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Abstract 

How brain functional architecture differs across people is a key question of human 

neuroscience, and understanding these differences is critical for building brain-based 

biomarkers.  However, current individualized models of brain functional organization are 

based on brain regions and networks, limiting their use to study fine-grained vertex- or 

voxel-level differences.  In this work, we present the Individualized Neural Tuning (INT) 

model, a fine-grained individualized model of brain functional organization.  The first part 

of the INT model models each individual9s brain responses as a linearly transformed 

functional template, such that it captures both functional and topographic idiosyncrasies.  

The second part of the INT model factorizes the modeled brain responses, separating 

temporal information capturing how the stimulus changes over time (shared across 

individuals) and stimulus-general neural tuning (specific to each individual and each 

cortex).  The two parts of the INT model are designed in such a way that (a) the INT model 

has vertex-level granularity; (b) it models both functional differences and topographic 

differences; and (c) the modeled neural tuning is stimulus-general in that it generalizes to 
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new stimuli.  Through a series of analyzes, we demonstrate that (a) the modeled brain 

functional organization is highly specific to the individual and reliable across independent 

data; (b) the model can predict an individual9s responses to new stimuli based on others9 

responses, including category selectivity maps and retinotopic maps; (c) the model can 

predict fine-grained response patterns, which can be used to distinguish responses to 

different time points of a movie; (d) the model performance keeps improving with more 

data, but 10320 minutes of movie are usually sufficient for good performance.  Together, 

these analyses demonstrate that the INT model affords an individualized fine-grained 

model of brain functional architecture, which is reliable, precise, and generalizable across 

stimuli. 
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A central goal of human neuroscience is to understand how brain functional 

organization differs across individuals, and how these differences relate to differences in 

intelligence, personality, motivation, mental health, and many other attributes.  

Understanding these differences is instrumental for providing individualized education and 

training, as well as effective diagnosis and intervention in the case of pathology, and 

ultimately improving educational, occupational, and health-related outcomes (Bijsterbosch 

et al., 2020; Dubois and Adolphs, 2016; Gabrieli et al., 2015; Gratton et al., 2020). 

Models of the functional organization of the human brain can be summarized into 

two categories based on their spatial granularity.  Typical functional magnetic resonance 

imaging (fMRI) data of the human brain comprises 20,0003100,000 cortical surface 

vertices (or voxels in volumetric data).  Coarse-grained models group these vertices into 

spatial units4brain regions, networks, and systems4and reduce the brain into tens to 

hundreds of spatial units (Glasser et al., 2016; Gordon et al., 2016; Yeo et al., 2011).  

Vertices with similar, relatively homogeneous functions are studied as a group in coarse-

grained models, which makes it easier to summarize their functions neuroscientifically and 

computationally (Bijsterbosch et al., 2020; Eickhoff et al., 2018b, 2018a). Recent 

advances of coarse-grained brain models have successfully extended group-level models 

to model individual brains (Gordon et al., 2017a; Harrison et al., 2015; Kong et al., 2019; 

Wang et al., 2015).  In these models, the cortical topographies of the spatial units in an 

individual are allowed to differ from the group template, so that the inter-individual 

variations in brain functional organization (Gordon et al., 2017b; Gratton et al., 2018; 

Laumann et al., 2015) can be accounted for.  Individualized models help disentangle 
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different sources of inter-individual variation (Bijsterbosch et al., 2019, 2018), and 

improve brain-behavior predictions (Kashyap et al., 2019; Kong et al., 2021). 

Given this feature aggregation, coarse-grained models focus on spatial units that 

are centimeters in scale.  Modern fMRI data acquisition, however, usually has a spatial 

resolution of 233 mm in each dimension, which is close to the spatial precision of blood-

oxygen-level-dependent (BOLD) signal acquired at 3 Tesla (Engel et al., 1997; Parkes et 

al., 2005)  This fine spatial resolution affords access to the rich information encoded in 

fine-grained vertex-by-vertex and voxel-by-voxel spatial patterns (Haxby et al., 2014, 2001; 

Huth et al., 2016; Kriegeskorte and Kievit, 2013).  This information can be used to decode 

brain responses to different object categories (Haxby et al., 2001), and also different 

exemplars of the same category, such as different face identities or different views of the 

same face (Guntupalli et al., 2017; Visconti di Oleggio Castello et al., 2021, 2017).  

Individual differences in fine-grained responses and connectivity are much more reliable 

than their coarse-grained counterparts (Feilong et al., 2018).  Fine-grained functional 

connectivity describes what information is exchanged between regions instead of how 

much information is exchanged, providing a twofold increase in accuracy in predicting 

intelligence (Feilong et al., 2021). 

Fine-grained brain models have great potential to study individual differences in 

brain functional organization (Feilong et al., 2018), yet methods for building individualized 

fine-grained brain models are far from optimal, both in terms of computational structure 

and conceptual power.  In this work, we present the individualized neural tuning (INT) 

model, a fine-grained individualized model of brain functional organization that has three 

key features.  First, the INT model has vertex-level granularity, which provides access to 
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the rich information encoded in fine-grained spatial patterns.  Second, it models each 

individual9s unique representational geometry as well as the corresponding topographic 

organization in cortex, and thus affords study of both functional and topographic 

differences.  Third, the INT model decomposes responses into stimulus information, as 

defined by neural responses that are shared across brains, and response tuning functions 

that model individual-specific fine-grained responses to any stimulus.  Therefore, the INT 

model affords study of individual differences in neural response tuning that are 

independent of stimulus information (Figure 1). 

 

 

Figure 1. Estimating a shared stimulus matrix and individualized tuning matrices.  (A) With 

the individualized neural tuning (INT) model, we decompose the brain response data 

matrix B(p) (shaped t × v, where t is the number of time points and v is the number of 

cortical vertices) of participant p into a shared stimulus matrix S (t × k, where k is the 

number of stimulus features) and an individualized tuning matrix T(p) (k × v, the number of 

stimulus features by the number of cortical vertices).  Temporal information capturing how 

the stimulus changes over time is factored into S; each row of S is a time point in the 
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stimulus and each column of S is a basis response profile shared across individuals and 

vertices.  Each column of T(p) is a vector of k elements describing the stimulus-general 

response tuning function of a cortical vertex. (B) If we divide the brain responses matrix B(p) 

into several parts, each part can be modeled as part of the matrix S multiplied by the same 

T(p).  In other words, T(p) models neural response tuning in a way that generalizes across 

stimuli.  Moreover, the same T(p) can be estimated from different parts of B(p) (e.g., two 

halves of a movie B(p,1) and B(p,2)) by using the corresponding parts of S (S(1) and S(2)).  (C) 

After obtaining T(p), it can be used to predict the participant9s responses to new stimuli 

B(p,new) using the corresponding S(new) matrix, which can be estimated from other 

participants9 data. 

 

Using two rich fMRI datasets collected during movie watching, we demonstrate that 

our INT model of brain functional architecture has remarkable reliability and validity.  

Specifically, we show that (a) The modeled brain functions are highly similar based on 

independent data from the same individual, but distinctive for different individuals. (b) The 

model can predict idiosyncratic brain responses to novel stimuli, including object 

categories and retinotopic localizers. (c) The model captures information encoded in fine-

grained spatial patterns and can differentiate response patterns to different movie time 

points (TRs). (d) The model works well with small amounts of movie data but continuously 

improves with more data.  Together, these results demonstrate that our INT model predicts 

idiosyncratic fine-grained functional organization of the brain with high sensitivity and 

specificity. 

Results 

Estimating the individualized neural tuning model 

Here we briefly describe the individualized neural tuning (INT) model in order to 

build a high-level intuition for how the model is constructed; see the <Methods= section for 

a more detailed mathematical treatment. Brain responses to external stimuli, such as 

movies, are highly similar across individuals (Hasson et al., 2010, 2004; Nastase et al., 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.15.492022doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.15.492022
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

2019).  Responses from multiple individuals can be summarized as a single common space 

(Guntupalli et al., 2018, 2016; Haxby et al., 2020, 2011), and a substantial amount of an 

individual9s responses can be explained by these commonalities.  Still, individuals differ 

from the common space and from each other, even though these differences are smaller in 

scale than the commonalities (Feilong et al., 2018).  Therefore, it is critical to ensure that 

our model captures the idiosyncrasies of each individual9s brain functional organization, as 

well as the shared responses across individuals. 

The goal of the INT model is to re-represent the brain data matrices B(p) acquired for 

each individual in a way that captures precise, individualized vertex-level functional 

architecture and supports out-of-sample prediction across both individuals and stimuli. 

First, we construct a common functional template M across all training participants to 

serve as a target for functional alignment based on all training participants9 data using a 

searchlight-based algorithm.  Next, we estimate a linear transformation W(p) for each 

participant, using ensemble ridge regression, that maps between their idiosyncratic 

functional architecture and the functional template M. Unlike previous implementations of 

hyperalignment that employed Procrustes-based rotations to resolve topographic 

idiosyncrasies while preserving representational geometry, here we estimate a linear 

transformation that captures individual differences in both representational geometry and 

cortical topography. Finally, we convert the model-estimated brain data, MW(p), into a more 

compact shared stimulus matrix S, with orthogonal feature dimensions, and an 

individualized tuning matrix T(p). This decomposition factors the stimulus-specific temporal 

structure of the movie into S, represented as a collection of basis functional profiles shared 

across vertices and individuals. The individual-specific tuning matrices T(p) can be 
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estimated with independent data using different stimuli.  T(p) matrices capture individual 

differences in functional tuning4modeling idiosyncrasies in both representational 

geometry and cortical topography. 

Modeling individualized brain functional organization 

To assess how well our model captures individual-specific brain functional 

organization, we evaluated the within-subject similarities and between-subject similarities 

of the modeled tuning matrices (T).  For each of the n participants, we divided the movie 

data into two parts, and computed a tuning matrix for each movie part.  Therefore, we 

obtained n tuning matrices based on the first part of the movie, and another n based on the 

second part.  Then we computed an n × n matrix of cross-movie-part similarities, where 

each row corresponds to a tuning matrix based on the first part, and each column 

corresponds to a tuning matrix based on the second part.  Each entry in the matrix 

quantifies the cross-movie-part similarity of tuning matrices within-subject (diagonal 

entries) and between-subject (off-diagonal entries) (Figure 2A).  For both datasets, the 

similarity matrix had a clear diagonal, indicating that the within-subject similarities were 

much higher than between-subject similarities.  When all the tuning matrices were 

projected to a 2-D plane using multi-dimensional scaling (MDS), matrices from the same 

participant were close together, whereas matrices from different participants were clearly 

separated (Figure 2B). 
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Figure 2. Distinctive modeled brain functional organization.  (A) For each movie part, we 

obtained n tuning matrices, one for each participant, which describes the participant9s 

response tuning functions.  The cross-movie-part similarities form an n × n matrix, where 

rows are tuning matrices based on the first movie part, and columns the second movie 

part; the colored legends at left and top index individual participants.  The obvious 

diagonal indicates that within-subject similarities were much higher than between-subject 

similarities.  (B) Multi-dimensional scaling (MDS) projection of the 2n matrices onto a 2-D 

plane.  Two dots of the same color denote two estimates of the tuning matrix for the same 

participant, as in (A).  Dots from the same participant clustered together.  (C) The 

distribution of within- and between-subject tuning matrix similarities, sorted by within-

subject similarity.  For each tuning matrix, the within-subject similarity always exceeded 

between-subject similarity. (D) We computed a distinctiveness index for each tuning matrix 

based on the difference between within- and between-subject similarities. The 

distinctiveness index is based on Cohen9s d and, therefore, measures effect size.  Based on 

the distinctiveness index, we estimate the error rate for individual identification (bottom).  
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(E) Local functional distinctiveness based on a searchlight analysis (20 mm radius), 

averaged across all participants for each dataset.  Extensive occipital, temporal, and lateral 

prefrontal cortices showed high distinctiveness. 

