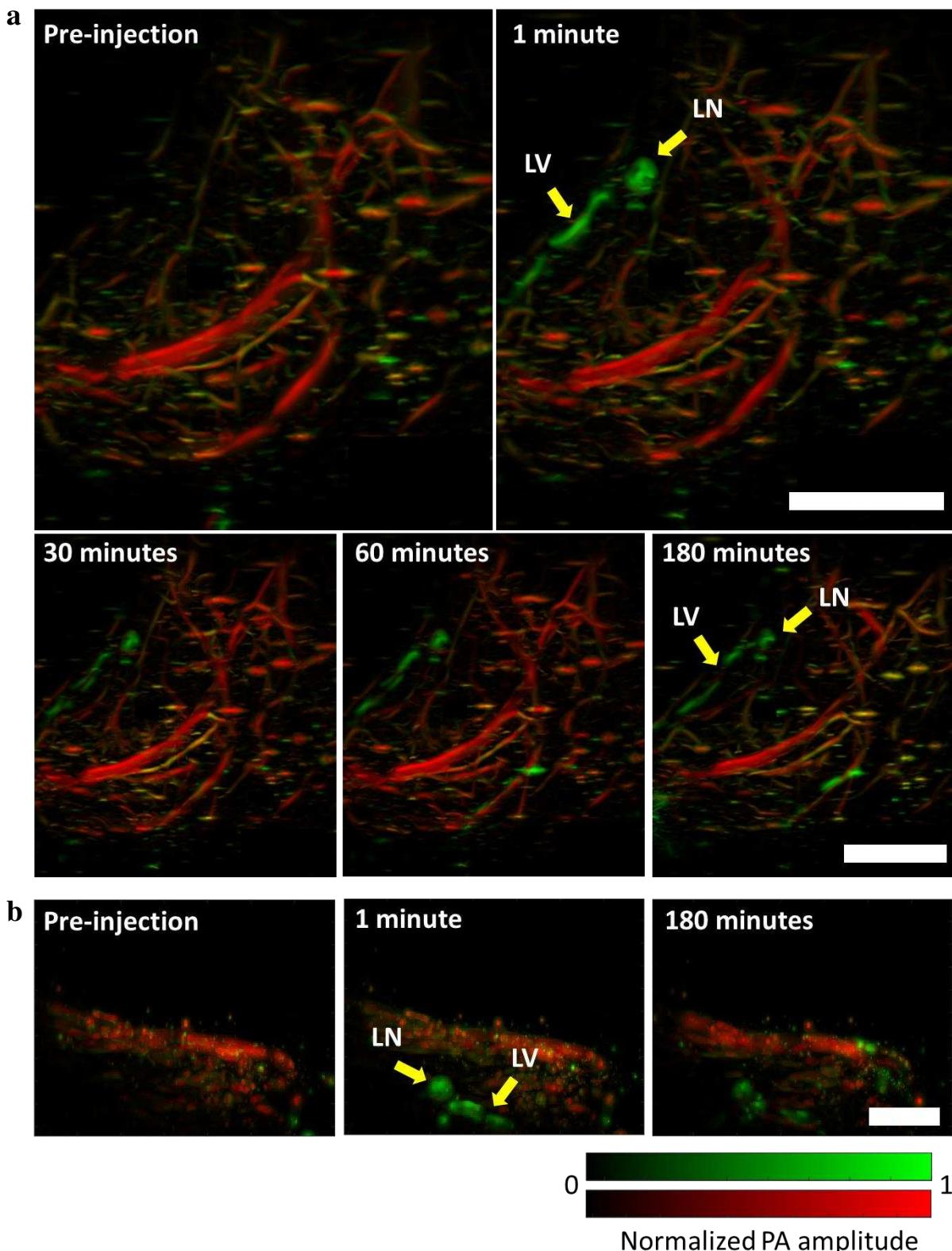
111 was reimaged 6 hours' post-injection. At 6 hours, we did not observe any lymphatic vessels stained
112 with the dye-labeled antibody due to enhanced lymphatic clearance from the increased muscle-
113 mediated movement of the ear in the conscious state.^[38] To verify that enhanced absorption of the
114 antibody occurs while the mouse was moving, we reduced the initial anesthesia time to 60 minutes
115 and revived the mouse for only 30 minutes, then imaged it again under anesthesia (Figure 2b).
116 Under these experimental conditions, we did not observe any lymphatic vessels around the
117 injection site at 90 minutes.

