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Abstract 

Recent development of novel methods based on deep neural networks has transformed 
how high-content microscopy cellular images are analyzed. Nonetheless, it is still a 
challenge to identify cellular phenotypic changes caused by chemical or genetic 
treatments and to elucidate the relationships among treatments in an unsupervised 
manner, due to the large data volume, high phenotypic complexity and the presence of 
a priori unknown phenotypes. Here we benchmarked five deep neural network methods 
and two feature engineering methods on a well-characterized public data set. In 
contrast to previous benchmarking efforts, the manual annotations were not provided to 
the methods, but rather used as evaluation criteria afterwards. The seven methods 
individually performed feature extraction or representation learning from cellular images, 
and were consistently evaluated for downstream phenotype prediction and clustering 
tasks. We identified the strengths of individual methods across evaluation metrics, and 
further examined the biological concepts of features automatically learned by deep 
neural networks. 
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Introduction 

High-content cellular imaging assays stain cells with multiple dyes and fluorescent-
labelled antibodies, visualize cellular compartments and organelles as well as specific 
proteins in high-resolution multiple-channel microscopy images, and provide rich cellular 
phenotypic information. In a high-throughput mode, high-content cellular imaging 
assays can characterize phenotypic changes caused by individual genetic or chemical 
perturbations of a large library, and thus are a powerful technology widely applied to 
investigation of the functional effects of genes and compounds for biological research 
and drug discovery1–3. The imaging data acquired from a high-throughput high-content 
screen typically includes thousands to millions of genetic or chemical treatments. Each 
treatment is performed singly or repeated several times (biological or technical 
replicates), each replicate contains two or more fluorescent channels of microscopic 
images highlighting various biological concepts (cellular organelles or proteins), and 
each image comprises roughly 500-2000 pixels per dimension. The objective of 
analyzing this imaging data is to investigate how the treatments affect the cells and 
whether treatments cause similar or diverse effects. In computational terms, we aim to 
cluster the treatments based on the microscopic images, such that treatments that 
cause similar cellular changes group together. 

As genetic or chemical treatments can have diverse effects and various cellular systems 
may respond differently, a high content screening data set contains many image 
classes which are not possible to define a priori. There is also unknown biological and 
technical noise in the data (e.g., individual cells not behaving consistently or issues in 
staining or image acquisition). These challenges plus the sheer volume and complexity 
of the imaging data makes data analysis and interpretation a daunting task, which has 
been an active research topic and has seen substantial development over the years4–12. 
Recent breakthroughs in deep neural networks have transformed data analysis13 and 
have been successfully pioneered in biomedical applications, particularly in the 
computer vision domain14. High-throughput high-content cellular imaging presents a 
unique opportunity and challenge for deep neural networks, with diverse innovative 
methods applied recently15–22. Although all these methods, deep neural networks based 
or not, are successful in analyzing their corresponding data sets, the strengths and 
limitations of each method are not clear since they have not been benchmarked in the 
same context. Thus, it remains an open question which method one should apply given 
a new high-content cellular imaging project. 

In this study, we have implemented seven leading unsupervised image analysis 
methods for high-content cellular imaging assays. The cellular feature (CF) method 
segments cells and measures a suite of pre-defined features11,23. The image-level 
feature (IF) method measures a number of pre-defined features within the whole image 
without cell segmentation24,25. The pseudo-classification (PC) method defines individual 
treatments as pseudo-classes and feeds them into a neural network model for 
classification training to generate embeddings17. The metadata-guided learning (MGL) 
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method relies on metadata to develop representation learning22. The deep clustering 
(DC) method iteratively uses embeddings to cluster and uses cluster labels to perform 
classification and generate embeddings19. The invariant information clustering (IIC) 
method trains a representation model by maximizing the mutual information between 
paired samples26. The transfer learning (TL) method applies a model pretrained from 
ImageNet directly on cellular images and extracts embeddings16. The above methods 
have been previously developed either for unsupervised learning generally or for high-
content cellular images specifically, and all have showed promising results.  

