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Abstract

Cortical variations in cytoarchitecture form a sensory-fugal axis that systematically
shapes regional profiles of extrinsic connectivity. Additionally, this axis is thought to
guide signal propagation and integration across the cortical hierarchy. While human
neuroimaging work has shown that this axis constrains local properties of the human
connectome, it remains unclear whether it also shapes the asymmetric signaling that
arises from higher-order connectome topology. Here, we used network control theory to
examine the amount of energy required to propagate dynamics across the sensory-fugal
axis. Our results revealed an asymmetry in this energy indicating that bottom-up
transitions were easier to complete compared to top-down transitions. Supporting
analyses demonstrated that this asymmetry was underpinned by a connectome
topology that is wired to support efficient bottom-up signaling. Finally, we found that this
asymmetry correlated with changes in intrinsic neuronal timescales and lessened
throughout youth. Our results show that cortical variation in cytoarchitecture may guide
the formation of macroscopic connectome topology.
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INTRODUCTION

Multiple lines of evidence suggest that the brain’s extrinsic structural connectivity is
predicted from its cytoarchitecture'™. This structural model suggests that the degree to
which two regions share similar cytoarchitectural features predicts the distribution of
their laminar projections. Critically, inter-regional similarity in cytoarchitecture varies
gradually across the cortex, creating a sensory-fugal (S-F) axis®® that predicts regions’
profiles of extrinsic connectivity to the rest of the brain. This gradient positions
contiguous visual and sensorimotor cortex at one end and distributed heteromodal
association and paralimbic cortices at the other, and is correlated with other
macroscopic gradients of brain structure and function”'®. Together, these multi-modal
gradients form a hierarchy of brain organization that is thought to govern extrinsic
connectivity® and support the efficient propagation and integration of signals across the
cortex'®'®. However, the extent to which cytoarchitecture’s governance over
connectivity manifests in the topology of the macroscopic structural connectome
remains a key open question. Here, we examine whether the S-F axis constrains signal
propagation across macroscopic connectome topology.

Convergent evidence spanning the past three decades supports the premise that
neuronal signaling is shaped and constrained by a globally ordered cortical
hierarchy'®''%2° External stimuli arrive at functionally specialized sensory cortices
before propagating up modality-specific hierarchies to then apex at association and
paralimbic regions responsible for functional integration. This convergent bottom-up
signal propagation is complemented by far-reaching modulatory top-down signals®'*
that operate on longer timescales® and that bind incoming sensory signals together to
update predictive inferences about our environment and to complete goal-directed
action?*?’. Critically, these cooperative patterns of bottom-up and top-down signaling,
and the asymmetries between them?®, may be underpinned by graded variations in
cortical cytoarchitecture®*®®®, Specifically, regions’ cytoarchitecture robustly predicts
their extrinsic connectivity profiles’, including the strength?®, distance®, and layer
origination and termination®**° of feedforward and feedback projections?®. Further, inter-
regional similarity in cytoarchitecture follows a clear S-F axis®®, suggesting that where a
region is situated along the cortical hierarchy characterizes its bottom-up and top-down
connectivity with the rest of the brain, and thus explains its capacity to support signal
propagation across the hierarchy. Consistent with this notion, regional variation in the
T1w/T2w ratio—a neuroimaging measurement that is thought to be a proxy of the S-F
axis of cytoarchitecture®®' —correlates with regions’ intrinsic timescales of neuronal
activity'®, demonstrating that cytoarchitecture tracks the progressive lengthening of
neuronal oscillations associated with hierarchical information integration®. Additionally,
the S-F axis also correlates with regional weighted degree from diffusion-weighted
structural networks®, demonstrating that cytoarchitecture tracks local properties of
macroscopic connectome topology.

Regional variations to cytoarchitecture are, in part, rooted in neurodevelopment'
83337 Differences in the developmental timing of neurogenesis leads to highly eulaminate
regions—such as the primary visual cortex—developing more slowly than agranular
regions®, suggesting that prenatal development lays the foundation for the S-F axis.
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Once laid, the S-F axis scaffolds the formation of extrinsic feedforward and feedback
connections that traverse up and down the hierarchy®. This connectivity formation also
appears to track the S-F axis in a developmentally-staged manner, with synaptogenesis
peaking earlier in lower-order primary visual areas than in higher-order frontal cortex®"
1. Furthermore, neuroimaging research shows that macroscopic proxies of the S-F axis
(e.g., T1-weighted features), as well as structural connectivity, continue to change
throughout postnatal development'>***8 suggesting that the S-F axis continues to
shape connectome topology.

As the above literature demonstrates, the processes that govern patterns of
extrinsic connectivity across the cortex are encoded by regional variations in
cytoarchitecture, and this regional variation provides a blueprint for the refinement of
connectivity throughout development. However, the extent to which the topology of the
structural connectome can be leveraged to model bottom-up and top-down signal
propagation across the S-F axis remains unknown. The literature reviewed above leads
us to four predictions. First, if differences in extrinsic projections encoded by
cytoarchitecture are reflected in connectome topology®, then we should be able to
model asymmetries between bottom-up and top-down signal propagation across the S-
F axis in humans in vivo. Notably, recent work has shown that the topology of the
undirected structural connectome generates spatially varied patterns of signal
propagation® and asymmetric signaling®, suggesting that such asymmetry may be
assessable using non-invasive neuroimaging. Second, if asymmetric signal propagation
is produced specifically by the cytoarchitectonic hierarchy, then asymmetries may not
generalize to different views of the cortical hierarchy, such as those derived from
patterns of functional connectivity'. Third, since signals propagating across the S-F axis
will traverse through changing temporal receptive windows'®, we expect asymmetries to
correlate with differences in intrinsic neuronal timescales. Fourth, if signal propagation
continues to be refined throughout development, then asymmetries should vary
systemically as a function of age in youth.