 

For every tuning matrix, within-subject similarity (Forrest: r = 0.798 ± 0.044 [mean 

± SD]; Raiders: r = 0.778 ± 0.076) was higher than between-subject similarities (Forrest: r 

= 0.542 ± 0.037; Raiders: r = 0.503 ± 0.057) (Figure 2C).  Simple nearest-neighbor 

identification of participants based on their tuning matrices performs at 100% accuracy.  

To better assess the distinctiveness of each tuning matrix, we computed a distinctiveness 

index based on Cohen9s d (Figure 2D).  This distinctiveness index measures the difference 

between the within-subject similarity and between-subject similarities of a tuning matrix 

using the standard deviation of the distribution as a unit.  For example, Cohen9s d = 5 

means that the within-subject similarity is 5 standard deviations away from the average 

between-subject similarity.  On average across participants, the distinctiveness index was 

12.92 for the Forrest dataset, and 9.67 for the Raiders dataset, indicating the individual-

specific tuning matrices were highly distinctive.  The distinctiveness index was computed 

based on Fisher-transformed correlation similarities, which approximately follow a normal 

distribution.  Therefore, the identification error rate can be estimated based on the 

distinctiveness index using the cumulative distribution function of the distribution, which 

was 1.73×10-38 for d = 12.92, and 2.1×10-22 for d = 9.67.  These error rates are orders of 

magnitude lower than those estimated from individuation based on coarse-grained 

patterns of functional connectivity (more than 1%; (Finn et al., 2015)) and those of forensic 

DNA analysis (approximately 0.4%; (Kloosterman et al., 2014)). 
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The results so far are based on the entire tuning matrix, which comprises response 

tuning functions of all cortical vertices.  Which part of the brain has the most distinctive 

responses across individuals?  To answer the question, we performed a searchlight analysis 

with a 20 mm radius and computed the average distinctiveness index across participants 

for each searchlight (Figure 2E).  Extensive occipital, temporal, and lateral prefrontal 

cortices showed high distinctiveness, with estimates of Cohen9s d exceeding 10 in lateral 

and ventral occipital and temporal cortices.  Even in brain regions that do not respond 

strongly to external stimuli, such as medial prefrontal cortex, our model can still capture 

idiosyncratic response tuning functions. 

To summarize, our model of brain functional organization is highly specific to each 

individual.  For both datasets, within-subject similarities of modeled tuning matrices were 

several standard deviations higher than between-subject similarities.  Our model also 

captures idiosyncrasies in local response tuning functions throughout cortex, excluding 

somatosensory and motor regions.  Individual differences were most prominent in occipital 

and temporal regions, and reliable individual differences were also found in parietal and 

prefrontal regions. 

Predicting category-selectivity and retinotopic maps 

To assess whether the modeled tuning matrix accurately reflects a participant9s 

brain functional organization, we examined to what extent it can predict brain responses to 

new stimuli.  Specifically, we examined whether our model trained with movie data could 

accurately predict category-selectivity maps and retinotopic maps in a leave-one-subject-

out cross-validation analysis. 

Predicting category-selectivity maps 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.15.492022doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.15.492022
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Both the Forrest dataset and the Raiders dataset had four object category localizer 

runs, which were based on static images for Forrest, and dynamic videos for Raiders.  

Taking the <faces= category as an example, we computed a face-selectivity map for each 

participant and each run, which was the contrast between faces and all other categories.  

Due to measurement noise, the four maps (one for each run) differ from one another 

(Figure 3B and 3C bottom rows).  We averaged the four maps for each participant to 

reduce noise and used the average map as the localizer-based map for that participant.  

Based on the similarity between these four maps, we computed the Cronbach9s alpha 

coefficient for each participant, which estimates the reliability of the average map.  That is, 

if we were to scan the participant for another four localizer runs and correlate the new 

average map with the current average map, the expected correlation would be Cronbach9s 

alpha. 

For each cross-validation fold, we divide the data into n 3 1 training participants 

and a test participant.  To estimate the stimulus descriptors for the target object category 

(e.g., S(faces)), we trained a regression model to predict the localizer-based maps for the 

training participants (dependent variables) from their tuning matrices (T) (independent 

variables). The resultant S(faces) vector contains the coefficients derived from the regression 

model. T was estimated from the independent movie data for each participant and applied 

to this analysis.  Then we computed the product of the S(faces) vector of coefficients and the 

test participant9s tuning matrix (T) to estimate the test participant9s face-selectivity map.  

We evaluated the quality of this predicted localizer map by computing the correlation 

between the model-based map and the test participant9s actual localizer map based on 

their own localizer data. 
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Figure 3. Predicting category-selectivity maps of individual participants.  (A) Face-

selectivity map of an example participant and a zoomed-in view focusing on right ventral 

temporal cortex.  (B) The localizer-based (top) and model-predicted (middle) face-

selectivity maps for two example participants from the Forrest dataset.  Each localizer-

based map was the average of four maps, one from each localizer run.  Individual maps for 

each localizer run are shown at bottom.  (C) Face-selectivity maps of two example 

participants from the Raiders dataset.  (D) Similarity of each participant9s localizer-based 

face-selectivity map to the participant9s own predicted map (green) and to other 

participants9 predicted maps (orange).  Cronbach9s alpha (purple) for each participant was 

calculated based on the similarity of the four localizer runs and is shown as a reference.  

(E) Cronbach9s alpha (purple), within-subject correlation (green), and between-subject 

correlation (orange) for all category-selectivity maps.  Error bars are standard errors of the 

mean.  For both datasets, the within-subject correlations were similar to, and sometimes 

higher than Cronbach9s alpha.  Between-subject correlations were much lower, suggesting 
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our prediction models were able to capture each participant9s idiosyncratic category-

selectivity topographies. 

 

For both datasets, the localizer-based and model-predicted face-selectivity maps 

were highly correlated (Forrest: r = 0.618 ± 0.089 [mean ± SD], Raiders: r = 0.716 ± 

0.074), and the correlations were higher than our previous state-of-the-art model using the 

same dataset and hyperalignment (Jiahui et al., 2020).  Across all participants, the average 

Cronbach9s alpha was 0.606 ± 0.126 for Forrest, and 0.764 ± 0.089 for Raiders.  For 

approximately a third of the participants (Forrest: 6 out of 15, 40%; Raiders: 6 out of 20, 

30%), the correlation exceeded the Cronbach9s alpha of localizer-based maps.  In other 

words, for these participants, the predicted map based on our model can be more accurate 

than the map based on a typical localizer scanning session comprising four runs. 

Besides the high accuracy, the model-predicted maps were also highly specific for 

each individual (See Figure 3B and 3C for examples).  The correlation between one 

participant9s localizer-based map and another participant9s model-predicted map (orange 

circles in Figure 3D; Forrest: 0.337 ± 0.071; Raiders: 0.384 ± 0.062) was always lower 

than the correlation with own model-predicted map (green circles in Figure 3D).  This 

indicates that our model accurately predicts the idiosyncratic topographies of each 

participant9s category-selectivity map. 

We replicated our analysis for all other categories and found similar results (Figure 

3E; Table 1).  For all object categories and both datasets, the within-subject similarity 

(correlation between own localizer-based map and own model-predicted map) was 

numerically similar to Cronbach9s alpha and much larger than between-subject similarities 
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(correlation between each participant9s localizer-based map and others9 model-predicted 

maps). 

 

The Forrest dataset 

Category Cronbach's 

alpha 

Within-subject 

similarity 

Between-subject 

similarity 

(within > 

between) % 

(within > 

alpha) % 

Bodies 0.756 ± 0.073 0.759 ± 0.041 0.482 ± 0.037 100% 40.0% 

Faces 0.606 ± 0.126 0.618 ± 0.089 0.337 ± 0.064 100% 40.0% 

Houses 0.653 ± 0.128 0.669 ± 0.106 0.412 ± 0.070 100% 46.7% 

Objects 0.485 ± 0.153 0.540 ± 0.079 0.353 ± 0.058 100% 60.0% 

Scenes 0.681 ± 0.107 0.721 ± 0.063 0.483 ± 0.040 100% 53.3% 

Scrambled 0.608 ± 0.096 0.615 ± 0.070 0.427 ± 0.051 100% 60.0% 

The Raiders dataset 

Category Cronbach's 

alpha 

Within-subject 

similarity 

Between-subject 

similarity 

(within > 

between) % 

(within > 

alpha) % 

Bodies 0.758 ± 0.083 0.749 ± 0.056 0.493 ± 0.042 100% 45.0% 

Faces 0.764 ± 0.089 0.716 ± 0.074 0.384 ± 0.051 100% 30.0% 

Objects 0.604 ± 0.113 0.652 ± 0.077 0.390 ± 0.061 100% 65.0% 

Scenes 0.796 ± 0.061 0.771 ± 0.043 0.500 ± 0.034 100% 30.0% 

Scrambled 0.730 ± 0.096 0.671 ± 0.089 0.461 ± 0.057 100% 40.0% 

Table 1. Summary of model performance in predicting object category selectivity maps.  

All contrasts were based on the target category versus all others.  The format for 

Cronbach9s alpha and similarities is mean ± standard deviation. 

 

Predicting retinotopic maps 

We examined whether our model can accurately predict eccentricity and polar 

angle maps based on the retinotopic data of the Forrest dataset.  Similar to category-

selectivity maps, we trained our model using the movie data and used it to predict 

retinotopic maps based on leave-one-subject-out cross-validation.  Note that each 

retinotopic map, eccentricity and polar angle, has two components: an amplitude map, 

which measures to what extent a cortical vertex responds to retinotopic stimuli, and a 

phase map, where the phase is associated with eccentricity or polar angle.  For the 
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eccentricity map, the phase is 0° for the center of the visual field, and 360° for the most 

peripheral part.  For the polar angle map, the phase is 0° and 180° for the upper and lower 

vertical meridians, and 90° and 270° for the right and left horizontal meridians. 

 

Figure 4. Predicting retinotopic maps of individual participants.  (A) The localizer-based 

and model-predicted left hemisphere eccentricity maps for five example participants.  (B) 

The localizer-based and model-predicted left hemisphere polar angle maps for five 

example participants.  (C) Similarity of each participant9s localizer-based amplitude map 

(i.e., to what extent a vertex responds to retinotopic stimuli) to the participant9s own 

predicted map (green), other participants9 predicted maps (orange), and its Cronbach9s 
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alpha (purple).  (D) The average phase difference in early visual areas between the 

participant9s two retinotopic runs (e.g., expanding and contracting rings; purple), between 

the participant9s localizer-based map and own model-predicted map (green), and between 

the participant9s localizer-based map and other participants9 predicted maps (orange).  In 

both (C) and (D) participants are sorted along the x-axis according to within-subject 

similarity (green). Note that we inverted the y-axis in (D) because smaller differences 

indicate higher similarity. 

 

The model-predicted maps for each participant resemble the corresponding 

localizer-based maps, and they capture the idiosyncratic features of each map well (Figure 

4A and 4B).  To quantify these similarities, we assessed the similarity of amplitude maps 

and phase maps separately. 