For the benchmarking data set we used the image set BBBC021v127, publicly available 
from the Broad Bioimage Benchmark Collection28. In contrast to previous benchmarking 
efforts, manual annotation was not provided to the methods, but rather used for 
evaluation criteria afterwards. Each method showed strength and limitations in 
predicting compound mechanism of action (MoA), clustering similar compounds, and 
detecting novel phenotypes, and not one method outperformed the others across all 
metrics. We further investigated the predictions that disagreed with the manual 
annotations and the novel phenotypes detected as outlier by the methods, as well as 
examined the biological concepts of features automatically learned by deep neural 
networks 

Results 

Workflow and benchmark design In order to have a fair and realistic evaluation, we 
applied our analysis methods on the BBBC021 benchmark dataset in an unsupervised 
manner and used identical evaluation criteria (Fig. 1). The BBBC021 dataset is the 
result of profiling 113 low molecular weight compounds across 8 concentrations in MCF-
7 breast cancer cells labeled for DNA, F-actin, and -tubulin27,28. A subset with 103 
compound-concentrations from 38 compounds has been manually categorized into one 
of 12 MoAs based on visual inspection of the images or previous reports in the 
literature. This labeled subset served as ground truth for evaluation of the computational 
analysis predictions, similar to previous studies to train supervised or unsupervised 
models11,16,18,22. Since an actual screening campaign would not have the convenience 
of an annotated subset, we formulated the task in our benchmarking study such that 
each method was blinded to the MoA annotations as well as which images possessed 
them. Instead, the complete collection of images was made available to each method, 
along with the associated metadata such as compound name, concentration, plate and 
well identifiers (Fig. 1).  

Each method and respective workflow generate a numeric feature vector (predefined 
features or neural network embeddings) for each image (see Methods and 
Supplementary information for details). We hypothesized that the feature vectors 
capture the cellular image phenotypes produced by the compound treatments and 
associated MoA, and evaluated their accuracy both in predicting MoAs and grouping 
compounds with similar MoAs.  
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Classification results We designed a simple 1-nearest neighbor (1-NN) classifier using 
cosine distance to evaluate the feature vectors generated by each method (see 
Methods for details). The NSC (not-the-same-compound) and NSB (not-the-same-
compound and batch) accuracy values are shown in Table 1. The NSC accuracy 
ranges from 0.7 to 0.99 with a median of 0.94. The IF method has the lowest accuracy 
at 0.7 while the CF, DC, IIC and TL methods achieve >0.9 accuracy. The NSB accuracy 
is lower than NSC (range: 0.57-0.93, median: 0.79), which could be due to batch 
variation or a smaller sample size. The CF method suffers the highest decrease from 
the NSC accuracy to NSB. Overall, the DC, IIC and TL methods have the highest 
accuracy values across both metrics, showing their ability to capture cellular phenotypic 
information from the images. 

To further investigate how methods agree with each other, we list all NSC predictions 
from each method (Fig. 2a, agreement with manual annotation in green and 
disagreement in red) as well as the summary of all methods (Fig. 2a, grayscale based 
on the number of methods that disagree with the manual annotation). All methods are 
largely in agreement with each other and with the manual annotation, as shown by the 
green block. Interestingly, there are four treatments where four or more methods 
disagree with the manual annotation (predictions in Fig. 2b, example images in Fig. 
2c). For colchicine at 0.03M, the manual annotation is Microtubule destabilizers for 
which all methods disagree except for DC. The methods also disagree with each other, 
with four other different outcomes (Microtubule stabilizers, Kinase inhibitor, DNA 
damage, Cholesterol-lowering). This treatment was also reported previously where 
images in this class seem to have high levels of variation17. For cytochalasin D at 
0.3M, the three top-performing methods match the manual annotation (Actin 
disruptors) while the other methods disagree. However, for epothilone B at 0.1M and 
latrunculin B at 1.0M, a different set of methods agree with the manual annotation. 
Thus, there appears to be no single method that outperforms all others across all 
treatments, and an ensemble approach will not necessarily improve the overall 
accuracy. 

Clustering results For IIC and DC, the cluster labels were derived directly from the 
network output. For the other methods, standard clustering algorithms were run over the 
feature vectors to obtain cluster assignments (see Methods). We compared four 
metrics over the clustering results (Table 1). The adjusted rand index (ARI) and 
adjusted mutual information (AMI) evaluate the similarity between the predicted cluster 
assignments and the ground truth MoA. The ARI ranges from 0.45-0.81 while the AMI 
ranges from 0.52-0.84. The IIC, DC and TL methods are among the first performance 
tier with an average ARI and AMI around 0.8. The CF, IF, PC, and MGL are among the 
second tier with the average ARI and AMI as 0.3 and 0.2 lower than the first tier, 
respectively. The silhouette coefficient with predicted cluster labels (denoted by 
sil_coef_clustering) measures how compact the clusters are. The score ranges from 0.1 
to 0.42, with IIC performing better than the others. The silhouette coefficient with ground 
truth MoA labels (denoted by sil_coef_embedding) evaluates how tight the embeddings 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.15.491989doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.15.491989
http://creativecommons.org/licenses/by/4.0/


are within each MoA class. Here, the coefficient had a larger range (-0.3 to +0.36) but 
IIC again outperformed the others. 