To evaluate evidence for the above reasoning, we turned to the minimum control
energy framework from Network Control Theory (NCT)*"*%. Using a linear model of
dynamics, NCT estimates the amount of input energy—delivered to a set of control
nodes (brain regions)—that is required to drive the brain to transition between pairs of
activity states. In this context, we consider binary states in which one set of regions are
active while the rest of the brain is inactive. Here, we sought to estimate the transition
energy associated with trans-hierarchical state transitions. We found that bottom-up
state transitions were more efficient (required less energy) compared to top-down
transitions. We also observed that the hierarchical distance separating brain states
correlated with the size of these energy asymmetries, suggesting that states with
different underlying cytoarchitecture display the most pronounced asymmetries. In
addition to these primary findings, we examined (i) whether our findings generalized to
the principal gradient of functional connectivity'; (i) whether our transition energies
correlated with between-state differences in intrinsic timescales; (iii) whether brain
regions’ position along the S-F axis explained their role in facilitating state transitions;
and (iv) whether energy asymmetries correlated with age in a developing sample of
youths. Our work extends the field's understanding of connectome topology by showing
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that the neuroanatomical processes that give rise to extrinsic connectivity constrain the
directional flow of macroscopic dynamics over the cortex.
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RESULTS

Mapping trans-hierarchical state transitions

We characterized the energy required to complete trans-hierarchical state transitions.
Here, we set our brain states to actuate patches of cortex with relatively homogenous
profiles of cytoarchitecture. Briefly, we defined brain states by splitting the S-F axis of
cytoarchitectonic similarity®® into k equally sized non-overlapping groups of regions that
spanned the gradient (Fig. 1A; see Methods). Then, using a group-averaged structural
connectome taken from the Philadelphia Neurodevelopmental Cohort® (see Methods),
we modeled the transition energy between all k pairs of brain states, generating a k x k
matrix of energy values, Ty (Fig. 1B, C). Critically, the hierarchically ordered nature of our
brain states meant that bottom-up transition energies were naturally stored in the upper
triangle of Ty while top-down transition energies were stored in the lower triangle. We
computed energy asymmetries by subtracting top-down energy from bottom-up energy
(Fig. 1D; Tz, = T — T3 ). In the upper triangle of Ty,, positive values indicate bottom-up
energy being greater than top-down energy whereas negative values indicate bottom-
up energy being lower than top-down energy.
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Figure 1. Estimating trans-hierarchical signal propagation. Using the Schaefer atlas,
we sampled 20 non-overlapping groups of regions (n=10 per state) traversing up the S-
F gradient of cytoarchitectonic similarity®. These groups formed brain states spanning
the cortical hierarchy. By definition, regions within each state had similar profiles of
cyoarchitecture. Accordingly, pairs of states separated by long hierarchical distances
have different underlying cytoarchitecture. A, An example pair of brain states (x;, x) at
different locations along the cytoarchitectonic hierarchy. B, For a given pair of states (x;,
Xj), we calculated the minimum control energy (E) required to complete the transition
from x; to x; and from x; to x;.. C, Minimum control energy between all pairs of states was
assembled into a transition energy matrix, Tr. Owing to the ordered nature of our brain
states, transition energies were trivially grouped into bottom-up (transitions moving up
the hierarchy; Ty, upper triangle) and top-down (transitions moving down the hierarchy;
Tg, lower triangle). D, Given this grouping, we subtracted top-down energy from bottom-
up energy to create an energy asymmetry matrix (Tz,). In the upper triangle of this
asymmetry matrix, positive values represented state transitions where bottom-up energy
was higher than top-down energy whereas negative values represented the opposite.
Note that, apart from the sign of the A value, Tz, is symmetric; hence, all analyses of
asymmetries focused on the upper triangle of this matrix.
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We found that bottom-up energy was significantly lower than top-down energy
(Fig. 2A; t=5.94, p=1x10%), demonstrating that state transitions moving up the
cytoarchitectonic S-F axis required less energy (i.e., were easier to complete) compared
to those moving down the same axis. Furthermore, in support of our hypothesis, we
found that the hierarchical distance between brain states was negatively correlated with
Tra (Fig. 2B, left). That is, as states’ cytoarchitecture became more dissimilar from one
another (greater distance), energy asymmetries became more negative. Thus,
asymmetries between bottom-up and top-down transition energies were largest when
brain states had differing cytoarchitecture, with bottom-up transitions becoming
progressively easier to complete than top-down. We found convergent results when we
re-ran analyses on a single hemisphere, thereby excluding inter-hemispheric
connections (bottom-up energy versus top-down, t=3.31, p=2x107; correlation with
hierarchical distance, p=-0.30, Pparametic=5X%107?).

A | transition energy B | cytoarchitectonic divergence predicts larger asymmetries
Spatially embedded null network models
5.94, p = 1x10 e igx'i\r\/ta’gﬂ 1t distribution shﬁ\ﬂg)th distribution

Spearman's p = -0.32

N

transition energy (z-score)

2
C:)
£ -
> ) f 200 2 v; 200
0 & 3 3
) 100 )0
& |5
-0 |2 .
— 4 differing cytoarchitecture
: 0.0 “4'4) O(‘”) 0.00 0% 5 0.0
by )i UL J.O\ ). U.C f
bottom-up  top-down v ‘ ) C
cytoarchitectonic divergence hierarchy distance hierarchy distance
(hierarchy distance) correlation (0) correlation (o)

Figure 2. The topology of the structural connectome is sensitive to asymmetries
between top-down and bottom-up signal propagation across the sensory-fugal
axis of cytoarchitecture. A, Bottom-up energy was significantly lower than top-down
energy, demonstrating that bottom-up state transitions were easier for our network
control model to complete. B, The distance along the cytoarchitectonic gradient
separating initial and target states was negatively correlated with energy asymmetry,
demonstrating that high cytoarchitectonic dissimilarity between states was linked to
greater negative energy asymmetries (left). This finding shows that when
cytoarchitecture differs between brain states, bottom-up transitions required lower
energy to complete compared to their top-down counterparts. This correlation with
hierarchy distance was larger than expected under a pair of null network models (right),
including one that preserved the spatial embedding and the edge weight distribution of
the network and another that preserved the spatial embedding and the strength
distribution. This observation suggests that this hierarchy distance effect may be
supported by higher-order topology of the structural connectome.

Next, to examine this distance effect’s dependence on topology, we recomputed
Tga under two null network models. Specifically, we randomly rewired the underlying
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group-averaged structural connectome 5,000 times using a spatially embedded
permutation model that preserved either the edge distribution or the strength distribution
of the network® (see Methods). Then, for every rewired connectome, we re-estimated
Tzp as well as the correlation with hierarchical distance. We found that the observed
correlation was stronger than expected under both null distributions (Fig. 2B, right). This
result demonstrates that the negative correlation between hierarchical distance and T,
was not simply explained by a combination of the network’s spatial embedding and edge
(or strength) distribution, suggesting instead that this effect may be specifically explained
by variations in cytoarchitectonic profiles.