118 ***Multiple anatomical structures visualizations in mouse ear***

119 Our approach to visualize multiple anatomical features is based on imaging the peripheral nerves
120 and sebaceous glands inside the injected dye-labeled antibody mass while visualizing the
121 lymphatic vessels outside the mass. In our system, the 780 nm light that we used to detect the
122 sulfo-cy7.5 dye-labeled IgG4 antibody has a depth of focus of about 300 μm , which covers the
123 thickness of an average mouse ear (200 μm – 250 μm). The maximum amplitude projection (MAP)
124 of the complete three-dimensional (3D) photoacoustic image shows only the injected mass of the
125 dye-labeled antibody and the lymphatic vessels outside the mass (Figure 3a). The sebaceous glands
126 and peripheral nerves are not clearly visible due to excess background signals (from the dye-
127 labeled antibody) in the MAP image. We inspected two-dimensional (2D) sections at various
128 depths to avoid the excess dye-labeled antibody background signals and distinctly visualize
129 the axonal peripheral nerves and sebaceous glands (Figure 3b). We further performed image
130 segmentation (see Methods) to digitally label the different structures (Figure 3c). Peripheral nerves
131 and arteries are aligned together in mouse skin, a feature that enabled us to identify the nerves in
132 our images.^[6,39] The circular structured sebaceous glands were noticeably visible in the images.
133 The visualization of sebaceous glands in the mouse ear could be helpful in several types of skin
134 studies.^[40] Many biological phenomena or disorders related to sebaceous glands, such as sebaceous
135 adenoma, sebaceoma, sebaceous gland hyperplasia, sebaceous carcinoma, folliculosebaceous
136 cystic hamartoma, etc. can be studied by imaging the size and shape of sebaceous glands as well
137 as their effects on surrounding vessels.^[41] The major blood vessels in the mouse ear are also seen
138 in Figure 3b, suggesting that the dye-labeled IgG4 antibody encapsulated the vessels, creating a
139 contrast as the antibody is too large to be absorbed through the pores of the blood microvasculature.
140 Upon quantitative comparison of the mean photoacoustic signal from a single lymphatic vessel
141 that remains visible throughout the imaging time, we found that the photoacoustic signal does not

Figure 3: OR-PAM of multiple anatomical structures. (a) MAP image of the complete dye-labeled antibody injected in mouse ear depicting the injected dye-labeled antibody mass and the lymphatic vessels outside the mass. (b) MAP image of the dye-labeled antibody in mouse ear after inspection of 2D sections in the 3D volume to remove background signals. The sulfo-cy7.5 dye-labeled IgG4 antibody stains axonal peripheral nerves, sebaceous glands, and the major blood vessels inside the injected dye-labeled antibody mass, and the lymphatic vessels outside the mass. (c) Different anatomical structures labeled in pseudo colors through image segmentation. Blood vessels are colored as red (559 nm), lymphatic vessels as green (780 nm), sebaceous glands as yellow (780 nm), and axonal peripheral nerves as blue (780 nm). (d) The mean photoacoustic signal from a single lymphatic vessel. (e) The mean photoacoustic signal from the major nerve. Data represent mean \pm standard deviation ($n = 3$). IM, injected mass; LV, lymphatic vessel; PN, peripheral nerve; SG, sebaceous gland. All color bars represent normalized photoacoustic amplitude and range from 0 to 1. Scale bars, 500 μ m.

142


143 fade away significantly (~ 20% decrease) even 3 hours after the injection under anesthetized
144 conditions (Figure 3d). As mentioned above, the widely used lymphatic contrast agents such as

145 ICG or Evans blue get cleared away in less than 1 hour.^[10,11] These results validate the efficacy
146 of the large-sized dye-labeled monoclonal antibody for long-duration lymphatic imaging. The
147 peripheral nerves were also visible for up to 3 hours (Figures 3e and S2 in SI) without a significant
148 decrease in the mean photoacoustic signal. Note that some signals were detected even after 50 days
149 of injection (Figure S3 in SI).