Novel phenotype detection Each method attempted to detect novel phenotypes, 
defined as treatments different from any of the manually annotated MoAs. For this 
experiment, the similarity and clustering analysis were not standardized across 
methods; therefore, each method applied differing amounts of outlier stringency and the 
number of treatments labeled as novel varied for each method (see Methods and 
Supplementary information for details). However, multiple methods agreed on novelty 
for some treatments (Fig. 3a). Manual review indicated that these treatments were 
predominantly toxic phenotypes. For example, filipin at 1 – 10M was labelled by most 
methods (six of seven) as novel; no cells were visible in the associated images, 
suggesting a strong toxic phenotype (Fig. 3b). Similarly, doxorubicin at 1 – 10M, was 
labelled by four out of seven methods as novel. Here, the observation was a reduction 
in cell count along with changes in morphology, suggesting an unknown phenotype with 
slightly toxic effect.  

Feature interpretation Contrary to CF and IF which use pre-defined features, methods 
based on deep neural networks learn the features automatically. To understand what 
features were learned, we used the raw features (without post-processing) from the CF 
method as a reference since they are widely used features defined by a priori biology 
knowledge. For every method, correlation similarity was calculated between each 
feature and each of the reference features. The distributions of the similarity values are 
shown in Fig. 4a as violin plots. As the reference feature set is a collection of cellular 
morphology, intensity and texture features across biological compartments and imaging 
channels, the similarity values of the reference set against itself have a large numeric 
range (0 to 1) with an average of 0.30. The post-processing steps of the CF method 
yields lower similarity values (range of 0 to 0.57 with an average of 0.14) as compared 
to the reference set. However, both the CF and IF methods have relatively higher 
similarity values with an average between 0.14 and 0.15 as compared with the deep 
neural network methods with an average between 0.10 and 0.13 which suggests that 
the neural network embeddings include human-interpretable features, at least in part. 
We investigated further by taking features from the TL method as an example and 
compared how compounds from the twelve manually annotated MoAs plus DMSO 
scored for each feature dimension. Some features clearly distinguish different MoAs 
(examples shown in Fig. 4c). We also plotted two features against each other for the 
whole data set (Fig. 4b) with example images for high and low values. Although the 
features could capture cellular intensity, object count or other texture measurements 
and it is impossible to pinpoint what exactly each feature represents, we can visually 
discern the high/low images, supporting that the learned features correlate with visual 
inspection and separate cellular phenotypes.  
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Discussion 

Recent advancement of deep neural network methods has transformed how we analyze 
cellular images29, and has in principle solved tasks such as segmentation30,31 and 
modality translation32,33. However, the ultimate task, to understand the phenotypes 
captured by cellular images, remains elusive. Although various methods have been 
proposed, they were evaluated individually and often with unrealistic settings and 
criteria. Here we define the task as unsupervised representation learning to facilitate 
downstream classification and clustering of treatment mode of action. Importantly 
manual phenotype annotations are not provided to the methods, but rather used for 
evaluation criteria afterwards, which is similar to a realistic screening project. We 
benchmark five published deep neural network methods together with two classical 
feature-engineering methods, with consistent evaluation on a single well-characterized 
data set.  

In the classification evaluation, DC performs the best with TL and IIC are closely 
following. The traditional CF method also predicts the MoA labels with a high accuracy 
but suffers more from batch effects. Interestingly, the methods disagree with the manual 
annotations consistently on some treatments suggesting potential issues in the imaging 
data or in the manual annotation. In the clustering evaluation, IIC, TL and DC perform 
the best on the ARI and AMI metrics while IIC leads on the silhouette metrics. All the 
methods can also detect novel phenotypes that are not in the manual annotated subset. 
The most novel phenotypes are images with artifacts or toxic treatments, which might 
be a limitation of this particular data set. 

These methods vary substantially on computational resource and time needed. The PC, 
DC, IIC and MGL methods all need heavy computation resources proportional to the 
number of treatments and are thus not practical on larger data sets (~100K treatments), 
while CF, IF and TL are scalable. All deep neural network-based methods require 
multiple graphics processing units to accelerate computation. 