Each retinotopic map (e.g., an eccentricity map) was based on a standard 

univariate analysis of two runs where the stimuli were displayed in reversed order (e.g., 

expanding rings and contracting rings), and an amplitude map and a phase map were 

obtained from each run.  For each participant, we compared the similarity of these two 

amplitude maps and estimated Cronbach9s alpha.  The mean (± standard deviation) for 

Cronbach9s alpha was 0.701 ± 0.047 for the eccentricity map, and 0.663 ± 0.069 for the 

polar angle map.  We also compared the similarity between the localizer-based amplitude 

map (average of the two runs) and the model-predicted map.  On average across all 

participants, the similarity was 0.774 ± 0.027 for the eccentricity map, and 0.746 ± 0.049 

for the polar angle map.  Note that for every participant the similarity was higher than 

Cronbach9s alpha, which means the model-predicted amplitude map is more accurate 

than the localizer-based map.  The similarity between a participant9s localizer-based map 

with the participant9s own model-predicted map is higher than with others9 model-
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predicted maps (eccentricity: 0.682 ± 0.029; polar angle: 0.635 ± 0.054), indicating that 

the model-predicted amplitude map is individual-specific. 

To assess the quality of the phase maps, we computed the absolute value of the 

phase difference in early visual areas (V1, V2, V3, and V4; (Glasser et al., 2016)) between 

two retinotopic runs, between the localizer-based map and the participant9s own model-

predicted map, and between one participant9s localizer-based map and others9 model-

predicted maps.  Note that the phase is circular, and thus the difference between 360° and 

1° is the same as 1° and 2°.  On average across participants, the average phase difference 

between a participant9s localizer-based and model-predicted maps was 39.1° ± 4.8° for 

eccentricity maps, and 41.5° ± 6.0° for polar angle maps.  This difference was smaller than 

the difference between two localizer runs (eccentricity: 43.7° ± 6.0°; polar angle: 48.2° ± 

7.7°) and the difference with others9 model-predicted maps (eccentricity: 53.9° ± 6.9°; 

polar angle: 52.3° ± 4.7°).  The average phase difference for random data would be 90°. 

For both category-selectivity maps and retinotopic maps, our model can accurately 

predict individualized maps with high fidelity and high specificity.  The quality of the 

model-predicted maps was similar to or higher than that of maps derived from actual 

localizer data.  These results demonstrate that the modeled response tuning functions are 

not only individualized and reliable across independent data, but also can accurately 

predict responses to new stimuli. 

Predicting brain responses to the movie 

The previous analyses show that our model accurately predicts brain responses for 

category-selectivity and retinotopic maps.  These maps reflect coarse-grained functional 

topographies of the brain: they are relatively spatially smooth, and neighboring vertices on 
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the cortex (especially vertices in the same brain region) have similar category-selectivity or 

adjacent receptive fields.  In the analysis below, we examine whether our model can 

accurately predict fine-grained functional topographies; that is, the vertex-by-vertex spatial 

patterns which vary substantially even within a brain region.  Specifically, we trained our 

model using half of the movie data and predicted the other half.  Rich visual, auditory, and 

social information is encoded in fine-grained spatial patterns of response (Haxby et al., 

2014) . 

We used a leave-one-subject-out cross-validation to evaluate the performance of 

our INT model.  Specifically, we derived tuning matrix T of the test participant based on the 

first half of the participant9s movie data, and combined it with S(2) (the part of S for the 

second part of the movie, derived from the training participants9 data) to predict the test 

participant9s responses to the second part of the movie.  The response pattern to each 

time point (i.e., TR) of the movie comprises 18,742 values, one for each cortical vertex.  

Similar to our previous work (Guntupalli et al., 2016), we trained a principal component 

analysis (PCA) based on the first half of the movie to reduce dimensionality from 18,742 

vertices to a few hundred principal components (PCs) and projected responses to the other 

half of the movie onto these PCs.  Analysis of whole-brain spatial patterns of response was 

based on these normalized PCs. 
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Figure 5. Predicting brain response patterns to movie time points (TRs).  (A) The 

similarities between measured and predicted brain response patterns for the first 100 time 

points of an example Forrest participant (the full matrices for Forrest and Raiders contain 

1818 and 1680 time points, respectively).  The red diagonal indicates that the model-

predicted response pattern at each time point was highly similar to the actual response 

pattern for the corresponding time point.  The response patterns were based on 150 

principal components (PCs) reduced from all cortical vertices.  (B) The similarities between 

measured response patterns of one participant and predicted patterns of another.  The 

less obvious diagonal suggests that our model predicted both the shared functional 

topographies (which generalize across participants) and each participant9s idiosyncratic 

functional topographies (which does not generalize across participants).  (C) The 

distribution of response pattern similarities across participants and time points.  When the 

measured and the predicted patterns were for the same time point of the movie, the 

average within- and between-subject similarities were 0.356 and 0.211, respectively, for 
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the Forrest dataset, and 0.408 and 0.209, respectively, for the Raiders dataset.  Cross-

time-point similarities were centered around 0.  This indicates that the predicted movie 

response patterns were highly specific to both the participant and the time point.  (D) 

Binary (2-alternative forced choice) movie time point classification based on a nearest-

neighbor classifier and pattern similarities.  The within-subject accuracy peaked at 99.0% 

for Forrest (180 PCs) and 98.6% for Raiders (250 PCs), and it was fairly robust across the 

number of PCs.  The peak between-subject accuracy was 95.2% (50 PCs) and 94.1% (60 

PCs), respectively.  (E) Multiclass movie time point classification.  The number of choices 

was 1818 for Forrest and 1680 for Raiders, and chance accuracy was less than 0.1% for 

both datasets.  The peak within-subject accuracy was 51.9% for Forrest (190 PCs) and 

44.8% for Raiders (220 PCs), and the peak between-subject accuracy was 20.1% for 

Forrest (90 PCs) and 15.8% for Raiders (80 PCs).  (F and G) Searchlight binary 

classification.  The accuracy was high for much of the cortex for both datasets, with the 

highest accuracies in temporal and occipital regions. 

 

The model-predicted response patterns to the movie were highly specific to both 

the time point and the participant.  Note that these model-predicted patterns are based on 

other participants9 neural responses projected into the native, fine-grained cortical 

topography of the left-out test participant9s brain.  The predicted pattern for a certain time 

point was much more similar to the measured response pattern to the same time point in 

the left-out test participants9 brains (Figure 5A diagonal) than responses to other time 

points (Figure 5A off-diagonal).  The average similarity between predicted and measured 

response patterns for the same time point was 0.356 for the Forrest dataset, and 0.408 for 

the Raiders dataset, whereas the average similarity between predicted and measured 

patterns from different time points was close to 0 for both datasets.  For the same time 

point, the measured response patterns were more similar to predicted patterns in a 

participant9s native space than to predicted patterns in other participants9 native spaces 

(Figure 5B diagonal).  The average similarity of the same time point for different 

participants was 0.211 for the Forrest dataset, and 0.209 for the Raiders dataset (Figure 

5C). 
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Considering the similarity between measured and predicted response patterns, we 

assessed whether we could classify which time point of the movie the participant was 

viewing based on these patterns.  We performed the classification analysis using a one-

nearest-neighbor classifier in two different ways.  First, we used binary classification (2-

alternative forced choice); that is, we compared the measured response pattern for one 

time point with the predicted patterns for the same single time point paired with each other 

time point to determine which pair is more similar, and then averaged across all pairs, 

resulting in a chance accuracy of 50%.  Second, we used multiclass classification; that is, 

whether the similarity with the same time point is higher than with all other time points.  

The number of time points was 1818 for Forrest and 1680 for Raiders, resulting in a 

multiclass chance accuracy less than 0.1% for both datasets.  We varied the number of 

PCs used in the analysis from 10 to 300 with an increment of 10 and repeated the analysis 

at each number of PCs.  For binary classification, the accuracy peaked at 99.0% for Forrest 

(180 PCs) and 98.6% for Raiders (250 PCs) (Figure 5D).  For multiclass classification, the 

peak accuracy was 51.9% for Forrest (190 PCs) and 44.8% for Raiders (220 PCs) (Figure 

5E).  Note that these classification results are robust against the number of PCs used, and 

the accuracy was stable with 1003300 PCs for both approaches and both datasets. 

The response patterns of different participants9 share some similarities (Figure 5C, 

dark orange), and we were able to classify which time point one participant was viewing 

based on the predicted patterns in another participants9 native space to some extent.  For 

the binary classification analysis, the peak accuracy was 95.2% for Forrest (50 PCs) and 

94.1% for Raiders (60 PCs) (Figure 5D, orange lines).  For the multiclass classification 

analysis, the peak accuracy was 20.1% for Forrest (90 PCs) and 15.8% for Raiders (80 
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PCs) (Figure 5E, orange lines).  Note that the classification accuracy for mismatching 

participants drops dramatically after peaking at 50390 PCs, whereas the classification 

accuracy for the matching participant monotonically improved until the number of PCs is 

roughly 200.  This suggests that a lot of the information in our model-predicted response 

patterns are specific to the test participant. 

To localize cortical areas where the fine-grained patterns are most accurately 

predicted, we performed a searchlight analysis (20 mm radius) with the binary 

classification approach.  Due to the limited number of vertices in each searchlight, we 

performed the classification analysis without dimensionality reduction.  We found that the 

accuracy was highest for visual, auditory, and corresponding association cortices (Figure 

5F & G) with significant classification across almost all of the cortex. 

Model performance with less data 

The datasets used so far in this work comprise relatively long-duration movie-

watching fMRI acquisitions (Forrest: 120 minutes; Raiders: 56 minutes), which may not be 

feasible for every fMRI experiment due to limited scanning resources.  How well does our 

INT model work with smaller amounts of movie data?  To address the question, we 

systematically manipulated the amount of movie data for the test participant and assessed 

our model performance for key benchmarking indices.  For the Forrest dataset, the 

durations were 5, 10, 15, 20, 30, 40, 50, 60, and 120 minutes; for the Raiders dataset, the 

durations were 5, 10, 15, 20, 28, and 56 minutes.  Depending on the analysis, up to half of 

the movie data (60 and 28 minutes, respectively) or the entire movie dataset was used. 
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Figure 6. Effect of data volume on model performance. (A) Effect of data volume on the 

distinctiveness of an individual9s tuning matrix (cf. Figure 2D). With 10 minutes or more 

movie data, the within-subject similarity of tuning matrices were more than 6 standard 

deviations away from between-subject similarities on average, corresponding to a 

participant identification error rate of less than 1/109.  (B) Effect of data volume on the 
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distinctiveness of local tuning matrices (cf. Figure 2E).  Different lines denote different 

percentiles across searchlights, from an average searchlight (50th percentile) to a highly 

distinctive searchlight (99th percentile).  (C) Predicting face-selectivity map with lower 

volumes of movie data (cf. Figure 3C).  Face-selectivity maps can be accurately predicted 

with 20 minutes of movie data, but the prediction performance continues to grow with 

more data.  Based on psychometrics and the quality of predicted maps, we estimated the 

amount of localizer data needed to achieve a similar quality (right panel).  For the Forrest 

dataset, 30 minutes of movie data works better than standard localizers (21 minutes).  

Dashed horizontal lines indicate Cronbach9s alpha (left panel) or the actual duration of 

localizer scans (right panel).  (D) Predicting retinotopic maps based on less movie data (cf. 

Figure 4C).  (E) Quality of predicted response patterns for movie time points based on a 

model estimated from varying volumes of data (classification accuracy; cf. Figure 5C and 

5D).  Binary classification results on the left panel; multiclass results on the right panel.  

Both were based on 100 PCs.  To summarize, the performance of our model continuously 

grows with more training data, but for certain tasks (e.g., individual identification, 

predicting category-selectivity and retinotopic maps), only a small amount of movie data 

(e.g., 30 minutes) is needed to achieve satisfying performance. 