To test whether our results were specific to the S-F axis of cytoarchitecture, we
repeated all of the above analyses using the principal gradient of functional connectivity'
to define brain states (Fig. S1). This is a relatively strong test of specificity as the gradient
of cytoarchitecture and the gradient of functional connectivity were correlated (r=0.594).
Using the functional connectivity gradient, we found that bottom-up and top-down
transition energies did not differ significantly (Fig. S1A; t=1.147, p=0.142). Additionally,
we observed a relatively weak positive correlation between hierarchical distance and Ty,
that was not larger than expected under our null network models (Fig. S1B; p=0.11,
Peage=0.902, Pstrengin=0.843). This result demonstrates that asymmetries between bottom-
up and top-down transition energies were specific to the S-F axis of cytoarchitecture.
This lack of energy asymmetry for the functional gradient may be explained by the fact
that the two axes diverge at their apex®>®°; the top of the S-F axis comprises paralimbic
regions while the top of the functional connectivity axis comprises transmodal cortex.
Previous work has suggested that this (relative) untethering of functional connectivity
from cytoarchitectonic constraints may support the functional diversity of the transmodal
cortex®. This untethering is also consistent with evidence that macroscopic structural
and functional connectivity are relatively uncoupled in transmodal cortex compared to
unimodal cortex®®*”. Thus, together with past literature, our findings converge on the idea
that while cytoarchitecture and structural connectivity are tightly intertwined, functional
connectivity departs from both in a spatially patterned way.

The gradient of cytoarchitecture constrains the flow of activity over the cortex
The above results demonstrate that the energy asymmetries associated with trans-
hierarchical state transitions may be a consequence of more than brain regions’ spatial
embedding and the distribution (or strength) of their direct links. Specifically, this
evidence suggests that the entire pattern of connectome topology, not just direct
connections, may be optimized to propagate activity up the cytoarchitectonic gradient
more efficiently compared to down, in turn enabling more efficient completion of bottom-
up state transitions. To probe this possibility further, we examined whether the flow of
uncontrolled activity followed the S-F axis as it spread throughout the cortex over time
(Fig. 3A; see Methods). Briefly, seeding from each brain state, we examined the spread
of natural dynamics across the whole brain as they unfolded over time (i.e., over a series
of time steps; see Methods). Intuitively, this amounted to re-simulating our dynamical
model for each initial state in the absence of both a target state and a control set. In a
pair of analyses described below, we used this approach to show that the topology of
the connectome may be optimized to propagate activity up the hierarchy.
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First, we correlated the pattern of activity observed at each time step (t, arbitrary
units) with the S-F axis (Fig. 3B). Here, for a given time step, negative correlations
indicated that brain activity was higher at the bottom of the hierarchy than at the top,
while positive correlations indicated the opposite. Fig. 3B shows that states lower on
the hierarchy tend to show negative correlations between the S-F axis and early activity
propagation (Fig. 3B, blue arrow), while states higher on the hierarchy tend to show
positive correlations (Fig. 3B, peach arrow). Expectedly, this pattern demonstrates that
early signal propagation tends to activate regions near to a given state’s location on the
hierarchy. That is, activity propagating from low positions on the hierarchy reaches other
low-hierarchy regions first, driving a negative correlation, while activity propagating from
high on the hierarchy reaches other high-hierarchy regions first, driving a positive
correlation. Critically, Fig. 3B also shows that the negative correlations low on the
hierarchy diminish (i.e., become less negative) more quickly compared to the positive
correlations for the high-hierarchy states. This effect is quantified and recapitulated in
Fig. 3C, which shows the differences in correlations between neighboring time points
(0"t — pf). Specifically, we found that differences in correlations between timepoints
were greater when activity was seeded from the bottom of the hierarchy (Fig. 3C, blue
arrow) compared to the top (Fig. 3C, peach arrow). Together, these results suggest that
activity propagates more readily in the bottom-up direction than in the top-down
direction.

Second, we sought to stringently assess this apparent difference between
bottom-up and top-down propagation efficiency. For each seeded brain state, we
identified the point in time when simulated activity peaked within each of the other brain
states (see Methods). Then, to quantify the slope of this activity propagation, we
calculated the Spearman correlation between these peak time points and states’
position on the hierarchy (Fig. 3D, E). Thus, this analysis quantified the extent to which
activity spreading from each brain state peaked within the remaining brain states in an
ordered fashion. Lastly, we regenerated the group averaged connectome 500 times
using bootstrapping, which allowed us to test for differences in these slopes using
confidence intervals (see Methods). In doing so, we found that the correlation quantifying
bottom-up propagation from the lowest position on the S-F axis (mean |p|=0.4286; 95%
ClI=[0.4278, 0.4294]) was significantly larger than the correlation quantifying top-down
propagation from the topmost position (mean |p|=0.3899; 95% CI=[0.3890, 0.3907]) (Fig.
3F). This result provides evidence that waves of natural dynamics flowing up the S-F axis
tend to traverse the hierarchy more readily than their top-down counterparts.
Collectively, the results presented in Fig. 3 suggest that cytoarchitecture may constrain
the topology of the network to enable more efficient bottom-up flow of information.
Furthermore, these results are consistent with our observation of lower bottom-up
energy compared to top-down (see Fig. 2); a topology that is organized to facilitate
bottom-up activity flow will require less energy to complete controlled bottom-up state
transitions compared to top-down.
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Figure 3. Uncontrolled dynamics preferentially flow up the cortical gradient of
cytoarchitecture. A, We simulated the spread of uncontrolled dynamics seeded from
each of our cytoarchitectonic brain states and tracked the activity as it unfolded over
time and spread throughout the cortex. For a given seed state, we performed two
analyses. First, we quantified the Spearman rank correlation between the sensory-fugal
axis of cytoarchitecture and the pattern of simulated activity at time t (results in panel B)
as well as the difference in correlations between adjacent timepoints (results in panel C).
Second, we examined when activity peaked within each of the other cytoarchitectonic
brain states (results shown in panels D, E, and F). We quantified this peak effect by
calculating the Spearman rank correlation between t and the location (i.e., state) of peak
activity. B, Correlations between cytoarchitecture and simulated activity seeded from
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each brain state as a function of time. C, Differences in correlations between neighboring
timepoints as a function of time. D, Correlation between the location of peak activity and
time. Activity seeded from the bottom of the S-F axis traversed up the gradient (top)
whereas activity seeded from the top of the S-F axis traversed down the gradient
(bottom). Black markers denote the timepoints when activity peaked within each brain
state as it traversed the S-F axis. E, These propagating patterns of simulated activity
were summarized using Spearman rank correlations separately for each seeded brain
state. F, Finally, under 1,000 bootstrapped samples of the group-averaged connectome,
we found that the magnitude of the bottom-up Spearman correlation (seeded from the
bottom of the S-F axis) was significantly larger than the magnitude of the top-down
Spearman correlation (seeded from the top of the S-F axis). Collectively, these results
suggest that uncontrolled dynamics spread more readily across the S-F axis in the
bottom-up direction than top-down.