There are methods not included in this benchmark effort and new methods are being 
developed regularly. We have implemented methods we are familiar with and optimized 
them to the best of our knowledge. It is possible that certain methods can be further 
optimized or other methods can perform better. With the diversity and complexity of 
cellular imaging data, performance may differ depending on the data set and thus the 
presented benchmarking results only represent current implementations upon the 
BBBC021 data set. Further work is needed to benchmark promising methods on diverse 
data sets, especially as additional data sets have been published more recently34,35.  

As deep neural network-based methods learn their embeddings automatically, it is 
important to understand the biological concepts behind these learned features, not only 
to investigate how the neural network works, but also to potentially bring novel biological 
insights. By performing correlation analysis between learned features and predefined 
features, our results suggest that the learned features contain not only information 
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overlapping with predefined features but also new information. We hope this intriguing 
finding can trigger more research on this promising direction. 
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Methods 

Benchmark dataset We used the image set BBBC021v127 publicly available from the 
Broad Bioimage Benchmark Collection28. A detailed description of the dataset can be 
found on https://bbbc.broadinstitute.org/BBBC021. 

Image analysis methods Seven methods were implemented for benchmarking: Cell-
level feature analysis (CF); Image-level feature analysis (IF); DeepCluster (DC); 
Invariant information clustering (IIC); Metadata-Guided Learning (MGL); Pseudo-
classification (PC); Transfer learning (TL). The specific details for each implementation 
are provided in the Supplementary information. 
Evaluation methods To fairly benchmark the methods in this study, we blinded the 
methods to the MoA annotations in the BBBC021 dataset. Each method built models 
and feature embedding in an unsupervised manner based on remaining treatment 
metadata and submitted the embedding and cluster assignments per treatment for the 
full dataset. The predictions and associated compound and concentration metadata 
were then provided as input into a built-for-purpose evaluation engine. The engine ran 
two tasks for each input set and generated the following scores: 
Prediction of the MoA label for a given treatment The evaluation was performed 
using the annotated ground truth subset of BBBC021. Given a treatment from a 
submission, the engine trained a 1-NN classifier with cosine distance over a subset of 
the feature vectors and the corresponding ground truth MoA. The subset was chosen 
based on two criteria: 1) NSC (not the same compound) which excludes the features 
from all concentrations of the same compound; 2) NSB (not the same compound and 
batch) which further excludes any compounds from the same batch. For NSB, two 
MoAs (Cholesterol lowering and Kinase inhibitors) were removed as they only appear in 
a single batch. The trained classifiers were then applied to the query treatment to obtain 
the NSC and NSB predictions. This process was iteratively applied to all treatments, 
which were then finally compared to the ground truth to obtain the NSC-accuracy and 
NSB-accuracy. 
Clustering of compounds based on MoA Four benchmarking scores were used for 
evaluation of predicted cluster quality: 

Adjusted rand index (ARI) and adjusted mutual information (AMI): These metrics were 
used to evaluate the similarity between the predicted cluster structure and ground truth, 
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ignoring permutations. Since the two scores require knowledge of the ground truth 
classes, they can only be applied to the annotated subset. More specifically, the rand 
index is the percentage of sample pairs assigned to the same cluster in both the 
predicted and ground truth clusters. The ARI is then the corrected-for-chance version of 

rand index, defined as 𝐴𝑅𝐼 =
ோ೔ିா(ோ೔)

୫ୟ୶(ோூ )ିா(ோூ)
. Formally, if there are 𝑛 elements with two 

partitions, e.g., {𝑋ଵ, … , 𝑋௥} and {𝑌ଵ, … , 𝑌௦},  the ARI is calculated as 

𝐴𝑅𝐼 =
Σ௜௝𝐶௡೔ೕ

ଶ − Σ௜𝐶௔௜
ଶΣ௝𝐶௕௝

ଶ 𝐶௡
ଶ⁄

1
2

ቀΣ௜𝐶௔௜
ଶ + Σ௝𝐶௕௝

ଶቁ − Σ௜𝐶௔௜
ଶΣ௝𝐶௕௝

ଶ 𝐶௡
ଶ⁄

  

where 𝑛௜௝ = |𝑋௜ ∩ 𝑌௝  |, 𝑎௜ = ∑ 𝑛௜௝௝ , 𝑏௝ = ∑ 𝑛௜௝௜ . 

