

1 Identification of Fusarium Head Blight resistance in *Triticum timopheevii* accessions and
2 characterisation of wheat-*T. timopheevii* introgression lines for enhanced resistance.

3
4 Andrew Steed¹, Julie King², Surbhi Grewal², Cai-yun Yang², Martha Clarke¹, Ian King², Paul Nicholson^{1*}
5

6 ¹ Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK

7 ² Nottingham BBSRC Wheat Research Centre, Department of Plant and Crop Sciences, School of
8 Biosciences, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
9

10 *Correspondence

11 paul.nicholson@jic.ac.uk

12

13 Keywords: wheat, disease, cytogenetics, plant pathology, fungi, breeding

14 **Abstract**

15 A diverse panel of wheat wild relative species was screened for resistance to Fusarium head blight
16 (FHB) by spray inoculation. The great majority of species and accessions were susceptible or highly
17 susceptible to FHB. Accessions of *Triticum timopheevii* (P95-99.1-1), *Agropyron desertorum* (9439957)
18 and *Elymus vaillantianus* (531552) were highly resistant to FHB while additional accessions of *T.*
19 *timopheevii* were found to be susceptible to FHB. A combination of spray and point inoculation
20 assessments over two consecutive seasons indicated that the resistance in accession P95-99.1-1 was
21 due to enhanced resistance to initial infection of the fungus (type 1 resistance), and not to reduction
22 in spread (type 2 resistance).

23

24 A panel of wheat-*T. timopheevii* (accession P95-99.1-1) introgression lines was screened for FHB
25 resistance over two consecutive seasons using spray inoculation. Most introgression lines were similar
26 in susceptibility to FHB as the wheat recipient (Paragon) but substitution of the terminal portion of
27 chromosome 3BS of wheat with a similar-sized portion of 3G of *T. timopheevii* significantly enhanced
28 FHB resistance in the wheat background.

29

30

31 **Introduction**

32 Fusarium head blight (FHB) is a highly damaging disease of bread wheat (*Triticum aestivum*) and
33 durum wheat (*T. durum*) in many parts of the world. Infection generally occurs during flowering when
34 susceptibility to FHB is greatest in the host (Franco et al., 2021) leading to yield loss and reduced grain
35 quality (Spanic et al., 2021). The disease is mainly caused by *Fusarium graminearum* sensu stricto but
36 other species including *F. culmorum* and *F. asiaticum* can be important in some regions (Valverde-
37 Bogantes et al., 2020). These species can produce trichothecene mycotoxins such as deoxynivalenol
38 (DON) and nivalenol (NIV) that contaminate grain and pose a risk to human and animal consumers
39 (Amarasinghe et al., 2019). It is widely accepted that the use of FHB-resistant varieties is the most
40 effective and sustainable means to mitigate against losses caused by FHB (Bai et al., 2018). Breeding
41 for resistance to FHB is particularly challenging because of the generally polygenic nature of
42 resistance, high level of genotype-by-environment interactions and the high cost of phenotyping.

43
44 Resistance to FHB was originally differentiated into two classes: resistance to initial infection (type 1)
45 and resistance to spread within the spike (type 2) (Schroeder and Christensen, 1963). Additional
46 classes of resistance have been proposed including degradation of DON (Miller et al., 1985) and DON
47 tolerance being grouped and termed type 3 resistance (Mesterhazy et al., 1999) and resistance to
48 kernel infection as type 4 (Mesterhazy et al., 1999). Type 1 resistance is determined by spraying spikes
49 at mid-anthesis with a conidial suspension and measuring the percentage of diseased spikes whereas
50 type 2 resistance is determined by inoculating single florets with conidial inoculum and measuring the
51 number or percentage of diseased spikelets over time.

52
53 Resistance to FHB is quantitatively inherited and over 100 quantitative trait loci (QTL) have been
54 reported to date distributed across all 21 chromosomes of bread wheat (Buerstmayr et al., 2020).
55 Many potent QTL have been identified in Asian germplasm including Sumai 3, Wangshuibai,
56 Nobeokabouzu and Nyu Bai (Buerstmayr et al., 2020). The most highly studied source of resistance is
57 the Chinese variety Sumai 3 in which three QTL were originally identified on the short arms of
58 chromosomes 3B and 5A and the long arm of chromosome 6B (Buerstmayr et al., 2020).

59
60 Most studies have focussed on assessing type 2 resistance because it is more stable than type 1
61 resistance and less prone to influence by environmental factors. Simple Mendelian inheritance has
62 been demonstrated for a number of QTL when isolated into susceptible wheat variety backgrounds
63 (Cuthbert et al., 2006; Cuthbert et al., 2007). Seven such QTL have been formally recognised as genes
64 *Fhb1-Fhb7* (Guo et al., 2015). The identity of *Fhb1* (type 2 resistance) was originally identified as a
65 chimeric lectin with agglutinin domains and a pore forming toxin domain (Rawat et al., 2016) but later
66 studies have cast doubt on this with a second gene being proposed to be responsible. A histidine-rich
67 calcium-binding protein was demonstrated to provide resistance to FHB by two groups although one
68 group (Su et al., 2019) concluded that the resistance is due to the loss of function while the second
69 group (Li et al., 2019) concluded that resistance was the result of a gain of function.

70
71 The search for additional sources of potent FHB resistance continues and extends beyond the primary
72 gene-pool into wheat relatives. Resistance has been identified in a number of chromosome segments
73 introgressed into wheat from wild relatives. In some instances, these resistances have been
74 considered as genes due to the lack, or extremely limited degree, of recombination between the
75 introgressed segment and wheat chromosome. Introgression of a portion of chromosome 3St of
76 *Elymus repens* into 3D of wheat confers high levels of type 2 resistance (Fedak et al., 2017; Gong et
77 al., 2019). Substitution of the short arm of chromosome 7AS of wheat with the short arm of *Leymus*
78 *racemosus* 7Lr#1 provides a high level of type 2 resistance and this has been designated as *Fhb3* (Qi
79 et al., 2008). Similarly, replacement of the short arm of chromosome 1A (1AS) of wheat with the short
80 arm of chromosome 1E^{ts}#1S of *Elymus tsukushiensis* also significantly enhances type 2 resistance in
81 wheat and has been designated as *Fhb6* (Cainong et al., 2015). The most extensively studied resistance

82 in a wheat relative derives from *Thinopyrum elongatum* (*Th. ponticum*) (Guo et al., 2015; Ceoloni et
83 al., 2017). Substitution of the long arm of wheat chromosome 7D (7DL) with the long arm of 7El₂ of
84 *Th. elongatum* confers very high levels of type 2 resistance (Shen and Ohm, 2007; Zhang et al., 2011;
85 Wang et al., 2020). The gene responsible for this resistance, termed *Fhb7* (formerly *Fhblop*), has
86 recently been isolated and shown to encode a glutathione S-transferase (GST) that functions through
87 de-epoxidation of trichothecenes (Wang et al., 2020).

88
89 The objectives of the present study were to: 1) screen accessions of wheat relatives to identify FHB
90 resistance, 2) determine whether resistance is predominantly of type 1 (resistance to initial infection)
91 or type 2 (resistance to spread in the spike), 3) determine whether segments of chromosomes from
92 resistant wheat relatives conferred FHB resistance when introgressed into wheat.

93
94 **Methods**
95 **Fungal materials**

96 All *Fusarium* isolates used in this study originated from the UK and are kept as part of the JIC facultative
97 pathogen collection. Isolates were maintained as reported previously (Hales et al., 2020).

98
99 **Wheat wild relative species FHB screen**

100 A diverse panel of wheat wild relative accessions from Nottingham/BBSRC Wheat Research Centre
101 (originally obtained from the Germplasm Resource Unit (GRU) at the JIC and the United States
102 Department of Agriculture (USDA)) was screened for FHB resistance. Material was sown in the winter
103 of 2011 and given natural vernalization in an unheated, unlit glasshouse. In the spring of 2012
104 seedlings were transplanted into 1 litre pots of cereals mix and grown in a Keder Greenhouse until
105 mid-anthesis. Due to the diverse growth habits and morphology of the material it was spray inoculated
106 repeatedly around the time of mid-anthesis to ensure that all the material received inoculum at the
107 period of maximum susceptibility. The inoculum consisted of conidia (1×10^5 conidia ml⁻¹) of a DON
108 producing isolate of *F. culmorum*, applied using a handheld mister.

109
110 The spikes of some species contain very few spikelets making it inappropriate to use a conventional
111 scoring system based upon the percentage of spikelets with symptoms. Disease levels were assessed
112 between three and four weeks post inoculation using a 1-9 rating based upon a combination of
113 percentage of spikes affected and percentage of spikelets showing disease in infected spikes. A visual
114 disease score of 1 indicating "no visible disease", a visual disease score of 9 indicating very high disease
115 levels of 90-100 % infected spikelets on all spikes at or near mid-anthesis at the time of inoculation.

116
117 **FHB disease assessment of *T. timopheevii* accessions by spray inoculation (2015 and 2016)**
118 Seven *T. timopheevii* accessions (all obtained from the USDA) and a susceptible wheat variety
119 (Highbury – obtained from the GRU) were assessed for FHB resistance in 2015 by spray inoculation
120 with conidia (1×10^5 ml⁻¹) of a DON producing isolate of *F. graminearum*. Between 11 and 39 individual
121 spikes per line from multiple plants were spray inoculated at mid-anthesis, and disease was assessed
122 at 21 days post inoculation (dpi) and the percentage of infected spikelets per spike calculated. All
123 statistical analysis used Genstat 18th. The trial was unblocked, and GLM analysis used "Inoculation
124 date" and "Line" in the model. GLM was used to calculate predicted means and standard errors for
125 percentage of infected spikelets for each line.

126
127 Three *T. timopheevii* accessions, a wheat/Tim_P95-99.1-1 amphidiploid and the wheat variety
128 Highbury (parent to the amphidiploid) were assessed for FHB resistance in 2016 by spray inoculation
129 with conidia (1×10^5 ml⁻¹) of a DON producing isolate of *F. graminearum*. The trial had a randomised
130 block design containing six replicate blocks with 5-8 plants per line. Multiple ears per plant were spray
131 inoculated at mid-anthesis, and disease was assessed at 19dpi and the percentage of infected spikelets
132 per spike calculated. All statistical analysis used Genstat 18th, GLM analysis used "Inoculation date",

133 “Replicate” and “Line” in the model. Using GLM, predicted means and standard errors were calculated
134 or each line.

