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Abstract

How brain functional architecture differs across people is a key question of human
neuroscience, and understanding these differences is critical for building brain-based
biomarkers. However, current individualized models of brain functional organization are
based on brain regions and networks, limiting their use to study fine-grained vertex- or
voxel-level differences. In this work, we present the Individualized Neural Tuning (INT)
model, a fine-grained individualized model of brain functional organization. The first part
of the INT model models each individual’s brain responses as a linearly transformed
functional template, such that it captures both functional and topographic idiosyncrasies.
The second part of the INT model factorizes the modeled brain responses, separating
temporal information capturing how the stimulus changes over time (shared across
individuals) and stimulus-general neural tuning (specific to each individual and each
cortex). The two parts of the INT model are designed in such a way that (a) the INT model
has vertex-level granularity; (b) it models both functional differences and topographic

differences; and (c) the modeled neural tuning is stimulus-general in that it generalizes to
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new stimuli. Through a series of analyzes, we demonstrate that (a) the modeled brain
functional organization is highly specific to the individual and reliable across independent
data; (b) the model can predict an individual’s responses to new stimuli based on others’
responses, including category selectivity maps and retinotopic maps; (c) the model can
predict fine-grained response patterns, which can be used to distinguish responses to
different time points of a movie; (d) the model performance keeps improving with more
data, but 10—-20 minutes of movie are usually sufficient for good performance. Together,
these analyses demonstrate that the INT model affords an individualized fine-grained
model of brain functional architecture, which is reliable, precise, and generalizable across

stimuli.
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A central goal of human neuroscience is to understand how brain functional
organization differs across individuals, and how these differences relate to differences in
intelligence, personality, motivation, mental health, and many other attributes.
Understanding these differences is instrumental for providing individualized education and
training, as well as effective diagnosis and intervention in the case of pathology, and
ultimately improving educational, occupational, and health-related outcomes (Bijsterbosch
et al., 2020; Dubois and Adolphs, 2016; Gabrieli et al., 2015; Gratton et al., 2020).

Models of the functional organization of the human brain can be summarized into
two categories based on their spatial granularity. Typical functional magnetic resonance
imaging (fMRI) data of the human brain comprises 20,000—100,000 cortical surface
vertices (or voxels in volumetric data). Coarse-grained models group these vertices into
spatial units—brain regions, networks, and systems—and reduce the brain into tens to
hundreds of spatial units (Glasser et al., 2016; Gordon et al., 2016; Yeo et al., 2011).
Vertices with similar, relatively homogeneous functions are studied as a group in coarse-
grained models, which makes it easier to summarize their functions neuroscientifically and
computationally (Bijsterbosch et al., 2020; Eickhoff et al., 2018b, 2018a). Recent
advances of coarse-grained brain models have successfully extended group-level models
to model individual brains (Gordon et al., 2017a; Harrison et al., 2015; Kong et al., 2019;
Wang et al., 2015). In these models, the cortical topographies of the spatial units in an
individual are allowed to differ from the group template, so that the inter-individual
variations in brain functional organization (Gordon et al., 2017b; Gratton et al., 2018;

Laumann et al., 2015) can be accounted for. Individualized models help disentangle
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different sources of inter-individual variation (Bijsterbosch et al., 2019, 2018), and
improve brain-behavior predictions (Kashyap et al., 2019; Kong et al., 2021).

Given this feature aggregation, coarse-grained models focus on spatial units that
are centimeters in scale. Modern fMRI data acquisition, however, usually has a spatial
resolution of 2—3 mm in each dimension, which is close to the spatial precision of blood-
oxygen-level-dependent (BOLD) signal acquired at 3 Tesla (Engel et al., 1997; Parkes et
al., 2005) This fine spatial resolution affords access to the rich information encoded in
fine-grained vertex-by-vertex and voxel-by-voxel spatial patterns (Haxby et al., 2014, 2001;
Huth et al., 2016; Kriegeskorte and Kievit, 2013). This information can be used to decode
brain responses to different object categories (Haxby et al., 2001), and also different
exemplars of the same category, such as different face identities or different views of the
same face (Guntupalli et al., 2017; Visconti di Oleggio Castello et al., 2021, 2017).
Individual differences in fine-grained responses and connectivity are much more reliable
than their coarse-grained counterparts (Feilong et al., 2018). Fine-grained functional
connectivity describes what information is exchanged between regions instead of how
much information is exchanged, providing a twofold increase in accuracy in predicting
intelligence (Feilong et al., 2021).

Fine-grained brain models have great potential to study individual differences in
brain functional organization (Feilong et al., 2018), yet methods for building individualized
fine-grained brain models are far from optimal, both in terms of computational structure
and conceptual power. In this work, we present the individualized neural tuning (INT)
model, a fine-grained individualized model of brain functional organization that has three

key features. First, the INT model has vertex-level granularity, which provides access to
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the rich information encoded in fine-grained spatial patterns. Second, it models each
individual’s unique representational geometry as well as the corresponding topographic
organization in cortex, and thus affords study of both functional and topographic
differences. Third, the INT model decomposes responses into stimulus information, as
defined by neural responses that are shared across brains, and response tuning functions
that model individual-specific fine-grained responses to any stimulus. Therefore, the INT
model affords study of individual differences in neural response tuning that are

independent of stimulus information (Figure 1).
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Figure 1. Estimating a shared stimulus matrix and individualized tuning matrices. (A) With
the individualized neural tuning (INT) model, we decompose the brain response data
matrix B, (shaped t x v, where t is the number of time points and v is the number of
cortical vertices) of participant p into a shared stimulus matrix S (t x k, where k is the
number of stimulus features) and an individualized tuning matrix T, (k x v, the number of
stimulus features by the number of cortical vertices). Temporal information capturing how
the stimulus changes over time is factored into S; each row of S is a time point in the
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stimulus and each column of S is a basis response profile shared across individuals and
vertices. Each column of T, is a vector of k elements describing the stimulus-general
response tuning function of a cortical vertex. (B) If we divide the brain responses matrix By,
into several parts, each part can be modeled as part of the matrix S multiplied by the same
Ty). In other words, T, models neural response tuning in a way that generalizes across
stimuli. Moreover, the same T, can be estimated from different parts of B, (e.g., two
halves of a movie By, 1) and By, 2) by using the corresponding parts of S (Si;) and S)). (C)
After obtaining T, it can be used to predict the participant’s responses to new stimuli

By new) using the corresponding Sq.ew) matrix, which can be estimated from other
participants’ data.

Using two rich fMRI datasets collected during movie watching, we demonstrate that
our INT model of brain functional architecture has remarkable reliability and validity.
Specifically, we show that (a) The modeled brain functions are highly similar based on
independent data from the same individual, but distinctive for different individuals. (b) The
model can predict idiosyncratic brain responses to novel stimuli, including object
categories and retinotopic localizers. (c) The model captures information encoded in fine-
grained spatial patterns and can differentiate response patterns to different movie time
points (TRs). (d) The model works well with small amounts of movie data but continuously
improves with more data. Together, these results demonstrate that our INT model predicts
idiosyncratic fine-grained functional organization of the brain with high sensitivity and
specificity.

Results
Estimating the individualized neural tuning model

Here we briefly describe the individualized neural tuning (INT) model in order to

build a high-level intuition for how the model is constructed; see the “Methods” section for

a more detailed mathematical treatment. Brain responses to external stimuli, such as

movies, are highly similar across individuals (Hasson et al., 2010, 2004; Nastase et al.,
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2019). Responses from multiple individuals can be summarized as a single common space
(Guntupalli et al., 2018, 2016; Haxby et al., 2020, 2011), and a substantial amount of an
individual’s responses can be explained by these commonalities. Still, individuals differ
from the common space and from each other, even though these differences are smaller in
scale than the commonalities (Feilong et al., 2018). Therefore, it is critical to ensure that
our model captures the idiosyncrasies of each individual’s brain functional organization, as
well as the shared responses across individuals.

The goal of the INT model is to re-represent the brain data matrices B, acquired for
each individual in a way that captures precise, individualized vertex-level functional
architecture and supports out-of-sample prediction across both individuals and stimuli.
First, we construct a common functional template M across all training participants to
serve as a target for functional alignment based on all training participants’ data using a
searchlight-based algorithm. Next, we estimate a linear transformation W, for each
participant, using ensemble ridge regression, that maps between their idiosyncratic
functional architecture and the functional template M. Unlike previous implementations of
hyperalignment that employed Procrustes-based rotations to resolve topographic
idiosyncrasies while preserving representational geometry, here we estimate a linear
transformation that captures individual differences in both representational geometry and
cortical topography. Finally, we convert the model-estimated brain data, MW,,, into a more
compact shared stimulus matrix S, with orthogonal feature dimensions, and an
individualized tuning matrix T(,. This decomposition factors the stimulus-specific temporal
structure of the movie into S, represented as a collection of basis functional profiles shared

across vertices and individuals. The individual-specific tuning matrices T, can be
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estimated with independent data using different stimuli. T, matrices capture individual
differences in functional tuning—modeling idiosyncrasies in both representational
geometry and cortical topography.
Modeling individualized brain functional organization

To assess how well our model captures individual-specific brain functional
organization, we evaluated the within-subject similarities and between-subject similarities
of the modeled tuning matrices (T). For each of the n participants, we divided the movie
data into two parts, and computed a tuning matrix for each movie part. Therefore, we
obtained n tuning matrices based on the first part of the movie, and another n based on the
second part. Then we computed an n x n matrix of cross-movie-part similarities, where
each row corresponds to a tuning matrix based on the first part, and each column
corresponds to a tuning matrix based on the second part. Each entry in the matrix
quantifies the cross-movie-part similarity of tuning matrices within-subject (diagonal
entries) and between-subject (off-diagonal entries) (Figure 2A). For both datasets, the
similarity matrix had a clear diagonal, indicating that the within-subject similarities were
much higher than between-subject similarities. When all the tuning matrices were
projected to a 2-D plane using multi-dimensional scaling (MDS), matrices from the same
participant were close together, whereas matrices from different participants were clearly

separated (Figure 2B).
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Figure 2. Distinctive modeled brain functional organization. (A) For each movie part, we
obtained n tuning matrices, one for each participant, which describes the participant’s
response tuning functions. The cross-movie-part similarities form an n x n matrix, where
rows are tuning matrices based on the first movie part, and columns the second movie
part; the colored legends at left and top index individual participants. The obvious
diagonal indicates that within-subject similarities were much higher than between-subject
similarities. (B) Multi-dimensional scaling (MDS) projection of the 2n matrices onto a 2-D
plane. Two dots of the same color denote two estimates of the tuning matrix for the same
participant, as in (A). Dots from the same participant clustered together. (C) The
distribution of within- and between-subject tuning matrix similarities, sorted by within-
subject similarity. For each tuning matrix, the within-subject similarity always exceeded
between-subject similarity. (D) We computed a distinctiveness index for each tuning matrix
based on the difference between within- and between-subject similarities. The
distinctiveness index is based on Cohen’s d and, therefore, measures effect size. Based on
the distinctiveness index, we estimate the error rate for individual identification (bottom).
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(E) Local functional distinctiveness based on a searchlight analysis (20 mm radius),
averaged across all participants for each dataset. Extensive occipital, temporal, and lateral
prefrontal cortices showed high distinctiveness.