 

With more movie data used for training, the distinctiveness of the modeled tuning 

matrix increased monotonically (Figure 6A).  With 10 minutes or more movie data, the 

average Cohen9s d was more than 6, which means within-subject similarity of tuning 

matrices exceeded between-subject similarities by more than six standard deviations on 

average.  Given that Fisher-transformed correlation similarities are approximately normally 

distributed, the chance of a between-subject similarity exceeding the within-subject 

similarity was less than 10-9.  In other words, if we were to identify an average individual 

using the tuning matrix based on 10 minutes of movie data, the error rate would be less 

than 10-9. 

We observed a similar effect of data volume on functional distinctiveness in local 

brain areas based on a searchlight analysis (Figure 6B).  The distinctiveness based on 

movie responses differs inherently across brain regions, and is highest in temporal and 

occipital regions and lowest in somatosensory and motor regions (Figure 2E).  Therefore, 
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instead of a simple average value, we assessed key percentiles of the distribution.  

Specifically, we assessed the effect of data volume on the 50th, 80th, 90th, 95th, and 99th 

percentiles of the distribution.  With 15 minutes of movie data, the Cohen9s d for the 95th 

percentile was 5.83 for the Forrest dataset and 7.19 for the Raiders dataset. 

The prediction performance for face-selectivity maps also increases with more 

movie data (Figure 6C).  For the Forrest dataset, the correlation between localizer-based 

and model-predicted maps was 0.557, 0.592, 0.610, and 0.618 for 15, 30, 60, and 120 

minutes of movie data, respectively.  For the Raiders dataset, the similarity was 0.684, 

0.702, and 0.716 for 15, 28, and 56 minutes of data, respectively.  Note that for the 

Forrest dataset, the similarity sometimes exceeded Cronbach9s alpha, which means the 

model-predicted map is more accurate than a map based on 4 localizer runs (21 minutes).  

The quality of localizer-based maps increases with more localizer data, which can be 

estimated using the Spearman3Brown prediction formula (Brown, 1910; Spearman, 

1910).  Based on Cronbach9s alpha and the Spearman3Brown prediction formula, we 

estimated the amount of localizer data needed to achieve similar accuracy as our model.  

For the Forrest dataset, the maps predicted by 15, 30, 60, and 120 minutes of movie data 

were as accurate as 17.0, 22.4, 26.2, and 30.1 minutes of localizer data, respectively.  For 

the Raiders dataset, the maps predicted by 15, 28, and 56 minutes of movie data were as 

accurate as 9.7, 11.4, and 12.8 minutes of localizer data, respectively. 

Note that brain responses to movies contain richer information than traditional 

experimental paradigms.  Besides the face-selectivity map, many different maps can be 

estimated using the same movie data, such as retinotopic maps.  With 15, 30, 60, and 120 

minutes of Forrest data, the correlation between localizer-based and model-predicted 
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amplitude maps were 0.744, 0.759, 0.766, and 0.774, respectively, for the eccentricity 

map; and 0.717, 0.732, 0.740, and 0.746, respectively, for the polar angle map (Figure 

6D).  These similarities were much higher than the corresponding Cronbach9s alpha values.  

Based on the Spearman3Brown prediction formula, the quality of the predicted maps was 

equivalent to 22.1, 27.7, 31.4, and 35.8 minutes of retinotopic scans, respectively. 

The prediction performance for fine-grained response patterns to the movie also 

increases with the amount of movie data (Figure 6E).  For the Forrest dataset, the accuracy 

for binary time point classification was 98.1%, 98.6%, and 98.9% for 15, 30, and 60 

minutes of training movie data, respectively.  For multiclass classification, the accuracy 

was 37.3%, 44.8%, and 50.3%, respectively.  Similar results were observed for the Raiders 

dataset, where the binary classification accuracy was 98.1% and 98.5% for 15 and 28 

minutes of training movie data, respectively, and the multiclass classification accuracy was 

38.8% and 43.1%, respectively. 

To sum up, the performance of our model grows continuously with more data.  For 

certain tasks (e.g., individual identification, predicting retinotopic maps), 10 to 20 minutes 

of movie data might be sufficient to achieve satisfying performance.  Additional data will 

further improve the performance of our model, at least up to the typical duration of a 

feature movie (2 hours). 

Discussions 

In this work, we present an individualized model of fine-grained brain functional 

organization.  Through a series of analyses, we demonstrate that (a) the individualized 

tuning functions recovered by our model for each person are highly reliable across 

independent data; (b) our model can accurately predict an individual9s topographic brain 
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responses to new stimuli, such as object categories and retinotopic localizers; (c) our 

model accurately predicts fine-grained response patterns to movies, which can be used to 

distinguish different time points (TRs) of the movie; and (d) the performance of our model 

continuously improves with more training data.  Besides high reliability and high prediction 

accuracy, our model also shows high specificity4the predicted responses tuned to a given 

individual are much more similar to the actual responses for that person than predicted 

responses tuned to other individuals.  To our knowledge, this is the first individualized 

model of brain function that offers vertex-level (voxel-level for volumetric data) spatial 

resolution. That is, our INT model provides out-of-sample generalization to new 

participants at the quality and spatial resolution of within-subject data acquisition. 

Like most biological systems, the functional architecture of the brain is  

<degenerate=, such that roughly the same information can be instantiated in structurally 

different ways across different brains (Edelman and Gally, 2001; Haxby et al., 2020).  In 

this work, we used searchlight hyperalignment algorithms (Guntupalli et al., 2016) to 

create a functional template of brain responses based on the training participants.  The 

template is a common, high-dimensional response space, and its column vectors 

(response time series of features) span the space of response time series across vertices 

and participants.  We took advantage of this property and created a set of basis vectors, so 

that we could express the response time series of each vertex and each participant as a 

linear combination of the same set of basis vectors.  These weights offer a way to directly 

compare the functional architecture of different participants and different vertices.  Based 

on these weights, we created the individualized tuning matrices that describe the brain 
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functional organization of each participant, which can be used to accurately predict the 

participant9s idiosyncratic responses to various stimuli. 

The present model provides a theoretical advance over previous hyperalignment 

algorithms by capturing not only topographic idiosyncrasies, but also inter-individual 

differences in representational geometry. The first component of the model introduces a 

new hyperalignment algorithm that we refer to as warp hyperalignment (WHA).  WHA 

warps the representational geometry of one participant (or the template) to match the 

unique representational geometry of another participant, and thus it captures both 

topographic idiosyncrasies and representational idiosyncrasies.  The second component of 

the model derives individualized tuning matrices in each participant9s native cortical 

topography from the WHA model, which we refer to as the Individualized Neural Tuning 

(INT) model.  In contrast to our earlier hyperalignment algorithms for creating a common 

model information space with individual transformation matrices calculated using the 

Procrustes algorithm (which preserves representational geometry) (Busch et al., 2021; 

Feilong et al., 2021, 2018; Guntupalli et al., 2018, 2016; Haxby et al., 2020, 2001; Jiahui 

et al., 2020), WHA calculates transformations using ensemble regularized regression that 

allows for individualized representational geometries.  WHA also introduces a new way to 

calculate a template matrix M in a single step that more accurately reflects the central 

tendency for cortical topography and is not biased towards the topography of a <reference 

brain=.  The common model space in our previous models, M, had as many dimensions as 

cortical vertices (approximately 20,000 to 60,000).  In the INT model, a change of basis 

from M to S recasts the common model space into a smaller orthogonal basis with 

approximately 3,000 dimensions.  In our previous algorithms we studied individual 
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differences in responses and connectivity as residuals around shared content in the model 

space, M.  In the INT model, by contrast, we model individual differences in the 

transformation matrices, T, which capture individual differences in both content and 

cortical spatial topography of functional patterns in participants9 native cortical 

topographies.  Because individual differences in representational geometry are now 

contained in the individual transformation matrices, T, the new model space, S, is a neural 

data-driven stimulus matrix that is not confounded with individual differences in 

representational geometry.  Moreover, comparable estimates of T can be calculated from 

responses to different stimuli, giving the INT model more flexibility in its application, as well 

as greater precision.  In our previous algorithms, we performed between-subject 

classification of response patterns after projecting all participants9 data into the common 

model space, M.  In the INT model, we perform between-subject classification by 

comparing each test participant9s response pattern in their native space to response 

patterns from other participants projected into that test participant9s native space. 
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Figure 7. Schematic illustration of modeling a participant9s brain functional organization as 

a linearly transformed functional template.  (A) A participant9s brain responses constitute a 

data matrix, where rows are stimuli (e.g. time points in a movie) and columns are cortical 

vertices (left).  Multiple vertices form a high-dimensional space, where each vertex is a 

dimension, and each stimulus is a point in the space (middle).  Information is encoded in 

the distances between the points.  Such information can be summarized using a 

representational dissimilarity matrix (RDM), where each entry is the (dis)similarity between 

a pair of stimuli (right).  (B) The RDM of the template resembles that of a participant 

(right), but the data matrix is usually quite different (left).  This is because different brains 

encode the same information using different cortical topographies4the vertices 

collectively perform similar functions across individuals, but the function for each single 

vertex is quite different across individuals.  (C) The participant9s idiosyncratic topographies 
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can be predicted by a rotation of the template9s feature space (middle).  The rotation 

changes the topographies of the template and makes the spatial patterns (rows of the data 

matrix) more similar to the participant9s (left), without changing the information content, or 

the RDM (right).  (D) A linear transformation of the template can fully predict a 

participant9s responses by modeling both the participant9s idiosyncratic topographies and 

idiosyncratic information content; that is, both the <what= and <where= of a participant9s 

brain functional organization.  Note that the schematic illustration is oversimplified; a 

typical fMRI data matrix contains thousands of stimuli/time points (rows) and tens of 

thousands of vertices (columns), and a real neural feature space is a high-dimensional 

space (hyperspace). 

 

A major objective of studying individual differences in brain functional organization 

is to build biomarkers that are associated with cognition, behavior, and disorders.  Our 

model focuses on semi-shared components of brain functional organization and is ideal for 

this purpose.  By <semi-shared= we mean that the same component exists in multiple 

brains but differs in amplitude and topography.  These reliable variations across individuals 

may covary with phenotypes of interest and provide accurate biomarkers.  A fully shared 

component, which is identical across brains, cannot covary with other variables by 

definition.  A fully idiosyncratic component that only exists in one brain, on the other hand, 

cannot be used to build generalizable models.  For example, a specific component that 

only exists in one schizophrenic brain may be of interest for a case study but cannot be 

used to diagnose other schizophrenic individuals because it doesn9t exist in other brains.  

Our model focuses on how the same set of components are instantiated in different forms 

across the functional organization of different brains.  Given the large number of 

components (over 3,000 in the current implementation) and observation that they vary 

across brains in a variety of ways, these semi-shared components provide a promising 

basis for developing biomarkers.  Similar to our previous work (Feilong et al., 2018), brain 
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regions that have the most shared and synchronized responses (Guntupalli et al., 2016; 

Hasson et al., 2010, 2004) are also the regions showing the most reliable differences, 

suggesting the great potential of using semi-shared components to study individual 

differences. 