135
136 **FHB disease assessment of *T. timopheevii* accessions by point inoculation (2015 and 2016)**
137 Seven *T. timopheevii* accessions and a susceptible wheat variety (Highbury) were assessed for FHB
138 resistance following point inoculation in 2015. Between 10 and 27 individual spikes per line from
139 multiple plants were point inoculated at mid-anthesis. Inoculum (10µl) of a DON producing *F.*
140 *graminearum* isolate (1×10^6 conidia ml $^{-1}$) was introduced directly into a central spikelet for each spike.
141 Disease was assessed at 21dpi and the number of infected spikelets above and below the point of
142 inoculation recorded. All statistical analysis used Genstat 18th. The trial was unblocked, and GLM
143 analysis used “Inoculation date” and “Line” in the model. GLM was used to calculate predicted means
144 and standard errors for the number of infected spikelets above and below the point of inoculation for
145 each line.

146
147 Three *T. timopheevii* accessions, a wheat/Tim_P95-99.1-1 amphidiploid and the wheat variety
148 Highbury (parent to the amphidiploid) were assessed for FHB resistance following point inoculation in
149 2016. The trial had a randomised block design containing 6 replicate blocks with 5-8 plants for each
150 line with multiple spikes inoculated for each plant. Individual spikes were point inoculated into the
151 central floret at mid-anthesis with *F. graminearum* at 1×10^{-6} spore per ml, using a 0.5 ml insulin syringe.
152 Disease was assessed at 14dpi and the number of infected spikelets above and below the point of
153 inoculation recorded. All statistical analysis used Genstat 18th, GLM analysis used “Inoculation date”
154 “Replicate” and “Line” in the model. GLM was used to calculate predicted means and standard errors
155 for the number of infected spikelets above and below the point of inoculation for each line.

156
157 **Development of wheat/*T. timopheevii* (P95-99.1-1) introgression lines**
158 Development of wheat/*T. timopheevii* introgression lines was as outlined in Devi et al. (2019) and King
159 et al (2022). Briefly, Paragon *ph1/ph1* (obtained from the GRU) was used as the female parent in a
160 cross with *T. timopheevii* P95-99.1-1 to generate F₁ interspecific hybrids. The F₁ hybrids were then
161 backcrossed to Paragon to generate BC₁, BC₂, BC₃ and BC₄ plants. Molecular characterisation of the
162 introgression lines was initially carried out using the Axiom[®] Wheat-Relative Genotyping Array (Devi
163 et al., 2019). When genotyping of these plants showed the number of introgressions present to be
164 three or less, the plants were then self-fertilised. Chromosome-specific KASP markers, polymorphic
165 between wheat and *T. timopheevii* have been developed at the WRC and 480 of these KASP markers
166 have been used to characterise a panel of homozygous wheat/*T. timopheevii* introgression lines
167 including those investigated in this work (King et al. 2022).

168
169 **Fluorescence *in situ* hybridisation (FISH)**
170 FISH analysis of wheat-*T. timopheevii* introgression lines was carried out as described in (2022 ref).
171 Root metaphase spreads of chromosomes were hybridised with probes pSc119.2 (McIntyre et al.,
172 1990) and pAs.1 (Rayburn and Gill, 1986) that were nick-labelled (Rigby et al., 1977) with Alexa Fluor
173 488-5-dUTP (green) and Alexa Fluor 594-5-dUTP (red), respectively. Karyotyping of labelled
174 chromosomes was done in accordance with the nomenclature reported by Badaeva et al. 2016.

175
176 **FHB disease assessment of wheat-*T. timopheevii* introgression lines by spray inoculation (2020 and
177 2021)**

178 Twenty-five wheat-*T. timopheevii* introgression lines and wheat variety Paragon were assessed for
179 FHB resistance by spray inoculation in a Keder Greenhouse in 2020 as described above. The trial had
180 a randomised block design with between 4 and 6 individual plants distributed within 3 replicate blocks.
181 Multiple spikes per plant were spray inoculated at mid-anthesis with conidia (1×10^5 ml $^{-1}$) of a DON
182 producing isolate of *F. culmorum* using a handheld mister.

184 Twenty-nine wheat-*T. timopheevii* introgression lines and FHB susceptible wheat varieties Highbury
185 and Paragon were assessed for FHB resistance by spray inoculation in a Keder Greenhouse in 2021 as
186 described above. The trial had a randomised block design with between 5 and 10 individual plants
187 distributed within 4 replicate blocks. Spikes were inoculated at mid-anthesis as described above.
188

189 Disease in both trials was assessed at 21dpi and the percentage of infected spikelets per ear
190 calculated. All statistical analysis used Genstat 18th, GLM analysis used “Inoculation date”, “Replicate”
191 and “Line” in the model. Using GLM, predicted means and standard errors were calculated for each
192 line.
193

194 **Results**

195

196 **FHB screen of wheat relatives**

197 The initial screen of 113 wheat wild relative accessions revealed that most accessions of all species
198 were susceptible or highly susceptible to FHB (Table 1). Where more than one accession of a species
199 was tested most showed similar levels of FHB susceptibility but evidence of variation in FHB
200 susceptibility within species was observed for some species. One accession of *Agropyron desertorum*
201 (PI 439957) was highly resistant to FHB (FHB score 2) while a second accession (PI 439953) was highly
202 susceptible (FHB score 8). Similarly, accession 2060002 of *Aegilops biuncialis* was moderately resistant
203 (FHB score 3) while accession 2060003 was highly susceptible (FHB score 9). The majority of accessions
204 of *Aegilops sharonensis* were highly susceptible to FHB (FHB score 8-9) but a few (AS_01512//8,
205 AS_01850//17 and AS_01930//19) were moderately resistant (FHB score 4-5). The single accession of
206 *Elymus vaillantianus* (PI 531552) was highly resistant to FHB (FHB score 2) and exhibited few
207 symptoms. The single accession of *Triticum timopheevii* (Tim_P95-99.1-1) was notable as it exhibited
208 a very high level of resistance to FHB (Table 1) with no symptoms being apparent even at later dates
209 post inoculation.
210

211 **FHB spray inoculation screening of accessions of *T. timopheevii***

212 Given the variation in FHB resistance observed in many species in the initial screen, six additional
213 accessions of *T. timopheevii* were obtained to compare their resistance with that of accession
214 Tim_P95-99.1-1. Resistance to FHB is highly sensitive to environmental factors so Tim_P95-99.1-1 and
215 selected additional accessions were tested across two seasons. Resistance derived from wheat
216 relatives may not always be effective when introgressed into wheat (Innes and Kerber, 1994; Rines et
217 al., 2007). An amphidiploid line was produced by crossing Tim_P95-99.1-1 to the FHB-susceptible
218 wheat variety Highbury. The amphidiploid line was only available for FHB screening in 2016.
219

220 FHB spray inoculation of six additional *T. timopheevii* accessions alongside Tim_P95-99.1-1 and the
221 susceptible wheat variety Highbury was undertaken in 2015. At 21 dpi, over 84% of spikelets of
222 Highbury were symptomatic for FHB. All accessions of *T. timopheevii*, with the exception of
223 Tim_427998, were significantly more resistant ($P<0.001$) than Highbury. Tim_P95-99.1-1 exhibited the
224 greatest level of FHB resistance (29% spikelets infected) with a lower disease score than all the other
225 *T. timopheevii* accessions tested. Indeed, the disease score for Tim_P95-99.1-1 was significantly lower
226 ($P< .001$) than four of the *T. timopheevii* accessions and the wheat variety Highbury (Figure 1). Two
227 other *T. timopheevii* accessions (Tim_PI_289752 and Tim_PI_427414) were also markedly more
228 resistant than Highbury with only 45% and 45.8% of spikelets infected respectively.
229

230 In the 2016 FHB spray screen disease levels were not as high as in 2015. Highbury had approximately
231 45% of spikelets exhibiting disease. In contrast, Tim_P95-99.1-1 had an extremely low level of disease
232 with only 1.3% of spikelets exhibiting symptoms (Figure 2). As in 2015, accessions Tim_PI_538429 and
233 Tim_PI_538512 were significantly less diseased ($P<0.001$) than Highbury with 18.8% and 11% of
234 spikelets infected. Disease levels in the amphidiploid were also very low with an average of 5% of

235 spikelets infected and were not statistically different ($P=0.41$) from those in the Tim_95-99.1-1 parent.
236 These results reveal that the FHB resistance in Tim-P95-99.1-1 is stable and is expressed in a wheat
237 background.

238

239 **FHB point inoculation screening of accessions of *T. timopheevii***

240 The preliminary FHB screen involved spray inoculation which reveals overall levels of FHB resistance.
241 Point inoculation is used to determine whether the resistance is of type 2, resistance to spread.
242 Tim_P95-99.1-1 along with six other *T. timopheevii* accessions and the wheat variety Highbury were
243 point inoculated at mid-anthesis. Symptoms above the point of inoculation generally reflect
244 susceptibility to the effects of DON while those below reflect colonisation by the pathogen. For these
245 reasons, disease above and below the point of inoculation was assessed separately. At 21 dpi disease
246 levels in Highbury were 18% and 32.7% infected spikelets above and below the point of inoculation
247 respectively (Figure 3). Four accessions of *T. timopheevii* (Tim_PI_289752, Tim_PI_427414, Tim_PI_
248 538429, Tim_PI_538512) were significantly more susceptible to FHB than Highbury for symptoms both
249 below and above the point of inoculation. None of the *T. timopheevii* accessions exhibited greater
250 resistance to spread of symptoms either above or below the inoculation point than Highbury.
251 Tim_538429 was extremely susceptible to spread of symptoms both above and below the inoculation
252 point indicating an inability to restrict fungal colonisation and a high level of susceptibility to the
253 effects of DON (Figure 3). Accessions Tim_PI_289752 and Tim_PI_427414 exhibited high disease levels
254 below the point of inoculation indicating that they lack the ability to restrict fungal colonisation.
255 Disease above and below the point of inoculation in the other accessions, including Tim_P95.99.1-1,
256 were slightly, but not significantly, more susceptible than the wheat variety Highbury. Overall, no
257 evidence was apparent that indicated that any of the *T. timopheevii* accessions possessed greater
258 levels of type 2 resistance than Highbury.