For every tuning matrix, within-subject similarity (Forrest: r = 0.798 + 0.044 [mean
+ SDJ; Raiders: r = 0.778 + 0.076) was higher than between-subject similarities (Forrest: r
=0.542 + 0.037; Raiders: r =0.503 + 0.057) (Figure 2C). Simple nearest-neighbor
identification of participants based on their tuning matrices performs at 100% accuracy.
To better assess the distinctiveness of each tuning matrix, we computed a distinctiveness
index based on Cohen’s d (Figure 2D). This distinctiveness index measures the difference
between the within-subject similarity and between-subject similarities of a tuning matrix
using the standard deviation of the distribution as a unit. For example, Cohen’sd =5
means that the within-subject similarity is 5 standard deviations away from the average
between-subject similarity. On average across participants, the distinctiveness index was
12.92 for the Forrest dataset, and 9.67 for the Raiders dataset, indicating the individual-
specific tuning matrices were highly distinctive. The distinctiveness index was computed
based on Fisher-transformed correlation similarities, which approximately follow a normal
distribution. Therefore, the identification error rate can be estimated based on the
distinctiveness index using the cumulative distribution function of the distribution, which
was 1.73x1038 for d = 12.92, and 2.1x1022 for d = 9.67. These error rates are orders of
magnitude lower than those estimated from individuation based on coarse-grained
patterns of functional connectivity (more than 1%; (Finn et al., 2015)) and those of forensic

DNA analysis (approximately 0.4%; (Kloosterman et al., 2014)).
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The results so far are based on the entire tuning matrix, which comprises response
tuning functions of all cortical vertices. Which part of the brain has the most distinctive
responses across individuals? To answer the question, we performed a searchlight analysis
with a 20 mm radius and computed the average distinctiveness index across participants
for each searchlight (Figure 2E). Extensive occipital, temporal, and lateral prefrontal
cortices showed high distinctiveness, with estimates of Cohen’s d exceeding 10 in lateral
and ventral occipital and temporal cortices. Even in brain regions that do not respond
strongly to external stimuli, such as medial prefrontal cortex, our model can still capture
idiosyncratic response tuning functions.

To summarize, our model of brain functional organization is highly specific to each
individual. For both datasets, within-subject similarities of modeled tuning matrices were
several standard deviations higher than between-subject similarities. Our model also
captures idiosyncrasies in local response tuning functions throughout cortex, excluding
somatosensory and motor regions. Individual differences were most prominent in occipital
and temporal regions, and reliable individual differences were also found in parietal and
prefrontal regions.

Predicting category-selectivity and retinotopic maps

To assess whether the modeled tuning matrix accurately reflects a participant’s
brain functional organization, we examined to what extent it can predict brain responses to
new stimuli. Specifically, we examined whether our model trained with movie data could
accurately predict category-selectivity maps and retinotopic maps in a leave-one-subject-
out cross-validation analysis.

Predicting category-selectivity maps
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Both the Forrest dataset and the Raiders dataset had four object category localizer
runs, which were based on static images for Forrest, and dynamic videos for Raiders.
Taking the “faces” category as an example, we computed a face-selectivity map for each
participant and each run, which was the contrast between faces and all other categories.
Due to measurement noise, the four maps (one for each run) differ from one another
(Figure 3B and 3C bottom rows). We averaged the four maps for each participant to
reduce noise and used the average map as the localizer-based map for that participant.
Based on the similarity between these four maps, we computed the Cronbach’s alpha
coefficient for each participant, which estimates the reliability of the average map. That is,
if we were to scan the participant for another four localizer runs and correlate the new
average map with the current average map, the expected correlation would be Cronbach’s
alpha.

For each cross-validation fold, we divide the data into n — 1 training participants
and a test participant. To estimate the stimulus descriptors for the target object category
(e.g., Siaces)), We trained a regression model to predict the localizer-based maps for the
training participants (dependent variables) from their tuning matrices (7) (independent
variables). The resultant S«aces) vector contains the coefficients derived from the regression
model. T was estimated from the independent movie data for each participant and applied
to this analysis. Then we computed the product of the Si.ces) vector of coefficients and the
test participant’s tuning matrix (T) to estimate the test participant’s face-selectivity map.
We evaluated the quality of this predicted localizer map by computing the correlation
between the model-based map and the test participant’s actual localizer map based on

their own localizer data.
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Figure 3. Predicting category-selectivity maps of individual participants. (A) Face-
selectivity map of an example participant and a zoomed-in view focusing on right ventral
temporal cortex. (B) The localizer-based (top) and model-predicted (middle) face-
selectivity maps for two example participants from the Forrest dataset. Each localizer-
based map was the average of four maps, one from each localizer run. Individual maps for
each localizer run are shown at bottom. (C) Face-selectivity maps of two example
participants from the Raiders dataset. (D) Similarity of each participant’s localizer-based
face-selectivity map to the participant’s own predicted map (green) and to other
participants’ predicted maps (orange). Cronbach’s alpha (purple) for each participant was
calculated based on the similarity of the four localizer runs and is shown as a reference.
(E) Cronbach’s alpha (purple), within-subject correlation (green), and between-subject
correlation (orange) for all category-selectivity maps. Error bars are standard errors of the
mean. For both datasets, the within-subject correlations were similar to, and sometimes
higher than Cronbach’s alpha. Between-subject correlations were much lower, suggesting
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our prediction models were able to capture each participant’s idiosyncratic category-
selectivity topographies.

For both datasets, the localizer-based and model-predicted face-selectivity maps
were highly correlated (Forrest: r = 0.618 + 0.089 [mean + SD], Raiders: r=0.716 +
0.074), and the correlations were higher than our previous state-of-the-art model using the
same dataset and hyperalignment (Jiahui et al., 2020). Across all participants, the average
Cronbach’s alpha was 0.606 + 0.126 for Forrest, and 0.764 + 0.089 for Raiders. For
approximately a third of the participants (Forrest: 6 out of 15, 40%; Raiders: 6 out of 20,
30%), the correlation exceeded the Cronbach’s alpha of localizer-based maps. In other
words, for these participants, the predicted map based on our model can be more accurate
than the map based on a typical localizer scanning session comprising four runs.

Besides the high accuracy, the model-predicted maps were also highly specific for
each individual (See Figure 3B and 3C for examples). The correlation between one
participant’s localizer-based map and another participant’s model-predicted map (orange
circles in Figure 3D; Forrest: 0.337 = 0.071; Raiders: 0.384 + 0.062) was always lower
than the correlation with own model-predicted map (green circles in Figure 3D). This
indicates that our model accurately predicts the idiosyncratic topographies of each
participant’s category-selectivity map.

We replicated our analysis for all other categories and found similar results (Figure
3E; Table 1). For all object categories and both datasets, the within-subject similarity
(correlation between own localizer-based map and own model-predicted map) was

numerically similar to Cronbach’s alpha and much larger than between-subject similarities
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(correlation between each participant’s localizer-based map and others’ model-predicted

maps).
The Forrest dataset
Category Cronbach's Within-subject Between-subject | (within > (within >
alpha similarity similarity between) % | alpha) %
Bodies 0.756 +0.073 | 0.759 £ 0.041 0.482 +0.037 100% 40.0%
Faces 0.606 +0.126 | 0.618 +0.089 0.337 £ 0.064 100% 40.0%
Houses 0.653+0.128 | 0.669 +0.106 0.412 +0.070 100% 46.7%
Objects 0.485+0.153 | 0.540+0.079 0.353 £ 0.058 100% 60.0%
Scenes 0.681 +0.107 | 0.721 +0.063 0.483 +0.040 100% 53.3%
Scrambled | 0.608 £ 0.096 | 0.615+0.070 0.427 +0.051 100% 60.0%
The Raiders dataset
Category Cronbach's Within-subject Between-subject | (within > (within >
alpha similarity similarity between) % | alpha) %
Bodies 0.758 £ 0.083 | 0.749 £ 0.056 0.493 +£0.042 100% 45.0%
Faces 0.764 +0.089 | 0.716 £0.074 0.384 +0.051 100% 30.0%
Objects 0.604 +0.113 | 0.652 +£0.077 0.390 = 0.061 100% 65.0%
Scenes 0.796 = 0.061 0.771 +£0.043 0.500 +0.034 100% 30.0%
Scrambled | 0.730+£0.096 | 0.671 +0.089 0.461 +0.057 100% 40.0%

Table 1. Summary of model performance in predicting object category selectivity maps.
All contrasts were based on the target category versus all others. The format for
Cronbach’s alpha and similarities is mean + standard deviation.

Predicting retinotopic maps

We examined whether our model can accurately predict eccentricity and polar
angle maps based on the retinotopic data of the Forrest dataset. Similar to category-
selectivity maps, we trained our model using the movie data and used it to predict
retinotopic maps based on leave-one-subject-out cross-validation. Note that each
retinotopic map, eccentricity and polar angle, has two components: an amplitude map,
which measures to what extent a cortical vertex responds to retinotopic stimuli, and a

phase map, where the phase is associated with eccentricity or polar angle. For the
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eccentricity map, the phase is 0° for the center of the visual field, and 360° for the most
peripheral part. For the polar angle map, the phase is 0° and 180° for the upper and lower

vertical meridians, and 90° and 270° for the right and left horizontal meridians.
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Figure 4. Predicting retinotopic maps of individual participants. (A) The localizer-based
and model-predicted left hemisphere eccentricity maps for five example participants. (B)
The localizer-based and model-predicted left hemisphere polar angle maps for five
example participants. (C) Similarity of each participant’s localizer-based amplitude map
(i.e., to what extent a vertex responds to retinotopic stimuli) to the participant’s own
predicted map (green), other participants’ predicted maps (orange), and its Cronbach’s
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alpha (purple). (D) The average phase difference in early visual areas between the
participant’s two retinotopic runs (e.g., expanding and contracting rings; purple), between
the participant’s localizer-based map and own model-predicted map (green), and between
the participant’s localizer-based map and other participants’ predicted maps (orange). In
both (C) and (D) participants are sorted along the x-axis according to within-subject
similarity (green). Note that we inverted the y-axis in (D) because smaller differences
indicate higher similarity.

The model-predicted maps for each participant resemble the corresponding
localizer-based maps, and they capture the idiosyncratic features of each map well (Figure
4A and 4B). To quantify these similarities, we assessed the similarity of amplitude maps
and phase maps separately.