In this work we evaluated our model using two different movie datasets, both of 

which yielded highly similar results.  The Forrest dataset was collected using a 3 T Philips 

Achieva dStream MRI scanner in Germany, with German-language audio, a TR of 2 

seconds, and a spatial resolution of 3 mm.  The Raiders dataset was collected using a 3)T 

Siemens Magnetom Prisma MRI scanner in the US, with English-language audio, a 

simultaneous multi-slice acceleration factor of 4, a TR of 1 second, and a spatial resolution 

of 2.5 mm.  Despite these differences, our model worked well for both datasets, suggesting 

it is robust over differences in scan parameters and other details.  Recently many large-

scale neuroimaging datasets have become openly available (Alexander et al., 2017; Horien 

et al., 2020; Nastase et al., 2021; Snoek et al., 2021; Taylor et al., 2017), and many have 

naturalistic movie-viewing sessions similar to our datasets. The synergy between our 

individualized model of brain function and large-scale neuroimaging datasets offers a great 

opportunity to study individual differences in brain functional organization and their 

correlates with various phenotypes. 

In this work we focused on neural response profiles to the movie.  However, in 

theory, the algorithm itself can be applied to any kind of data matrices.  In our previous 

hyperalignment algorithms, the searchlight procedure originally developed based on 

response profiles (RHA) (Feilong et al., 2018; Guntupalli et al., 2016; Haxby et al., 2020; 

Jiahui et al., 2020) has been applied successfully to connectivity profiles (CHA) (Feilong et 
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al., 2021; Guntupalli et al., 2018; Nastase et al., 2020) and a hybrid of both (H2A) (Busch 

et al., 2021); and the original algorithm developed based on fMRI data of humans (Haxby 

et al., 2011) has been applied successfully to electrophysiology recording data of rodent 

neurons (Chen et al., 2021).  We leave it to future works to assess the generalizability of the 

INT model to other functional profiles, modalities, and species. 

 

Methods 

Overview of the INT model 

The fine-grained functional architecture of the brain encodes rich information 

(Haxby et al., 2020, 2014, 2001) and affords reliable measures of individual differences in 

brain functional organization that are predictive of differences in behavior (Feilong et al., 

2021, 2018).  In this work, we present the individualized neural tuning (INT) model, an 

individualized model of fine-grained brain functional organization, to better model these 

differences.  The INT model has three key features.  First, it has fine spatial granularity, 

which affords access to the rich information encoded in vertex-by-vertex (or voxel-by-voxel) 

patterns.  Second, it models each individual9s idiosyncratic functional organization as well 

as that individual9s topographic projection onto the cortex, and thus it can be used to study 

both functional differences and topographic differences.  Third, it models the 

individualized response tuning of cortical vertices in a way that generalizes across stimuli, 

and therefore the model parameters can be estimated from different stimuli, such as 

different parts of a movie that have different durations.  These three features make the INT 

model a powerful tool to study individual differences in fine-grained functional organization 

of the brain. 
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The INT model is based on the conceptual framework of hyperalignment (Guntupalli 

et al., 2018, 2016; Haxby et al., 2020, 2011).  Hyperalignment models the fine-grained 

functional organization of each brain as a high-dimensional feature space, and it creates a 

high-dimensional common space based on the shared functional profiles of a group of 

participants.  Hyperalignment also provides a way to transform between different spaces 

using a high-dimensional rotation, which can be used to project the data from the common 

space to a participant9s native anatomical space, from a participant9s space to the 

common space, or from a participant9s space to another9s (Jiahui et al., 2020).  This high-

dimensional rotation resolves topographic differences, which is critical to study individual 

differences in fine-grained functional organizations (Feilong et al., 2021, 2018). 

The INT model starts with creating a functional template M (a matrix of shape t × v) 

based on the data of the training participants (n 3 1 for leave-one-subject-out cross-

validation), which corresponds to the hyperalignment common space.  The template M has 

the same shape as the data matrix B of a participant, and its function and topographies are 

representative of the group of participants used to create the template.  The data matrix 

B(p) of the participant p is modeled as a matrix multiplication of the shared functional 

template M and an idiosyncratic linear transformation W(p) (v × v).  We use a new 

hyperalignment algorithm (<warp hyperalignment=, WHA) to derive the transformation 

instead of Procrustes-based hyperalignment, so that the transformation is a linear 

transformation instead of an improper rotation.  An improper rotation (rotation and 

reflection) changes how the information is encoded on the cortex (<where=) but it does not 

change the content information (<what=), and thus it only accounts for topographic 

differences across individuals.  A linear transformation allows scaling and shearing, which 
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also warp the representational geometry of the template to model the idiosyncratic 

representational geometry of each participant, and therefore it accounts for both 

topographic (<where=) and functional (<what=) differences. 

With warp hyperalignment, we obtain a modeled data matrix �"("), which are the 

brain responses that can be accounted for by the functional template and the linear 

transformation (i.e., MW(p)).  To derive a measure of neural response tuning that generalizes 

across stimuli, we decompose �"(") into two matrices, a stimulus matrix S (t × k) shared by 

all participants, and a tuning matrix T(p) (k × v) that is specific to the participant p.  With the 

decomposition, the temporal information, such as contents of a movie over time, is 

factored into S.  In the tuning matrix T(p), the response tuning function of each cortical 

vertex is depicted using a column vector of k elements, which is the same for all stimuli. 

To sum up, with the INT model we use the tuning matrix T(p) to model each 

participant9s individualized functional organization.  The tuning matrix has a fine-grained 

spatial granularity, models the participant9s topographic and functional idiosyncrasies, and 

generalizes across stimuli.  In the next few sections, we describe in detail the steps we 

used to derive the tuning matrices and to benchmark the reliability, validity, accuracy, and 

specificity of our INT model. 

Building the functional template 

In each cross-validation fold, we built a functional template based on the training 

participants and modeled each test participant9s data matrix as the linearly transformed 

template in a high-dimensional space.  Both the data matrix and the functional template 

have the same shape t × v; that is, the number of time points by the number of cortical 
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vertices.  The template was created in a way that its functional properties4both in terms 

of representational geometry and cortical topography4are representative of the training 

participants. 

Searchlight-based algorithm 

We built the template using a searchlight-based algorithm.  For each searchlight, we 

built a local template based on all vertices within the searchlight.  We then combined all 

the local templates into a whole brain template.  Each local template contains modeled 

response profiles of vertices in the corresponding searchlight.  Each vertex is included in 

multiple searchlights, and each searchlight and the corresponding local template offers a 

modeled response profile for the vertex.  We combined these modeled response profiles of 

the same vertex into a single response profile for the vertex, which is the vertex9s response 

profile in the whole brain template.  In our previous algorithms, we combined local 

searchlight templates by adding together the modeled response profiles of the vertex to 

form the final response profile of the vertex (Guntupalli et al., 2018, 2016).  In this work, 

we instead used a distance-based weighted average instead of summation.  Specifically, 

the weight was computed as 
$%&

$
, where r is the searchlight radius (20 mm), and d (0 £ d £ 

r) is the distance between the vertex and the center of the searchlight.  In other words, the 

weight is 1 when the center of the searchlight is the vertex itself, and close to 0 when the 

vertex is close to the boundary of the searchlight.  This improved procedure makes the 

searchlights closer to the vertex contribute more to the final modeled response profile of 

the vertex (due to weighting local templates), and the scale of the modeled response 
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profile for a vertex similar to the actual response profile for that vertex (due to using 

averaging instead of summation). 

Building local templates 

In order to estimate the INT model, we must first create a functional template 

capturing the consensus functional organization (which we refer to as M).  Within each 

searchlight, we created a local template using a PCA-Procrustes algorithm, and the matrix 

shape of the local template is the same as a local data matrix (i.e., the number of features 

is the same as the number of vertices in the searchlight, not the total number of vertices).  

First, we concatenated all training participants9 data matrices in the searchlight along the 

features dimension to form a group n × v; that is, the number of participants times the 

number of vertices in the searchlight.  We then applied principal component analysis (PCA) 

to this concatenated data matrix. To keep the total variance the same for a single 

participant9s local data matrix and the local template, we divide the PC time series by :�.  

Similar to our previous work (Haxby et al., 2011), here we chose to make the 

dimensionality of the local template the same as a single participant9s local data matrix, 

thus retaining the first v PCs and discarding the remaining.  Note that the PCA is based on 

the data of all training participants, and thus the PCs summarize across all vertices and 

participants; each PC is a weighted sum of all vertices (in a given searchlight) across all 

training participants.  The PCs capture the representational geometry for a given in 

searchlight in a way that is representative of the representational geometries of the training 

participants.  In other words, the PCs provide a template that models the shared function 

of the searchlight. 
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We then used the orthogonal Procrustes algorithm to <align= the PCs to the training 

participants9 data, so that the functional topographies of the local template are also 

representative of the training participants.  Mathematically, we want to find a rotation 

matrix R which minimizes the topographic differences without changing the information 

content. 

� = argmin' -.�(())� 2	�(").*+
,

"-.

 

In this equation �(()) is the PC matrix, B(p) is the local data matrix of the p-th 

participant, n is the number of participants, and 6	6* is the Frobenius norm. 

To find the solution R, we applied the orthogonal Procrustes algorithm to 

concatenated data matrices.  This time, we concatenated all training participants9 data 

along the samples (i.e., time points) dimension to form another group data matrix, where 

the number of rows is n × t; that is, the number of participants times the number of time 

points.  We copied the template PC matrix n times and concatenated them in the same 

way, so that the concatenated PC matrix had the same shape as the concatenated group 

data matrix.  We applied the orthogonal Procrustes algorithm to these two data matrices to 

get a rotation matrix R. 

� = argmin' 34�(.)î�(,)6 2 4�(())î�(())

6 �3
/

+

 

Note that the solution for this formula is the same as the previous one.  However, 

because the matrices have been concatenated, the solution of the orthogonal Procrustes 
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algorithm can be computed directly based on the singular value decomposition of the 

covariance matrix, which provides an analytical solution to the problem. 

Similar to Procrustes-based hyperalignment algorithms, this rotation matrix R does 

not change the representational geometry or the information content in the data matrix.  

Instead, it changes the functional topographies so that one data matrix is <aligned= to 

another.  In this case, a single rotation is estimated that best aligns the coordinate axes 

(i.e., PCs) of the template matrix and the coordinate axes (i.e., cortical vertices) of all 

participants, so that the functional topographies of the rotated template matrix maximally 

resemble those of the training participants.  The final local template M is the PC matrix 

multiplied by the rotation matrix R: � = �(())�. 

In short, we used the PCA-Procrustes algorithm to create a local template for each 

searchlight, which is representative of the training participants both in terms of 

representational geometry and cortical topography.  The PCA step ensures that the 

functional profiles and representational geometry of the local template are close to those of 

the training participants, and the orthogonal Procrustes step ensures that the 

topographical distribution of these functions on the cortex is also representative of the 

training participants.  After iterating over all searchlights, the local templates were 

combined into a single whole brain template using the distance-based weighted average 

method described above. 

Modeling response tuning functions 

We modeled each participant9s response data matrix B(p) as the template data 

matrix M multiplied by a linear transformation W(p), plus some noise E: 
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�(") = �"(") + � = ��(") + � 

Unlike Procrustes-based hyperalignment (Haxby et al., 2011), in which the 

transformation matrix W(p) (often denoted as R) is a rigid improper rotation, the linear 

transformation W allows warping of representational geometry.  Consequently, individual 

differences in representational geometry are embedded in the transformation matrices, W, 

rather than in the individual information projected into the model space, M.  We name the 

new algorithm <warp hyperalignment= (WHA) to emphasize its capacity to warp 

representational geometries and to distinguish it from previous algorithms. 

We computed the linear transformation W(p) using a searchlight-based algorithm, 

similar to the procedure we used to create the template M.  That is, for each of the 

searchlights, we computed a local transformation, and these local transformations were 

combined using the distance-based weighted average. 