The adjusted version AMI is calculated as  

𝐴𝑀𝐼 =
𝑀𝐼 − 𝐸(𝑀𝐼)

max{𝐻(𝑋), 𝐻(𝑌)} − 𝐸(𝑀𝐼)
 

where the mutual information 𝑀𝐼 between two partitions is defined as 

𝑀𝐼 = Σ௜Σ௝
௡೔ೕ

௡
𝑙𝑜𝑔

௡೔ೕ௡

|௑೔||௒ೕ|
, 𝐻(𝑋) = Σ௜

|௑೔|

௡
𝑙𝑜𝑔

|௑೔|

௡
 and 𝐻(𝑌) = Σ௝

|௒ೕ|

௡
𝑙𝑜𝑔

|௒ೕ|

௡
 

Silhouette coefficient of predicted feature clusters versus predicted MoA and ground 
truth MoA clusters. The silhouette coefficient measures the compactness of a cluster as 
compared to neighboring clusters, and is defined as is (𝑏 − 𝑎)/max (𝑎, 𝑏) where 𝑎 is the 
mean intra-cluster distance and 𝑏 is the mean nearest-cluster distance. The silhouette 
coefficient was computed to compare the predicted feature vectors with respect to both 
the predicted MoA clustering and the ground truth MoA clustering. The former provides 
a measure of how separable the MoA clusters predicted by the embeddings were, 
whereas the latter measures how well the ground truth MoA clustered in the embedding 
space. 
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Tables 

 

Method 
NSC 

accuracy 
NSB 

accuracy 
ARI AMI sil_embedding sil_clustering 

Cell-level feature (CF) 0.94 0.75 0.45 0.65 0.21 -0.30 

Image-level feature (IF) 0.70 0.57 0.39 0.52 0.10 +0.06 

Pseudo-classification 
(PC) 

0.84 0.73 0.54 0.64 0.21 +0.11 

Metadata-Guided 
Learning (MGL) 

0.89 0.83 0.51 0.69 0.30 +0.02 

DeepCluster (DC) 0.99 0.93 0.75 0.82 0.32 +0.04 

Invariant information 
clustering (IIC) 

0.96 0.90 0.81 0.81 0.42 +0.36 

Transfer learning (TL) 0.98 0.92 0.77 0.84 0.29 +0.06 

 

Table 1 
Summary of the evaluation results of classification and clustering tasks. NSC: not-
same-compound accuracy; NSB: not-same-compound-and-batch accuracy; ARI: 
adjusted rand index; AMI: adjusted mutual information; sil_embedding: silhouette 
coefficient embedding; sil_clustering: silhouette coefficient clustering. 
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Figures 

 

Figure 1 
Schematic workflow of the benchmarking effort. The BBBC021 benchmark dataset has 
in total 113 compounds at 8 concentrations. A subset of 103 compound-concentrations 
(treatments) have manually annotated MoAs, which are used as ground truth. In 
parallel, each benchmarking method takes the total image dataset without the MoA 
annotations as input, and output features (embeddings for neural network-based 
methods and pre-defined features for feature engineering-based methods). The results 
are assessed by the evaluation engine using two criteria: MoA prediction accuracy for 
the ground truth annotated subset; clustering quality for the full dataset. 

 

  

Figure 2 
MoA prediction evaluation results. a, Each of the colored row represents the 
classification results of each method with 103 treatments on the horizontal axis. A 
correct prediction is labeled in green while a false prediction is labeled in red. The top 
black and white row is the sum of all methods. b, Top two treatments where most 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.15.491989doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.15.491989
http://creativecommons.org/licenses/by/4.0/


methods make false predictions, i.e., left most two lines from panel a. Color coding is 
the same as in panel a. c, Example images of the two treatments in panel b.  

 

Figure 3 
Novel phenotype detection analysis of BBBC021. a, Each row represents the outliers 
detected by each method, with methods on the vertical axis and the 906 treatments on 
the horizontal axis. “Novel” phenotypes are labeled as red, with remainder as green. 
The top grayscale bar illustrates the total number of methods labeling the same 
treatment found as “novel.” b, Examples of detected novel phenotypes. 

 

 

Figure 4 
Interpretation of features learned by deep neural networks. a, Distribution of pair-wise 
correlation of features from each method against raw cellular features as the reference. 
b, 2D scatter plot of two features from the TL method and example images of high and 
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low values. c, Selected features from the TL method and example images from MoA 
classes with high and low values of each feature.  
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