150 ***Long-duration deep lymphatic vessel visualization***

151 We injected the dye-labeled antibody in the mouse hind paw and performed imaging away from
152 the site of injection through PACT at 780 nm and 920 nm in the leg and thigh areas where the deep
153 medial lymphatic vessel and lymph node are located to observe them (Figures 4a, 4b, and S4 in
154 SI, Movie V3).^[12] Although the pre-injection and post-injection images at 780 nm were sufficient
155 to establish the dye-labeled antibody uptake by the lymphatic vessel and lymph node, we
156 performed imaging at 920 nm to confirm that no blood leakage occurred during needle insertion
157 while performing the injection. We chose 920 nm to perform imaging of blood because the
158 extinction coefficient of hemoglobin in blood in the NIR region (without overlapping with the
159 absorption spectrum of the dye-labeled IgG4 antibody) is highest at around 920 nm, which ensures
160 more photoacoustic signal from the blood.^[42] The images in Figure 4 were processed by vessel
161 segmentation (see Methods). We performed imaging for up to 3 hours following injection to
162 continuously observe bright signals from the lymphatic vessels at a depth of 2 – 4 mm from the
163 surface of the mouse skin, thus proving the long-duration efficacy of the method (Figures 4b and
164 S4 in SI). The dye-labeled antibody does not absorb any light at 920 nm, but the blood absorbs
165 significant light. We did not perform any multi-feature imaging using PACT in deep tissues
166 because of two reasons. (1) The sebaceous glands are present only in the skin for which high
167 resolution-based OR-PAM is sufficient. (2) We have no pre-information about the nerves in deep
168 tissues to correctly identify them such as we had for mouse skin where the peripheral nerves and
169 arteries are aligned together.^[6,39]

170 These results show that the dye-labeled IgG4 antibody can be used for long-duration photoacoustic
171 imaging of superficial and deep lymphatic vessels. Long-duration imaging of deep lymph nodes
172 and lymphatic vessels could be a powerful tool for visualizing deep tumors during cancer
173 metastasis.

Figure 4: Long-duration photoacoustic imaging of deep lymphatic vessels in mouse. (a) Top-view images of deep medial lymphatic vessel and lymph node (green), and blood (red) in mouse leg and thigh taken through PACT. (b) Side-view images of deep medial lymphatic vessel (green) and blood (red) in mouse leg and thigh taken through PACT. LV, lymphatic vessel; LN, lymph node; PA, photoacoustic. Scale bars, 0.4 cm.

175 **Conclusions**

176 In this study, we used IgG4 monoclonal antibody labeled with near-infrared sulfo-cy7.5 dye to
177 perform photoacoustic imaging of multiple anatomical structures in mouse ear skin and deep
178 medial lymphatic vessels in the leg and thigh. The slow clearance rate of the large-sized antibody
179 allows long-duration photoacoustic imaging of the anatomical structures, which is otherwise
180 difficult to perform with the range of existing contrast agents. The long-duration multi-anatomical
181 structure labeling feature of the dye-labeled antibody can be used in several types of preclinical
182 studies involving studies of diseases and drug therapeutics. It also has the potential to be clinically
183 translatable. The antibodies can be further designed to bind to specific antigens to enable long-
184 duration imaging of deep and shallow individual anatomical structures *in vivo* at high resolution,
185 which is otherwise difficult to image due to a lack of sufficient injectable contrast agents,
186 especially for photoacoustic imaging.

187 **Methods**

188 **Sulfo-cy7.5 dye labeling of human IgG4 isotype control antibody**

189 An IgG4 isotype antibody was labeled with Sulfo-Cyanine-7.5 dye using NHS ester chemistry
190 (66320, Lumiprobe). The antibody was prepared at approximately 10 mg/mL in 90 mM carbonate,
191 9 mM phosphate buffer with 125 mM sodium chloride at pH 8.3. The dye was dissolved in a one-
192 tenth volume of carbonate buffer immediately before adding to the antibody at a 10 equivalent
193 excess and incubated at 25°C for 4 hours. The labeled antibody was isolated from the excess dye
194 on a size exclusion chromatography column (Superdex S200, Cytiva) with a mobile phase of 1x
195 PBS, pH 7.2 at 1 mL/min. The degree of labeling was determined using MALDI-MS to be ~ 4.5
196 dyes per antibody. The antibody was concentrated to ~ 30 mg/mL using a 15 mL spin concentrator
197 (Millipore) with a 100 kDa MWCO membrane. Samples of labeled and unlabeled antibody (5 –
198 10 µg) were run on a HPLC (Agilent 1260 Infinity II) using an Agilent AdvanceBIO SEC 300Å
199 2.7 mm column (PL1580-3301, Agilent) at 1 mL/min in a mobile phase of 1x PBS; pH 7.2 (20012-
200 027, GIBCO) with peaks detected by absorbance at 214 nm. Total run time was 7 minutes.