Each retinotopic map (e.g., an eccentricity map) was based on a standard
univariate analysis of two runs where the stimuli were displayed in reversed order (e.g.,
expanding rings and contracting rings), and an amplitude map and a phase map were
obtained from each run. For each participant, we compared the similarity of these two
amplitude maps and estimated Cronbach’s alpha. The mean (+ standard deviation) for
Cronbach’s alpha was 0.701 + 0.047 for the eccentricity map, and 0.663 + 0.069 for the
polar angle map. We also compared the similarity between the localizer-based amplitude
map (average of the two runs) and the model-predicted map. On average across all
participants, the similarity was 0.774 + 0.027 for the eccentricity map, and 0.746 + 0.049
for the polar angle map. Note that for every participant the similarity was higher than
Cronbach’s alpha, which means the model-predicted amplitude map is more accurate
than the localizer-based map. The similarity between a participant’s localizer-based map

with the participant’s own model-predicted map is higher than with others’ model-
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predicted maps (eccentricity: 0.682 + 0.029; polar angle: 0.635 + 0.054), indicating that
the model-predicted amplitude map is individual-specific.

To assess the quality of the phase maps, we computed the absolute value of the
phase difference in early visual areas (V1, V2, V3, and V4; (Glasser et al., 2016)) between
two retinotopic runs, between the localizer-based map and the participant’s own model-
predicted map, and between one participant’s localizer-based map and others’ model-
predicted maps. Note that the phase is circular, and thus the difference between 360° and
1°is the same as 1° and 2°. On average across participants, the average phase difference
between a participant’s localizer-based and model-predicted maps was 39.1° + 4.8° for
eccentricity maps, and 41.5° + 6.0° for polar angle maps. This difference was smaller than
the difference between two localizer runs (eccentricity: 43.7° + 6.0°% polar angle: 48.2° +
7.7°) and the difference with others’ model-predicted maps (eccentricity: 53.9° + 6.9%
polar angle: 52.3° + 4.7°). The average phase difference for random data would be 90°.

For both category-selectivity maps and retinotopic maps, our model can accurately
predict individualized maps with high fidelity and high specificity. The quality of the
model-predicted maps was similar to or higher than that of maps derived from actual
localizer data. These results demonstrate that the modeled response tuning functions are
not only individualized and reliable across independent data, but also can accurately
predict responses to new stimuli.

Predicting brain responses to the movie

The previous analyses show that our model accurately predicts brain responses for

category-selectivity and retinotopic maps. These maps reflect coarse-grained functional

topographies of the brain: they are relatively spatially smooth, and neighboring vertices on
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the cortex (especially vertices in the same brain region) have similar category-selectivity or
adjacent receptive fields. In the analysis below, we examine whether our model can
accurately predict fine-grained functional topographies; that is, the vertex-by-vertex spatial
patterns which vary substantially even within a brain region. Specifically, we trained our
model using half of the movie data and predicted the other half. Rich visual, auditory, and
social information is encoded in fine-grained spatial patterns of response (Haxby et al.,
2014).

We used a leave-one-subject-out cross-validation to evaluate the performance of
our INT model. Specifically, we derived tuning matrix T of the test participant based on the
first half of the participant’s movie data, and combined it with S, (the part of S for the
second part of the movie, derived from the training participants’ data) to predict the test
participant’s responses to the second part of the movie. The response pattern to each
time point (i.e., TR) of the movie comprises 18,742 values, one for each cortical vertex.
Similar to our previous work (Guntupalli et al., 2016), we trained a principal component
analysis (PCA) based on the first half of the movie to reduce dimensionality from 18,742
vertices to a few hundred principal components (PCs) and projected responses to the other
half of the movie onto these PCs. Analysis of whole-brain spatial patterns of response was

based on these normalized PCs.
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Figure 5. Predicting brain response patterns to movie time points (TRs). (A) The

similarities between measured and predicted brain response patterns for the first 100 time
points of an example Forrest participant (the full matrices for Forrest and Raiders contain
1818 and 1680 time points, respectively). The red diagonal indicates that the model-
predicted response pattern at each time point was highly similar to the actual response
pattern for the corresponding time point. The response patterns were based on 150
principal components (PCs) reduced from all cortical vertices. (B) The similarities between
measured response patterns of one participant and predicted patterns of another. The
less obvious diagonal suggests that our model predicted both the shared functional
topographies (which generalize across participants) and each participant’s idiosyncratic
functional topographies (which does not generalize across participants). (C) The
distribution of response pattern similarities across participants and time points. When the
measured and the predicted patterns were for the same time point of the movie, the
average within- and between-subject similarities were 0.356 and 0.211, respectively, for
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the Forrest dataset, and 0.408 and 0.209, respectively, for the Raiders dataset. Cross-
time-point similarities were centered around 0. This indicates that the predicted movie
response patterns were highly specific to both the participant and the time point. (D)
Binary (2-alternative forced choice) movie time point classification based on a nearest-
neighbor classifier and pattern similarities. The within-subject accuracy peaked at 99.0%
for Forrest (180 PCs) and 98.6% for Raiders (250 PCs), and it was fairly robust across the
number of PCs. The peak between-subject accuracy was 95.2% (50 PCs) and 94.1% (60
PCs), respectively. (E) Multiclass movie time point classification. The number of choices
was 1818 for Forrest and 1680 for Raiders, and chance accuracy was less than 0.1% for
both datasets. The peak within-subject accuracy was 51.9% for Forrest (190 PCs) and
44.8% for Raiders (220 PCs), and the peak between-subject accuracy was 20.1% for
Forrest (90 PCs) and 15.8% for Raiders (80 PCs). (F and G) Searchlight binary
classification. The accuracy was high for much of the cortex for both datasets, with the
highest accuracies in temporal and occipital regions.

The model-predicted response patterns to the movie were highly specific to both
the time point and the participant. Note that these model-predicted patterns are based on
other participants’ neural responses projected into the native, fine-grained cortical
topography of the left-out test participant’s brain. The predicted pattern for a certain time
point was much more similar to the measured response pattern to the same time point in
the left-out test participants’ brains (Figure 5A diagonal) than responses to other time
points (Figure 5A off-diagonal). The average similarity between predicted and measured
response patterns for the same time point was 0.356 for the Forrest dataset, and 0.408 for
the Raiders dataset, whereas the average similarity between predicted and measured
patterns from different time points was close to O for both datasets. For the same time
point, the measured response patterns were more similar to predicted patternsin a
participant’s native space than to predicted patterns in other participants’ native spaces
(Figure 5B diagonal). The average similarity of the same time point for different

participants was 0.211 for the Forrest dataset, and 0.209 for the Raiders dataset (Figure

5C).
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Considering the similarity between measured and predicted response patterns, we
assessed whether we could classify which time point of the movie the participant was
viewing based on these patterns. We performed the classification analysis using a one-
nearest-neighbor classifier in two different ways. First, we used binary classification (2-
alternative forced choice); that is, we compared the measured response pattern for one
time point with the predicted patterns for the same single time point paired with each other
time point to determine which pair is more similar, and then averaged across all pairs,
resulting in a chance accuracy of 50%. Second, we used multiclass classification; that is,
whether the similarity with the same time point is higher than with all other time points.
The number of time points was 1818 for Forrest and 1680 for Raiders, resulting in a
multiclass chance accuracy less than 0.1% for both datasets. We varied the number of
PCs used in the analysis from 10 to 300 with an increment of 10 and repeated the analysis
at each number of PCs. For binary classification, the accuracy peaked at 99.0% for Forrest
(180 PCs) and 98.6% for Raiders (250 PCs) (Figure 5D). For multiclass classification, the
peak accuracy was 51.9% for Forrest (190 PCs) and 44.8% for Raiders (220 PCs) (Figure
5E). Note that these classification results are robust against the number of PCs used, and
the accuracy was stable with 100—300 PCs for both approaches and both datasets.

The response patterns of different participants’ share some similarities (Figure 5C,
dark orange), and we were able to classify which time point one participant was viewing
based on the predicted patterns in another participants’ native space to some extent. For
the binary classification analysis, the peak accuracy was 95.2% for Forrest (50 PCs) and
94.1% for Raiders (60 PCs) (Figure 5D, orange lines). For the multiclass classification

analysis, the peak accuracy was 20.1% for Forrest (90 PCs) and 15.8% for Raiders (80
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PCs) (Figure 5E, orange lines). Note that the classification accuracy for mismatching
participants drops dramatically after peaking at 50—90 PCs, whereas the classification
accuracy for the matching participant monotonically improved until the number of PCs is
roughly 200. This suggests that a lot of the information in our model-predicted response
patterns are specific to the test participant.

To localize cortical areas where the fine-grained patterns are most accurately
predicted, we performed a searchlight analysis (20 mm radius) with the binary
classification approach. Due to the limited number of vertices in each searchlight, we
performed the classification analysis without dimensionality reduction. We found that the
accuracy was highest for visual, auditory, and corresponding association cortices (Figure
5F & G) with significant classification across almost all of the cortex.

Model performance with less data

The datasets used so far in this work comprise relatively long-duration movie-
watching fMRI acquisitions (Forrest: 120 minutes; Raiders: 56 minutes), which may not be
feasible for every fMRI experiment due to limited scanning resources. How well does our
INT model work with smaller amounts of movie data? To address the question, we
systematically manipulated the amount of movie data for the test participant and assessed
our model performance for key benchmarking indices. For the Forrest dataset, the
durations were 5, 10, 15, 20, 30, 40, 50, 60, and 120 minutes; for the Raiders dataset, the
durations were 5, 10, 15, 20, 28, and 56 minutes. Depending on the analysis, up to half of

the movie data (60 and 28 minutes, respectively) or the entire movie dataset was used.
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Figure 6. Effect of data volume on model performance. (A) Effect of data volume on the
distinctiveness of an individual’s tuning matrix (cf. Figure 2D). With 10 minutes or more
movie data, the within-subject similarity of tuning matrices were more than 6 standard
deviations away from between-subject similarities on average, corresponding to a
participant identification error rate of less than 1/10°. (B) Effect of data volume on the
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distinctiveness of local tuning matrices (cf. Figure 2E). Different lines denote different
percentiles across searchlights, from an average searchlight (50™" percentile) to a highly
distinctive searchlight (99" percentile). (C) Predicting face-selectivity map with lower
volumes of movie data (cf. Figure 3C). Face-selectivity maps can be accurately predicted
with 20 minutes of movie data, but the prediction performance continues to grow with
more data. Based on psychometrics and the quality of predicted maps, we estimated the
amount of localizer data needed to achieve a similar quality (right panel). For the Forrest
dataset, 30 minutes of movie data works better than standard localizers (21 minutes).
Dashed horizontal lines indicate Cronbach’s alpha (left panel) or the actual duration of
localizer scans (right panel). (D) Predicting retinotopic maps based on less movie data (cf.
Figure 4C). (E) Quality of predicted response patterns for movie time points based on a
model estimated from varying volumes of data (classification accuracy; cf. Figure 5C and
5D). Binary classification results on the left panel; multiclass results on the right panel.
Both were based on 100 PCs. To summarize, the performance of our model continuously
grows with more training data, but for certain tasks (e.g., individual_identification,
predicting category-selectivity and retinotopic maps), only a small amount of movie data
(e.g., 30 minutes) is needed to achieve satisfying performance.

