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Abstract

Recent development of novel methods based on deep neural networks has transformed
how high-content microscopy cellular images are analyzed. Nonetheless, it is still a
challenge to identify cellular phenotypic changes caused by chemical or genetic
treatments and to elucidate the relationships among treatments in an unsupervised
manner, due to the large data volume, high phenotypic complexity and the presence of
a priori unknown phenotypes. Here we benchmarked five deep neural network methods
and two feature engineering methods on a well-characterized public data set. In
contrast to previous benchmarking efforts, the manual annotations were not provided to
the methods, but rather used as evaluation criteria afterwards. The seven methods
individually performed feature extraction or representation learning from cellular images,
and were consistently evaluated for downstream phenotype prediction and clustering
tasks. We identified the strengths of individual methods across evaluation metrics, and
further examined the biological concepts of features automatically learned by deep
neural networks.


https://doi.org/10.1101/2022.05.15.491989
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.15.491989; this version posted May 15, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Introduction

High-content cellular imaging assays stain cells with multiple dyes and fluorescent-
labelled antibodies, visualize cellular compartments and organelles as well as specific
proteins in high-resolution multiple-channel microscopy images, and provide rich cellular
phenotypic information. In a high-throughput mode, high-content cellular imaging
assays can characterize phenotypic changes caused by individual genetic or chemical
perturbations of a large library, and thus are a powerful technology widely applied to
investigation of the functional effects of genes and compounds for biological research
and drug discovery'-3. The imaging data acquired from a high-throughput high-content
screen typically includes thousands to millions of genetic or chemical treatments. Each
treatment is performed singly or repeated several times (biological or technical
replicates), each replicate contains two or more fluorescent channels of microscopic
images highlighting various biological concepts (cellular organelles or proteins), and
each image comprises roughly 500-2000 pixels per dimension. The objective of
analyzing this imaging data is to investigate how the treatments affect the cells and
whether treatments cause similar or diverse effects. In computational terms, we aim to
cluster the treatments based on the microscopic images, such that treatments that
cause similar cellular changes group together.

As genetic or chemical treatments can have diverse effects and various cellular systems
may respond differently, a high content screening data set contains many image
classes which are not possible to define a priori. There is also unknown biological and
technical noise in the data (e.g., individual cells not behaving consistently or issues in
staining or image acquisition). These challenges plus the sheer volume and complexity
of the imaging data makes data analysis and interpretation a daunting task, which has
been an active research topic and has seen substantial development over the years*-12,
Recent breakthroughs in deep neural networks have transformed data analysis’® and
have been successfully pioneered in biomedical applications, particularly in the
computer vision domain'4. High-throughput high-content cellular imaging presents a
unique opportunity and challenge for deep neural networks, with diverse innovative
methods applied recently’®-22, Although all these methods, deep neural networks based
or not, are successful in analyzing their corresponding data sets, the strengths and
limitations of each method are not clear since they have not been benchmarked in the
same context. Thus, it remains an open question which method one should apply given
a new high-content cellular imaging project.

In this study, we have implemented seven leading unsupervised image analysis
methods for high-content cellular imaging assays. The cellular feature (CF) method
segments cells and measures a suite of pre-defined features'!23. The image-level
feature (IF) method measures a number of pre-defined features within the whole image
without cell segmentation?*2%. The pseudo-classification (PC) method defines individual
treatments as pseudo-classes and feeds them into a neural network model for
classification training to generate embeddings’”. The metadata-guided learning (MGL)
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method relies on metadata to develop representation learning??. The deep clustering
(DC) method iteratively uses embeddings to cluster and uses cluster labels to perform
classification and generate embeddings®. The invariant information clustering (IIC)
method trains a representation model by maximizing the mutual information between
paired samples?8. The transfer learning (TL) method applies a model pretrained from
ImageNet directly on cellular images and extracts embeddings'®. The above methods
have been previously developed either for unsupervised learning generally or for high-
content cellular images specifically, and all have showed promising results.