201

202 **Measurement of the extinction coefficient of sulfo-cy7.5 dye-labeled IgG4 antibody**

203 The absorbance of the sulfo-cy7.5 dye-labeled IgG4 antibody (1 µM antibody, 4.5 dyes labeled
204 per antibody) was measured using a UV-Vis spectrophotometer (Cary® 50 Bio, Varian) at 20 °C.

205 The extinction coefficient was calculated using the Beer-Lambert law, $A = \epsilon CL$ where A is the
206 absorbance, ϵ is the molar extinction coefficient, C is the dye concentration, and L is the light path
207 length (1 cm). The molar extinction coefficient values for oxygenated and deoxygenated blood
208 were taken from the compilation of Scott Prahl.^[42]

209 **Photoacoustic microscopy (PAM) system design**

210 We employed a spherically focused ring-shaped transducer (central frequency = 42 MHz, f-
211 number = 1.67, Capistrano Labs) in the PAM, which is equipped with two lasers of 559 nm and
212 780 nm optical wavelengths. Light pulses of both wavelengths were used to irradiate the same
213 point successively with microseconds delay. The light beam from a 559 nm Nd:YAG laser (BX2II,
214 Edgewave) was focused on a 254 μm diameter orifice (3928T991, McMaster-Carr) for spatial
215 filtering. A dye laser (Credo, Sirah) pumped by a 532 nm Nd:YAG laser (IS80-2-L, Edgewave
216 GmbH) was employed to generate the 780 nm light beam. Styryl 11 dye (07980, Exciton) in 200
217 proof ethanol (MFCD00003568, Koptec) was circulated in the dye laser at 18 °C. The 780 nm
218 light beam was combined with the 559 nm light beam through a dichroic mirror (M254C45,
219 Thorlabs). Before the combination, the 780 nm beam was focused on a second pinhole (3928T991,
220 McMaster-Carr) for spatial filtering. A separate pinhole for the 780 nm light beam was used to
221 increase its depth of focus (~ 300 μm) with a lower resolution and also to correct for the focal
222 length difference caused by light dispersion in the immersion liquid. An achromatic doublet
223 (AC080-020-A, Thorlabs) was used to focus the combined beam on the sample. Some amount of
224 light was collected by a photodiode (PDA36A, Thorlabs) with the aid of a beam sampler to correct
225 for laser fluctuations. We raster scanned the animal using a stepper motor-based two-dimensional
226 scanner (PLS-85, Physik Instrumente) controlled by a customized LabVIEW program with an
227 FPGA (PCIe-7841, National Instruments). The data was acquired using a digitizer (ATS 9350,
228 AlazarTech) at 500 MS/s.

229 **Nano-liter injection for photoacoustic imaging**

230 We used 31-gauge needles (7803-03, Hamilton) fitted in microliter syringes to inject antibody
231 solutions at volumes of 0.10 μL and 0.2 μL in the mouse ear. To perform the rapid and controlled
232 injection, the syringes were fitted onto a syringe dispenser (PB600, Hamilton). A 5 μL (7634-01,
233 Hamilton) syringe was used to perform the injections.

234 **Photoacoustic computed tomography (PACT) system design**

235 The PACT system consists of a laser source for optical illumination, an ultrasound linear array for
236 recording the photoacoustic signals, a motor to perform a linear scan, a data acquisition (DAQ)
237 module to digitize the signals, and a processing system for reconstructing the image (Figure 1b).
238 We used an optical parametric oscillator (OPO) laser (SplitLight EVO III - 100, Innolas) to deliver
239 light at wavelengths of 780 nm and 920 nm to the target through an optical fiber bundle. The linear
240 probe with a bandwidth of 13 – 24 MHz (MS 250, VisualSonics) was mounted on the stepper
241 motor (PLS-85, Physik Instrumente) and connected to a Verasonics Vantage 256 system
242 (Verasonics). It featured a 14-bit analog-to-digital converter (ADC) dynamic range and sampling
243 frequencies up to 62 MHz. The PACT system operated at 100 Hz in trigger mode (triggered by a
244 laser) to acquire 600 frames in 6 seconds. We used the universal back-projection algorithm to
245 reconstruct the images.^[43]