259

260 Disease progress in the point inoculation screen in 2016 was greater than in the previous year with
261 disease levels in Highbury of 75.5% and 68.2% above and below the inoculation point respectively
262 (Figure 4). As in the 2015 screen, disease symptoms above and below the inoculation point in
263 Tim_PI_538429 were significantly greater ($P=0.028$ and $P=0.05$ respectively) than those in Highbury
264 although the differential was markedly less than that in the earlier screen where disease pressure was
265 lower (compare Figure 3 and Figure 4). Unlike in the earlier trial, disease levels above and below the
266 inoculation point in Tim_PI_538512 were not significantly greater than those in Highbury with disease
267 level above the point of inoculation being significantly less ($P<0.001$) than that of Highbury (Figure 4).

268

269 Symptoms below the inoculation point in Tim_P95-99.1-1 were similar to those in Highbury ($P=0.96$)
270 while bleaching symptoms above the point of inoculation were significantly less than those in
271 Highbury ($P<0.001$). Despite this, the differential in disease levels between Tim_P95-99.1-1 and
272 Highbury were very much less following point inoculation than after spray inoculation (compare Figure
273 2 and Figure 4). Unexpectedly, disease levels above (15.2%) and below (33.1%) the point of inoculation
274 were significantly less ($P<0.001$) in the amphidiploid line than either parent. It was noted that some
275 spikes of the amphidiploid were partially sterile, and this may have reduced susceptibility in this line.
276

277

FHB screening of wheat lines carrying introgressions from Tim_P95-99.1-1

278 The above studies revealed that accession Tim_P95-99.1-1 possesses a very high level of resistance to
279 FHB and that this resistance is predominantly of type 1 rather than type 2. The studies also
280 demonstrated that the FHB resistance in Tim_P95-99.1-1 was expressed in an amphidiploid line
281 produced by crossing to the wheat variety Highbury. We next investigated whether introgression of
282 Tim_P95-99.1-1 chromosome segments into wheat would confer any level of increased resistance to
283 FHB. The development of a panel of introgressions of Tim_P95-99.1-1 into the wheat variety Paragon
284 has been reported previously (Devi et al., 2019). These lines were advanced and a selection of 32
285 homozygous introgression lines from this panel (King et al., 2022; Table 2) were screened for FHB

286 resistance by spray inoculation. Twenty-five of these introgression lines were tested in 2020 and 29
287 lines in 2021. Each line was subjected to genotyping using chromosome-specific KASP markers (King
288 et al., 2022). These introgression lines contain a variety of segments from each of the two subgenomes
289 present in *T. timopheevii* (A^t and G) (Fig 7; Table 2).

290
291 In 2020, disease levels on Paragon wheat were moderate with 47.5% spikelets exhibiting FHB
292 symptoms (Figure 5). Significant differences were observed in the levels of FHB resistance among the
293 introgression lines. Two introgression lines (Tim7 and Tim12) exhibited significantly higher disease
294 levels than the Paragon recipient, 73.5% and 88.4% respectively. Two introgression lines, Tim6 and
295 Tim5 appeared highly resistant to FHB with disease levels of 4% and 10% respectively and were
296 significantly more resistant than Paragon (P<0.001) (Fig 5). These two lines were of interest as
297 although they both contained introgressed segments from linkage groups 2G and 3G of *T. timopheevii*,
298 they were unique in the set tested as containing segments from 3G (Figure 7). The presence of
299 segments of 3G was confirmed with fluorescent *in situ* hybridisation (FISH; Figure 8). Three other
300 introgression lines (Tim26, Tim28 and Tim11) were also significantly more resistant than Paragon, but
301 to a lesser extent, with 22.9%, 23.2% and 26.9% spikelets infected respectively.

302
303 Disease levels were higher in the 2021 screen with 58.6% of spikelets of Paragon exhibiting FHB
304 symptoms. No introgression line appeared more susceptible to FHB than Paragon. Four introgression
305 lines Tim11, (22.4%) BC₂F₄-40 (23.6%), Tim33 (24.6%) and Tim5 (25.5%) were significantly (P<0.001)
306 more resistant to FHB than Paragon. Both Tim11 and Tim5 had also shown significantly greater
307 resistance to FHB in the screen in the previous year. Neither BC₂F₄-40 or Tim33 had been included in
308 the screen in the previous year. Two additional introgression lines (Tim29 and Tim30) also exhibited
309 significantly less disease than Paragon but significantly more than the above-mentioned four lines.

310

311 Discussion

312 Several sources of potent FHB resistance have been identified in *Triticum aestivum*, particularly in lines
313 from China and Japan (Buerstmayr et al., 2009). Subsequent study revealed that, in many cases, the
314 genetic basis of resistance was similar and so research continues to expand the range of FHB resistance
315 available to wheat breeders. Potentially useful resistance to FHB has been identified in both the
316 secondary and tertiary gene pools (Steed et al 2005; Ceoloni et al 2017). In the present work,
317 accessions of three species exhibited very high levels of FHB resistance. While resistance in *Agropyron*
318 *desertorum* appears not to have been reported previously FHB resistance has been identified in both
319 *E. vaillantianus* (syn. *E. repens*) (Fedak et al., 2017; Gong et al., 2019) and *T. timopheevii* (Malihipour
320 et al., 2016). In the present study only one accession of *T. timopheevii* (P95-99.1-1) exhibited
321 resistance to FHB while the other accessions were moderately to highly susceptible. *Triticum*
322 *timopheevii* is an allopolyploid (2n=4x=28) comprising the A^t genome similar to that of the A genome
323 progenitor of wheat (*Triticum aestivum*) and the G genome being more similar to the B genome of *T. aestivum* (Dvorak and Zhang, 1990: Dvorak et al., 1993; Devi, 2019). Recombination between the A
324 and A^t genomes is more frequent than that between the B and G genomes reflecting their relative
325 relatedness (Feldman, 1966; Devi et al., 2019).

326
327 Resistance identified in *T. timopheevii* to several pathogens has been introduced into wheat. Genes
328 for resistance to stem rust include *Sr36*, *Sr40*, and *Sr50* on chromosome 2B (Brown-Guedira et al.,
329 2003) and *Sr37* on 4B (Bai et al., 1998). Resistance to leaf rust has been introduced on 5B (*Lr18*)
330 (Sadeghabad et al., 2017) and 5A (un-named resistance) (Bai et al., 1998). Resistance conditioned by
331 both leaf rust genes was recessive in bread wheat while the 5A resistance was dominant in durum
332 wheat indicating that the expression of resistance is dependent upon the background (Bai et al., 1998).
333 Resistance to powdery mildew in *T. timopheevii* has also been introduced into wheat and used in
334 breeding. The gene *Pm6* derived from chromosome 2G and carried on chromosome 2B in wheat was
335 reported in 1973 (Jorgensen and Jensen, 1973) and has proved durable to date (Wan et al., 2020).

336 Resistance to diseases including spot blotch, tan spot, *Stagonospora nodorum* blotch, *Septoria tritici*
337 blotch and loose smut has also been identified in *T. timopheevii* (Singh et al., 2006; Timonova et al.,
338 2013) along with resistance to green bug (Rumyantsev et al., 2019) revealing it to be a rich source of
339 resistance to a wide range of biotic stresses.

340 Resistance to FHB has been identified in a number of accessions of *T. timopheevii*. One of three
341 accessions exhibited moderate type 2 resistance while all three lacked resistance to initial infection
342 (type1) (Yong-Fang et al., 1997). FHB resistance derived from *T. timopheevii* has also been
343 characterised in two separate studies. *Triticum timopheevii* accession PI 343447 was crossed and
344 backcrossed to spring wheat Crocus and line TC 67 was selected on the basis of resistance to FHB and
345 agronomic characteristics (Cao et al., 2009). TC 67 was crossed to the FHB susceptible variety Brio and
346 a population of 230 F7 recombinant inbred lines produced and characterised for FHB resistance in
347 glasshouse (type2) and field trials (incidence (type 1) and severity (type 2)) (Malihipour et al., 2017).
348 Two QTL were identified on the long arm of chromosome 5A with one near the centromere in the
349 interval between markers *cf6.1* and *barc48* and the second more distal between *cf39* and *cfa2185*.
350 Both QTL contributed more than one FHB resistance trait. The QTL in the interval between *cf6.1* and
351 *barc48* was associated with reduced disease incidence and severity and reduced Fusarium damaged
352 kernels (FDK) in field trials. The more potent QTL between *cf39* and *cfa2185* was associated with
353 reduced FDK in field trials and reduced severity in glasshouse trials following point inoculation
354 indicating that it conferred type 2 resistance (Malihipour et al., 2017). Resistance to FHB derived from
355 *T. timopheevii* was identified in a separate population developed between wheat line PI 277012 that
356 contained *T. timopheevii* in its pedigree and wheat variety Grandin (PI 531005) (Chu et al., 2011). Two
357 QTL contributing resistance to FHB in field trials and glasshouse point inoculation trials were identified
358 on chromosome 5A with one on the short arm and one on the long arm. The QTL *Qfhb.rwg-5A.1* on
359 the short arm resides in a similar location to *Qfhs.ifa-5A* identified in Sumai 3 with both being in the
360 region of marker *XBarc180* (Chu et al., 2011). The QTL (*Qfhb.rwg-5A.2*) explaining most of the
361 phenotypic variance flanks the QTL interval *cf39* and *cfa2185* identified in TC 67 derived from *T.*
362 *timopheevii* PI 343447 making it highly likely that these represent the same resistance (Chu et al.,
363 2011). In both cases the QTL also flanked the *Q* locus with FHB resistance being associated with the *q*
364 allele that prevents free-threshing reinforcing the view that the two QTL have a similar basis (Chu et
365 al., 2011; Malihipour et al., 2016). It is unlikely that the differential FHB resistance is due to the *Q* locus
366 itself because recombination between FHB resistance and non-free threshing was observed (Chu et
367 al., 2011). The presence of the FHB resistance QTL on 5A indicates that they probably derive from
368 chromosome 5A^t of *T. timopheevii*.

369 The FHB resistance of accession P95-99.1-1 appears to be predominantly of type 1 (resistance to initial
370 infection) rather than type 2 (resistance to spread) as the greater resistance in this line compared to
371 the other accessions tested was only evident following spray inoculation. This characteristic
372 differentiates the resistance from that reported previously from *T. timopheevii* (Chu et al., 2011;
373 Malihipour et al., 2016).