Energy asymmetries in trans-hierarchical state transitions are correlated with
differences in intrinsic timescales and asymmetries in effective connectivity

Our observations thus far are consistent with the notion that regional cytoarchitectonic
similarity influences the difference between bottom-up and top-down signal propagation
across the cortical hierarchy. Specifically, our results suggest that how patterns of brain
activity spread across the hierarchy varies as a function of the direction of flow. However,
the results presented thus far were only derived from linear dynamics simulated upon
the structural connectome. We reasoned that if our results for simulated dynamics were
neurobiologically meaningful, then we would observe two findings.

First, we expected that energy asymmetries would correlate with changes in the
intrinsic neuronal timescales of our brain states. Specifically, we predicted that
transitions where bottom-up energy was lower than top-down would correspond to a
lengthening of neuronal timescales between the initial and target states. In turn, this
finding would suggest that the topology of the structural connectome is wired to support
the integration of information that is thought be occurring as activity traverses up the
hierarchy. Second, we expected that energy asymmetries would be consistent with
asymmetries derived from dynamical models trained on functional neuroimaging data.
To test the former prediction, we used open-access human electrocorticography (ECoG)
data®* to index regions’ intrinsic timescales. Specifically, following Gao et al.’®, we
quantified timescales using the time constant () of an exponential decay function fitted
to the autocorrelation function of the ECoG timeseries (Fig. 4A; see Methods). Larger ©
values correspond to longer (slower) fluctuations in a region’s intrinsic timescales.
Subsequently, we averaged 7 within each of our brain states and then subtracted mean
T between pairs of brain states (r,). Thus, positive 7, represented larger t in state j
compared to state i. Finally, we correlated Tz, with 7, and found that they were
negatively correlated (Fig. 4B; r=-0.34, p=1x10°). This result indicates that state
transitions where bottom-up energy is lower than top-down (i.e., negative Tg,) are also
characterized by an increase in 7 (i.e., positive 7,) going from state i to state j and vice
versa. Thus, state transitions that are (relatively) easy to complete are coincident with a
lengthening of the timescales of resting-state electrophysiological fluctuations.
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A |using resting-state electrocorticography (ECoG) data to examine B | energy asymmetries correlate
differences in intrinsic neuronal timescales between brain states negatively with between-state
resting-state ECoG timeseries differences in intrinsic timescales
(Frauscher et al. 2018)
@ r=-0.34,p = 1x10°
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Figure 4. Energy asymmetries correlate with differences between brain states’
intrinsic neuronal timescales. A, We used resting-state electrocorticography data to
examine differences between brain states’ intrinsic neuronal timescales (as per methods
described in Gao et al'® between our cytoarchitectonic brain states. B, Energy
asymmetries between brain states were negatively correlated with differences between
brain states’ intrinsic timescales. This result shows that state transitions where bottom-
up energy is lower than top-down (negative energy asymmetry) are also characterized
by a slowing of intrinsic timescales going from state i to state j and vice versa.

Next, we turned from an evaluation of differences between brain states’ intrinsic
neuronal timescales to an evaluation of asymmetries derived from effective connectivity.
Specifically, we computed the effective connectivity (EC) between brain states using a
spectral version of dynamic causal modeling®®®' applied to participants’ resting-state
functional magnetic resonance imaging (rs-fMRI) data (see Methods). We subsequently
computed EC asymmetries by subtracting top-down EC from bottom-up EC (EC, =
|EC| — |EC|T). We found that Tz, was positively correlated with EC, (Fig. S2; r=0.24,
p=1x10?), indicating that for state transitions where bottom-up energy was lower than
top-down the same was true for EC and vice versa. This result extends prior work® by
demonstrating that the topology of the undirected structural connectome supports
directed signal propagation along the cortical gradient of cytoarchitectonic similarity.

Optimized control weights increase energy asymmetries and track the sensory-
fugal axis of cytoarchitecture

The preceding sections demonstrated that brain network topology may be optimized to
facilitate more efficient bottom-up trans-hierarchical state transitions compared to top-
down, and that this effect (i) is not better explained by spatial embedding or lower-order
topology, (i) is specific to cytoarchitecture, and (jii) is consistent with asymmetries in
intrinsic timescales and effective connectivity. Next, we sought to understand whether
regions’ position along the hierarchy informed their capacity to facilitate trans-
hierarchical state transitions. To achieve this goal, we optimized state transitions by
introducing a variable set of control weights that minimized transition energy. These
weights change the relative influence of control assigned to different brain regions, rather
than assuming that all regions have equal influence. We predicted that optimized weights
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would maximize energy asymmetries and track the S-F axis. We tested these predictions
in sequence, starting with the prediction that optimized weights would maximize energy
asymmetries. For each state transition, we systematically perturbed the system to
generate a set of control weights that minimized transition energy (Fig. 5A; see Methods).
Then, upon these minimized transition energies, we recomputed Tg,. Similar to our
primary analysis using uniform control weights (see Fig. 2A), we found that bottom-up
energy was significantly lower than top-down when using optimized control weights (Fig.
5B; t=6.46, p=9%x107"%). However, this asymmetry in energies for optimized weights was
larger compared to uniform control weights (t=6.46 in Fig. 5B versus t=5.94 in Fig. 2A).
This finding is consistent with our first prediction.

To assess whether this difference in asymmetry sizes was robust, we computed
mean Ty, for both uniform and optimized control weights under 500 bootstrapped
samples (see Methods). Fig. 5C shows that mean Tz, was unambiguously larger for
optimized control weights (mean |Tz4|=0.6474; 95% CI=[0.6470, 0.6478]) compared to
uniform control weights (mean |Tz5|=0.6046; 95% CIl=[0.6043, 0.6049]), demonstrating
that the former yielded significantly larger energy asymmetries. Note that optimized
weights were only designed to minimize transition energy, including both bottom-up and
top-down energies. Thus, this observed increase in mean |Tza| suggests that our
optimized control weights minimized bottom-up energy to a greater extent than top-
down.