246 **Animal experiments**

247 We performed all imaging experiments on mice using protocols approved by IACUC at the
248 California Institute of Technology. We used Hsd:Athymic Nude-Fox^{1nu} mice aged 4 to 12 weeks
249 (Envigo) in all experiments while maintaining their body temperatures at 37 °C during imaging.
250 All the mice were imaged under isoflurane anesthesia (1.25 – 1.50 % isoflurane in the air at a flow
251 rate of 1 L/min).

252 **OR-PAM**

253 The mouse ear was imaged at a 4 kHz A-line rate with a fast axis (2.5 μm step size, 1100 steps)
254 and a slow axis (5 μm step size, 800 steps), resulting in a total scanning time of 220 seconds. To
255 image the dye-labeled IgG4 antibody formulations in a mouse ear, we took a pre-injection image
256 of the mouse ear before performing a sub-microliter injection of the required antibody formulation.
257 Then images were taken at 3 minutes, 15 minutes, 30 minutes, 60 minutes, and 180 minutes' time
258 points, during which the mouse was maintained under anesthesia. The imaging time-point was
259 defined as the mid-point between imaging start and finish. After 180 minutes, the mouse was
260 awakened and kept in its cage with food and water. The mouse was anesthetized and reimaged at
261 6 hours' time point post-injection.

262 **PACT**

263 The 3D images were acquired by scanning the ultrasound probe (step size = 50 μm) with a total
264 time of 6 seconds. The backside of the mouse leg and thigh regions where the deep medial

265 lymphatic vessel is located was imaged using light with wavelengths of 920 nm and 780 nm. Then
266 the dye-labeled antibody (50 μ L, 20 mg/mL) was injected into the hind-paw and the image was
267 immediately acquired (within 1 minute). Subsequent images were acquired at 15 minutes, 30
268 minutes, 1 hour, 2 hours, and 3 hours after injection during which the mouse was maintained under
269 continuous anesthesia at 37 °C.

270 **Image segmentation**

271 To segment the different anatomical structures, we applied a series of operations to all sections
272 where relevant features were visible. We first applied total variance denoising,^[44] then used
273 Gaussian filters and morphological top-hat filters to select structures of relevant scale. The
274 sebaceous glands were masked in the first image using a Canny edge detection algorithm^[45] to
275 detect the boundaries of the glands, which were filled with a morphological closing, and cleaned
276 with a morphological dilation. The lymph vessels were isolated by similarly masking the central
277 absorption region and using the complimentary mask. After the initial contrast-enhancing
278 operations, the peripheral nerves and the sebaceous glands in the second image were manually
279 labeled.

280 **Quantification of mean photoacoustic signal from the lymphatic vessel and the peripheral
281 nerve**

282 The areas covered by the major peripheral nerve or a lymphatic vessel (that is visible throughout
283 the time series) in the MAP images were roughly selected (after passing the images through an
284 average filter of size 3 x 3 pixels). Then the images were thresholded by the summation of the
285 mean and three times the standard deviation of the background amplitude to segregate
286 photoacoustic signals from the noise. The contrast to noise ratio of resultant photoacoustic
287 amplitudes was calculated to acquire the mean photoacoustic signal from the peripheral nerve or
288 the lymphatic vessel. The mean of the signal at all the time points was divided by the mean at 3
289 minutes and then multiplied by 100 to calculate the percentage of the photoacoustic amplitude
290 with respect to the initial time point.