374 A large panel of interspecific hybrid lines has been developed of introgressions from *T. timopheevii*
375 accession P95-99.1-1 in spring wheat Paragon. Advanced back-cross lines were further back-crossed
376 with Paragon and self-fertilised to produce lines containing a relatively small number of introgressions
377 (King et al., 2022). The number of introgressions retained within each line reduced with each back-
378 cross with the exception of part of chromosome 2G (Devi et al., 2019). It has been demonstrated that
379 chromosome 2G of *T. timopheevii* is preferentially transmitted accounting for its retention in lines
380 over numerous back-crossings (Brown-Guedira et al., 1996). Assessment of FHB resistance requires
381 relatively large numbers of plants and these need to be fixed for the presence of the introgression(s).
382 Sufficient grain was available for only a proportion of the introgression panel and 32 of these carrying
383 57 unique introgressions from *T. timopheevii* (Figure 7) were assessed for resistance to FHB following
384 spray inoculation.

385 Four introgression lines (Tim3, Tim4, Tim10 and Tim27) carry segments from 5A^t of *T. timopheevii* that
386 are believed to cover the region associated with the potent FHB resistance QTL reported previously
387 (Chu et al., 2011; Malihipour et al., 2017). In addition, the introgression carried by line Tim4 appears
388 to cover the region containing the less potent resistance. None of these lines exhibited significantly
389 greater FHB resistance than the wheat donor and it is concluded that accession P95-99.1-1 does not
390 contain either of these FHB QTL.

391 Two lines (Tim5 and Tim6) were highly FHB resistant in the first year of testing. Both lines contain the
392 preferentially transmitted segment of 2G and a segment of 3G equivalent to 3BS in wheat as revealed
393 by KASP (Fig 7) and FISH (Fig 8) analysis. As many lines also contained the 2G segment but did not
394 exhibit increased FHB resistance it was assumed that the resistance was conferred by the 3G segment.
395 This was confirmed in the second year of trials. Line BC₂F₄-40 contains a 3G segment similar in size to
396 that in Tim5 but lacks the preferentially transmitted segment of 2G. This line exhibited a similar high
397 level of FHB resistance to Tim5 in the second year of trials. The size of the 3G segment in Tim5 and
398 line BC₂F₄-40 is much smaller than that in Tim6, 48.8 Mb and 762.2 Mb respectively. Tim2, Tim24 and
399 Tim35 all contain small segments (up to 10.75 Mb) of 3G introgressed onto the distal end of 3B but
400 none of these lines showed enhanced FHB resistance in either trial (Figure 5, Figure 6). It is assumed,
401 therefore, that the region associated with FHB resistance on the distal portion of 3BS is contributed
402 by the equivalent region of 3G in the interstitial 38.05 Mb region between 10.75 and 48.8 Mb.

403 Line Tim2 used in the FHB trial in 2020 contained segments of chromosomes 1A^t and 7G from *T. timopheevii* and segregated for loss of the short arm of chromosome 3B (3BS). The loss of 3BS was
404 fixed in this line in the FHB trial in 2021. It has been postulated that the resistance conferred by *Fhb1*
405 on chromosome 3BS is due to a loss of function (Su et al., 2019) of the histidine rich calcium binding
406 protein. No significant increase in FHB resistance in Tim2 was observed in either year indicating that
407 loss of 3BS does not result in increased FHB resistance. This observation is in agreement with the
408 finding that loss of 3BS (Ma et al., 2006) or replacement of 3BS with 3HS (Hales et al., 2020) does not
409 result in an increase in FHB resistance.

411 Two other lines showed enhanced FHB resistance in the 2021 trial. Tim11 was moderately resistant in
412 the first year of trials and was one of the most resistant in the second trial when disease pressure was
413 higher (Figs 5 and 6). This line contains segments from 2G and 6A^t. The 6A segment is similar to that
414 in a number of other lines and the 2G segment is present in Tim5. None of the lines containing either
415 the 2G and 6A^t segments showed enhanced resistance and so the origin of this resistance is unclear.
416 It is possible that this line contains additional segments of *T. timopheevii* chromosome that are too
417 small to detect with either the SNP markers or with FISH. This is particularly relevant for introgressions
418 from the A^t genome. Recombination between the A genome of wheat and the A^t genome of *T. timopheevii*
419 is much more prevalent than that between the B or D genome of wheat and the G genome
420 of *T. timopheevii* (Timonova et al., 2013). The size of A^t introgressions may be reduced during the
421 process of backcrossing to reduce and stabilise the number of introgressions and so their presence
422 may not be detected using the current SNP marker set.

423 Insufficient grain of Tim 33 was available for FHB resistance assessment in 2020 but this line exhibited
424 a high level of resistance in the 2021 trial (Fig. 6). Tim33 contains the preferentially transmitted
425 segment of 2G and a segment on 7AS presumed to originate from 7A^t of *T. timopheevii*. The segment
426 on 7AS of Tim33 is in the region between 0 to ~200Mb. Two other lines (Tim4 and Tim13) also possess
427 segments introduced to 7AS but the size of the introgression (0- ~42Mb) is considerably less than that
428 in Tim33. In addition, Tim3 contains a segment introduced in the region 128-515Mb on 7A. None of
429 these lines exhibited high levels of FHB resistance and so it is concluded that the resistance exhibited
430 by Tim33 is due to genes present in the region between ~42 and 128 Mb. Additional testing of these
431 lines is required to confirm the presence and location of the FHB resistance conferred by this interval
432 of 7A^t.

433 *Triticum timopheevii* is a rich source of diversity for the introduction of beneficial traits from the
434 secondary gene pool of wheat. We have identified an accession of *T. timopheevii* with very high levels
435 of type 1 FHB resistance. The resistance appears to be novel and is expressed when introduced into
436 wheat. Introgression of individual chromosomal segments (e.g. 38.05 Mb region between 10.75 and
437 48.8 Mb of 3G) significantly increase FHB resistance in wheat. The material generated within this study
438 provides a new source of FHB resistance for evaluation in wheat breeding programmes.

439 **Conflict of Interest**

440 The authors declare that the research was conducted in the absence of any commercial or financial
441 relationships that could be construed as a potential conflict of interest.

442 **Author contribution**

443 IK, JK and PN conceived this work. JK, CY and SG developed the introgression lines reported here. SG
444 carried out the genotyping and CY carried out the FISH analysis of introgression lines. AS, MT and PN
445 carried out the disease screening of plants and AS analysed the data produced. PN, AS, IK, JK, CY and
446 SG contributed to writing this manuscript.

447 **Funding**

448 This work was supported by the UK Biotechnology and Biological Sciences Research Council (BBSRC)
449 through the Designing Future Wheat [BB/P016855/1] Institute Strategic Programme.

450 **Acknowledgements**

451 AS and PN would like to thank the Horticultural Services team of the John Innes Centre for their input
452 into care of the plants used in these experiments.

453

454 **References**

455

456 Amarasinghe, C., Sharanowski, B., and Fernando, W.G.D. (2019). Molecular Phylogenetic
457 Relationships, Trichothecene Chemotype Diversity and Aggressiveness of Strains in a Global
458 Collection of *Fusarium graminearum* Species. *Toxins* 11(5). doi: 10.3390/toxins11050263.

459 Bai, D.P., Knott, D.R., and Zale, J. (1998). The transfer of leaf rust resistance from *Triticum*
460 *timopheevii* to durum and bread wheat and the location of one gene on chromosome 1A.
461 *Canadian Journal of Plant Science* 78(4), 683-687.

462 Bai, G., Su, Z., and Cai, J. (2018). Wheat resistance to *Fusarium* head blight. *Canadian Journal of Plant*
463 *Pathology* 40(3), 336-346. doi: 10.1080/07060661.2018.1476411.

464 Brown-Guedira, G.L., Badaeva, E.D., Gill, B.S., and Cox, T.S. (1996). Chromosome substitutions of
465 *Triticum timopheevii* in common wheat and some observations on the evolution of polyploid
466 wheat species. *Theoretical and Applied Genetics* 93(8), 1291-1298.

467 Brown-Guedira, G.L., Singh, S., and Fritz, A.K. (2003). Performance and mapping of leaf rust
468 resistance transferred to wheat from *Triticum timopheevii* subsp *armeniacum*.
469 *Phytopathology* 93(7), 784-789. doi: 10.1094/phyto.2003.93.7.784.

470 Buerstmayr, H., Ban, T., and Anderson, J.A. (2009). QTL mapping and marker-assisted selection for
471 *Fusarium* head blight resistance in wheat: a review. *Plant Breeding* 128(1), 1-26. doi:
472 10.1111/j.1439-0523.2008.01550.x.

473 Buerstmayr, M., Steiner, B., and Buerstmayr, H. (2020). Breeding for *Fusarium* head blight resistance
474 in wheat-Progress and challenges. *Plant Breeding* 139(3), 429-454. doi: 10.1111/pbr.12797.

475 Cainong, J.C., Bockus, W.W., Feng, Y., Chen, P., Qi, L., Sehgal, S.K., et al. (2015). Chromosome
476 engineering, mapping, and transferring of resistance to *Fusarium* head blight disease from
477 *Elymus tsukushiensis* into wheat. *Theoretical and Applied Genetics* 128(6), 1019-1027. doi:
478 10.1007/s00122-015-2485-1.

479 Cao, W.G., Fedak, G., Armstrong, K., Xue, A., and Savard, M.E. (2009). Registration of Spring Wheat
480 Germplasm TC 67 Resistant to *Fusarium* Head Blight. *Journal of Plant Registrations* 3(1), 104-
481 106. doi: 10.3198/jpr2008.08.0465crg.

482 Ceoloni, C., Forte, P., Kuzmanovic, L., Tundo, S., Moscetti, I., De Vita, P., et al. (2017). Cytogenetic
483 mapping of a major locus for resistance to *Fusarium* head blight and crown rot of wheat on
484 *Thinopyrum elongatum* 7EL and its pyramiding with valuable genes from a *Th. ponticum*
485 homoeologous arm onto bread wheat 7DL. *Theoretical and Applied Genetics* 130(10), 2005-
486 2024. doi: 10.1007/s00122-017-2939-8.

487 Chu, C., Niu, Z., Zhong, S., Chao, S., Friesen, T.L., Halley, S., et al. (2011). Identification and molecular
488 mapping of two QTLs with major effects for resistance to *Fusarium* head blight in wheat.
489 *Theoretical and Applied Genetics* 123(7), 1107-1119. doi: 10.1007/s00122-011-1652-2.

490 Cuthbert, P.A., Somers, D.J., and Brule-Babel, A. (2007). Mapping of *Fhb2* on chromosome 6BS: a
491 gene controlling *Fusarium* head blight field resistance in bread wheat (*Triticum aestivum* L.).
492 *Theoretical and Applied Genetics* 114(3), 429-437. doi: 10.1007/s00122-006-0439-3.