With more movie data used for training, the distinctiveness of the modeled tuning
matrix increased monotonically (Figure 6A). With 10 minutes or more movie data, the
average Cohen’s d was more than 6, which means within-subject similarity of tuning
matrices exceeded between-subject similarities by more than six standard deviations on
average. Given that Fisher-transformed correlation similarities are approximately normally
distributed, the chance of a between-subject similarity exceeding the within-subject
similarity was less than 10°. In other words, if we were to identify an average individual
using the tuning matrix based on 10 minutes of movie data, the error rate would be less
than 10°.

We observed a similar effect of data volume on functional distinctiveness in local
brain areas based on a searchlight analysis (Figure 6B). The distinctiveness based on
movie responses differs inherently across brain regions, and is highest in temporal and

occipital regions and lowest in somatosensory and motor regions (Figure 2E). Therefore,
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instead of a simple average value, we assessed key percentiles of the distribution.
Specifically, we assessed the effect of data volume on the 50", 80", 90, 95", and 99t
percentiles of the distribution. With 15 minutes of movie data, the Cohen’s d for the 95"
percentile was 5.83 for the Forrest dataset and 7.19 for the Raiders dataset.

The prediction performance for face-selectivity maps also increases with more
movie data (Figure 6C). For the Forrest dataset, the correlation between localizer-based
and model-predicted maps was 0.557, 0.592, 0.610, and 0.618 for 15, 30, 60, and 120
minutes of movie data, respectively. For the Raiders dataset, the similarity was 0.684,
0.702, and 0.716 for 15, 28, and 56 minutes of data, respectively. Note that for the
Forrest dataset, the similarity sometimes exceeded Cronbach’s alpha, which means the
model-predicted map is more accurate than a map based on 4 localizer runs (21 minutes).
The quality of localizer-based maps increases with more localizer data, which can be
estimated using the Spearman—Brown prediction formula (Brown, 1910; Spearman,
1910). Based on Cronbach’s alpha and the Spearman—Brown prediction formula, we
estimated the amount of localizer data needed to achieve similar accuracy as our model.
For the Forrest dataset, the maps predicted by 15, 30, 60, and 120 minutes of movie data
were as accurate as 17.0, 22.4, 26.2, and 30.1 minutes of localizer data, respectively. For
the Raiders dataset, the maps predicted by 15, 28, and 56 minutes of movie data were as
accurate as 9.7, 11.4, and 12.8 minutes of localizer data, respectively.

Note that brain responses to movies contain richer information than traditional
experimental paradigms. Besides the face-selectivity map, many different maps can be
estimated using the same movie data, such as retinotopic maps. With 15, 30, 60, and 120

minutes of Forrest data, the correlation between localizer-based and model-predicted
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amplitude maps were 0.744, 0.759, 0.766, and 0.774, respectively, for the eccentricity
map; and 0.717, 0.732, 0.740, and 0.746, respectively, for the polar angle map (Figure
6D). These similarities were much higher than the corresponding Cronbach’s alpha values.
Based on the Spearman—Brown prediction formula, the quality of the predicted maps was
equivalent to 22.1, 27.7, 31.4, and 35.8 minutes of retinotopic scans, respectively.

The prediction performance for fine-grained response patterns to the movie also
increases with the amount of movie data (Figure 6E). For the Forrest dataset, the accuracy
for binary time point classification was 98.1%, 98.6%, and 98.9% for 15, 30, and 60
minutes of training movie data, respectively. For multiclass classification, the accuracy
was 37.3%, 44.8%, and 50.3%, respectively. Similar results were observed for the Raiders
dataset, where the binary classification accuracy was 98.1% and 98.5% for 15 and 28
minutes of training movie data, respectively, and the multiclass classification accuracy was
38.8% and 43.1%, respectively.

To sum up, the performance of our model grows continuously with more data. For
certain tasks (e.g., individual identification, predicting retinotopic maps), 10 to 20 minutes
of movie data might be sufficient to achieve satisfying performance. Additional data will
further improve the performance of our model, at least up to the typical duration of a
feature movie (2 hours).

Discussions

In this work, we present an individualized model of fine-grained brain functional
organization. Through a series of analyses, we demonstrate that (a) the individualized
tuning functions recovered by our model for each person are highly reliable across

independent data; (b) our model can accurately predict an individual’s topographic brain
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responses to new stimuli, such as object categories and retinotopic localizers; (c) our
model accurately predicts fine-grained response patterns to movies, which can be used to
distinguish different time points (TRs) of the movie; and (d) the performance of our model
continuously improves with more training data. Besides high reliability and high prediction
accuracy, our model also shows high specificity—the predicted responses tuned to a given
individual are much more similar to the actual responses for that person than predicted
responses tuned to other individuals. To our knowledge, this is the first individualized
model of brain function that offers vertex-level (voxel-level for volumetric data) spatial
resolution. That is, our INT model provides out-of-sample generalization to new
participants at the quality and spatial resolution of within-subject data acquisition.

Like most biological systems, the functional architecture of the brain is
“degenerate”, such that roughly the same information can be instantiated in structurally
different ways across different brains (Edelman and Gally, 2001; Haxby et al., 2020). In
this work, we used searchlight hyperalignment algorithms (Guntupalli et al., 2016) to
create a functional template of brain responses based on the training participants. The
template is a common, high-dimensional response space, and its column vectors
(response time series of features) span the space of response time series across vertices
and participants. We took advantage of this property and created a set of basis vectors, so
that we could express the response time series of each vertex and each participant as a
linear combination of the same set of basis vectors. These weights offer a way to directly
compare the functional architecture of different participants and different vertices. Based

on these weights, we created the individualized tuning matrices that describe the brain
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functional organization of each participant, which can be used to accurately predict the
participant’s idiosyncratic responses to various stimuli.

The present model provides a theoretical advance over previous hyperalignment
algorithms by capturing not only topographic idiosyncrasies, but also inter-individual
differences in representational geometry. The first component of the model introduces a
new hyperalignment algorithm that we refer to as warp hyperalignment (WHA). WHA
warps the representational geometry of one participant (or the template) to match the
unique representational geometry of another participant, and thus it captures both
topographic idiosyncrasies and representational idiosyncrasies. The second component of
the model derives individualized tuning matrices in each participant’s native cortical
topography from the WHA model, which we refer to as the Individualized Neural Tuning
(INT) model. In contrast to our earlier hyperalignment algorithms for creating a common
model information space with individual transformation matrices calculated using the
Procrustes algorithm (which preserves representational geometry) (Busch et al., 2021;
Feilong et al., 2021, 2018; Guntupalli et al., 2018, 2016; Haxby et al., 2020, 2001; Jiahui
et al., 2020), WHA calculates transformations using ensemble regularized regression that
allows for individualized representational geometries. WHA also introduces a new way to
calculate a template matrix M in a single step that more accurately reflects the central
tendency for cortical topography and is not biased towards the topography of a “reference
brain”. The common model space in our previous models, M, had as many dimensions as
cortical vertices (approximately 20,000 to 60,000). In the INT model, a change of basis
from M to S recasts the common model space into a smaller orthogonal basis with

approximately 3,000 dimensions. In our previous algorithms we studied individual
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differences in responses and connectivity as residuals around shared content in the model
space, M. In the INT model, by contrast, we model individual differences in the
transformation matrices, T, which capture individual differences in both content and
cortical spatial topography of functional patterns in participants’ native cortical
topographies. Because individual differences in representational geometry are now
contained in the individual transformation matrices, 7, the new model space, S, is a neural
data-driven stimulus matrix that is not confounded with individual differences in
representational geometry. Moreover, comparable estimates of T can be calculated from
responses to different stimuli, giving the INT model more flexibility in its application, as well
as greater precision. In our previous algorithms, we performed between-subject
classification of response patterns after projecting all participants’ data into the common
model space, M. In the INT model, we perform between-subject classification by
comparing each test participant’s response pattern in their native space to response

patterns from other participants projected into that test participant’s native space.
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Figure 7. Schematic illustration of modeling a participant’s brain functional organization as
a linearly transformed functional template. (A) A participant’s brain responses constitute a
data matrix, where rows are stimuli (e.g. time points in a movie) and columns are cortical
vertices (left). Multiple vertices form a high-dimensional space, where each vertex is a
dimension, and each stimulus is a point in the space (middle). Information is encoded in
the distances between the points. Such information can be summarized using a
representational dissimilarity matrix (RDM), where each entry is the (dis)similarity between
a pair of stimuli (right). (B) The RDM of the template resembles that of a participant
(right), but the data matrix is usually quite different (left). This is because different brains
encode the same information using different cortical topographies—the vertices
collectively perform similar functions across individuals, but the function for each single
vertex is quite different across individuals. (C) The participant’s idiosyncratic topographies
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can be predicted by a rotation of the template’s feature space (middle). The rotation
changes the topographies of the template and makes the spatial patterns (rows of the data
matrix) more similar to the participant’s (left), without changing the information content, or
the RDM (right). (D) A linear transformation of the template can fully predict a
participant’s responses by modeling both the participant’s idiosyncratic topographies and
idiosyncratic information content; that is, both the “what” and “where” of a participant’s
brain functional organization. Note that the schematic illustration is oversimplified; a
typical fMRI data matrix contains thousands of stimuli/time points (rows) and tens of
thousands of vertices (columns), and a real neural feature space is a high-dimensional
space (hyperspace).

A major objective of studying individual differences in brain functional organization
is to build biomarkers that are associated with cognition, behavior, and disorders. Our
model focuses on semi-shared components of brain functional organization and is ideal for
this purpose. By “semi-shared” we mean that the same component exists in multiple
brains but differs in amplitude and topography. These reliable variations across individuals
may covary with phenotypes of interest and provide accurate biomarkers. A fully shared
component, which is identical across brains, cannot covary with other variables by
definition. A fully idiosyncratic component that only exists in one brain, on the other hand,
cannot be used to build generalizable models. For example, a specific component that
only exists in one schizophrenic brain may be of interest for a case study but cannot be
used to diagnose other schizophrenic individuals because it doesn’t exist in other brains.
Our model focuses on how the same set of components are instantiated in different forms
across the functional organization of different brains. Given the large number of
components (over 3,000 in the current implementation) and observation that they vary
across brains in a variety of ways, these semi-shared components provide a promising

basis for developing biomarkers. Similar to our previous work (Feilong et al., 2018), brain
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regions that have the most shared and synchronized responses (Guntupalli et al., 2016;
Hasson et al., 2010, 2004) are also the regions showing the most reliable differences,
suggesting the great potential of using semi-shared components to study individual
differences.