291 **Vessel segmentation for PACT images**

292 Post-processing of reconstructed PACT volumes was performed with MATLAB (Mathworks).
293 Vessels were segmented using a Hessian-based multiscale vessel enhancing operator.^[46] The
294 eigenvalues of the Hessian matrix ($|\lambda_1| \leq |\lambda_2| \leq |\lambda_3|$) give a measure of the local curvature of

295 the volume, which can be used to determine the probability that a pixel is part of a vessel-like
296 structure. The Hessian at of a volume P at voxel \mathbf{x} and scale σ is defined by equation M1,

297
$$H(\mathbf{x}, \sigma) = \sigma^2 P(\mathbf{x}) * \frac{\partial^2 G_\sigma(\mathbf{x})}{\partial \mathbf{x}^2} \quad (\text{M1})$$

298 where G_σ is a gaussian kernel with a standard deviation σ . The vessel segmentation operator is
299 then given by equation M2,

300
$$V(\mathbf{x}, \sigma) = \begin{cases} 0 & \text{if } \lambda_2 > 0 \text{ or } \lambda_3 > 0 \\ \left(1 - \exp\left(-\frac{R_a^2}{2a^2}\right)\right) \left(\exp\left(-\frac{R_b^2}{2b^2}\right)\right) \left(1 - \exp\left(-\frac{S^2}{2c^2}\right)\right) & \text{otherwise} \end{cases} \quad (\text{M2})$$

301

302 where $S = \sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}$ is a measure of the total curvature at \mathbf{x} , $R_a = \frac{|\lambda_2|}{|\lambda_3|}$ discriminates between
303 vessel-like and plate-like structures, and $R_b = \frac{|\lambda_1|}{\sqrt{|\lambda_2||\lambda_3|}}$ discriminates sphere-like structures. The
304 parameters were set as $a = 0.5, b = 0.5, c = \max \lambda_3 / 2$. Scale invariant vessel segmentation is
305 performed by taking the maximum of $V(\mathbf{x}, \sigma)$ for σ between 40 μm and 360 μm .

306 The processed 780 nm and 920 nm vessel maps were then registered. The 920 nm segmented
307 vessels were used to mask the dye present in vasculature. Maximum projections are displayed on
308 a logarithmic scale.

309

310 References

311 [1] T. Hoshida, N. Isaka, J. Hagendoorn, E. di Tomaso, Y.-L. Chen, B. Pytowski, D.
312 Fukumura, T. P. Padera, R. K. Jain, *Cancer Res.* **2006**, *66*, 8065 LP.

313 [2] L. L. Munn, T. P. Padera, *Microvasc. Res.* **2014**, *96*, 55.

314 [3] C. Martel, J. Yao, C.-H. Huang, J. Zou, G. J. Randolph, L. V. Wang, *J. Biomed. Opt.*
315 **2014**, *19*, 116009.

316 [4] J. Zhu, J. Dugas-Ford, M. Chang, P. Purta, K.-Y. Han, Y.-K. Hong, M. E. Dickinson, M.
317 I. Rosenblatt, J.-H. Chang, D. T. Azar, *FEBS J.* **2015**, *282*, 1458.

318 [5] Y. A. Pan, T. Misgeld, J. W. Lichtman, J. R. Sanes, *J. Neurosci.* **2003**, *23*, 11479 LP.

319 [6] T. Yamazaki, W. Li, Y.-S. Mukouyama, *J. Vis. Exp.* **2018**, 57406.

320 [7] A. Louveau, I. Smirnov, T. J. Keyes, J. D. Eccles, S. J. Rouhani, J. D. Peske, N. C.
321 Derecki, D. Castle, J. W. Mandell, K. S. Lee, T. H. Harris, J. Kipnis, *Nature* **2015**, *523*,
322 337.

323 [8] S. Da Mesquita, A. Louveau, A. Vaccari, I. Smirnov, R. C. Cornelison, K. M. Kingsmore,
324 C. Contarino, S. Onengut-Gumuscu, E. Farber, D. Raper, K. E. Viar, R. D. Powell, W.
325 Baker, N. Dabhi, R. Bai, R. Cao, S. Hu, S. S. Rich, J. M. Munson, M. B. Lopes, C. C.
326 Overall, S. T. Acton, J. Kipnis, *Nature* **2018**, *560*, 185.

327 [9] A. Forbrich, A. Heinmiller, R. J. Zemp, *J. Biomed. Opt.* **2017**, *22*, 1.

328 [10] C. Liu, J. Chen, Y. Zhang, J. Zhu, L. Wang, *Adv. Photonics* **2021**, *3*, 1.