493 Cuthbert, P.A., Somers, D.J., Thomas, J., Cloutier, S., and Brule-Babel, A. (2006). Fine mapping *Fhb1*,
494 a major gene controlling *Fusarium* head blight resistance in bread wheat (*Triticum aestivum*
495 L.). *Theoretical and Applied Genetics* 112(8), 1465-1472. doi: 10.1007/s00122-006-0249-7.

496 Devi, U., Grewal, S., Yang, C.-y., Hubbard-Edwards, S., Scholefield, D., Ashling, S., et al. (2019).
497 Development and characterisation of interspecific hybrid lines with genome-wide
498 introgressions from *Triticum timopheevii* in a hexaploid wheat background. *Bmc Plant*
499 *Biology* 19. doi: 10.1186/s12870-019-1785-z.

500 Dvorak, J., Diterlizzi, P., Zhang, H.B., and Resta, P. (1993). The evolution of polyploid wheats -
501 Identification of the A genome donor species. *Genome* 36(1), 21-31.

502 Dvorak, J., and Zhang, H.B. (1990). Variation in repeated nucleotide-sequences sheds light on the
503 phylogeny of the wheat B-genomes and G-genomes. *Proceedings of the National Academy of
504 Sciences of the United States of America* 87(24), 9640-9644. doi: 10.1073/pnas.87.24.9640.

505 Fedak, G., Cao, W., Wolfe, D., Chi, D., and Xue, A. (2017). Molecular Characterization of Fusarium
506 Resistance from *Elymus repens* Introgressed into Bread Wheat. *Cytology and Genetics* 51(2),
507 130-133. doi: 10.3103/s0095452717020025.

508 Feldman, M. (1966). Identification of unpaired chromosomes in F1 hybrids involving *Triticum
509 aestivum* and *T. timopheevii*. *Canadian Journal of Genetics and Cytology* 8(1), 144-8. doi:
510 10.1139/g66-019.

511 Franco, M.F., Lori, G.A., Cendoya, M.G., Panelo, J.S., Alonso, M.P., Mirabella, N.E., et al. (2021). Using
512 anthesis date as a covariate to accurately assessing type II resistance to Fusarium head blight
513 in field-grown bread wheat. *Crop Protection* 142. doi: 10.1016/j.cropro.2020.105504.

514 Gong, B., Zhu, W., Li, S., Wang, Y., Xu, L., Wang, Y., et al. (2019). Molecular cytogenetic
515 characterization of wheat-*Elymus repens* chromosomal translocation lines with resistance to
516 Fusarium head blight and stripe rust. *Bmc Plant Biology* 19(1). doi: 10.1186/s12870-019-
517 2208-x.

518 Guo, J., Zhang, X., Hou, Y., Cai, J., Shen, X., Zhou, T., et al. (2015). High-density mapping of the major
519 FHB resistance gene *Fhb7* derived from *Thinopyrum ponticum* and its pyramiding with *Fhb1*
520 by marker-assisted selection. *Theoretical and Applied Genetics* 128(11), 2301-2316. doi:
521 10.1007/s00122-015-2586-x.

522 Hales, B., Steed, A., Giovannelli, V., Burt, C., Lemmens, M., Molnar-Lang, M., et al. (2020). Type II
523 Fusarium head blight susceptibility conferred by a region on wheat chromosome 4D. *Journal
524 of Experimental Botany* 71(16), 4703-4714. doi: 10.1093/jxb/eraa226.

525 Innes, R.L., and Kerber, E.R. (1994). Resistance to wheat leaf rust and stem rust in *Triticum tauschii*
526 and inheritance in hexaploid wheat of resistance transferred from *T. tauschii*. *Genome* 37(5),
527 813-822. doi: 10.1139/g94-116.

528 Jorgensen, Jh, and Jensen, C.J. (1973). Gene *Pm6* for resistance to powdery mildew in wheat.
529 *Euphytica* 22(2), 423-423.

530 Li, G., Zhou, J., Jia, H., Gao, Z., Fan, M., Luo, Y., et al. (2019). Mutation of a histidine-rich calcium-
531 binding-protein gene in wheat confers resistance to Fusarium head blight. *Nature Genetics*
532 51(7), 1106-+. doi: 10.1038/s41588-019-0426-7.

533 Ma, H.-X., Bai, G.-H., Gill, B.S., and Hart, L.P. (2006). Deletion of a chromosome arm altered wheat
534 resistance to Fusarium head blight and deoxynivalenol accumulation in Chinese Spring. *Plant
535 Disease* 90(12), 1545-1549. doi: 10.1094/pd-90-1545.

536 Malihipour, A., Gilbert, J., Fedak, G., Brule-Babel, A., and Cao, W. (2016). Characterization of
537 agronomic traits in a population of wheat derived from *Triticum timopheevii* and their
538 association with Fusarium head blight. *European Journal of Plant Pathology* 144(1), 31-43.
539 doi: 10.1007/s10658-015-0744-2.

540 Malihipour, A., Gilbert, J., Fedak, G., Brule-Babel, A., and Cao, W. (2017). Mapping the A Genome for
541 QTL Conditioning Resistance to Fusarium Head Blight in a Wheat Population with *Triticum
542 timopheevii* Background. *Plant Disease* 101(1), 11-19. doi: 10.1094/pdis-02-16-0144-re.

543 McIntyre, C.L., Pereira, S., Moran, L.B., and Appels, R. (1990). New *Secale cereale* (rye) DNA
544 derivatives for the detection of rye chromosome segments in wheat. *Genome* 33(5), 635-
545 640.

546 Mesterhazy, A., Bartok, T., Mirocha, C.G., and Komoroczy, R. (1999). Nature of wheat resistance to
547 Fusarium head blight and the role of deoxynivalenol for breeding. *Plant Breeding* 118(2), 97-
548 110. doi: 10.1046/j.1439-0523.1999.118002097.x.

549 Miller, J.D., Young, J.C., and Sampson, D.R. (1985). Deoxynivalenol and fusarium Head Blight
550 resistance in Spring cereals. *Phytopathologische Zeitschrift-Journal of Phytopathology*
551 113(4), 359-367.

552 Qi, L.L., Pumphrey, M.O., Friebel, B., Chen, P.D., and Gill, B.S. (2008). Molecular cytogenetic
553 characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head
554 blight disease of wheat. *Theoretical and Applied Genetics* 117(7), 1155-1166. doi:
555 10.1007/s00122-008-0853-9.

556 Rawat, N., Pumphrey, M.O., Liu, S., Zhang, X., Tiwari, V.K., Ando, K., et al. (2016). Wheat Fhb1
557 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain
558 conferring resistance to Fusarium head blight. *Nature Genetics* 48(12), 1576-1580. doi:
559 10.1038/ng.3706.

560 Rayburn, A.L., and Gill, B.S. (1986). Molecular identification of the D-genome chromosomes of
561 wheat. *J. Hered.* 77(4), 253-255.

562 Rigby, P.W., Dieckmann, M., Rhodes, C., and Berg, P. (1977). Labeling deoxyribonucleic acid to high
563 specific activity in vitro by nick translation with DNA polymerase I. *J Mol Biol* 113(1), 237-
564 251. doi: 10.1016/0022-2836(77)90052-3.

565 Rines, H.W., Porter, H.L., Carson, M.L., and Ochocki, G.E. (2007). Introgression of crown rust
566 resistance from diploid oat *Avena strigosa* into hexaploid cultivated oat *A. sativa* by two
567 methods: direct crosses and through an initial 2x center dot 4x synthetic hexaploid.
568 *Euphytica* 158(1-2), 67-79. doi: 10.1007/s10681-007-9426-2.

569 Rumyantsev, S.D., Veselova, S.V., Burkhanova, G.F., and Maksimov, I.V. (2019). Induced resistance to
570 the greenbug aphid *Schizaphis graminum* Rond. in species of the genus *Triticum*. *Vavilovskii*
571 *Zhurnal Genetiki i Selektii* 23(7), 865-872. doi: 10.18699/vj19.560.

572 Sadeghabad, A.A., Dadkhodaie, A., Heidari, B., Razi, H., and Mostowfizadeh-Ghalamfarsa, R. (2017).
573 Microsatellite markers for the Triticum timopheevii-derived leaf rust resistance gene Lr18 on
574 wheat 5BL chromosome. *Breeding Science* 67(2), 129-134. doi: 10.1270/jsbbs.16148.

575 Schroeder, H.W., and Christensen, J.J. (1963). Factors affecting resistance of wheat to scab caused by
576 *Gibberella zeae*. *Phytopathology* 53(7), 831-&.

577 Shen, X., and Ohm, H. (2007). Molecular mapping of *Thinopyrum*-derived Fusarium head blight
578 resistance in common wheat. *Molecular Breeding* 20(2), 131-140. doi: 10.1007/s11032-007-
579 9079-9.

580 Singh, P.K., Mergoum, M., Ali, S., Adhikari, T.B., Elias, E.M., and Hughes, G.R. (2006). Identification of
581 new sources of resistance to tan spot, *Stagonospora nodorum* blotch, and *Septoria tritici*
582 blotch of wheat. *Crop Science* 46(5), 2047-2053. doi: 10.2135/cropsci2005.12.0469.

583 Spanic, V., Dvojkovic, K., Babic, J., Drezner, G., and Zdunic, Z. (2021). Fusarium Head Blight
584 Infestation in Relation to Winter Wheat End-Use Quality-A Three-Year Study. *Agronomy-*
585 *Basel* 11(8). doi: 10.3390/agronomy11081648.

586 Su, Z., Bernardo, A., Tian, B., Chen, H., Wang, S., Ma, H., et al. (2019). A deletion mutation in TaHRC
587 confers Fhb1 resistance to Fusarium head blight in wheat. *Nature Genetics* 51(7), 1099-+.
588 doi: 10.1038/s41588-019-0425-8.

589 Timonova, E.M., Leonova, I.N., Roder, M.S., and Salina, E. (2013). Marker-assisted development and
590 characterization of a set of *Triticum aestivum* lines carrying different introgressions from the
591 *T. timopheevii* genome. *Molecular Breeding* 31(1), 123-136. doi: 10.1007/s11032-012-9776-
592 x.

593 Valverde-Bogantes, E., Bianchini, A., Herr, J.R., Rose, D.J., Wegulo, S.N., and Hallen-Adams, H.E.
594 (2020). Recent population changes of Fusarium head blight pathogens: drivers and
595 implications. *Canadian Journal of Plant Pathology* 42(3), 315-329. doi:
596 10.1080/07060661.2019.1680442.