A | systematically perturbing control weights to optimize transition energies
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Figure 5. Optimized control weights maximize energy asymmetries and track the
cortical gradient of cytoarchitecture. A, For each trans-hierarchical state transition,
we adopted the following procedure to generate optimized control weights that
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minimized transition energy. First, for a given state transition, we calculated uniformly
weighted transition energy; nodes of the system were provided the same degree of
control over system dynamics. Note, results for uniformly weighted transition energy
have been reported in all figures prior to this one. Second, we re-estimated the transition
energy n times, each time providing one node with additional control over the system.
This approach generated a vector of perturbed transition energies (purple vector). Third,
we subtracted the uniformly weighted energy from each of the perturbed energies to
generate a vector of perturbed energy deltas (blue vector), the magnitude of which
encoded regions’ importance to the state transition. Fourth, we re-estimated transition
energy one more time using the perturbed energy deltas as optimized control weights.
B, Transition energies estimated using optimized control weights. Consistent with results
observed for uniform control weights (see Fig. 2), here using optimized control weights
we found that bottom-up energy was significantly lower than top-down energy. C, Mean
energy asymmetries (|Tz,|) for uniform (blue) compared to optimized (peach) control
weights under 500 bootstraps (see Methods). Mean |Tg,| was unambiguously larger for
optimized control weights (mean |Tz4|=0.6474; 95% CI=[0.6470, 0.6478]) compared to
uniform control weights (mean |Tz5|=0.6046; 95% CI=[0.6043, 0.6049]). D, Spatial
correlations between optimized control weights and the S-F axis of cytoarchitecture
averaged over state transitions. This average spatial correlation was larger than
expected under a null network model that preserved spatial embedding and the strength
distribution of the nodes.

Next, we turned to our second prediction, and examined the correlation between
optimized control weights and the S-F axis (see Methods). Here, any observed
correlation implies that optimizing control weights uncovers a spatial mode of control
variation that tracks the gradient of cytoarchitecture. When averaged across state
transitions, we found that the correlations between optimized control weights and
cytoarchitecture were |p|=0.23+0.14 (this was true at the level of specific state transitions
as well; see Fig. S3). Note that we examine and report absolute correlations here as we
are interested in whether optimized weights couple to the gradient generally (signed
correlations are reported in Fig. S3). Further, this correlation was significantly larger than
expected under our spatially informed strength preserving null network model (Fig. 5D;
and see Fig. S3). Together, these results illustrate that a region’s position along the S-F
axis explains its role in facilitating trans-hierarchical state transitions, and that imbuing
our model with knowledge of these roles optimizes the efficiency of bottom-up signal
propagation across the hierarchy.

Asymmetries in trans-hierarchical state transitions are refined throughout
development

Having illustrated that a region’s position along the S-F axis explains its role in facilitating
state transitions, we next sought to characterize the developmental trajectories of
transition energies. Based on previous literature, we expected that ongoing
developmental refinement of structural connectivity would result in age-related changes
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to bottom-up and top-down energy. To test this expectation, we estimated the
correlation between participant-specific transition energies and age, while controlling for
sex, total brain volume, and in-scanner motion (Fig. 6A). Here, energy was estimated
using participant-specific optimized weights (see Methods and previous section). On
average, we found that age correlated negatively with both bottom-up (Fig. 6B) and top-
down energy (Fig. 6C), with the latter effect being stronger. These results illustrate that
the energy asymmetry we observe in our data (see Fig. 2A) may weaken as a function of
age. In turn, neurodevelopmental refinement of the connectome may involve converging
toward a balance between bottom-up and top-down signal propagation. We also found
that the transition-level age effects were negatively correlated with Tz, taken from the
group-average connectome (Fig. 6D). This result demonstrates that state transitions with
stronger energy asymmetries also showed the strongest age effects. Lastly, using a
cross-validated penalized regression model (Fig. 6E; see Methods), we found that
energy asymmetries were able to robustly predict participants’ age in out-of-sample
testing (Fig. 6F; see also Fig. S4 which shows that optimized energies better predicted
participants’ age compared to non-optimized energies derived from uniform control
weights). Consistent with our expectations, these results show that development plays
a critical role in refining trans-hierarchical transition energies, and that this refinement is
concentrated in state transitions with divergent cytoarchitecture.
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Figure 6. Energy asymmetries in trans-hierarchical state transitions vary
systematically over development. We estimated correlations between age and trans-
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hierarchical transition energy in 793 individuals, while controlling for sex, total brain
volume, and in-scanner motion (see Methods). A, Correlations between age and
transition energy for all state transitions. We observed widespread negative correlations
between age and transition energy, suggesting that state transitions became easier to
complete as individuals got older. B, Correlation between age and average bottom-up
energy. C, Correlation between age and average top-down energy. We found that while
both bottom-up and top-down energy reduced as a function of age, the age effect for
top-down energy was larger than that observed for bottom-up. This result suggests that
the energy asymmetry between bottom-up and top-down closed throughout youth. D,
Correlation between state level age effects (from A) and the Ty, derived from the group-
averaged structural connectome (see Fig. 2). We found that the size of the age effects
(Pearson’s r) was negatively correlated with T,, demonstrating that the strongest age
effects were concentrated in the state transitions with the largest energy asymmetries.
E, Schematic illustration of a cross-validated regression model that was used to assess
out-of-sample prediction of participants’ age. F, Results from out-of-sample prediction
of participants’ age. Energy asymmetries robustly predicted participants’ age in out-of-
sample testing when scored using both the correlation between true and predicted y
(top, left) and negative root mean square error (bottom, left). Note, these prediction
effects were replicated when using both a higher resolution version of our parcellation
that included 400 parcels (Schaefer 400; correlation(Yive, VYpredicted)=0.32;
negative[RMSE]=-3.14) as well as a 360-parcel multi-modal parcellation developed in
the Human Connectome Project (correlation(yirue, Ypredicted)=0.31; negative[RMSE]=-3.14).
Taken together, these results show clearly that asymmetries in trans-hierarchical signal
propagation and neurodevelopment are intimately intertwined.


https://doi.org/10.1101/2022.05.13.491642
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.13.491642; this version posted November 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

DISCUSSION

Here, we investigated how the relationship between cytoarchitecture and connectivity
constrains the dynamics engendered by the structural connectome. Using NCT®"526263,
we modeled the amount of control energy that was required to propagate linear
dynamics up and down the S-F axis of cytoarchitecture. We reported several key
findings. First, we found that the energy required to complete bottom-up state transitions
was lower compared to their top-down counterparts, indicating that bottom-up
transitions were easier for our model to complete. Additionally, through a combination
of null network models and analyses of uncontrolled dynamics, we found that this energy
asymmetry was underpinned by a network topology that is wired to enable efficient
bottom-up signaling across the cortical hierarchy. Second, we found that energy
asymmetries correlated with differences in intrinsic neuronal timescales estimated from
ECoG as well as asymmetries in effective connectivity estimated from resting-state fMRI.
The former finding demonstrates that efficient bottom-up signaling across the structural
connectome is coincident with a lengthening of regions’ temporal receptive windows,
while the latter shows that our model of dynamics is consistent with those drawn from
functional data. Third, we found that regions’ position along the S-F axis was correlated
with their importance in facilitating state transitions, demonstrating that the spatial
modes of control embedded in our model were coupled to the cortical hierarchy. Finally,
we found that bottom-up and top-down energy decreased as a function of age in a
sample of developing youths. Notably, while age correlated negatively with both bottom-
up and top-down energy, effects were more pronounced for top-down—indicating that
energy asymmetries tended to lessen as a function of development in our sample—and
reductions were strongest for the state transitions with the largest asymmetries. Overall,
our results demonstrate that the higher-order topology of the human connectome may
be wired to support asymmetric signaling across the cortical hierarchy, and that this
signaling is rooted in the spatial patterning of cytoarchitecture that is itself guiding the
ongoing refinement of connectivity throughout youth.