In this work we evaluated our model using two different movie datasets, both of
which yielded highly similar results. The Forrest dataset was collected using a 3 T Philips
Achieva dStream MRI scanner in Germany, with German-language audio, a TR of 2
seconds, and a spatial resolution of 3 mm. The Raiders dataset was collected usinga3 T
Siemens Magnetom Prisma MRI scanner in the US, with English-language audio, a
simultaneous multi-slice acceleration factor of 4, a TR of 1 second, and a spatial resolution
of 2.5 mm. Despite these differences, our model worked well for both datasets, suggesting
it is robust over differences in scan parameters and other details. Recently many large-
scale neuroimaging datasets have become openly available (Alexander et al., 2017; Horien
et al., 2020; Nastase et al., 2021; Snoek et al., 2021; Taylor et al., 2017), and many have
naturalistic movie-viewing sessions similar to our datasets. The synergy between our
individualized model of brain function and large-scale neuroimaging datasets offers a great
opportunity to study individual differences in brain functional organization and their
correlates with various phenotypes.

In this work we focused on neural response profiles to the movie. However, in
theory, the algorithm itself can be applied to any kind of data matrices. In our previous
hyperalignment algorithms, the searchlight procedure originally developed based on
response profiles (RHA) (Feilong et al., 2018; Guntupalli et al., 2016; Haxby et al., 2020;

Jiahui et al., 2020) has been applied successfully to connectivity profiles (CHA) (Feilong et
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al., 2021; Guntupalli et al., 2018; Nastase et al., 2020) and a hybrid of both (H2A) (Busch
et al., 2021); and the original algorithm developed based on fMRI data of humans (Haxby
et al., 2011) has been applied successfully to electrophysiology recording data of rodent
neurons (Chen et al., 2021). We leave it to future works to assess the generalizability of the

INT model to other functional profiles, modalities, and species.

Methods

Overview of the INT model

The fine-grained functional architecture of the brain encodes rich information
(Haxby et al., 2020, 2014, 2001) and affords reliable measures of individual differences in
brain functional organization that are predictive of differences in behavior (Feilong et al.,
2021, 2018). In this work, we present the individualized neural tuning (INT) model, an
individualized model of fine-grained brain functional organization, to better model these
differences. The INT model has three key features. First, it has fine spatial granularity,
which affords access to the rich information encoded in vertex-by-vertex (or voxel-by-voxel)
patterns. Second, it models each individual’s idiosyncratic functional organization as well
as that individual’s topographic projection onto the cortex, and thus it can be used to study
both functional differences and topographic differences. Third, it models the
individualized response tuning of cortical vertices in a way that generalizes across stimuli,
and therefore the model parameters can be estimated from different stimuli, such as
different parts of a movie that have different durations. These three features make the INT
model a powerful tool to study individual differences in fine-grained functional organization

of the brain.
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The INT model is based on the conceptual framework of hyperalignment (Guntupalli
et al., 2018, 2016; Haxby et al., 2020, 2011). Hyperalignment models the fine-grained
functional organization of each brain as a high-dimensional feature space, and it creates a
high-dimensional common space based on the shared functional profiles of a group of
participants. Hyperalignment also provides a way to transform between different spaces
using a high-dimensional rotation, which can be used to project the data from the common
space to a participant’s native anatomical space, from a participant’s space to the
common space, or from a participant’s space to another’s (Jiahui et al., 2020). This high-
dimensional rotation resolves topographic differences, which is critical to study individual
differences in fine-grained functional organizations (Feilong et al., 2021, 2018).

The INT model starts with creating a functional template M (a matrix of shape t x v)
based on the data of the training participants (n — 1 for leave-one-subject-out cross-
validation), which corresponds to the hyperalignment common space. The template M has
the same shape as the data matrix B of a participant, and its function and topographies are
representative of the group of participants used to create the template. The data matrix
B, of the participant p is modeled as a matrix multiplication of the shared functional
template M and an idiosyncratic linear transformation W, (v x v). We use a new
hyperalignment algorithm (“warp hyperalignment”, WHA) to derive the transformation
instead of Procrustes-based hyperalignment, so that the transformation is a linear
transformation instead of an improper rotation. An improper rotation (rotation and
reflection) changes how the information is encoded on the cortex (“where”) but it does not
change the content information (“what”), and thus it only accounts for topographic

differences across individuals. A linear transformation allows scaling and shearing, which
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also warp the representational geometry of the template to model the idiosyncratic
representational geometry of each participant, and therefore it accounts for both
topographic (“where”) and functional (“what”) differences.

With warp hyperalighment, we obtain a modeled data matrix B(p), which are the
brain responses that can be accounted for by the functional template and the linear
transformation (i.e., MW,). To derive a measure of neural response tuning that generalizes
across stimuli, we decompose E’(p) into two matrices, a stimulus matrix S (t x k) shared by
all participants, and a tuning matrix Ty, (k x v) that is specific to the participant p. With the
decomposition, the temporal information, such as contents of a movie over time, is
factored into S. In the tuning matrix T, the response tuning function of each cortical
vertex is depicted using a column vector of k elements, which is the same for all stimuli.

To sum up, with the INT model we use the tuning matrix T, to model each
participant’s individualized functional organization. The tuning matrix has a fine-grained
spatial granularity, models the participant’s topographic and functional idiosyncrasies, and
generalizes across stimuli. In the next few sections, we describe in detail the steps we
used to derive the tuning matrices and to benchmark the reliability, validity, accuracy, and
specificity of our INT model.

Building the functional template

In each cross-validation fold, we built a functional template based on the training
participants and modeled each test participant’s data matrix as the linearly transformed
template in a high-dimensional space. Both the data matrix and the functional template

have the same shape t x v; that is, the number of time points by the number of cortical
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vertices. The template was created in a way that its functional properties—both in terms
of representational geometry and cortical topography—are representative of the training
participants.

Searchlight-based algorithm

We built the template using a searchlight-based algorithm. For each searchlight, we
built a local template based on all vertices within the searchlight. We then combined all
the local templates into a whole brain template. Each local template contains modeled
response profiles of vertices in the corresponding searchlight. Each vertex is included in
multiple searchlights, and each searchlight and the corresponding local template offers a
modeled response profile for the vertex. We combined these modeled response profiles of
the same vertex into a single response profile for the vertex, which is the vertex’s response
profile in the whole brain template. In our previous algorithms, we combined local
searchlight templates by adding together the modeled response profiles of the vertex to
form the final response profile of the vertex (Guntupalli et al., 2018, 2016). In this work,

we instead used a distance-based weighted average instead of summation. Specifically,
the weight was computed as %, where r is the searchlight radius (20 mm), and d (0 <d <

r) is the distance between the vertex and the center of the searchlight. In other words, the
weight is 1 when the center of the searchlight is the vertex itself, and close to O when the
vertex is close to the boundary of the searchlight. This improved procedure makes the
searchlights closer to the vertex contribute more to the final modeled response profile of

the vertex (due to weighting local templates), and the scale of the modeled response
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profile for a vertex similar to the actual response profile for that vertex (due to using
averaging instead of summation).

Building local templates

In order to estimate the INT model, we must first create a functional template
capturing the consensus functional organization (which we refer to as M). Within each
searchlight, we created a local template using a PCA-Procrustes algorithm, and the matrix
shape of the local template is the same as a local data matrix (i.e., the number of features
is the same as the number of vertices in the searchlight, not the total number of vertices).
First, we concatenated all training participants’ data matrices in the searchlight along the
features dimension to form a group n x v; that is, the number of participants times the
number of vertices in the searchlight. We then applied principal component analysis (PCA)
to this concatenated data matrix. To keep the total variance the same for a single
participant’s local data matrix and the local template, we divide the PC time series by /n.
Similar to our previous work (Haxby et al., 2011), here we chose to make the
dimensionality of the local template the same as a single participant’s local data matrix,
thus retaining the first v PCs and discarding the remaining. Note that the PCA is based on
the data of all training participants, and thus the PCs summarize across all vertices and
participants; each PC is a weighted sum of all vertices (in a given searchlight) across all
training participants. The PCs capture the representational geometry for a given in
searchlight in a way that is representative of the representational geometries of the training
participants. In other words, the PCs provide a template that models the shared function

of the searchlight.
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We then used the orthogonal Procrustes algorithm to “align” the PCs to the training
participants’ data, so that the functional topographies of the local template are also
representative of the training participants. Mathematically, we want to find a rotation
matrix R which minimizes the topographic differences without changing the information
content.

n
R = argming ZHM(PC)R - B(p)”i
p=1

In this equation M, is the PC matrix, By, is the local data matrix of the p-th
participant, n is the number of participants, and || || is the Frobenius norm.

To find the solution R, we applied the orthogonal Procrustes algorithm to
concatenated data matrices. This time, we concatenated all training participants’ data
along the samples (i.e., time points) dimension to form another group data matrix, where
the number of rows is n x t; that is, the number of participants times the number of time
points. We copied the template PC matrix n times and concatenated them in the same
way, so that the concatenated PC matrix had the same shape as the concatenated group
data matrix. We applied the orthogonal Procrustes algorithm to these two data matrices to

get a rotation matrix R.

2
Bay| Moy

R = argming Pl - i |R
By [Meo] ||,

Note that the solution for this formula is the same as the previous one. However,

because the matrices have been concatenated, the solution of the orthogonal Procrustes
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algorithm can be computed directly based on the singular value decomposition of the
covariance matrix, which provides an analytical solution to the problem.

Similar to Procrustes-based hyperalignment algorithms, this rotation matrix R does
not change the representational geometry or the information content in the data matrix.
Instead, it changes the functional topographies so that one data matrix is “aligned” to
another. In this case, a single rotation is estimated that best aligns the coordinate axes
(i.e., PCs) of the template matrix and the coordinate axes (i.e., cortical vertices) of all
participants, so that the functional topographies of the rotated template matrix maximally
resemble those of the training participants. The final local template M is the PC matrix
multiplied by the rotation matrix R: M = Mpc)R.

In short, we used the PCA-Procrustes algorithm to create a local template for each
searchlight, which is representative of the training participants both in terms of
representational geometry and cortical topography. The PCA step ensures that the
functional profiles and representational geometry of the local template are close to those of
the training participants, and the orthogonal Procrustes step ensures that the
topographical distribution of these functions on the cortex is also representative of the
training participants. After iterating over all searchlights, the local templates were
combined into a single whole brain template using the distance-based weighted average
method described above.

Modeling response tuning functions
We modeled each participant’s response data matrix B, as the template data

matrix M multiplied by a linear transformation W), plus some noise E:
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By = By + E = MW +E

Unlike Procrustes-based hyperalignment (Haxby et al., 2011), in which the
transformation matrix W, (often denoted as R) is a rigid improper rotation, the linear
transformation W allows warping of representational geometry. Consequently, individual
differences in representational geometry are embedded in the transformation matrices, W,
rather than in the individual information projected into the model space, M. We name the
new algorithm “warp hyperalignment” (WHA) to emphasize its capacity to warp
representational geometries and to distinguish it from previous algorithms.

We computed the linear transformation W, using a searchlight-based algorithm,
similar to the procedure we used to create the template M. That is, for each of the
searchlights, we computed a local transformation, and these local transformations were
combined using the distance-based weighted average.