597 Wan, W.T., Xiao, J., Li, M.L., Tang, X., Wen, M.X., Cheruiyot, A.K., et al. (2020). Fine mapping of
598 wheat powdery mildew resistance gene Pm6 using 2B/2G homoeologous recombinants
599 induced by the ph1b mutant. *Theoretical and Applied Genetics* 133(4), 1265-1275. doi:
600 10.1007/s00122-020-03546-8.

601 Wang, H., Sun, S., Ge, W., Zhao, L., Hou, B., Wang, K., et al. (2020). Horizontal gene transfer of Fhb7
602 from fungus underlies Fusarium head blight resistance in wheat. *Science* 368(6493), 844-+.
603 doi: 10.1126/science.aba5435.

604 Yong-Fang, W., Chi, Y., and Jun-Liang, Y. (1997). Sources of resistance to head scab in Triticum.
605 *Euphytica* 94(1), 31-36. doi: 10.1023/a:1002982005541.

606 Zhang, X., Shen, X., Hao, Y., Cai, J., Ohm, H.W., and Kong, L. (2011). A genetic map of *Lophopyrum*
607 *ponticum* chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust.
608 *Theoretical and Applied Genetics* 122(2), 263-270. doi: 10.1007/s00122-010-1441-3.

609

610

Table 1. Fusarium head blight disease rating of 113 wild grass species/accessions of wheat relatives following spray inoculation with conidia of *F. graminearum*

Genotype	Code	Disease Rating	Genotype	Code	Disease Rating
<i>Aegilops</i>					
<i>bicornis</i>	2190002	5	<i>Ae. sharonensis</i>	2170007	9
<i>Ae. bicornis</i>	2190003	7	<i>Ae. sharonensis</i>	AS_02111//5	9
<i>Ae. biuncialis</i>	2060002	3	<i>Ae. sharonensis</i>	AS_01067//7	9
<i>Ae. biuncialis</i>	2060003	9	<i>Ae. triuncialis</i>	2080001	4
<i>Ae. caudata</i>	2090001	8	<i>Ae. triuncialis</i>	2080006	7
<i>Ae. caudata</i>	2090002	9	<i>Ae. umbellulata</i>	2010001	4
<i>Ae. comosa</i>	2110001	6	<i>Ae. umbellulata</i>	2010010	6
<i>Ae. comosa</i>	2110005	7	<i>Ae. umbellulata</i>	2010008	7
<i>Ae. comosa</i>	2110002	8	<i>Ae. umbellulata</i>	2010002	8
<i>Ae. comosa</i>	Bulgaria 46	8	<i>Ae. umbellulata</i>	2010005	9
<i>Ae. comosa</i>	2110007	9	<i>Ae. uniaristata</i>	2120002	8
<i>Ae. comosa</i>	2110008	9	<i>Ae. variabilis</i>	2070001	6
<i>Ae. cylindrica</i>	2100001	9	<i>Ae. vavilovii</i>	TZ07	6
<i>Ae. cylindrica</i>	2100006	9	<i>Ae. vavilovii</i>	2260001	8
<i>Ae. juvenalis</i>	2280001	8	<i>Ae. vavilovii</i>	2260002	8
<i>Ae. kotschyii</i>	TKK03	9	<i>Ae. vavilovii</i>	TZ01	8
<i>Ae. kotschyii</i>	TKK19	9	<i>Ae. vavilovii</i>	TZ02	8
<i>Ae. kotschyii</i>	TKK39	9	<i>Ae. ventricosa</i>	2270004	4
<i>Ae. longissima</i>	TL22	7	<i>Ae. ventricosa</i>	2270001	6
<i>Ae. longissima</i>	2150001	8	<i>Agropyron desertorum</i>	439957	2
<i>Ae. longissima</i>	TL14	8	<i>Agropyron desertorum</i>	439953	8
<i>Ae. longissima</i>	2150006	9	<i>Agropyron fragile</i>	440089	9
<i>Ae. longissima</i>	2150011	9	<i>Agropyron fragile</i>	440094	9
<i>Ae. longissima</i>	2150015	9	<i>Elymus elymoides</i>	531602	6
<i>Ae. longissima</i>	TL01	9	<i>Elymus breviaristatus</i>	499411	8
<i>Ae. Markgrafii</i>	AS_01491//2	7	<i>Elymus caninus</i>	439908	6
<i>Ae. Markgrafii</i>	AS_01473//4	8	<i>Elymus longearistatus</i>	401276	9
<i>Ae. Markgrafii</i>	AS_01496//1	9	<i>Elymus vaillantianus</i>	531552	2
<i>Ae. Markgrafii</i>	AS_01477//3	9	<i>Secale cereale</i>	428373	4
<i>Ae. mutica</i>	2130008	8	<i>S. cereale</i>	Blanco	4
<i>Ae. mutica</i>	2130012	8	<i>S. cereale</i>	390382	6
<i>Ae. mutica</i>	2130001	9	<i>S. cereale</i>	426170	6
<i>Ae. mutica</i>	2130004	9	<i>T. bicornis</i>	P95-88.1-1	9
<i>Ae. ovata</i>	2020006	4	<i>T. columnaris</i>	P95-93.1-1	6
<i>Ae. ovata</i>	2020009	4	<i>T. dicoccoides</i>	P95-98.3-2	7
<i>Ae. ovata</i>	2020001	4	<i>T. dicoccoides</i>	Daryl	8
<i>Ae. ovata</i>	2020013	6	<i>T. dicoccoides</i>	P95-98.4-2	8
<i>Ae. ovata</i>	2020003	8	<i>T. macrochaetum</i>	P95-94.1-3	3
<i>Ae. searsii</i>	2210001	9	<i>T. ovata</i>	P95-95.1-1	3
<i>Ae. searsii</i>	2210002	9	<i>T. searsii</i>	P95-85.1-1	9

<i>Ae. searsii</i>	2210003	9	<i>T. tauschii</i>	P99-131.1-1	3
<i>Ae. sharonensis</i>	AS_01512//8	4	<i>T. tauschii</i>	P95-81.1-1	3
<i>Ae. sharonensis</i>	AS_01850//17	4	<i>T. triaristata</i>	P95-92.1-1	6
<i>Ae. sharonensis</i>	AS_01930//19	5	<i>T. triuncialis</i>	P95-91.1-1	4
<i>Ae. sharonensis</i>	AS_01399//10	6	<i>T. urartu A</i>	1010001	5
<i>Ae. sharonensis</i>	AS_01404//12	6	<i>T. urartu B</i>	1010002	8
<i>Ae. sharonensis</i>	AS_00482//13	6	<i>T. urartu F</i>	1010005	8
<i>Ae. sharonensis</i>	2170001	7	<i>T. urartu G</i>	1010006	6
<i>Ae. sharonensis</i>	2170006	8	<i>T. urartu K</i>	1010009	8
<i>Ae. sharonensis</i>	AS_01560//6	8	<i>T. urartu W</i>	1010020	8
<i>Ae. sharonensis</i>	AS_01365//9	8	<i>T. ventricosa</i>	P95-89.1-1	4
<i>Ae. sharonensis</i>	AS_01077//11	8	<i>T. timopheevii</i>	P95-99.1-1	1
			<i>Thinopyrum</i>		
<i>Ae. sharonensis</i>	AS_02098//14	8	<i>bessarabicum</i>	531711	6
<i>Ae. sharonensis</i>	AS_02092//15	8	<i>Th. bessarabicum</i>	531712	6
<i>Ae. sharonensis</i>	AS_01836//16	8	<i>Th. bessarabicum</i>	P208/552	8
<i>Ae. sharonensis</i>	2170004	9	<i>Thinopyrum intermedium</i>	440016	9
<i>Ae. sharonensis</i>	2170005	9			

611

612

Table 2. Chromosomal segments of *T. timopheevii* in Paragon wheat introgression lines

Line	segment					comments
	1	2	3	4	5	
BC2F4-40	3G	-	-	-	-	
Tim1	2A ^t	6A ^t	7G	-	-	
Tim2	1A ^t	3G	7G	-	-	lacks 3BS
Tim3	2A ^t	5A ^t	7A ^t	-	-	
Tim4	5A ^{t*}	6G	7G	-	-	
Tim5	2G	3G	-	-	-	
Tim6	2G	3G	6G	-	-	
Tim7	2A ^t	7G	-	-	-	
Tim8	2A ^t	5G	-	-	-	
Tim9	2A ^t	5G	7A ^t	7G	-	
Tim10	2A ^t	2G	3A ^t	5A ^t	5G	
Tim11	2G	6A ^t	-	-	-	
Tim12	2G	6A ^t	7G	-	-	
Tim13	7A ^{t*}	7G	-	-	-	
Tim14	1A ^t	2A ^t	4G	-	-	
Tim15	1A ^t	1G	-	-	-	
Tim17	4G	5A ^t	-	-	-	
Tim18	5G	6A ^t	6G	-	-	
Tim19	1G	4G	6A ^t	-	-	
Tim21	2A ^t	4G	-	-	-	
Tim22	6A ^t	-	-	-	-	
Tim23	5A ^t	-	-	-	-	
Tim24	3G	7G	-	-	-	
Tim25	2G	5A ^t	-	-	-	
Tim26	2G	-	-	-	-	
Tim27	2G	3G	5A ^t	6G	-	
Tim28	1A ^t	5G	6A ^t	-	-	
Tim29	1A ^t	2A ^t	4G	-	-	
Tim30	2A ^t	-	-	-	-	
Tim31	5A ^t	6G	-	-	-	
Tim33	2G	7A ^t	-	-	-	
Tim35	1A ^t	3G	7G	-	-	

613 * two segments

614

615 **Figure legends**

616 Figure 1. Visual FHB disease score from 2015 trial of seven *T. timopheevii* accessions and Highbury
617 susceptible control expressed as percentage of infected spikelets 21 days post spray inoculation with
618 *F. graminearum* (1×10^5 conidia per ml).

619

620 Figure 2. Visual FHB disease score from 2016 trial of three *T. timopheevii* accessions, *T. timopheevii* x
621 Highbury amphidiploid and wheat variety Highbury expressed as percentage of infected spikelets 14
622 days post spray inoculation with *F. graminearum* (1×10^5 conidia per ml).