Cytoarchitecture shapes the connectome

Understanding how cytoarchitecture shapes connectivity is a central goal of
neuroscience®. In humans, recent research has shown a clear link between cortical
cytoarchitecture and local properties of structural connectivity®*®>®¢. Using graph theory,
Wei et al.* found that several indices of regions’ local network importance correlated
moderately with regions’ cytoarchitectonic similarity to the rest of the brain,
demonstrating that regions with similar cytoarchitecture were more strongly, and more
globally, connected to the rest of the network. Paquola et al.®® defined a regional
embedding space that fused together edge-level structural connectivity, geodesic
distance, and cytoarchitectonic similarity®. Paquola et al.®® found that their wiring
diagram explained variance in regional externopyramidization—which tracks the laminar
origin of neuronal projections® —supporting the notion that variance in the laminar origin
of feedback and feedforward connections is intertwined with variance in cytoarchitecture
and macroscopic connectivity. Our findings extend these prior studies by showing that
cytoarchitecture shapes not only the local connectivity but also the higher-order
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topology of the structural connectome. Specifically, our findings suggest that
cytoarchitecture may constrain the traversal of structural pathways to engender efficient
bottom-up signal routing over the hierarchy. Thus, it appears that cytoarchitecture not
only predicts which pairs of regions are connected (i.e., “like connects with like” cf. the
structural model™), but also the spatial embedding of senders and receivers in the
brain®°°7%8,

Energy asymmetries link to changes in intrinsic neuronal timescales and effective
connectivity

Recent work has shown that the spatial patterning of regions’ intrinsic neuronal
timescales correlate with the patterning of the T1w/T2w ratio'®, suggesting that the
brain’s timescale hierarchy reflects its cytoarchitectonic hierarchy. Here, we found that
the asymmetries in trans-hierarchical state transitions were tightly coupled to differences
in state-level intrinsic neuronal timescales. Specifically, the easier a bottom-up state was
to complete (compared to its top-down counterpart) the more the timescale of the target
state lengthened compared to the initial state. Lengthening timescales are thought to be
associated with progressive changes to longer temporal receptive windows, which in
turn is thought to underpin shifts from segregated to integrated functional processing®.
Thus, our findings show that the topology of the structural connectome may be wired to
support the progressive integration of lower-order properties of our environment into
higher-order percepts and cognitions. Our findings also serve as a functional validation
of our network control model; we observed a positive correlation between energy
asymmetries and asymmetries in effective connectivity, which is consistent with past
literature®. Thus, our findings contribute to a growing body of evidence demonstrating
that asymmetric signal routing is measurable from the topology of the connectome,
despite being derived from an undirected description of brain connectivity.

Energy asymmetries refine systematically throughout youth

The effects of development on connectome topology are increasingly well studie
including with network control theory where the amount of control energy required to
activate the executive function system (from baseline) has been shown to decrease
throughout youth™. This observation is consistent with the current study, wherein the
energy associated with trans-hierarchical state transitions also reduced4 throughout
youth. Here, we provide a key extension to prior work that deepens our understanding
of these developmental energy effects; we observed that age effects were (i) stronger for
top-down compared to bottom-up energy and (ii) concentrated in state transitions with
the most pronounced energy asymmetries. These findings suggest that maturation
throughout youth alters the balance between bottom-up and top-down signal
propagation, refining the connectome towards an equilibrium between the two. This
interpretation is consistent with a staging account of neurodevelopment that suggests
that lower-order connections are refined earlier in development compared to their
higher-order counterparts®***'. That is, the energy asymmetry we observed might reflect
the relatively advanced refinement of lower-order connections that is already well
underway by 8 years of age (the youngest in our sample). In turn, the stronger age effect
observed for top-down energy might reflect the relatively delayed onset of refinement of

d42,70—72

)


https://doi.org/10.1101/2022.05.13.491642
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.13.491642; this version posted November 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

higher-order connections that may be occurring within the age range of our sample.
Examining how our results present on either side of the age range of the PNC, as well
as whether it is supported by longitudinal data, will be a critical avenue for future
research.

Limitations

Similar to our recent work™, a limitation of this study is the use of a linear model of
neuronal dynamics to estimate signal propagation across the S-F axis. While this
assumption is an over-simplification of brain dynamics, linear models explain variance
in the slow fluctuations in brain activity recorded by fMRI">™, suggesting that they
successfully approximate the kinds of data commonly used to examine brain function.
An additional limitation is the use of a single map of cytoarchitecture to define brain
states, which precluded us from defining participant-specific states. As mentioned
above, previous work has shown that the T1w/T2w ratio forms a reasonable proxy of the
S-F axis of cytoarchitecture that is measurable in vivo®. However, while the PNC includes
T1-weighted imaging, it does not include T2-weighted imaging®, which prevented us
from estimating the T1w/T2w ratio in our sample. Replication of our findings using
participants’ T1w/T2w maps is warranted given well-known individual variability in the
spatial patterning of cortical structural features. However, this approach must be
weighed against the fact the Tiw/T2w ratio is imperfectly correlated with
cytoarchitecture. Thus, such replication efforts must consider the trade-off between the
value of individual variability and the cost of potentially disconnecting from the relevant
underlying neurobiology (i.e., cytoarchitecture).