Typically, a model needs to be regularized to avoid overfitting and to increase its
generalizability to new data. For the orthogonal Procrustes algorithm, the linear
transformation W, is constrained to be orthogonal (i.e., an improper rotation in a high-
dimensional space), which can be considered as a strong regularization. In this work, we
allowed scaling and shearing in the transformation, which models individual differences in
function, such as representational geometry. We used two methods to avoid overfitting in
model estimation. First, we used ridge regression with a regularization parameter of 103
based on independent pilot data not presented here. Second, we used an ensemble
method which we call k-fold bagging. That is, for each participant and each searchlight,

we trained 100 ridge regression models based on bootstrapped samples (bootstrapped
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time points; sampled with replacement), and we averaged the weights of these 100 models
to serve as the weights for the final model (described in detail below).

Ensemble ridge regression models

We used ensemble learning (Zhou, 2012) to improve the accuracy and
generalizability of our models. Specifically, we adapted the bootstrap aggregating
(“bagging”) algorithm (Breiman, 1996) for our time series data. Bagging is commonly
used to reduce model variance and avoid overfitting by averaging across models trained on
bootstrapped samples. It also provides estimation of model performance on new data
through out-of-bag cross-validation. During out-of-bag cross-validation, the predicted
value of a data point is the average prediction of models that were not trained with the time
point (i.e., out-of-bag models). In this case, this data point serves as the test data and the
other time points as training data. Typically, bootstrapped samples are randomly drawn
with replacement from the original sample. A participant’s fMRI data (e.g., responses to
movies) usually comprises hundreds or thousands of time points. With the classic bagging
algorithm, it often happens that some time points are drawn by all bootstrapped samples,
which makes them inappropriate for model evaluation using out-of-bag cross-validation
(i.e., no out-of-bag models for these data points). To use as much data as possible for
cross-validation, we augmented the classic bagging algorithm with a k-fold scheme.

In each k-fold repetition, we first divide all time points randomly into k folds. For a
given fold, we set aside the data in that fold to serve as candidate test data, while data in
the other k — 1 folds serve as candidate training data. We then drew a bootstrapped
sample from the candidate training data and used it to train a model. This procedure

guarantees that the candidate test data can be used for model evaluation because they
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were not used in model training. Some candidate training data may not get chosen by the
bootstrapped sample and these data also serve as test data for model evaluation. In other
words, for each model, the actual test data includes both candidate test data and the
candidate training data not drawn by the bootstrapped sample. After an iteration over all k
folds, we obtained k trained models. For each data point, our resampling procedure
ensures that at least one of the k models was not trained with the data point. In this work,
we used k = 5 and repeated the k-fold scheme for 20 times, and thus the prediction for
each data point was the average of at least 20 out-of-bag models.

To account for temporal autocorrelation caused by the hemodynamic response
function, we also introduced temporal “buffers” for out-of-bag cross-validation. That s,
when we evaluate model performance on a certain time point, we exclude not only models
trained with the time point itself, but also models trained with time points less than 10 s
away from the time point used for evaluation. For example, fora 2 s TR length, when we
evaluate model performance for the i-th TR, we exclude models trained with any of the 11
TRs fromi—5toi+ 5. To avoid removing too many buffer time points from the training
data, we divided time points into groups by grouping them into 10 s segments (5-TR
segments for a 2 s TR), and assigned all time points in the same segment to the same fold.

The adapted bagging algorithm and the out-of-bag cross-validation procedure were
only based on the training data (for the test participant). Similar to the inner-loop of nested
cross-validation, the training and test folds discussed in this context were both part of the
training data. Because independent data were used in out-of-bag evaluation, this
procedure provides an unbiased way to estimate model performance on new data, such as

the actual test data.
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Separating stimulus and tuning information

Based on the whole-brain functional template M and the linear transformation W,
derived by warp hyperalignment, we obtained a modeled brain response matrix E(p) (t x v)
for the participant p, which are the responses of the participant that can be accounted for
by the linearly transformed template. To model the participant’s neural response tuning
independent of stimulus information, we derived a tuning matrix T, (k x v) by a matrix
decomposition of B ).

This matrix decomposition factors the temporal information into the matrix S (¢ x k).
The columns of S are a set of basis response profiles (i.e., response time series to the
movie). The response profile of each vertex is modeled as a linear combination (i.e.,
weighted sum) of the basis profiles, and the weights of the linear combination are the
corresponding column in T(,), which is a column vector of k elements. This column vector is
independent of the stimulus, and it reflects the response tuning function of the vertex. We
refer to this column vector as the tuning profile of the cortical vertex to distinguish it from
the response profile (response time series).

To use the tuning matrices to model differences in neural tuning across vertices and
across individuals, ideally the tuning matrices should have several properties: (a) cortical
vertices that have larger differences in response time series also have larger differences in
their tuning profiles; (b) individuals who are more similar based on their response profiles
are also more similar based on their tuning matrices; (c) the same tuning matrix can be
estimated from different stimuli, such as different parts of the movie with different

durations. These objectives motivate us to find a matrix S with three properties: (a) the
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columns are orthogonal to each other; (b) each column has unit variance; and (c) the
columns of S form a basis set of response profiles. Orthogonality is necessary to make S a
similarity transformation, so that differences in T, across vertices and across individuals
are proportional to their differences in E(p). Unit variance ensures that the scale of the
estimated T, is the same for different amounts of data, such as data matrices from
different parts of the movie. That the columns of S form a set of basis response profiles
means the response profile of each vertex and each participant can be expressed as a
linear combination of the basis profiles. In other words, S can be used to fully model By,
and E’(p) without any loss of information.

There are many choices of S which have all these properties and work similarly well
for our purposes. In this work, we use the normalized principal components (PCs) from a
group-PCA. The normalized PCs work well in practice, as is shown by the benchmarking
analyses. Furthermore, due to the nature of PCA, they provide an easy way to reduce data
dimensionality when less dimensions are desired. In this work we did not reduce
dimensionality, and thus k equals the rank of the concatenated matrix, which is the same
as the number of time points in the movie in practice (approximately 3000). We performed
the group-PCA using a singular value decomposition (SVD) on the concatenated data
matrices of all participants, and rescaled the first matrix U to get S.

[B1), B2y, By 1 = urvT
S = +nU
Based on the conceptual framework of hyperalignment (Haxby et al., 2020, 2011),

different brains share the same functional basis. In practice, the shared functional basis is
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instantiated as a hyperalignment common space, which is a functional template. The
response profiles of the template’s vertices form a set of basis response profiles, and the
response profile of each cortical vertex is expressed as a linear combination of these basis
response profiles. The weights of the linear combination are the elements in the
corresponding column of the transformation matrix. Note that the transformation matrix
based on the searchlight algorithm is highly sparse, and the weights of the linear
combination are non-zero only for local neighborhoods of vertices (i.e., vertices included in
the same searchlight) in the template. As a result, the response profile of each vertex is
modeled using a different set of vertices, whose response profiles highly covary due to
spatial autocorrelations.

In the INT model, the columns of matrix S serve as the set of basis response profiles,
which are orthogonal vectors with unit variance. The response profiles of all vertices and
all participants are all expressed as a linear combination of the same basis set, which
affords the study of functional tuning differences across vertices and across individuals
based on tuning matrices, whose columns comprise the linear combination weights. In
other words, we are replacing local basis sets (response profiles of adjacent vertices) with a
single global basis set of response profiles (columns of S). Conceptually S is also a
common space, but different from M, the features in S are completely virtual and do not
correspond to specific cortical loci.

The features in S are neural data-driven stimulus descriptors. They are derived from
shared brain responses and reflect the primary ways cortical vertices response to stimuli.
Each stimulus (e.g., movie time point) is described as a row in S, which is a vector of k

elements, and each element indexes to what extent a virtual feature responds to the
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stimulus. In other words, the row vector describes the key features of the corresponding
stimulus based on neural responses. Therefore, here and elsewhere we refer to S as the
stimulus matrix.

Because stimulus information is factored into S, the information in the tuning matrix
T is neural response tuning of cortical vertices that is the same for a wide variety of
stimuli from the space spanned by a naturalistic, audiovisual movie stimulus. For example,
when we divide the neural response data matrix B into two halves, each half can be
modeled using the corresponding half of S and the same T, (Figure 1B). This property has
an important implication for Ty,): Once the functional template is created, the same
individualized T, can be estimated from independent data of the same individual (e.g.,
different parts of a movie), and the amount of data used to estimate T, can be less than
the amount of data used to create the functional template (e.g., responses to part of the
movie instead of the entire movie).

Furthermore, the INT model can be extended to model responses to stimuli that
were not used to create the template. Given the neural responses to new stimuli from a
group of participants (which can be a subset of all participants) and their tuning matrices,
the stimulus descriptors Sq.ew) for the new stimuli can be estimated (Figure 1C) and used to
predict other participants’ responses to the new stimuli.

In the sections below, we use a series of analyses to demonstrate the reliability,
validity, accuracy, and specificity of our INT model. In the first analysis, we show that the
tuning matrices estimated from different parts of the movie are highly similar for the same
individual but dissimilar for different individuals. In the second and third analysis, we show

that individualized responses to new stimuli (category selectivity and retinotopic maps) can
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be accurately predicted by estimating the stimulus descriptors for the new stimuli. In the
fourth analysis, we show that the INT model can accurately predict individualized fine-
grained spatial response patterns, such as responses to a specific time point of a movie. In
the fifth analysis, we show that 10—20 minutes of movie data are sufficient for satisfying
performance of the INT model, but the performance grows continuously with more data.
Datasets

The Forrest dataset

The Forrest dataset is part of the Phase 2 data of the studyforrest project (Hanke et
al., 2014). It contains 3 T fMRI data collected from 15 right-handed German adults (mean
age 29.4 years, 6 females) during movie watching, retinotopic mapping, and object
category localizers (Hanke et al., 2016; Sengupta et al., 2016). Each participant’s movie
data comprised eight runs of approximately 15 minutes each, while the participant
watched a shortened version of the audiovisual feature movie Forrest Gump. In total, 3599
volumes were collected over the course of 2 hours of scanning. The retinotopic data
comprises four 3-minute runs (12 minutes in total), and the four runs corresponded to
expanding rings, contracting rings, clockwise wedges, and counterclockwise wedges. The
object category localizer data contains 4 runs that are 5.2 minutes each (20.8 minutes in
total). Each run contains two 16 s blocks for each of the 6 categories (bodies, faces,
houses, objects, scenes, and phase scrambled images). During each block, 16 grayscale
images were displayed for 900 ms each with a 100 ms interval. During the object category
localizer scans, the participant performed a central letter reading task to maintain
attention and fixation. All these data were acquired with a Philips Achieva dStream MRI

scanner and a gradient-echo EPI sequence, with which a whole brain image containing 3
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mm isotropic voxels was acquired every 2 seconds. More details of these datasets can be
found in the data descriptors for the 3 T studyforrest data (Hanke et al., 2016; Sengupta et
al., 2016).