623

624 Figure 3. Visual FHB disease score from 2015 trial of seven *T. timopheevii* accessions and Highbury
625 susceptible control expressed as number of infected spikelets above and below the point of
626 inoculation, 21 days post inoculation with *F. graminearum* (1×10^6 conidia per ml).

627

628 Figure 4. Visual FHB disease score from 2016 trial of three *T. timopheevii* accessions, *T. timopheevii* x
629 Highbury amphidiploid and wheat variety Highbury expressed as number of infected spikelets above
630 and below the point of inoculation, 14 days post inoculation with *F. graminearum* (1×10^6 conidia per
631 ml).

632

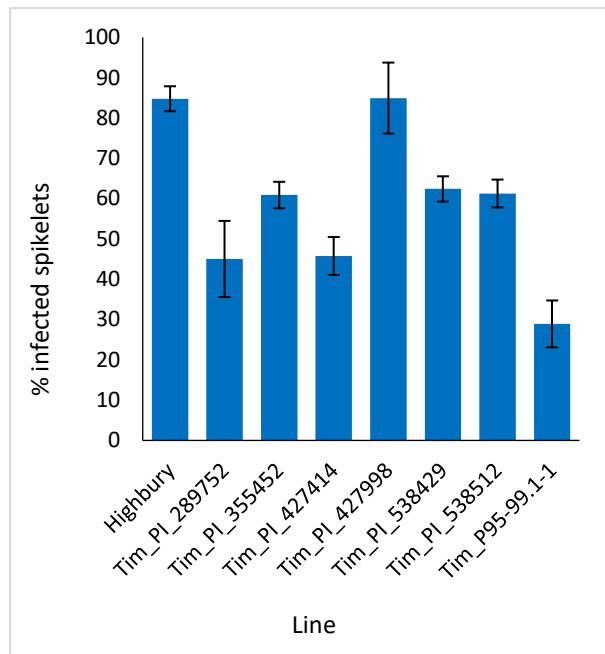
633 Figure 5. Visual FHB disease score from 2020 trial of 25 *T. timopheevii* accession P95-99.1-1/wheat
634 introgression lines and Paragon susceptible control, expressed as percentage of infected spikelets 21
635 days post spray inoculation with *F. culmorum* (1×10^5 conidia per ml).

636

637 Figure 6. Visual FHB disease score from 2021 trial of 29 *T. timopheevii* accession P95-99.1-1/wheat
638 introgression lines, Highbury and Paragon susceptible controls expressed as percentage of infected
639 spikelets 21 days post spray inoculation with *F. culmorum* (1×10^5 conidia per ml).

640

641 Figure 7. Representation of *T. timopheevii* chromosome segments contained within each Tim
642 introgression line showing approximate position and size of each segment relative to each *T.*
643 *timopheevii* chromosome.

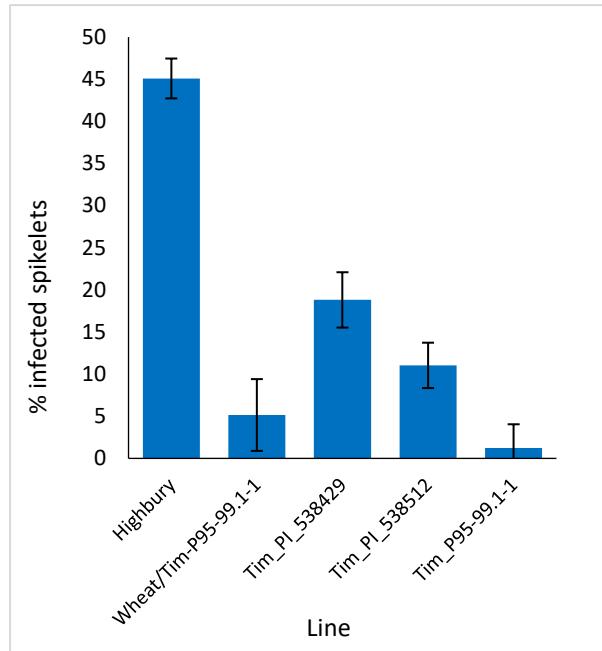

644

645 Figure 8. Multi-colour fluorescence *in situ* hybridisation analysis of root metaphase spreads of 2D and
646 3B chromosomes from (A) wheat cv. Chinese Spring (B) chromosomes 2G and 3G of *T. timopheevii* and
647 chromosomes 2D and 3B of FHB resistant wheat-*T. timopheevii* introgression lines (C) Tim 5 and (D)
648 Tim6. Green and red signals show pSc119.2 and pAs.1 binding sites, respectively. KASP marker-derived
649 ideograms of the introgressions in Tim 5 and Tim 6 are shown to the right. Size of introgressions from
650 A^t and G subgenomes is indicated in orange in a wheat chromosome shown in black.