329 [11] H. J. Choi, T.-J. Kim, Y.-Y. Lee, J.-W. Lee, B.-G. Kim, D.-S. Bae, *J Gynecol Oncol* **2016**,
330 27.

331 [12] Y. Nakajima, K. Asano, K. Mukai, T. Urai, M. Okuwa, J. Sugama, T. Nakatani, *Sci. Rep.*
332 **2018**, *8*, 7078.

333 [13] H. A. Robinson, S. K. Kwon, M. A. Hall, J. C. Rasmussen, M. B. Aldrich, E. M. Sevick-
334 Muraca, *J. Vis. Exp.* **2013**, e4326.

335 [14] H. Kajita, Y. Suzuki, H. Sakuma, N. Imanishi, T. Tsuji, M. Jinzaki, S. Aiso, K. Kishi,
336 *Keio J. Med.* **2020**, *70*, 82.

337 [15] H. Kajita, K. Kishi, *Radiology* **2019**, *292*, 35.

338 [16] M. A. Whitney, J. L. Crisp, L. T. Nguyen, B. Friedman, L. A. Gross, P. Steinbach, R. Y.
339 Tsien, Q. T. Nguyen, *Nat. Biotechnol.* **2011**, *29*, 352.

340 [17] L. G. Wang, C. W. Barth, C. H. Kitts, M. D. Mebrat, A. R. Montaño, B. J. House, M. E.
341 McCoy, A. L. Antaris, S. N. Galvis, I. McDowall, J. M. Sorger, G. S. L., *Sci. Transl. Med.*
342 **2020**, *12*, eaay0712.

343 [18] T. P. Matthews, C. Zhang, D.-K. Yao, K. Maslov, L. V Wang, *J. Biomed. Opt.* **2014**, *19*,
344 16004.

345 [19] M. T. Graham, J. Y. Guo, M. A. L. Bell, in *Proc. SPIE*, **2019**.

346 [20] J. Shi, T. T. W. Wong, Y. He, L. Li, R. Zhang, C. S. Yung, J. Hwang, K. Maslov, L. V
347 Wang, *Nat. Photonics* **2019**, *13*, 609.

348 [21] T. T. W. Wong, R. Zhang, C. Zhang, H.-C. Hsu, K. I. Maslov, L. Wang, J. Shi, R. Chen,
349 K. K. Shung, Q. Zhou, L. V Wang, *Nat. Commun.* **2017**, *8*, 1386.

350 [22] M. A. Pleitez, A. A. Khan, A. Soldà, A. Chmyrov, J. Reber, F. Gasparin, M. R. Seeger, B.
351 Schätz, S. Herzig, M. Scheideler, V. Ntziachristos, *Nat. Biotechnol.* **2020**, *38*, 293.

352 [23] G. Rangavajla, N. Mokarram, N. Masoodzadehgan, S. B. Pai, R. V Bellamkonda, *Cells*
353 *Tissues Organs* **2014**, *200*, 69.

354 [24] T. C. Kwee, R. M. Kwee, R. A. J. Nievelstein, *Blood* **2008**, *111*, 504.

355 [25] W. Choi, E.-Y. Park, S. Jeon, Y. Yang, B. Park, J. Ahn, S. Cho, C. Lee, D.-K. Seo, J.-H.
356 Cho, C. Kim, *Radiology* **2022**, *303*, 467.

357 [26] Y.-S. Chen, Y. Zhao, S. J. Yoon, S. S. Gambhir, S. Emelianov, *Nat. Nanotechnol.* **2019**,
358 *14*, 810.

359 [27] Q. Fu, R. Zhu, J. Song, H. Yang, X. Chen, *Adv. Mater.* **2019**, *31*, 1805875.

360 [28] J. Weber, P. C. Beard, S. E. Bohndiek, *Nat. Methods* **2016**, *13*, 639.

361 [29] A. Khadria, C. D. Paavola, K. Maslov, F. A. Valenzuela, A. E. Sperry, A. L. Cox, R. Cao,
362 J. Shi, P. L. Brown-Augsburger, E. Lozano, R. L. Blankenship, R. Majumdar, S. A.
363 Bradley, J. M. Beals, S. S. Oladipupo, L. V Wang, *Mol. Metab.* **2022**, *62*, 101522.

364 [30] Y. Zhou, G. Li, L. Zhu, C. Li, L. A. Cornelius, L. V Wang, *J. Biophotonics* **2015**, *8*, 961.