Typically, a model needs to be regularized to avoid overfitting and to increase its 

generalizability to new data.  For the orthogonal Procrustes algorithm, the linear 

transformation W(p) is constrained to be orthogonal (i.e., an improper rotation in a high-

dimensional space), which can be considered as a strong regularization.  In this work, we 

allowed scaling and shearing in the transformation, which models individual differences in 

function, such as representational geometry.  We used two methods to avoid overfitting in 

model estimation.  First, we used ridge regression with a regularization parameter of 103 

based on independent pilot data not presented here.  Second, we used an ensemble 

method which we call k-fold bagging.  That is, for each participant and each searchlight, 

we trained 100 ridge regression models based on bootstrapped samples (bootstrapped 
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time points; sampled with replacement), and we averaged the weights of these 100 models 

to serve as the weights for the final model (described in detail below). 

Ensemble ridge regression models 

We used ensemble learning (Zhou, 2012) to improve the accuracy and 

generalizability of our models.  Specifically, we adapted the bootstrap aggregating 

(<bagging=) algorithm (Breiman, 1996) for our time series data.  Bagging is commonly 

used to reduce model variance and avoid overfitting by averaging across models trained on 

bootstrapped samples.  It also provides estimation of model performance on new data 

through out-of-bag cross-validation.  During out-of-bag cross-validation, the predicted 

value of a data point is the average prediction of models that were not trained with the time 

point (i.e., out-of-bag models).  In this case, this data point serves as the test data and the 

other time points as training data.  Typically, bootstrapped samples are randomly drawn 

with replacement from the original sample.  A participant9s fMRI data (e.g., responses to 

movies) usually comprises hundreds or thousands of time points.  With the classic bagging 

algorithm, it often happens that some time points are drawn by all bootstrapped samples, 

which makes them inappropriate for model evaluation using out-of-bag cross-validation 

(i.e., no out-of-bag models for these data points).  To use as much data as possible for 

cross-validation, we augmented the classic bagging algorithm with a k-fold scheme. 

In each k-fold repetition, we first divide all time points randomly into k folds.  For a 

given fold, we set aside the data in that fold to serve as candidate test data, while data in 

the other k 3 1 folds serve as candidate training data.  We then drew a bootstrapped 

sample from the candidate training data and used it to train a model.  This procedure 

guarantees that the candidate test data can be used for model evaluation because they 
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were not used in model training.  Some candidate training data may not get chosen by the 

bootstrapped sample and these data also serve as test data for model evaluation.  In other 

words, for each model, the actual test data includes both candidate test data and the 

candidate training data not drawn by the bootstrapped sample.  After an iteration over all k 

folds, we obtained k trained models.  For each data point, our resampling procedure 

ensures that at least one of the k models was not trained with the data point.  In this work, 

we used k = 5 and repeated the k-fold scheme for 20 times, and thus the prediction for 

each data point was the average of at least 20 out-of-bag models. 

To account for temporal autocorrelation caused by the hemodynamic response 

function, we also introduced temporal <buffers= for out-of-bag cross-validation.  That is, 

when we evaluate model performance on a certain time point, we exclude not only models 

trained with the time point itself, but also models trained with time points less than 10 s 

away from the time point used for evaluation.  For example, for a 2 s TR length, when we 

evaluate model performance for the i-th TR, we exclude models trained with any of the 11 

TRs from i 3 5 to i + 5.  To avoid removing too many buffer time points from the training 

data, we divided time points into groups by grouping them into 10 s segments (5-TR 

segments for a 2 s TR), and assigned all time points in the same segment to the same fold. 

The adapted bagging algorithm and the out-of-bag cross-validation procedure were 

only based on the training data (for the test participant).  Similar to the inner-loop of nested 

cross-validation, the training and test folds discussed in this context were both part of the 

training data.  Because independent data were used in out-of-bag evaluation, this 

procedure provides an unbiased way to estimate model performance on new data, such as 

the actual test data. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.15.492022doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.15.492022
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Separating stimulus and tuning information 

Based on the whole-brain functional template M and the linear transformation W(p) 

derived by warp hyperalignment, we obtained a modeled brain response matrix �"(") (t × v) 

for the participant p, which are the responses of the participant that can be accounted for 

by the linearly transformed template.  To model the participant9s neural response tuning 

independent of stimulus information, we derived a tuning matrix T(p) (k × v) by a matrix 

decomposition of �"("). 
This matrix decomposition factors the temporal information into the matrix S (t × k).  

The columns of S are a set of basis response profiles (i.e., response time series to the 

movie).  The response profile of each vertex is modeled as a linear combination (i.e., 

weighted sum) of the basis profiles, and the weights of the linear combination are the 

corresponding column in T(p), which is a column vector of k elements.  This column vector is 

independent of the stimulus, and it reflects the response tuning function of the vertex.  We 

refer to this column vector as the tuning profile of the cortical vertex to distinguish it from 

the response profile (response time series). 

To use the tuning matrices to model differences in neural tuning across vertices and 

across individuals, ideally the tuning matrices should have several properties: (a) cortical 

vertices that have larger differences in response time series also have larger differences in 

their tuning profiles; (b) individuals who are more similar based on their response profiles 

are also more similar based on their tuning matrices; (c) the same tuning matrix can be 

estimated from different stimuli, such as different parts of the movie with different 

durations.  These objectives motivate us to find a matrix S with three properties: (a) the 
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columns are orthogonal to each other; (b) each column has unit variance; and (c) the 

columns of S form a basis set of response profiles.  Orthogonality is necessary to make S a 

similarity transformation, so that differences in T(p) across vertices and across individuals 

are proportional to their differences in �"(").  Unit variance ensures that the scale of the 

estimated T(p) is the same for different amounts of data, such as data matrices from 

different parts of the movie.  That the columns of S form a set of basis response profiles 

means the response profile of each vertex and each participant can be expressed as a 

linear combination of the basis profiles.  In other words, S can be used to fully model B(p) 

and �"(") without any loss of information. 

There are many choices of S which have all these properties and work similarly well 

for our purposes.  In this work, we use the normalized principal components (PCs) from a 

group-PCA.  The normalized PCs work well in practice, as is shown by the benchmarking 

analyses.  Furthermore, due to the nature of PCA, they provide an easy way to reduce data 

dimensionality when less dimensions are desired.  In this work we did not reduce 

dimensionality, and thus k equals the rank of the concatenated matrix, which is the same 

as the number of time points in the movie in practice (approximately 3000).  We performed 

the group-PCA using a singular value decomposition (SVD) on the concatenated data 

matrices of all participants, and rescaled the first matrix U to get S. 

[�(.), �(+), ï , �(,)	] = ���0 

� = 	:�� 

Based on the conceptual framework of hyperalignment (Haxby et al., 2020, 2011), 

different brains share the same functional basis.  In practice, the shared functional basis is 
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instantiated as a hyperalignment common space, which is a functional template.  The 

response profiles of the template9s vertices form a set of basis response profiles, and the 

response profile of each cortical vertex is expressed as a linear combination of these basis 

response profiles.  The weights of the linear combination are the elements in the 

corresponding column of the transformation matrix.  Note that the transformation matrix 

based on the searchlight algorithm is highly sparse, and the weights of the linear 

combination are non-zero only for local neighborhoods of vertices (i.e., vertices included in 

the same searchlight) in the template.  As a result, the response profile of each vertex is 

modeled using a different set of vertices, whose response profiles highly covary due to 

spatial autocorrelations. 

In the INT model, the columns of matrix S serve as the set of basis response profiles, 

which are orthogonal vectors with unit variance.  The response profiles of all vertices and 

all participants are all expressed as a linear combination of the same basis set, which 

affords the study of functional tuning differences across vertices and across individuals 

based on tuning matrices, whose columns comprise the linear combination weights.  In 

other words, we are replacing local basis sets (response profiles of adjacent vertices) with a 

single global basis set of response profiles (columns of S).  Conceptually S is also a 

common space, but different from M, the features in S are completely virtual and do not 

correspond to specific cortical loci. 

The features in S are neural data-driven stimulus descriptors.  They are derived from 

shared brain responses and reflect the primary ways cortical vertices response to stimuli.  

Each stimulus (e.g., movie time point) is described as a row in S, which is a vector of k 

elements, and each element indexes to what extent a virtual feature responds to the 
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stimulus.  In other words, the row vector describes the key features of the corresponding 

stimulus based on neural responses.  Therefore, here and elsewhere we refer to S as the 

stimulus matrix. 

Because stimulus information is factored into S, the information in the tuning matrix 

T(p) is neural response tuning of cortical vertices that is the same for a wide variety of 

stimuli from the space spanned by a naturalistic, audiovisual movie stimulus.  For example, 

when we divide the neural response data matrix B into two halves, each half can be 

modeled using the corresponding half of S and the same T(p) (Figure 1B).  This property has 

an important implication for T(p):  Once the functional template is created, the same 

individualized T(p) can be estimated from independent data of the same individual (e.g., 

different parts of a movie), and the amount of data used to estimate T(p) can be less than 

the amount of data used to create the functional template (e.g., responses to part of the 

movie instead of the entire movie). 

Furthermore, the INT model can be extended to model responses to stimuli that 

were not used to create the template.  Given the neural responses to new stimuli from a 

group of participants (which can be a subset of all participants) and their tuning matrices, 

the stimulus descriptors S(new) for the new stimuli can be estimated (Figure 1C) and used to 

predict other participants9 responses to the new stimuli. 

In the sections below, we use a series of analyses to demonstrate the reliability, 

validity, accuracy, and specificity of our INT model.  In the first analysis, we show that the 

tuning matrices estimated from different parts of the movie are highly similar for the same 

individual but dissimilar for different individuals.  In the second and third analysis, we show 

that individualized responses to new stimuli (category selectivity and retinotopic maps) can 
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be accurately predicted by estimating the stimulus descriptors for the new stimuli.  In the 

fourth analysis, we show that the INT model can accurately predict individualized fine-

grained spatial response patterns, such as responses to a specific time point of a movie.  In 

the fifth analysis, we show that 10320 minutes of movie data are sufficient for satisfying 

performance of the INT model, but the performance grows continuously with more data. 

Datasets 

The Forrest dataset 

The Forrest dataset is part of the Phase 2 data of the studyforrest project (Hanke et 

al., 2014).  It contains 3 T fMRI data collected from 15 right-handed German adults (mean 

age 29.4 years, 6 females) during movie watching, retinotopic mapping, and object 

category localizers (Hanke et al., 2016; Sengupta et al., 2016).  Each participant9s movie 

data comprised eight runs of approximately 15 minutes each, while the participant 

watched a shortened version of the audiovisual feature movie Forrest Gump.  In total, 3599 

volumes were collected over the course of 2 hours of scanning.  The retinotopic data 

comprises four 3-minute runs (12 minutes in total), and the four runs corresponded to 

expanding rings, contracting rings, clockwise wedges, and counterclockwise wedges.  The 

object category localizer data contains 4 runs that are 5.2 minutes each (20.8 minutes in 

total).  Each run contains two 16 s blocks for each of the 6 categories (bodies, faces, 

houses, objects, scenes, and phase scrambled images).  During each block, 16 grayscale 

images were displayed for 900 ms each with a 100 ms interval.  During the object category 

localizer scans, the participant performed a central letter reading task to maintain 

attention and fixation.  All these data were acquired with a Philips Achieva dStream MRI 

scanner and a gradient-echo EPI sequence, with which a whole brain image containing 3 
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mm isotropic voxels was acquired every 2 seconds.  More details of these datasets can be 

found in the data descriptors for the 3 T studyforrest data (Hanke et al., 2016; Sengupta et 

al., 2016). 