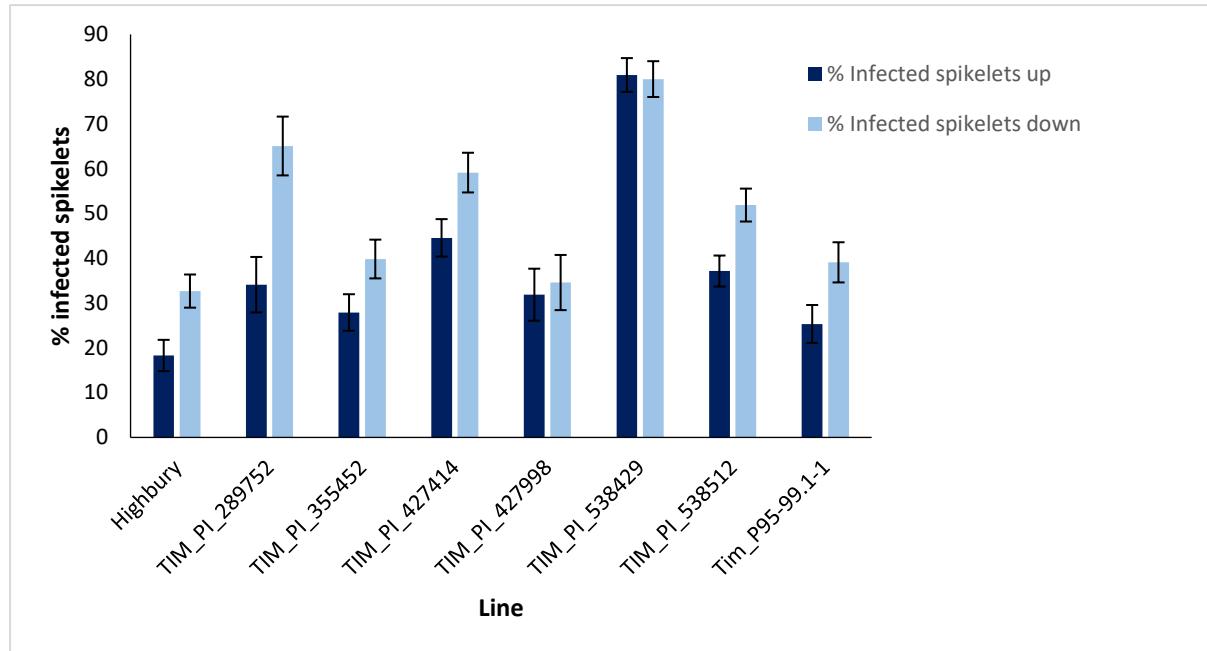
651

652

653 Figure 1


654

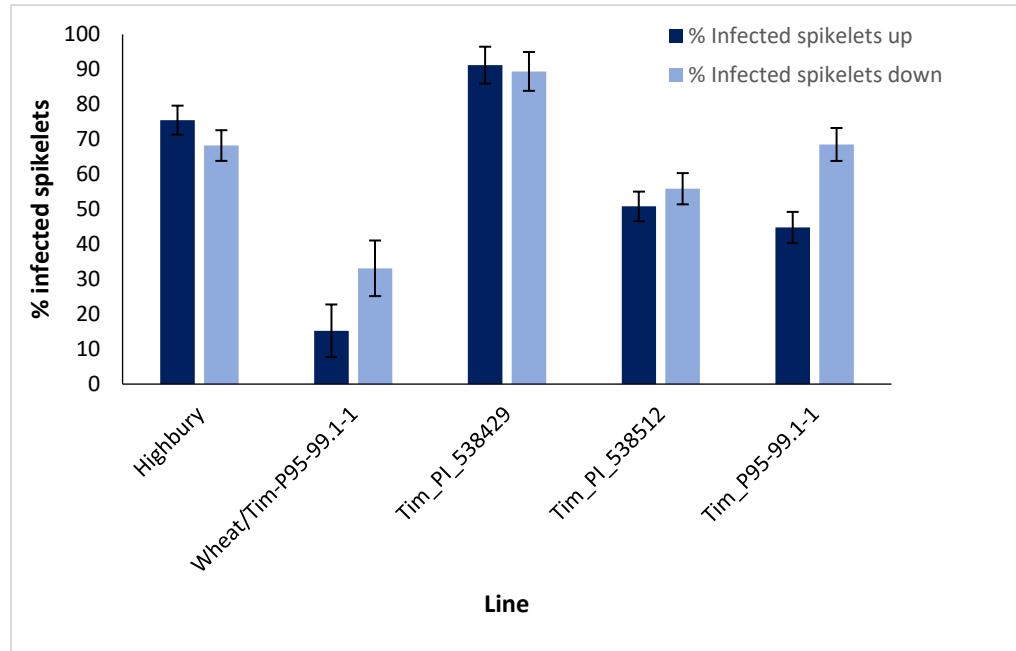
655


656

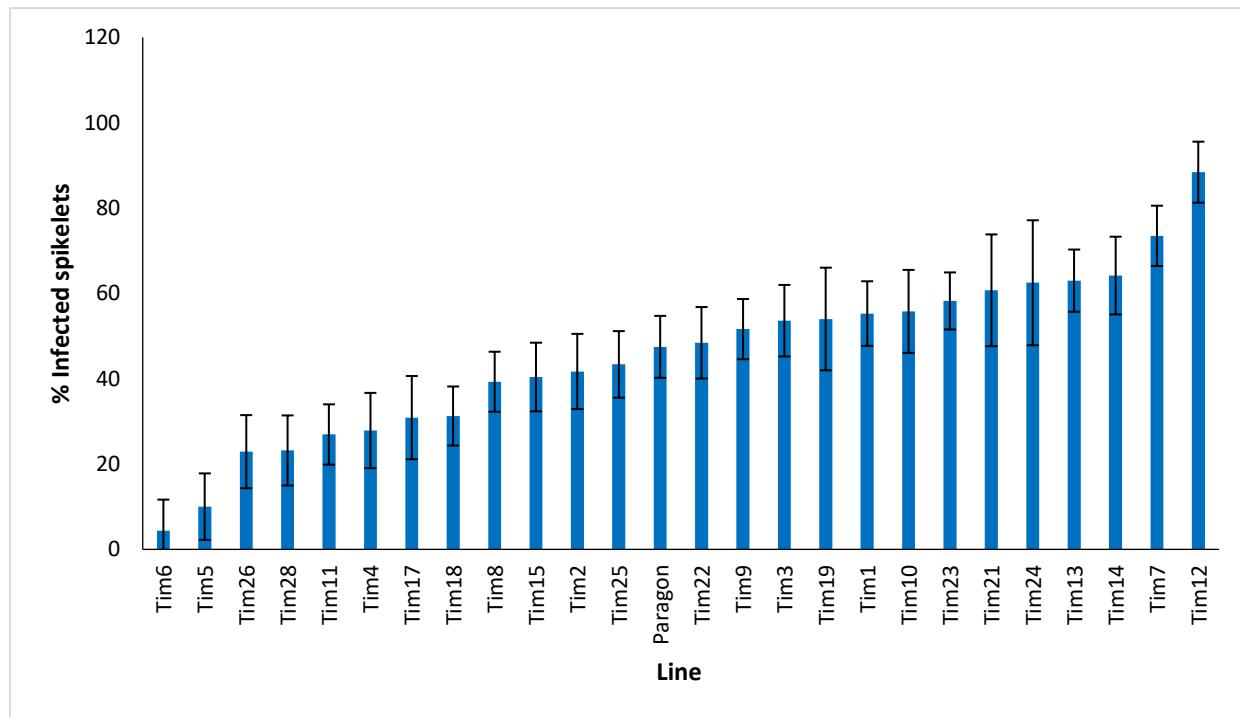
657

658 Figure 2

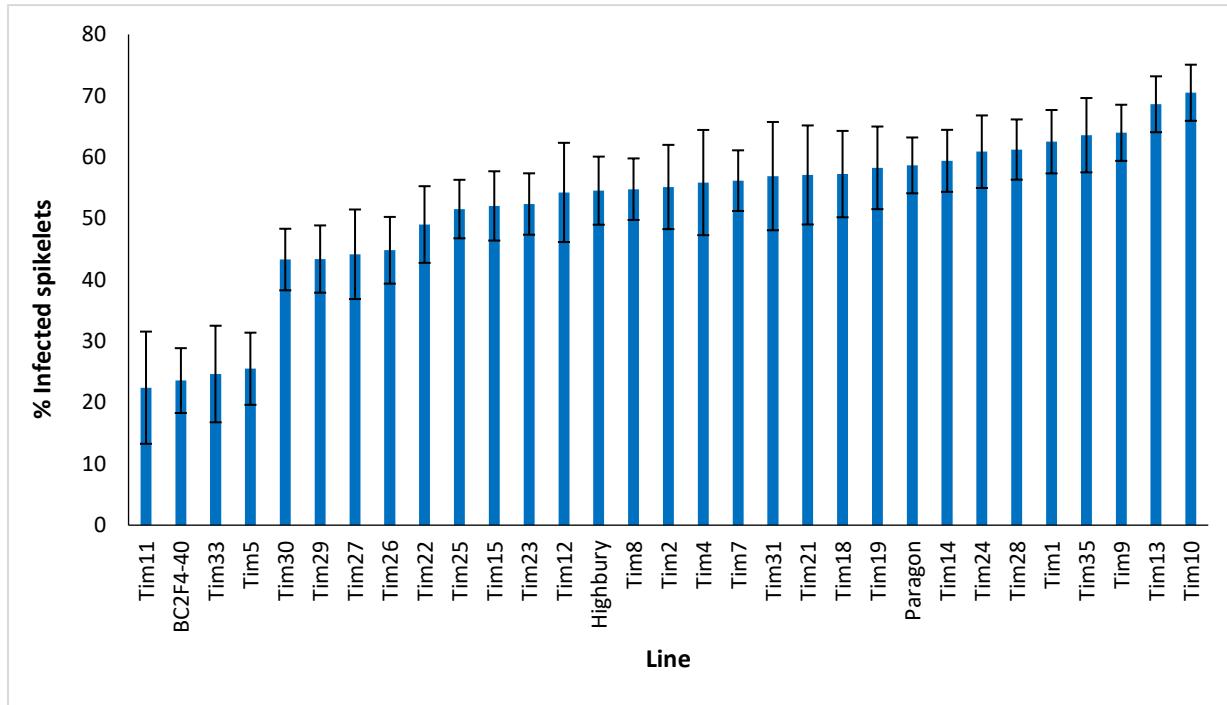
663 Figure 3


664

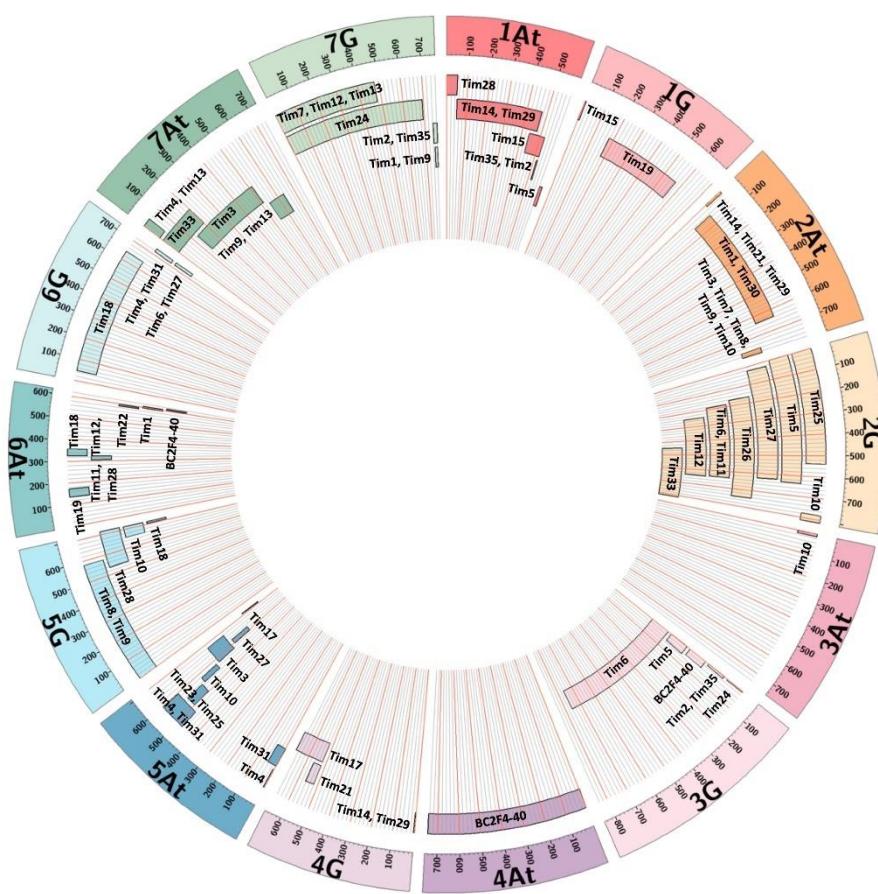
665


666

667


668 Figure 4

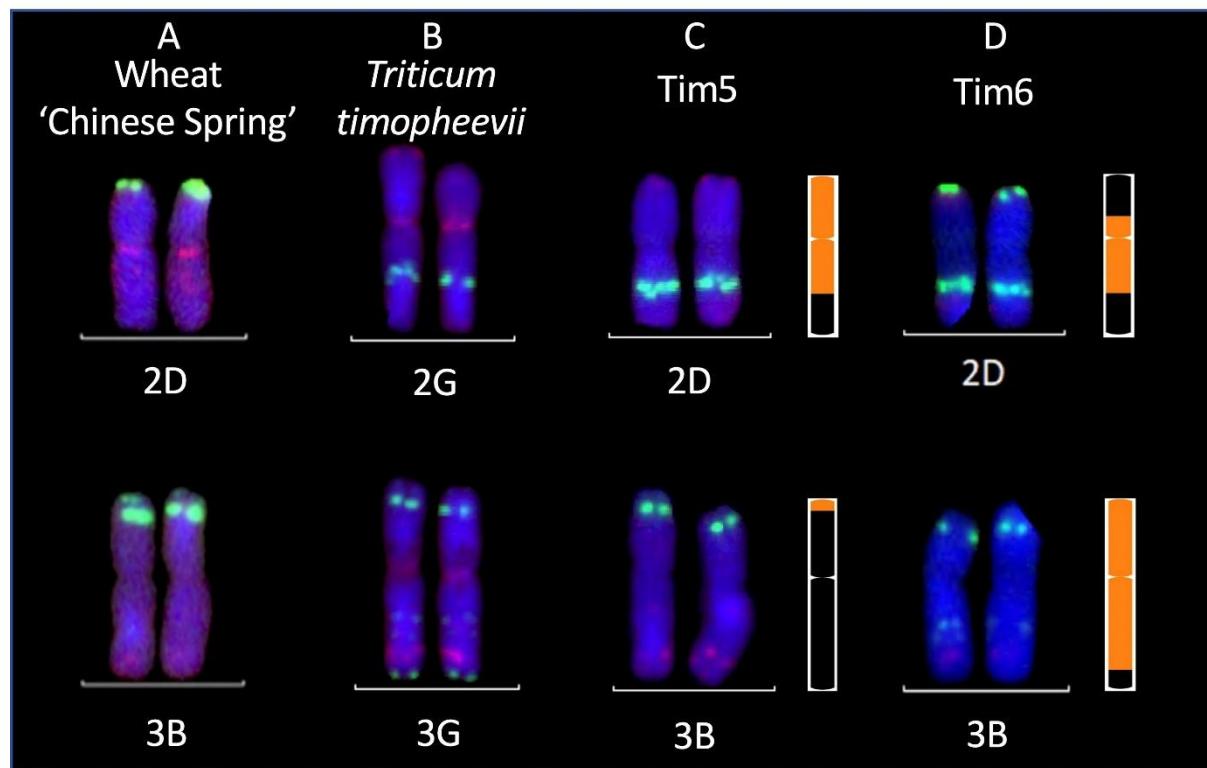
673 Figure 5


678 Figure 6

679

680

681 Figure 7



682

683

684

685 Figure 8

686