For the benchmarking data set we used the image set BBBC021v12, publicly available
from the Broad Bioimage Benchmark Collection?®. In contrast to previous benchmarking
efforts, manual annotation was not provided to the methods, but rather used for
evaluation criteria afterwards. Each method showed strength and limitations in
predicting compound mechanism of action (MoA), clustering similar compounds, and
detecting novel phenotypes, and not one method outperformed the others across all
metrics. We further investigated the predictions that disagreed with the manual
annotations and the novel phenotypes detected as outlier by the methods, as well as
examined the biological concepts of features automatically learned by deep neural
networks

Results

Workflow and benchmark design In order to have a fair and realistic evaluation, we
applied our analysis methods on the BBBC021 benchmark dataset in an unsupervised
manner and used identical evaluation criteria (Fig. 1). The BBBC021 dataset is the
result of profiling 113 low molecular weight compounds across 8 concentrations in MCF-
7 breast cancer cells labeled for DNA, F-actin, and B-tubulin?’-28. A subset with 103
compound-concentrations from 38 compounds has been manually categorized into one
of 12 MoAs based on visual inspection of the images or previous reports in the
literature. This labeled subset served as ground truth for evaluation of the computational
analysis predictions, similar to previous studies to train supervised or unsupervised
models'!16.1822 Since an actual screening campaign would not have the convenience
of an annotated subset, we formulated the task in our benchmarking study such that
each method was blinded to the MoA annotations as well as which images possessed
them. Instead, the complete collection of images was made available to each method,
along with the associated metadata such as compound name, concentration, plate and
well identifiers (Fig. 1).

Each method and respective workflow generate a numeric feature vector (predefined
features or neural network embeddings) for each image (see Methods and
Supplementary information for details). We hypothesized that the feature vectors
capture the cellular image phenotypes produced by the compound treatments and
associated MoA, and evaluated their accuracy both in predicting MoAs and grouping
compounds with similar MoAs.
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Classification results We designed a simple 1-nearest neighbor (1-NN) classifier using
cosine distance to evaluate the feature vectors generated by each method (see
Methods for details). The NSC (not-the-same-compound) and NSB (not-the-same-
compound and batch) accuracy values are shown in Table 1. The NSC accuracy
ranges from 0.7 to 0.99 with a median of 0.94. The IF method has the lowest accuracy
at 0.7 while the CF, DC, IIC and TL methods achieve >0.9 accuracy. The NSB accuracy
is lower than NSC (range: 0.57-0.93, median: 0.79), which could be due to batch
variation or a smaller sample size. The CF method suffers the highest decrease from
the NSC accuracy to NSB. Overall, the DC, IIC and TL methods have the highest
accuracy values across both metrics, showing their ability to capture cellular phenotypic
information from the images.

To further investigate how methods agree with each other, we list all NSC predictions
from each method (Fig. 2a, agreement with manual annotation in green and
disagreement in red) as well as the summary of all methods (Fig. 2a, grayscale based
on the number of methods that disagree with the manual annotation). All methods are
largely in agreement with each other and with the manual annotation, as shown by the
green block. Interestingly, there are four treatments where four or more methods
disagree with the manual annotation (predictions in Fig. 2b, example images in Fig.
2c). For colchicine at 0.03uM, the manual annotation is Microtubule destabilizers for
which all methods disagree except for DC. The methods also disagree with each other,
with four other different outcomes (Microtubule stabilizers, Kinase inhibitor, DNA
damage, Cholesterol-lowering). This treatment was also reported previously where
images in this class seem to have high levels of variation'”. For cytochalasin D at
0.3uM, the three top-performing methods match the manual annotation (Actin
disruptors) while the other methods disagree. However, for epothilone B at 0.1uM and
latrunculin B at 1.0uM, a different set of methods agree with the manual annotation.
Thus, there appears to be no single method that outperforms all others across all
treatments, and an ensemble approach will not necessarily improve the overall
accuracy.