Conclusions

Our results demonstrate that cytoarchitecture may constrain network topology in such a
way as to induce asymmetries in signal propagation across the cortical hierarchy.
Specifically, we found that bottom-up trans-hierarchical state transitions were easier to
complete than their top-down counterparts, that asymmetries correlated with changes
to neuronal timescales, that control signals tracked the sensory-fugal axis, and that
asymmetries reduced with age in youth. Collectively, our work highlights that variation
in the properties of cortical microstructure that govern extrinsic connectivity may guide
the formation of macroscopic connectome topology.
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Materials and Methods

Participants

Participants included 793 individuals from the Philadelphia Neurodevelopmental
Cohort’”"® a community-based study of brain development in youths aged 8 to 22
years’®®. The institutional review boards of both the University of Pennsylvania and the
Children’s Hospital of Philadelphia approved all study procedures. The neuroimaging
sample of the PNC consists of 1,601 participants’’. From this original sample, 156 were
excluded due to the presence of gross radiological abnormalities distorting brain
anatomy or due to a medical history that might impact brain function. Next, a further 159
participants were excluded because they were taking psychoactive medication at the
time of study. An additional 466 individuals were excluded because they did not pass
rigorous manual and automated quality assurance for their T1-weighted scan®', their
diffusion scan®, or their resting-state functional magnetic resonance imaging (rs-fMRI)
scan®®. Finally, 27 participants were excluded owing to the presence of disconnected
regions in their structural connectivity matrix (see section entitled Structural connectome
construction below). This process left a final sample of 793 participants.

Imaging data acquisition

MRI data were acquired on a 3 Tesla Siemens Tim Trio scanner with a 32-channel head
coil at the Hospital of the University of Pennsylvania. Diffusion weighted imaging (DWI)
scans were acquired via a twice-refocused spin-echo (TRSE) single-shot echo-planar
imaging (EPI) sequence (TR=8100 ms, TE=82 ms, FOV=240mm?/240mm?; Matrix=RL:
128, AP: 128, Slices: 70, in-plane resolution of 1.875 mm?; slice thickness=2 mm, gap=0;
flip angle=90°/180°/180°, 71 volumes, GRAPPA factor=3, bandwidth=2170 Hz/pixel, PE
direction=AP). The sequence utilized a four-lobed diffusion encoding gradient scheme
combined with a 90-180-180 spin-echo sequence designed to minimize eddy-current
artifacts®. The sequence consisted of 64 diffusion-weighted directions with b=1000
s/mm? and 7 interspersed scans where b=0 s/mm?. The imaging volume was prescribed
in axial orientation and covered the entire brain.

In addition to the DWI scan, a BO map of the main magnetic field was derived
from a double-echo, gradient-recalled echo (GRE) sequence, allowing for the estimation
and correction of field distortions. Prior to DWI acquisition, a 5-min magnetization-
prepared, rapid acquisition gradient-echo T1-weighted (MPRAGE) image (TR=1810 ms,
TE=3.51 ms, FOV=180 x 240 mm, matrix 256 x 192, effective voxel resolution of 0.94 x
0.94 x 1 mm) was acquired for each participant.

Finally, approximately 6 minutes of rs-fMRI data was acquired using a blood
oxygen level-dependent (BOLD-weighted) sequence (TR=3000 ms; TE=32 ms; FoV=192
x 192 mm; resolution 3 mm isotropic; 124 volumes). These data were used primarily to
generate the principal cortical gradient of functional connectivity discussed in the main
text'? (see section entitled Principal gradient of functional connectivity below).

Imaging data quality control
All DWI and T1-weighted images underwent rigorous quality control by highly trained
image analysts (see Roalf et al. (2016) and Rosen et al. (2018) for details on DTl and T1-
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weighted imaging, respectively). Regarding the DWI acquisition, all 71 volumes were
visually inspected and evaluated for the presence of artifacts. Every volume with an
artifact was marked as contaminated and the fraction of contaminated volumes was
taken as an index of scan quality. Scans were marked as ‘poor’ if more than 20% of
volumes were contaminated, ‘good’ if more than 0% but less than 20% of volumes were
contaminated, and ‘great’ if 0% of volumes were contaminated. Regarding the T1-
weighted acquisition, images with gross artifacts were considered ‘unusable’; images
with some artifacts were flagged as ‘usable’; and images free of artifact were marked as
‘superior’. As mentioned above in the section entitled Participants, 466 individuals were
removed due to quality. Of these, 318 individuals were removed due to either ‘poor’
DWIs or ‘unusable’ T1-weighted images. In the final sample of 793 participants, a total
of 5635 participants had diffusion tensor images identified as ‘great’, with the remaining
identified as ‘good’, and 701 participants had T1-weighted images identified as
‘superior’, with the remaining identified as ‘usable’. Regarding the rs-fMRI data, as in
prior work®®* the remaining 148 of 466 excluded participants were removed either
because their mean relative root mean square (RMS) framewise displacement was higher
than 0.2 mm or their scan included more than 20 frames with motion exceeding 0.25
mm.

Structural image processing

Structural image processing was carried out using tools included in ANTs®. The
buildtemplateparallel pipeline from ANTs® was used to create a study-specific T1-
weighted structural template with 120 participants that were balanced on sex, race, and
age. Structural images were processed in participants’ native space using the following
procedure: brain extraction, N4 bias field correction®”, Atropos tissue segmentation®,
and SyN diffeomorphic registration®°,

Diffusion image processing

For each participant, a binary mask was created by registering the standard fractional
anisotropy mask provided by FSL (FMRIB58 FA) to the participant’s mean b=0 reference
image using FLIRT®. To correct for eddy currents and head motion, this mask and the
participant’s diffusion acquisition was passed to FSL’s eddy®' (version 5.0.5). Diffusion
gradient vectors were subsequently rotated to adjust for the motion estimated by eddy.
Distortion correction was conducted via FSL’s FUGUE® using the participant’s field
map, estimated from the BO map.

rs-fMRI processing

State-of-the-art processing of functional data is critical for valid inference®. Thus,
functional images were processed using a top-performing preprocessing pipeline
implemented using the eXtensible Connectivity Pipeline (XCP) Engine®, which includes
tools from FSL%® and AFNI*. This pipeline included (1) correction for distortions
induced by magnetic field inhomogeneity using FSL’s FUGUE utility, (2) removal of 4
initial volumes, (3) realignment of all volumes to a selected reference volume using FSL’s
MCFLIRT, (4) interpolation of intensity outliers in each voxel’s time series using AFNI’s
3dDespike utility, (5) demeaning and removal of any linear or quadratic trends, and (6)
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co-registration of functional data to the high-resolution structural image using boundary-
based registration. Images were de-noised using a 36-parameter confound regression
model that has been shown to minimize associations with motion artifact while retaining
signals of interest in distinct sub-networks®®¢. This model included the six framewise
estimates of motion, the mean signal extracted from eroded white matter and
cerebrospinal fluid compartments, the mean signal extracted from the entire brain, the
derivatives of each of these nine parameters, and quadratic terms of each of the nine
parameters and their derivatives. Both the BOLD-weighted time series and the artifactual
model time series were temporally filtered using a first-order Butterworth filter with a
passband of 0.01-0.08 Hz”".