The Raiders dataset

The Raiders dataset contains data from 23 participants (mean age + SD: 27.3+ 2.4
years; 12 females) while they were watching the second half of the movie Raiders of the
Lost Ark (Nastase, 2018). The movie scan comprised 4 runs that were 14—15 minutes
each (850, 860, 860, and 850 seconds, respectively). In total, 3420 volumes were
collected for each participant, with a 1 second TR and 2.5 mm isotropic voxels. The movie
clips of adjacent runs had 20 seconds of overlapping content, and thus we removed 10
seconds of data from the end of first run and 10 from the beginning of the second run
during analysis. After chopping off the overlapping content, the remaining movie data
were 14 minutes (840 TRs) per run and 56 minutes in total. Among the 23 participants, 20
also had localizer data. The localizer data were the same data used in (Jiahui et al., 2020).
It was collected using the same scan protocol as the movie, and it comprised four runs of
3.9 minutes each (15.6 minutes in total). Each run comprised 10 blocks, 2 per category
(faces, bodies, scenes, objects, and scrambled objects), and each block was 18 seconds
long. Each block comprised 6 video clips that were 3 seconds each. During the localizer
scans, the participant performed a 1-back repetition detection task based on the video
clips.

The Raiders dataset was collected using a 3 T Siemens Magnetom Prisma MRI
scanner with a 32-channel head coil at the Dartmouth Brain Imaging Center, with the same

scan protocols as (Visconti di Oleggio Castello et al., 2020). Each second, a volume was
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collected with 2.5 mm isotropic voxels and whole brain coverage. The volume comprised
52 axial slices collected in an interleaved fashion with gradient-echo echo-planar imaging.
Each slice had a 96 x 96 matrix and an FOV of 240 x 240 mm3. The TE was 33 ms, flip
angle was 59°, and the phase encoding direction was anterior—posterior. The imaging was
accelerated using a simultaneous multi-slice (SMS) factor of 4 and no in-plane
acceleration. All participants gave written, informed consent, and were paid for their
participation. The study was approved by the Institutional Review Board of Dartmouth
College.

MRI Preprocessing

We ran fMRIPrep (Esteban et al., 2019) on all MRI data, using version 20.1.1 for the
Forrest dataset, and 20.2.0 for the Raiders dataset. After fMRIPrep, functional data from
all participants were projected onto a cortical surface and were in alignment with the
fsaverage template (Fischl et al., 1999) based on cortical folding patterns. We then
performed downsampling and nuisance regression in the same way as (Feilong et al.,
2018). First, we downsampled functional data to a standard cortical surface mesh with
9372 vertices for the left hemisphere and 9370 vertices for the right hemisphere
(approximately 3 mm vertex spacing; 10242 per hemisphere before removing non-cortical
vertices). Then, we performed a linear regression to partial out nuisance variables from
functional data separately for each run. The nuisance regressors include 6 motion
parameters and their derivatives, global signal, framewise displacement (Power et al.,
2014), 6 principal components from cerebrospinal fluid and white matter (Behzadi et al.,
2007), and polynomial trends up to the 2" order. Finally, we normalized the residual time

series of each vertex to zero mean and unit variance.
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Assessing the reliability and specificity of tuning matrices

To make the tuning matrices a useful measure of brain functional organization, they
need to have high reliability and specificity. That is, tuning matrices of the same individual
based on independent data should be similar, and tuning matrices from different
individuals should be dissimilar. Therefore, we split each participant’s movie data into two

parts, and estimated a tuning matrix based on each part of the movie.
B,y =SwTwy
B2y =S Twa

Where B,y = [ggz;], and § = [gg;] T, and Ty, 2) are both estimations of 7y,, but

they are estimated based on different parts of the movie (independent data).

To assess the reliability and specificity of the modeled tuning matrices, we
computed a cross-movie-part similarity matrix for each dataset based on the estimated
tuning matrices. The matrix has a shape of n x n, where each row corresponds to a tuning
matrix based on the first part of the movie, each column corresponds to a tuning matrix
based on the second part of the movie, and each entry is the correlation-based similarity
between the two matrices. The diagonal of the matrix is the within-subject similarities, and
the off-diagonal elements are between-subject similarities. A clear difference between
diagonal and off-diagonal elements indicates a substantial difference between within-
subject and between-subject similarities.

Multi-dimensional scaling

To better visualize the similarities between estimates tuning matrices, we performed

multi-dimensional scaling (MDS) using the T-distributed Stochastic Neighbor Embedding
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(t-SNE) algorithm (Van der Maaten and Hinton, 2008). We used a full individual
differences matrix (i.e., 2n x 2n elements, comprising both same-movie-part and cross-
movie-part dissimilarities based on correlation distance) as input to the t-SNE algorithm.
The 2n tuning matrices were projected to a 2D space by t-SNE. Given any MDS algorithm
would unavoidably distort distances during the projection, we used a perplexity parameter
of 10 to reduce the distortions of distances between closer neighbors, which in this case
are within-subject dissimilarities and several smallest between-subject dissimilarities.
These dissimilarities are key to determine whether an individual can be easily identified
based on the tuning matrix and a nearest-neighbor classifier.

Distribution of tuning matrix similarities

For each tuning matrix, we extracted its within-subject similarity and between-
subject similarities based on the cross-movie-part similarity matrix. These similarities
correspond to the diagonal (within-subject) and off-diagonal (between-subject) elements of
a row of the similarity matrix. We plotted the distribution of the within-subject similarity
and between-subject similarities for each tuning matrix in Figure 2C, sorted by within-
subject similarity.

Distinctiveness index

For all tuning matrices, we found that within-subject similarity was far greater than
the distribution of between-subject similarities. In other words, any participant can be
identified by the modeled tuning matrix with an accuracy of 100% based on a simple one-
nearest-neighbor classifier. To better describe how distinctive an individual is based on

the modeled tuning matrix, we computed the distinctiveness index based on Cohen’s d:
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within-subject similarity — mean(between-subject similarity)

distinctiveness =
SD(between-subject similarity)

The distinctiveness index is a measure of effect size, and thus is comparable across
datasets with different sample sizes. The similarities used to compute the distinctiveness
index were Fisher-transformed correlation similarities, and therefore they approximately
follow a normal distribution, and the distinctiveness index can serve as a z-statistic. Using
the cumulative distribution function of the standard normal distribution, an identification
error rate can be estimated based on the distinctiveness index.

Searchlight analysis

To locate the brain regions where the functional organization is most distinctive, we
performed a searchlight analysis (Kriegeskorte et al., 2006) using a searchlight radius of
20 mm. Within each searchlight, we computed a distinctiveness index for each tuning
matrix based on vertices in the searchlight, and we averaged the distinctiveness index
across all tuning matrices to get an average distinctiveness index for the searchlight. We
repeated this process for each searchlight and obtained an average index for each
searchlight. These average distinctiveness indices formed a map of distinctiveness for
each dataset (Figure 2E).

Predicting category-selectivity maps

The previous analyses have shown that our model has high reliability and specificity.
The modeled brain functional organization is highly similar for the same individual (based
on independent data), and much less similar for different individuals. In this part, we
tested the generalizability of our model. Specifically, we tested whether our model could

predict responses to new stimuli that were not used in model training. Therefore, we
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trained our model based on the movie data and tested whether the model can be used to
predict responses to various object categories. Here we use the “faces” category as an
example to illustrate the procedure of our analysis, and the same procedure was applied to
other object categories.

Quality of localizer-based maps

The Forrest dataset has 4 static object category localizer runs per participant (for all
participants), and the Raiders dataset has 4 dynamic object category localizer runs per
participant (for 20 out of the 23 participants). For each run of each participant, we used
general linear model to estimate the contrast of interest (faces vs. all other categories) and
obtained a map of t-statistics for the contrast. Due to the presence of noise in localizer
data, the estimated face-selectivity map is a combination of a “true” face-selectivity map
of the participant and some noise. The component from the “true” map is supposed to be
shared by all localizer runs, and thus the data quality and the level of noise can be
estimated based on the similarity between the 4 maps (i.e., one from each run). We used
Cronbach’s alpha to estimate the quality of the average map of the 4 runs. If we were to
collect another 4 localizer runs from the participant and get a new average map based on
the 4 new runs (i.e., independent data), then the expected correlation between the two
average maps would be Cronbach’s alpha. In other words, if the correlation between the
model-predicted map and the localizer-based (average) map is higher than Cronbach’s
alpha, then the model-predicted map is more accurate than the average map based on 4
runs.

Model-predicted category selectivity maps
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We used a leave-one-subject-out cross-validation scheme to evaluate model
performance. We built the template based on the n — 1 training participants’ movie data.
We then computed a tuning matrix T, for each of the n participants based on the movie
data. We modeled the face selectivity map as the brain response pattern to the specific
“faces” category:

B(p,faces) = Staces)T(p) + E

Here B, races) denotes the face-selectivity map for participant p, and S, ces)
denotes the stimulus descriptors for the “faces” versus other categories contrast. In this
case, both B, facesy aNd Siraces) are row vectors because there is only one stimulus
(category). Both B, races) @nd Ty were known for the training participants, and thus Sg,ces)
can be estimated using a general linear model (e.g., ordinary least squares) by finding the

S(taces) that minimizes the Frobenius norm ||B, aces) — S(faces)T(p)”F. This solution can be

computed using ordinary least squares (“vanilla” regression), but here we used ensemble
linear ridge regression to increase the accuracy and generalizability of our model. The
ensemble model is similar to the algorithm we used to build the INT model, which is based
on k-fold bagging. The final prediction model was the average of 50 ridge regression
models (k = 5, 10 repetitions), and the choices for the regularization parameter were 21
values evenly distributed in a logarithmic scale, ranging from 0.01 to 100. Similar to
nested cross-validation, the choice of the regularization parameter was determined based
on out-of-bag cross-validation, and thus it’s only based on the training data. For each
single model in the ensemble, we bootstrapped n — 1 participants with replacement from

the n — 1 training participants and trained the ridge regression model based on the
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bootstrapped sample. To further increase the diversity of models in the ensemble, each
time a participant was chosen by a bootstrapped sample, we also bootstrapped 4 runs with
replacement from the participant’s data, and the face-selectivity map used in the
regression was the average of the 4 bootstrapped runs. After all n — 1 participants had
been chosen for the bootstrapped sample, we concatenated their vertices, and trained a
ridge regression model based on the concatenated data. We obtained an estimated Si-1,
races) TOr each bootstrapped sample (coefficients of the regression model), and the final
estimation of Si,-1,taces) Was the average across all bootstrapped samples.