Clustering results For IIC and DC, the cluster labels were derived directly from the
network output. For the other methods, standard clustering algorithms were run over the
feature vectors to obtain cluster assignments (see Methods). We compared four
metrics over the clustering results (Table 1). The adjusted rand index (ARI) and
adjusted mutual information (AMI) evaluate the similarity between the predicted cluster
assignments and the ground truth MoA. The ARI ranges from 0.45-0.81 while the AMI
ranges from 0.52-0.84. The IIC, DC and TL methods are among the first performance
tier with an average ARI and AMI around 0.8. The CF, IF, PC, and MGL are among the
second tier with the average ARI and AMI as 0.3 and 0.2 lower than the first tier,
respectively. The silhouette coefficient with predicted cluster labels (denoted by
sil_coef_clustering) measures how compact the clusters are. The score ranges from 0.1
to 0.42, with 1IC performing better than the others. The silhouette coefficient with ground
truth MoA labels (denoted by sil_coef_embedding) evaluates how tight the embeddings
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are within each MoA class. Here, the coefficient had a larger range (-0.3 to +0.36) but
lIC again outperformed the others.

Novel phenotype detection Each method attempted to detect novel phenotypes,
defined as treatments different from any of the manually annotated MoAs. For this
experiment, the similarity and clustering analysis were not standardized across
methods; therefore, each method applied differing amounts of outlier stringency and the
number of treatments labeled as novel varied for each method (see Methods and
Supplementary information for details). However, multiple methods agreed on novelty
for some treatments (Fig. 3a). Manual review indicated that these treatments were
predominantly toxic phenotypes. For example, filipin at 1 — 10uM was labelled by most
methods (six of seven) as novel; no cells were visible in the associated images,
suggesting a strong toxic phenotype (Fig. 3b). Similarly, doxorubicin at 1 — 10uM, was
labelled by four out of seven methods as novel. Here, the observation was a reduction
in cell count along with changes in morphology, suggesting an unknown phenotype with
slightly toxic effect.

Feature interpretation Contrary to CF and IF which use pre-defined features, methods
based on deep neural networks learn the features automatically. To understand what
features were learned, we used the raw features (without post-processing) from the CF
method as a reference since they are widely used features defined by a priori biology
knowledge. For every method, correlation similarity was calculated between each
feature and each of the reference features. The distributions of the similarity values are
shown in Fig. 4a as violin plots. As the reference feature set is a collection of cellular
morphology, intensity and texture features across biological compartments and imaging
channels, the similarity values of the reference set against itself have a large numeric
range (0 to 1) with an average of 0.30. The post-processing steps of the CF method
yields lower similarity values (range of 0 to 0.57 with an average of 0.14) as compared
to the reference set. However, both the CF and IF methods have relatively higher
similarity values with an average between 0.14 and 0.15 as compared with the deep
neural network methods with an average between 0.10 and 0.13 which suggests that
the neural network embeddings include human-interpretable features, at least in part.
We investigated further by taking features from the TL method as an example and
compared how compounds from the twelve manually annotated MoAs plus DMSO
scored for each feature dimension. Some features clearly distinguish different MoAs
(examples shown in Fig. 4c). We also plotted two features against each other for the
whole data set (Fig. 4b) with example images for high and low values. Although the
features could capture cellular intensity, object count or other texture measurements
and it is impossible to pinpoint what exactly each feature represents, we can visually
discern the high/low images, supporting that the learned features correlate with visual
inspection and separate cellular phenotypes.
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Discussion

Recent advancement of deep neural network methods has transformed how we analyze
cellular images?®, and has in principle solved tasks such as segmentation®3! and
modality translation3233, However, the ultimate task, to understand the phenotypes
captured by cellular images, remains elusive. Although various methods have been
proposed, they were evaluated individually and often with unrealistic settings and
criteria. Here we define the task as unsupervised representation learning to facilitate
downstream classification and clustering of treatment mode of action. Importantly
manual phenotype annotations are not provided to the methods, but rather used for
evaluation criteria afterwards, which is similar to a realistic screening project. We
benchmark five published deep neural network methods together with two classical
feature-engineering methods, with consistent evaluation on a single well-characterized
data set.