The Raiders dataset 

The Raiders dataset contains data from 23 participants (mean age ± SD: 27.3 ± 2.4 

years; 12 females) while they were watching the second half of the movie Raiders of the 

Lost Ark (Nastase, 2018).  The movie scan comprised 4 runs that were 14315 minutes 

each (850, 860, 860, and 850 seconds, respectively).  In total, 3420 volumes were 

collected for each participant, with a 1 second TR and 2.5 mm isotropic voxels.  The movie 

clips of adjacent runs had 20 seconds of overlapping content, and thus we removed 10 

seconds of data from the end of first run and 10 from the beginning of the second run 

during analysis.  After chopping off the overlapping content, the remaining movie data 

were 14 minutes (840 TRs) per run and 56 minutes in total.  Among the 23 participants, 20 

also had localizer data.  The localizer data were the same data used in (Jiahui et al., 2020).  

It was collected using the same scan protocol as the movie, and it comprised four runs of 

3.9 minutes each (15.6 minutes in total).  Each run comprised 10 blocks, 2 per category 

(faces, bodies, scenes, objects, and scrambled objects), and each block was 18 seconds 

long.  Each block comprised 6 video clips that were 3 seconds each.  During the localizer 

scans, the participant performed a 1-back repetition detection task based on the video 

clips. 

The Raiders dataset was collected using a 3 T Siemens Magnetom Prisma MRI 

scanner with a 32-channel head coil at the Dartmouth Brain Imaging Center, with the same 

scan protocols as (Visconti di Oleggio Castello et al., 2020).  Each second, a volume was 
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collected with 2.5 mm isotropic voxels and whole brain coverage.  The volume comprised 

52 axial slices collected in an interleaved fashion with gradient-echo echo-planar imaging.  

Each slice had a 96 × 96 matrix and an FOV of 240 × 240 mm3.  The TE was 33 ms, flip 

angle was 59°, and the phase encoding direction was anterior3posterior.  The imaging was 

accelerated using a simultaneous multi-slice (SMS) factor of 4 and no in-plane 

acceleration.  All participants gave written, informed consent, and were paid for their 

participation.  The study was approved by the Institutional Review Board of Dartmouth 

College. 

MRI Preprocessing 

We ran fMRIPrep (Esteban et al., 2019) on all MRI data, using version 20.1.1 for the 

Forrest dataset, and 20.2.0 for the Raiders dataset.  After fMRIPrep, functional data from 

all participants were projected onto a cortical surface and were in alignment with the 

fsaverage template (Fischl et al., 1999) based on cortical folding patterns.  We then 

performed downsampling and nuisance regression in the same way as (Feilong et al., 

2018).  First, we downsampled functional data to a standard cortical surface mesh with 

9372 vertices for the left hemisphere and 9370 vertices for the right hemisphere 

(approximately 3 mm vertex spacing; 10242 per hemisphere before removing non-cortical 

vertices).  Then, we performed a linear regression to partial out nuisance variables from 

functional data separately for each run.  The nuisance regressors include 6 motion 

parameters and their derivatives, global signal, framewise displacement (Power et al., 

2014), 6 principal components from cerebrospinal fluid and white matter (Behzadi et al., 

2007), and polynomial trends up to the 2nd order.  Finally, we normalized the residual time 

series of each vertex to zero mean and unit variance. 
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Assessing the reliability and specificity of tuning matrices 

To make the tuning matrices a useful measure of brain functional organization, they 

need to have high reliability and specificity.  That is, tuning matrices of the same individual 

based on independent data should be similar, and tuning matrices from different 

individuals should be dissimilar.  Therefore, we split each participant9s movie data into two 

parts, and estimated a tuning matrix based on each part of the movie.	
�"(",.) = �(.)�(",.) 
�"(",+) = �(+)�(",+) 

Where �(") =	 C2(",$)

2(",&)
D, and 	�	 = 	 C3($)

3(&)
D.		T(p,1)	and T(p,2) are both estimations of T(p), but 

they are estimated based on different parts of the movie (independent data). 

To assess the reliability and specificity of the modeled tuning matrices, we 

computed a cross-movie-part similarity matrix for each dataset based on the estimated 

tuning matrices.  The matrix has a shape of n × n, where each row corresponds to a tuning 

matrix based on the first part of the movie, each column corresponds to a tuning matrix 

based on the second part of the movie, and each entry is the correlation-based similarity 

between the two matrices.  The diagonal of the matrix is the within-subject similarities, and 

the off-diagonal elements are between-subject similarities.  A clear difference between 

diagonal and off-diagonal elements indicates a substantial difference between within-

subject and between-subject similarities. 

Multi-dimensional scaling 

To better visualize the similarities between estimates tuning matrices, we performed 

multi-dimensional scaling (MDS) using the T-distributed Stochastic Neighbor Embedding 
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(t-SNE) algorithm (Van der Maaten and Hinton, 2008).  We used a full individual 

differences matrix (i.e., 2n × 2n elements, comprising both same-movie-part and cross-

movie-part dissimilarities based on correlation distance) as input to the t-SNE algorithm.  

The 2n tuning matrices were projected to a 2D space by t-SNE.  Given any MDS algorithm 

would unavoidably distort distances during the projection, we used a perplexity parameter 

of 10 to reduce the distortions of distances between closer neighbors, which in this case 

are within-subject dissimilarities and several smallest between-subject dissimilarities.  

These dissimilarities are key to determine whether an individual can be easily identified 

based on the tuning matrix and a nearest-neighbor classifier. 

Distribution of tuning matrix similarities 

For each tuning matrix, we extracted its within-subject similarity and between-

subject similarities based on the cross-movie-part similarity matrix.  These similarities 

correspond to the diagonal (within-subject) and off-diagonal (between-subject) elements of 

a row of the similarity matrix.  We plotted the distribution of the within-subject similarity 

and between-subject similarities for each tuning matrix in Figure 2C, sorted by within-

subject similarity. 

Distinctiveness index 

For all tuning matrices, we found that within-subject similarity was far greater than 

the distribution of between-subject similarities.  In other words, any participant can be 

identified by the modeled tuning matrix with an accuracy of 100% based on a simple one-

nearest-neighbor classifier.  To better describe how distinctive an individual is based on 

the modeled tuning matrix, we computed the distinctiveness index based on Cohen9s d: 
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distinctiveness = 	within-subject	similarity 2 mean(between-subject	similarity)SD(between-subject	similarity)  

The distinctiveness index is a measure of effect size, and thus is comparable across 

datasets with different sample sizes.  The similarities used to compute the distinctiveness 

index were Fisher-transformed correlation similarities, and therefore they approximately 

follow a normal distribution, and the distinctiveness index can serve as a z-statistic.  Using 

the cumulative distribution function of the standard normal distribution, an identification 

error rate can be estimated based on the distinctiveness index. 

Searchlight analysis 

To locate the brain regions where the functional organization is most distinctive, we 

performed a searchlight analysis (Kriegeskorte et al., 2006) using a searchlight radius of 

20 mm.  Within each searchlight, we computed a distinctiveness index for each tuning 

matrix based on vertices in the searchlight, and we averaged the distinctiveness index 

across all tuning matrices to get an average distinctiveness index for the searchlight.  We 

repeated this process for each searchlight and obtained an average index for each 

searchlight.  These average distinctiveness indices formed a map of distinctiveness for 

each dataset (Figure 2E). 

Predicting category-selectivity maps 

The previous analyses have shown that our model has high reliability and specificity.  

The modeled brain functional organization is highly similar for the same individual (based 

on independent data), and much less similar for different individuals.  In this part, we 

tested the generalizability of our model.  Specifically, we tested whether our model could 

predict responses to new stimuli that were not used in model training.  Therefore, we 
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trained our model based on the movie data and tested whether the model can be used to 

predict responses to various object categories.  Here we use the <faces= category as an 

example to illustrate the procedure of our analysis, and the same procedure was applied to 

other object categories. 

Quality of localizer-based maps 

The Forrest dataset has 4 static object category localizer runs per participant (for all 

participants), and the Raiders dataset has 4 dynamic object category localizer runs per 

participant (for 20 out of the 23 participants).  For each run of each participant, we used 

general linear model to estimate the contrast of interest (faces vs. all other categories) and 

obtained a map of t-statistics for the contrast.  Due to the presence of noise in localizer 

data, the estimated face-selectivity map is a combination of a <true= face-selectivity map 

of the participant and some noise.  The component from the <true= map is supposed to be 

shared by all localizer runs, and thus the data quality and the level of noise can be 

estimated based on the similarity between the 4 maps (i.e., one from each run).  We used 

Cronbach9s alpha to estimate the quality of the average map of the 4 runs.  If we were to 

collect another 4 localizer runs from the participant and get a new average map based on 

the 4 new runs (i.e., independent data), then the expected correlation between the two 

average maps would be Cronbach9s alpha.  In other words, if the correlation between the 

model-predicted map and the localizer-based (average) map is higher than Cronbach9s 

alpha, then the model-predicted map is more accurate than the average map based on 4 

runs. 

Model-predicted category selectivity maps 
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We used a leave-one-subject-out cross-validation scheme to evaluate model 

performance.  We built the template based on the n 3 1 training participants9 movie data.  

We then computed a tuning matrix T(p) for each of the n participants based on the movie 

data.  We modeled the face selectivity map as the brain response pattern to the specific 

<faces= category: 

�(",45678) = �(45678)�(") + � 

Here �(",45678) denotes the face-selectivity map for participant p, and �(45678) 
denotes the stimulus descriptors for the <faces= versus other categories contrast.  In this 

case, both �(",45678) and �(45678) are row vectors because there is only one stimulus 

(category).  Both �(",45678) and T(p) were known for the training participants, and thus �(45678) 
can be estimated using a general linear model (e.g., ordinary least squares) by finding the 

�(45678) that minimizes the Frobenius norm .�(",45678)	2	�(45678)�(").*.  This solution can be 

computed using ordinary least squares (<vanilla= regression), but here we used ensemble 

linear ridge regression to increase the accuracy and generalizability of our model.  The 

ensemble model is similar to the algorithm we used to build the INT model, which is based 

on k-fold bagging.  The final prediction model was the average of 50 ridge regression 

models (k = 5, 10 repetitions), and the choices for the regularization parameter were 21 

values evenly distributed in a logarithmic scale, ranging from 0.01 to 100.  Similar to 

nested cross-validation, the choice of the regularization parameter was determined based 

on out-of-bag cross-validation, and thus it9s only based on the training data.  For each 

single model in the ensemble, we bootstrapped n 3 1 participants with replacement from 

the n 3 1 training participants and trained the ridge regression model based on the 
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bootstrapped sample.  To further increase the diversity of models in the ensemble, each 

time a participant was chosen by a bootstrapped sample, we also bootstrapped 4 runs with 

replacement from the participant9s data, and the face-selectivity map used in the 

regression was the average of the 4 bootstrapped runs.  After all n 3 1 participants had 

been chosen for the bootstrapped sample, we concatenated their vertices, and trained a 

ridge regression model based on the concatenated data.  We obtained an estimated  S(n31, 

faces) for each bootstrapped sample (coefficients of the regression model), and the final 

estimation of  S(n31, faces) was the average across all bootstrapped samples. 