The model-predicted map of the left-out test participant was simply the matrix
multiplication of the estimated stimulus descriptors S,-1, races) based on the n — 1 training
participants and the estimated tuning matrix T, of the test participant:

B faces) = Stn-1,faces)Tp)

Evaluating model-predicted maps

We evaluated the quality of model-predicted maps in the same way as (Jiahui et al.,
2020). That is, for each test participant, we computed the Pearson correlation between
the localizer-based map and the model-predicted map of the participant. Note that we
estimated the reliability of the localizer-based map using Cronbach’s alpha, which is the
expected correlation between two average maps, each based on 4 runs of independent
data. Based on the Spearman—Brown prediction formula, we can estimate how
Cronbach’s alpha changes with the amount of data (i.e., the number of localizer runs), and
correspondingly, how much localizer data is needed to achieve the quality of the model-

predicted map.


https://doi.org/10.1101/2022.05.15.492022
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.15.492022; this version posted May 15, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We also evaluated the specificity of our model-predicted maps. For each test
participant, we also computed the correlations between the participant’s own localizer-
based map and model-predicted maps of other participants. If the model-predicted map is
highly specific to the participant, we expect the between-subject correlations to be much
lower than the correlation with the participant’s own model-predicted map.

Predicting retinotopic maps

Estimating retinotopic maps based on localizers

The Forrest dataset contains 4 retinotopic scans per participant that are 3 minutes
each. The 4 runs are expanding rings, contracting rings, clockwise wedges and
counterclockwise wedges, respectively. We followed the steps of (Warnking et al., 2002)
and estimated an eccentricity map based on the runs of expanding rings and contracting
rings and a polar angle map based on clockwise wedges and counterclockwise wedges for
each participant. Specifically, we performed Fourier transformation on the time series
data that were collected during stimulus presentation (5 cycles of 16 TRs [32 seconds]
each; 80 TRs [160 seconds] in total; started 4 seconds after scan onset) and located the
frequency component that had the same period as the stimuli (i.e., 5 cycles in 80 TRs).
The amplitude of the component indicates to what extent a vertex’s response time series
can be explained by retinotopic stimuli, and the phase of the component indicates the
eccentricity or the polar angle that a vertex responds maximally to. Considering the
hemodynamic response function of BOLD signal, we shifted the phase by 5 seconds to
account for hemodynamic delay. For each kind of retinotopic map (i.e., eccentricity and
polar angle), we averaged the Fourier transformation results of the two corresponding runs

(e.g., expanding and contracting rings for eccentricity map) to get the final map. The
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amplitude was the mean amplitude of the two runs, and the phase was the circular mean of
the two runs (which removes the remaining effects of hemodynamic delay).

Model-predicted retinotopic maps

Each retinotopic map comprises two parts, namely an amplitude map and a phase
map.

B(rery = Acos(8 — @)

Here A is the amplitude, 6 is the preferred phase (i.e., eccentricity or polar angle)
for each vertex, and ¢ is the phase corresponding to the current stimulus. A vertex
responds maximally when the phase of the current stimulus corresponds to its preferred
phase, and the response decreases when the phase moves away from the vertex’s
preferred phase. The retinotopic map can be modeled as a weighted sum of a sine map
and a cosine map.

Acos(8 — ¢) = Acos(8)cos(¢) + Asin(8)sin(@) = xcos(p) + ysin(¢)

Note that the original phase 6 is a circular variable and it’s difficult to predict it
using a linear model (e.g., the model we used to predict category-selectivity maps). After
the transformation, we have two new variables x and y, which contains the same
information as the original amplitude map A and the phase map §. However, both xand y
are weights of the linear combination, and thus they can be predicted directly using linear
models.

We used similar prediction procedures as the category-selectivity analysis for the
current analysis. Specifically, we used leave-one-subject-out cross-validation, and the

prediction models were ensembles of ridge regression models. For each test participant
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and each kind of retinotopic map, we trained two sets of ensemble models, one for
predicting the weight map x, and the other for predicting y. After estimating the stimulus
descriptors for x and y based on the training participants, we multiplied them by the
estimated tuning matrix of the test participant to get the estimated x and y maps for the
test participant. The model-predicted amplitude and phase maps can be computed from
the estimated x and y maps:
4= Ty
6 = arctan2(x,y)

Evaluating model-predicted maps

We evaluated the amplitude map and the phase map separately for each kind of
retinotopic map. For the amplitude map, we computed the correlation between the test
participant’s localizer-based map and the participant’s own model-predicted map, as well
as the correlations with others’ model-predicted maps. We also computed Cronbach’s
alpha based on the amplitude maps from the two runs from each kind of retinotopic map.
In general, the amplitude maps were assessed in a similar way as the category-selectivity
maps.

For the phase map, we computed the average (absolute) phase difference between
the test participant’s localizer-based map and the participant’s own model-predicted map
in the early visual cortex—an area known to have retinotopic responses. The early visual
cortex was located based on regions V1, V2, V3, and V4 of the Glasser parcellation (Glasser
et al., 2016). Similarly, we computed the average phase difference with others’ model-

predicted maps, and the average phase difference between the two runs for each kind of
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retinotopic map. Note that the phase differences between the two runs are driven by both
hemodynamic delay and noise, and their influences cannot be fully separated based on the
current data.
Predicting response patterns to the movie

The previous analyses demonstrate the power of our model in predicting brain
responses to new stimuli, such as object categories and retinotopic localizers. However,
both object-category representation and retinotopy correspond to relatively coarse-grained
cortical topographies. To assess the spatial granularity of our model, we further tested how
well it could predict fine-grained spatial response patterns, such as time-point-by-time-
point responses to a movie.

Cross-validation scheme

For each movie dataset, we used leave-one-subject-out cross-validation to assess
the model predictions. Each time, we built a template based on the full movie data of the n
— 1 training participants. Similar to the distinctiveness analysis, we estimated the test
participant’s tuning matrix using only half of the test participant’s movie data, and in this
case it’s the first half of the movie data. The second half of the test participant’s movie
data was held out for test. Then we multiplied the stimulus matrix for the second part of
the movie with the estimated tuning matrix of the test participant to get the model-
predicted response patterns to the second part of the movie that are based on other
participants’ responses. We assessed the model prediction by comparing the measured
response patterns and the model-predicted responses patterns of the test participant.
Note that unlike our previous methods, in which we compared a participant’s response

patterns to others’ patterns in the common model space, our INT model allows this
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comparison to be made in the native anatomical space (normalized to the fsaverage
template) of each individual participant’s brain.

Dimensionality reduction

For each time point (i.e., each TR), the response pattern is a vector of 18,742
elements. Similar to our previous work (Guntupalli et al., 2018, 2016; Haxby et al., 2011),
we performed dimensionality reduction using principal component analysis (PCA) and
compared the similarity of response patterns based on normalized PCs. We repeated the
analysis using different numbers of PCs, ranging from 10 to 300 with an increment of 10.
Note that the key results of this analysis (Figure 5D and 5E) are very robust against the
choice of the number of PCs.

Similarity between measured and predicted patterns

To illustrate the similarities of measured and predicted response patterns, we
computed the correlations between measured and predicted response patterns based on
150 PCs. Specifically, we computed the similarities of patterns from the same participant
and those from different participants; we also computed similarities of patterns for the
same time point and those for different time points. These allowed us to evaluate the
specificity of the model-predicted response patterns both to the participant and to the time
point. Examples of the similarities are shown in Figure 5A and 5B, and the similarity
distribution for each of the four conditions are summarized in Figure 5C.

Binary movie time point classification

For each test participant, the similarity between the measured and predicted
patterns for the same time point was much higher than those from different time points.

We assessed to what extent this difference in similarity could be used to predict which time
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point of the movie the participant was viewing based on a binary classification task. The
binary classification task is a 2-alternative forced choice. For each time point of the movie,
we computed the correlation of its measured response pattern to two other response
patterns—one was the pattern predicted from other participants’ responses to the same
time point, and the other was the pattern predicted from other participants’ responses to
another time point. The classification was successful if the similarity of patterns of the
same time point was higher than the different time point, and thus the chance accuracy is
50%. We looped through all choices of the test time point, and for each test time point,
looped through all choices of the foil time point and averaged the accuracies. Note that
the difficulty of the binary classification task doesn’t change with the length of the movie
data, and its accuracy can be considered as a measure of effect size in that sense. For
example, the binary classification accuracy based on a dataset with 500 time points and
another with 1000 time points are comparable. To evaluate the specificity of the predicted
patterns to the test participant, we replaced the test participant’s predicted patterns with
another participant’s predicted patterns and repeated the analysis.

Multiclass movie time point classification

The classification accuracy of the binary classification task was close to 100%. To
demonstrate the accuracy and specificity of the response patterns predicted by the INT
model, we performed a multiclass movie time point classification analysis. That is, we
compared the measured response pattern to a time point of the movie to all the model-
predicted response patterns (i.e., predicted response patterns to all time points). We
examined whether the pattern similarity was highest for the model-predicted response

pattern of the same time point. The second part of the movie contains 1818 time points in
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total for the Forrest dataset, and 1680 time points for the Raiders dataset. Therefore, the
number of choices was over 1000 for both datasets, and the chance accuracy was less
than 0.1%. Note that the foils also included the time points right before or after the target
time point, which was only 2 seconds (Forrest) or 1 second (Raiders) apart, and the
inclusion of these neighboring time points made the classification task even more
challenging.

Model performance with less data

In practice, it is not always feasible to collect a large amount of fMRI data during
movie-watching as the datasets used in the current study (Forrest: 120 minutes; Raiders:
56 minutes). To assess the performance of our INT model with smaller data volume, we
trained the model with smaller amounts of movie data for the test participant and
evaluated its performance as a function of data volume.

First, we assessed how data volume affected the distinctiveness of the tuning
matrix. This analysis requires two estimates of the same tuning matrix based on
independent data, and thus each estimate can use up to half of the movie data (Forrest: 60
minutes; Raiders: 28 minutes). For the Forrest dataset, we repeated the analysis with 5,
10, 15, 20, 30, 40, 50, and 60 minutes of movie data for each estimate. For the Raiders
dataset, we repeated the analysis with 5, 10, 15, 20, and 28 minutes of movie data for
each estimate.

Second, we assessed how data volume affected the distinctiveness of local neural
tuning based on a searchlight analysis. The same amounts of movie data as the whole-
brain distinctiveness analysis were used. Instead of focusing on the average across

searchlights, we assessed the 501", 80", 90", 95t and 99t percentiles of the distribution.
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Third, we assessed how data volume affected the estimation of category selectivity
maps and retinotopic maps. Note that the objective of the analysis is to predict responses
to new stimuli, and thus up to the entire movie data can be used to train the INT model and
estimate the tuning matrices. For the Forrest dataset, we repeated the analysis with 5, 10,
15, 20, 30, 40, 50, 60, and 120 minutes of movie data. For the Raiders dataset, we
repeated the analysis with 5, 10, 15, 20, 28, and 56 minutes of movie data.

Fourth, we used movie time point classifications to assess how data volume affected
the quality of predicted response patterns to the movie. For this analysis, we used the
same test data to evaluate the model, which was the second half of movie data for the test
participant. Therefore, the movie data used to estimate the tuning matrix of the test
participant was the first half of movie data or part of the first half. For the Forrest dataset,
we repeated the analysis with 5, 10, 15, 20, 30, 40, 50, and 60 minutes of movie data. For
the Raiders dataset, we repeated the analysis with 5, 10, 15, 20, and 28 minutes of movie

data.
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