In the classification evaluation, DC performs the best with TL and IIC are closely
following. The traditional CF method also predicts the MoA labels with a high accuracy
but suffers more from batch effects. Interestingly, the methods disagree with the manual
annotations consistently on some treatments suggesting potential issues in the imaging
data or in the manual annotation. In the clustering evaluation, IIC, TL and DC perform
the best on the ARI and AMI metrics while IIC leads on the silhouette metrics. All the
methods can also detect novel phenotypes that are not in the manual annotated subset.
The most novel phenotypes are images with artifacts or toxic treatments, which might
be a limitation of this particular data set.

These methods vary substantially on computational resource and time needed. The PC,
DC, lIC and MGL methods all need heavy computation resources proportional to the
number of treatments and are thus not practical on larger data sets (~100K treatments),
while CF, IF and TL are scalable. All deep neural network-based methods require
multiple graphics processing units to accelerate computation.

There are methods not included in this benchmark effort and new methods are being
developed regularly. We have implemented methods we are familiar with and optimized
them to the best of our knowledge. It is possible that certain methods can be further
optimized or other methods can perform better. With the diversity and complexity of
cellular imaging data, performance may differ depending on the data set and thus the
presented benchmarking results only represent current implementations upon the
BBBCO021 data set. Further work is needed to benchmark promising methods on diverse
data sets, especially as additional data sets have been published more recently3+:3%,

As deep neural network-based methods learn their embeddings automatically, it is
important to understand the biological concepts behind these learned features, not only
to investigate how the neural network works, but also to potentially bring novel biological
insights. By performing correlation analysis between learned features and predefined
features, our results suggest that the learned features contain not only information
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overlapping with predefined features but also new information. We hope this intriguing
finding can trigger more research on this promising direction.
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Methods

Benchmark dataset We used the image set BBBC021v127 publicly available from the
Broad Bioimage Benchmark Collection?®. A detailed description of the dataset can be
found on https://bbbc.broadinstitute.org/BBBC021.

Image analysis methods Seven methods were implemented for benchmarking: Cell-
level feature analysis (CF); Image-level feature analysis (IF); DeepCluster (DC);
Invariant information clustering (IIC); Metadata-Guided Learning (MGL); Pseudo-
classification (PC); Transfer learning (TL). The specific details for each implementation
are provided in the Supplementary information.

Evaluation methods To fairly benchmark the methods in this study, we blinded the
methods to the MoA annotations in the BBBC021 dataset. Each method built models
and feature embedding in an unsupervised manner based on remaining treatment
metadata and submitted the embedding and cluster assignments per treatment for the
full dataset. The predictions and associated compound and concentration metadata
were then provided as input into a built-for-purpose evaluation engine. The engine ran
two tasks for each input set and generated the following scores:

Prediction of the MoA label for a given treatment The evaluation was performed
using the annotated ground truth subset of BBBC021. Given a treatment from a
submission, the engine trained a 1-NN classifier with cosine distance over a subset of
the feature vectors and the corresponding ground truth MoA. The subset was chosen
based on two criteria: 1) NSC (not the same compound) which excludes the features
from all concentrations of the same compound; 2) NSB (not the same compound and
batch) which further excludes any compounds from the same batch. For NSB, two
MoAs (Cholesterol lowering and Kinase inhibitors) were removed as they only appear in
a single batch. The trained classifiers were then applied to the query treatment to obtain
the NSC and NSB predictions. This process was iteratively applied to all treatments,
which were then finally compared to the ground truth to obtain the NSC-accuracy and
NSB-accuracy.

Clustering of compounds based on MoA Four benchmarking scores were used for
evaluation of predicted cluster quality:

Adjusted rand index (ARI) and adjusted mutual information (AMI): These metrics were
used to evaluate the similarity between the predicted cluster structure and ground truth,
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ignoring permutations. Since the two scores require knowledge of the ground truth
classes, they can only be applied to the annotated subset. More specifically, the rand
index is the percentage of sample pairs assigned to the same cluster in both the

predicted and ground truth clusters. The ARI is then the corrected-for-chance version of
Ri—E(Ry)

max(RI )—-E(RI)’

partitions, e.g., {X4, ..., X} and {V;, ..., Y5}, the ARl is calculated as

rand index, defined as ARI = Formally, if there are n elements with two

ARI — Zierzlij - ZiCal-ZZijJZ-/C}%

1

3 (3iCa? +2,Cp?) = 5,Ca?2,Cy2/ C
Wherenu IX N ~|,ai=2jnij,bj=zinij.