The model-predicted map of the left-out test participant was simply the matrix 

multiplication of the estimated stimulus descriptors S(n31, faces) based on the n 3 1 training 

participants and the estimated tuning matrix T(p) of the test participant: 

�"(",45678) = �(,%.,45678)�(") 
Evaluating model-predicted maps 

We evaluated the quality of model-predicted maps in the same way as (Jiahui et al., 

2020).  That is, for each test participant, we computed the Pearson correlation between 

the localizer-based map and the model-predicted map of the participant.  Note that we 

estimated the reliability of the localizer-based map using Cronbach9s alpha, which is the 

expected correlation between two average maps, each based on 4 runs of independent 

data.  Based on the Spearman3Brown prediction formula, we can estimate how 

Cronbach9s alpha changes with the amount of data (i.e., the number of localizer runs), and 

correspondingly, how much localizer data is needed to achieve the quality of the model-

predicted map. 
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We also evaluated the specificity of our model-predicted maps.  For each test 

participant, we also computed the correlations between the participant9s own localizer-

based map and model-predicted maps of other participants.  If the model-predicted map is 

highly specific to the participant, we expect the between-subject correlations to be much 

lower than the correlation with the participant9s own model-predicted map. 

Predicting retinotopic maps 

Estimating retinotopic maps based on localizers 

The Forrest dataset contains 4 retinotopic scans per participant that are 3 minutes 

each.  The 4 runs are expanding rings, contracting rings, clockwise wedges and 

counterclockwise wedges, respectively.  We followed the steps of (Warnking et al., 2002) 

and estimated an eccentricity map based on the runs of expanding rings and contracting 

rings and a polar angle map based on clockwise wedges and counterclockwise wedges for 

each participant.  Specifically, we performed Fourier transformation on the time series 

data that were collected during stimulus presentation (5 cycles of 16 TRs [32 seconds] 

each; 80 TRs [160 seconds] in total; started 4 seconds after scan onset) and located the 

frequency component that had the same period as the stimuli (i.e., 5 cycles in 80 TRs).  

The amplitude of the component indicates to what extent a vertex9s response time series 

can be explained by retinotopic stimuli, and the phase of the component indicates the 

eccentricity or the polar angle that a vertex responds maximally to.  Considering the 

hemodynamic response function of BOLD signal, we shifted the phase by 5 seconds to 

account for hemodynamic delay.  For each kind of retinotopic map (i.e., eccentricity and 

polar angle), we averaged the Fourier transformation results of the two corresponding runs 

(e.g., expanding and contracting rings for eccentricity map) to get the final map.  The 
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amplitude was the mean amplitude of the two runs, and the phase was the circular mean of 

the two runs (which removes the remaining effects of hemodynamic delay). 

Model-predicted retinotopic maps 

Each retinotopic map comprises two parts, namely an amplitude map and a phase 

map. 

�(ret) = �cos(� 2 �) 
Here A is the amplitude, »	is the preferred phase (i.e., eccentricity or polar angle) 

for each vertex, and Ç is the phase corresponding to the current stimulus.  A vertex 

responds maximally when the phase of the current stimulus corresponds to its preferred 

phase, and the response decreases when the phase moves away from the vertex9s 

preferred phase.  The retinotopic map can be modeled as a weighted sum of a sine map 

and a cosine map. 

�cos(� 2 �) = �cos(�)cos(�) + �sin(�)sin(�) = �cos(�) + �sin(�) 
Note that the original phase » is a circular variable and it9s difficult to predict it 

using a linear model (e.g., the model we used to predict category-selectivity maps).  After 

the transformation, we have two new variables x and y, which contains the same 

information as the original amplitude map A and the phase map ».  However, both x and y 

are weights of the linear combination, and thus they can be predicted directly using linear 

models. 

We used similar prediction procedures as the category-selectivity analysis for the 

current analysis.  Specifically, we used leave-one-subject-out cross-validation, and the 

prediction models were ensembles of ridge regression models.  For each test participant 
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and each kind of retinotopic map, we trained two sets of ensemble models, one for 

predicting the weight map x, and the other for predicting y.  After estimating the stimulus 

descriptors for x and y based on the training participants, we multiplied them by the 

estimated tuning matrix of the test participant to get the estimated x and y maps for the 

test participant.  The model-predicted amplitude and phase maps can be computed from 

the estimated x and y maps: 

� = 	^�+ + �+ 

� = arctan2(�, �)	
Evaluating model-predicted maps 

We evaluated the amplitude map and the phase map separately for each kind of 

retinotopic map.  For the amplitude map, we computed the correlation between the test 

participant9s localizer-based map and the participant9s own model-predicted map, as well 

as the correlations with others9 model-predicted maps.  We also computed Cronbach9s 

alpha based on the amplitude maps from the two runs from each kind of retinotopic map.  

In general, the amplitude maps were assessed in a similar way as the category-selectivity 

maps. 

For the phase map, we computed the average (absolute) phase difference between 

the test participant9s localizer-based map and the participant9s own model-predicted map 

in the early visual cortex4an area known to have retinotopic responses.  The early visual 

cortex was located based on regions V1, V2, V3, and V4 of the Glasser parcellation (Glasser 

et al., 2016). Similarly, we computed the average phase difference with others9 model-

predicted maps, and the average phase difference between the two runs for each kind of 
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retinotopic map.  Note that the phase differences between the two runs are driven by both 

hemodynamic delay and noise, and their influences cannot be fully separated based on the 

current data. 

Predicting response patterns to the movie 

The previous analyses demonstrate the power of our model in predicting brain 

responses to new stimuli, such as object categories and retinotopic localizers.  However, 

both object-category representation and retinotopy correspond to relatively coarse-grained 

cortical topographies. To assess the spatial granularity of our model, we further tested how 

well it could predict fine-grained spatial response patterns, such as time-point-by-time-

point responses to a movie. 

Cross-validation scheme 

For each movie dataset, we used leave-one-subject-out cross-validation to assess 

the model predictions.  Each time, we built a template based on the full movie data of the n 

3 1 training participants.  Similar to the distinctiveness analysis, we estimated the test 

participant9s tuning matrix using only half of the test participant9s movie data, and in this 

case it9s the first half of the movie data.  The second half of the test participant9s movie 

data was held out for test.  Then we multiplied the stimulus matrix for the second part of 

the movie with the estimated tuning matrix of the test participant to get the model-

predicted response patterns to the second part of the movie that are based on other 

participants9 responses.  We assessed the model prediction by comparing the measured 

response patterns and the model-predicted responses patterns of the test participant.  

Note that unlike our previous methods, in which we compared a participant9s response 

patterns to others9 patterns in the common model space, our INT model allows this 
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comparison to be made in the native anatomical space (normalized to the fsaverage 

template) of each individual participant9s brain. 

Dimensionality reduction 

For each time point (i.e., each TR), the response pattern is a vector of 18,742 

elements.  Similar to our previous work (Guntupalli et al., 2018, 2016; Haxby et al., 2011), 

we performed dimensionality reduction using principal component analysis (PCA) and 

compared the similarity of response patterns based on normalized PCs.  We repeated the 

analysis using different numbers of PCs, ranging from 10 to 300 with an increment of 10.  

Note that the key results of this analysis (Figure 5D and 5E) are very robust against the 

choice of the number of PCs. 

Similarity between measured and predicted patterns 

To illustrate the similarities of measured and predicted response patterns, we 

computed the correlations between measured and predicted response patterns based on 

150 PCs.  Specifically, we computed the similarities of patterns from the same participant 

and those from different participants; we also computed similarities of patterns for the 

same time point and those for different time points.  These allowed us to evaluate the 

specificity of the model-predicted response patterns both to the participant and to the time 

point.  Examples of the similarities are shown in Figure 5A and 5B, and the similarity 

distribution for each of the four conditions are summarized in Figure 5C. 

Binary movie time point classification 

For each test participant, the similarity between the measured and predicted 

patterns for the same time point was much higher than those from different time points.  

We assessed to what extent this difference in similarity could be used to predict which time 
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point of the movie the participant was viewing based on a binary classification task.  The 

binary classification task is a 2-alternative forced choice.  For each time point of the movie, 

we computed the correlation of its measured response pattern to two other response 

patterns4one was the pattern predicted from other participants9 responses to the same 

time point, and the other was the pattern predicted from other participants9 responses to 

another time point.  The classification was successful if the similarity of patterns of the 

same time point was higher than the different time point, and thus the chance accuracy is 

50%.  We looped through all choices of the test time point, and for each test time point, 

looped through all choices of the foil time point and averaged the accuracies.  Note that 

the difficulty of the binary classification task doesn9t change with the length of the movie 

data, and its accuracy can be considered as a measure of effect size in that sense.  For 

example, the binary classification accuracy based on a dataset with 500 time points and 

another with 1000 time points are comparable.  To evaluate the specificity of the predicted 

patterns to the test participant, we replaced the test participant9s predicted patterns with 

another participant9s predicted patterns and repeated the analysis. 

Multiclass movie time point classification 

The classification accuracy of the binary classification task was close to 100%.  To 

demonstrate the accuracy and specificity of the response patterns predicted by the INT 

model, we performed a multiclass movie time point classification analysis.  That is, we 

compared the measured response pattern to a time point of the movie to all the model-

predicted response patterns (i.e., predicted response patterns to all time points).  We 

examined whether the pattern similarity was highest for the model-predicted response 

pattern of the same time point.  The second part of the movie contains 1818 time points in 
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total for the Forrest dataset, and 1680 time points for the Raiders dataset.  Therefore, the 

number of choices was over 1000 for both datasets, and the chance accuracy was less 

than 0.1%.  Note that the foils also included the time points right before or after the target 

time point, which was only 2 seconds (Forrest) or 1 second (Raiders) apart, and the 

inclusion of these neighboring time points made the classification task even more 

challenging. 

Model performance with less data 

In practice, it is not always feasible to collect a large amount of fMRI data during 

movie-watching as the datasets used in the current study (Forrest: 120 minutes; Raiders: 

56 minutes).  To assess the performance of our INT model with smaller data volume, we 

trained the model with smaller amounts of movie data for the test participant and 

evaluated its performance as a function of data volume. 

First, we assessed how data volume affected the distinctiveness of the tuning 

matrix.  This analysis requires two estimates of the same tuning matrix based on 

independent data, and thus each estimate can use up to half of the movie data (Forrest: 60 

minutes; Raiders: 28 minutes).  For the Forrest dataset, we repeated the analysis with 5, 

10, 15, 20, 30, 40, 50, and 60 minutes of movie data for each estimate.  For the Raiders 

dataset, we repeated the analysis with 5, 10, 15, 20, and 28 minutes of movie data for 

each estimate. 

Second, we assessed how data volume affected the distinctiveness of local neural 

tuning based on a searchlight analysis.  The same amounts of movie data as the whole-

brain distinctiveness analysis were used.  Instead of focusing on the average across 

searchlights, we assessed the 50th, 80th, 90th, 95th, and 99th percentiles of the distribution. 
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Third, we assessed how data volume affected the estimation of category selectivity 

maps and retinotopic maps.  Note that the objective of the analysis is to predict responses 

to new stimuli, and thus up to the entire movie data can be used to train the INT model and 

estimate the tuning matrices.  For the Forrest dataset, we repeated the analysis with 5, 10, 

15, 20, 30, 40, 50, 60, and 120 minutes of movie data.  For the Raiders dataset, we 

repeated the analysis with 5, 10, 15, 20, 28, and 56 minutes of movie data. 

Fourth, we used movie time point classifications to assess how data volume affected 

the quality of predicted response patterns to the movie.  For this analysis, we used the 

same test data to evaluate the model, which was the second half of movie data for the test 

participant.  Therefore, the movie data used to estimate the tuning matrix of the test 

participant was the first half of movie data or part of the first half.  For the Forrest dataset, 

we repeated the analysis with 5, 10, 15, 20, 30, 40, 50, and 60 minutes of movie data.  For 

the Raiders dataset, we repeated the analysis with 5, 10, 15, 20, and 28 minutes of movie 

data. 
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