365 [31] B. Ballou, G. W. Fisher, A. S. Waggoner, D. L. Farkas, J. M. Reiland, R. Jaffe, R. B.
366 Mujumdar, S. R. Mujumdar, T. R. Hakala, *Cancer Immunol. Immunother.* **1995**, *41*, 257.

367 [32] S. Vira, E. Mekhedov, G. Humphrey, P. S. Blank, *Anal. Biochem.* **2010**, *402*, 146.

368 [33] S. H. Tam, S. G. McCarthy, A. A. Armstrong, S. Somani, S.-J. Wu, X. Liu, A. Gervais, R.
369 Ernst, D. Saro, R. Decker, J. Luo, G. L. Gilliland, M. L. Chiu, B. J. Scallon, *Antibodies*
370 (*Basel, Switzerland*) **2017**, *6*, 12.

371 [34] C. J. H. Porter, S. A. Charman, *J. Pharm. Sci.* **2000**, *89*, 297.

372 [35] A. Supersaxo, W. R. Hein, H. Steffen, *Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci.*
373 **1990**, *7*, 167.

374 [36] M. Ovacik, K. Lin, *Clin. Transl. Sci.* **2018**, *11*, 540.

375 [37] J. T. Ryman, B. Meibohm, *CPT pharmacometrics Syst. Pharmacol.* **2017**, *6*, 576.

376 [38] J. W. Breslin, *Microvasc. Res.* **2014**, *96*, 46.

377 [39] Y. Mukouyama, D. Shin, S. Britsch, M. Taniguchi, D. J. Anderson, *Cell* **2002**, *109*, 693.

378 [40] Y. Jung, J. Tam, H. Ray Jalian, R. Rox Anderson, C. L. Evans, *J. Invest. Dermatol.* **2015**,
379 *135*, 39.

380 [41] G. Shamloul, A. Khachemoune, *Dermatol. Ther.* **2021**, *34*, e14862.

381 [42] S. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water,” can be
382 found under <https://omlc.org/spectra/hemoglobin/summary.html>, **1998**.

383 [43] M. Xu, L. V Wang, *Phys. Rev. E* **2005**, *71*, 16706.

384 [44] A. Chambolle, *J. Math. Imaging Vis.* **2004**, *20*, 89.

385 [45] J. Canny, *IEEE Trans. Pattern Anal. Mach. Intell.* **1986**, *PAMI-8*, 679.

386 [46] A. F. Frangi, W. J. Niessen, K. L. Vincken, M. A. Viergever, in (Eds.: W.M. Wells, A.
387 Colchester, S. Delp), Springer Berlin Heidelberg, Berlin, Heidelberg, **1998**, pp. 130–137.

388

389 **Data availability**

390 The data that support the conclusions are mentioned in the main draft or the supplementary
391 information.

392

393 **Author contributions**

394 L.V.W., S.O., J.M.B, C.D.P., and A.K. conceived the project and the ideas. C.D.P. and A.K.
395 designed the chemistry and parameters for dye labeling. P.G. labeled the antibody with the dye
396 and characterized them. P.G. and A.K. prepared the antibody and dye buffer solutions. A.K. and
397 K.M. designed and built the scanning photoacoustic microscope. A.K. designed and performed all
398 the PAM experiments and analyzed the data. Y.Z. designed the PACT system and data
399 reconstruction algorithm. A.K. and Y.Z. performed the PACT experiments. S.P.X.D. performed
400 the image segmentation for the PAM data and vessel segmentation for the PACT data. J.S. wrote
401 the LabVIEW software for photoacoustic data acquisition. L.V.W., S.O., and J.M.B. supervised
402 the project. A.K. wrote the manuscript. C.D.P., Y.Z., S.P.X.D., J.M.B., S.O., and LV.W.
403 contributed to writing the manuscript.

404 **Competing interests**

405 A.K., Y.Z., S.P.X.D., and J.S. declare no competing interests. C.D.P., P.G, J.M.B, and S.O. are
406 employees and stockholders of Eli Lilly and Company. L.V.W. and K.M. have financial interests
407 in Microphotoacoustics, Inc., CalPACT, LLC, and Union Photoacoustic Technologies, Ltd, which
408 did not support this work.