The adjusted version AMI is calculated as

MI — E(MI)
max{H(X),H(Y)} — E(MI)

AMI =

where the mutual information M1 between two partitions is defined as

|Y_]| 1Yl

_ ngj IXI
MI—Zl-ZjTJl ng”Y] ,HX) =2, —~1lo g andH(Y)—Z

log—-

Silhouette coefficient of predicted feature clusters versus predicted MoA and ground
truth MoA clusters. The silhouette coefficient measures the compactness of a cluster as
compared to neighboring clusters, and is defined as is (b — a)/max (a, b) where a is the
mean intra-cluster distance and b is the mean nearest-cluster distance. The silhouette
coefficient was computed to compare the predicted feature vectors with respect to both
the predicted MoA clustering and the ground truth MoA clustering. The former provides
a measure of how separable the MoA clusters predicted by the embeddings were,
whereas the latter measures how well the ground truth MoA clustered in the embedding
space.


https://doi.org/10.1101/2022.05.15.491989
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.15.491989; this version posted May 15, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Tables
Method NSC NSB ARI AMI | sil_embedding | sil_clustering
accuracy accuracy
Cell-level feature (CF) 0.94 0.75 0.45 0.65 0.21 -0.30
Image-level feature (IF) 0.70 0.57 0.39 0.52 0.10 +0.06
Pseudo-classification 0.84 0.73 0.54 0.64 0.21 +0.11
(PC)
Metadata-Guided
Uoming (MGL) 0.89 0.83 0.51 0.69 0.30 +0.02
DeepCluster (DC) 0.99 0.93 0.75 0.82 0.32 +0.04
Invariant information 0.96 0.90 0.81 0.81 0.42 +0.36
clustering (11C)
Transfer learning (TL) 0.98 0.92 0.77 0.84 0.29 +0.06

Table 1

Summary of the evaluation results of classification and clustering tasks. NSC: not-
same-compound accuracy; NSB: not-same-compound-and-batch accuracy; ARI:
adjusted rand index; AMI: adjusted mutual information; sil_embedding: silhouette
coefficient embedding; sil_clustering: silhouette coefficient clustering.
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Figures
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Figure 1

Schematic workflow of the benchmarking effort. The BBBC021 benchmark dataset has
in total 113 compounds at 8 concentrations. A subset of 103 compound-concentrations
(treatments) have manually annotated MoAs, which are used as ground truth. In
parallel, each benchmarking method takes the total image dataset without the MoA
annotations as input, and output features (embeddings for neural network-based
methods and pre-defined features for feature engineering-based methods). The results
are assessed by the evaluation engine using two criteria: MoA prediction accuracy for
the ground truth annotated subset; clustering quality for the full dataset.

a b
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Figure 2

MoA prediction evaluation results. a, Each of the colored row represents the
classification results of each method with 103 treatments on the horizontal axis. A
correct prediction is labeled in green while a false prediction is labeled in red. The top
black and white row is the sum of all methods. b, Top two treatments where most
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methods make false predictions, i.e., left most two lines from panel a. Color coding is
the same as in panel a. ¢, Example images of the two treatments in panel b.

a _ b

Sum

filipin

Methods

doxorubicin

Ic

Treatments

Figure 3

Novel phenotype detection analysis of BBBC021. a, Each row represents the outliers
detected by each method, with methods on the vertical axis and the 906 treatments on
the horizontal axis. “Novel” phenotypes are labeled as red, with remainder as green.
The top grayscale bar illustrates the total number of methods labeling the same
treatment found as “novel.” b, Examples of detected novel phenotypes.
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Figure 4

Interpretation of features learned by deep neural networks. a, Distribution of pair-wise
correlation of features from each method against raw cellular features as the reference.
b, 2D scatter plot of two features from the TL method and example images of high and
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low values. ¢, Selected features from the TL method and example images from MoA
classes with high and low values of each feature.
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