Imaging-derived nuisance covariates

In our analyses of individual differences, we used total brain volume and mean in-
scanner motion as imaging-derived nuisance covariates. Total brain volume was
generated from the T1-weighted images using ANTs. In-scanner head motion was
estimated for each participant from their DWI sequence as relative framewise
displacement®. Specifically, rigid-body motion correction was applied to the seven high
quality b=0 images interspersed throughout the diffusion acquisition. Once estimated,
framewise displacement was averaged across time to create a single measure for each
participant.

Structural connectome construction

For each participant, whole-brain deterministic fiber tracking was conducted using DSI
Studio® with a modified fiber assessment by continuous tracking (FACT) algorithm with
Euler interpolation. A total of 1,000,000 streamlines were generated for each participant
that were between 10mm and 400mm long. Fiber tracking was performed with an
angular threshold of 45° and step size of 0.9375 mm. Next, following our previous work™,
the number of streamlines intersecting region i and region j in a 200-parcel cortical
parcellation®® was used to weight the edges of an undirected adjacency matrix, A (see
Fig. S5 for sensitivity analyses covering different parcellation resolutions and definitions).
Note that 4;; = 0 for i = j. This process yielded 793 subject-specific A matrices that
were used in subject-level analyses reported in the main text (i.e., Fig. 6). Our primary
analyses, however, were based on a group-averaged A matrix. To obtain this A matrix,
we averaged over the entries of the individuals’ A matrices and thresholded using an
edge consistency-based approach'®. Specifically, edges in the group-averaged A matrix
were only retained if non-zero edge weights were present in at least 60% of participants’
A matrices'". If not, edges were set to zero. This process yielded a group-averaged
structural connectome with a sparsity value of approximately 8%. This group-averaged
structural connectome was used for analyses reported in Figs. 2, 3, 4, and 5. See Fig.
S6 for sensitivity analyses spanning a range of consistency thresholds and
corresponding sparsity values.
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Trans-hierarchical state transitions

Cortical hierarchies
Below we describe two views of the cortical hierarchy that were used in the present
study to examine trans-hierarchical state transitions.

Sensory-fugal axis of cytoarchitecture

We primarily characterized the cortical hierarchy using the gradient of cytoarchitectonic
similarity developed in previous work>® and disseminated as part of the BigBrainWarp
toolbox®. Specifically, from BigBrainWarp, we retrieved the histological gradient (‘Hist-
G2’) corresponding to the sensory-fugal (S-F) axis of cytoarchitecture stored in fsaverage
space. Next, we averaged over the vertex values within each of our 200 cortical parcels
(see section entitled Structural connectome construction above). This process resulted
in a 200 x 1 vector describing regions’ positions along the S-F axis of cytoarchitectonic
similarity.

Principal gradient of functional connectivity

As stated above and in the main text, our primary constituent of the cortical hierarchy
was the S-F axis of cytoarchitectonic similarity. To test the specificity of our primary
results, we also examined another view of the cortical hierarchy: the principal gradient
of functional connectivity'. This gradient situates unimodal sensorimotor cortex at one
end and transmodal association cortex at the other. Conceptually, this approach
amounts to a dimensionality reduction technique that positions regions with similar
functional connectivity profiles near to one another, and positions regions with dissimilar
functional connectivity profiles distant from one another. Here, as in our previous work’,
we generated this gradient using whole-brain resting-state functional connectivity
obtained from the PNC data (see section entitled rs-fMRI processing above). Specifically,
for each participant, processed rs-fMRI timeseries were averaged regionally and a
Pearson correlation coefficient was estimated between each pair of regional timeseries
to generate a functional connectome. Correlation coefficients were normalized using
Fisher’s r-to-z transform, and then connectomes were averaged over participants. The
principal gradient of functional connectivity was generated from this group-average
functional connectome using a diffusion map embedding implemented in the BrainSpace
toolbox'®. We selected the first gradient output from this approach, which was closely
aligned to that observed previously'®. Note that this gradient is the same as that reported
in our previous work™. This process resulted in a 200 x 1 vector that describes regions’
positions along the unimodal-to-transmodal (U-T) axis of functional connectivity.

Hierarchical brain states

As discussed in the main text and illustrated in Fig. 1, we divided our 200 x 1 S-F axis
of cytoarchitecture—as well as the U-T axis of functional connectivity—into 20 evenly
sized (n=10) and non-overlapping sets of brain regions that traversed up the cortical
hierarchy. This procedure yielded 20 groups of cortical regions that differed based on
their position along the S-F (U-T) axis. Thus, regions within each group had similar
profiles of cytoarchitecture (functional connectivity) while regions between groups had
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dissimilar profiles of cytoarchitecture (functional connectivity). Moreover, this
dissimilarity increased with greater distance between pairs of groups along the S-F (U-
T) axis. These 20 groups of regions formed the brain states that we used in the network
control theory analysis (see section entitled Network control theory below), thus allowing
us to model transitions between states moving up and down the cortical hierarchy. See
Fig. S7 for sensitivity analyses covering different set sizes for brain states.

Network control theory

To model trans-hierarchical state transitions, we employed tools from network control
theory®™*?%2%%  Given an A matrix as input (either group-averaged or individual; see
section entitled Structural connectome construction above), we first apply the following
normalization:

A

A= ——F——
A(A)max + ¢

- L Eq. 1

Here, A(A) 4. is the largest eigenvalue of A, ¢ = 1 to ensure system stability, and I
denotes the identity matrix of size N X N. In our analyses, N is equal to the number of
brain regions, which is 200. Within this normalized A matrix, we allow each node of the
network to carry a real value representing that node’s activity. These values are
represented in x and collectively describe the pattern of whole-brain activity as it
changes over time. Next, we use a simplified noise-free linear continuous-time and time-
invariant model of network dynamics:

x = Ax(t) + B, u,(t), Eq. 2

where x(t) is a N x 1 vector that represents the state of the system at time t. The matrix
B, identifies the control input weights, which by default we set to the N X N identity
matrix to compute unweighted energy (see section entitled Minimizing transition energy
through optimized control weights below for the weighted case).

Given this model of the dynamics, we compute the control inputs, u, (t), that drive
the system from some initial state, x,, to some target state, x*, in a finite amount of time
T = 1. Here, initial and target states were constructed using the 20 non-overlapping
groups of 10 brain regions spanning the S-F axis (see above section entitled Hierarchical
brain states). That is, each initial or target state was defined as an N x 1 vector within
which 10 elements that represented cytoarchitecturally similar areas contained a 1, and
the remaining elements contained a 0. Among the many possible inputs, we chose the
minimum energy®"'® input which minimizes a quadratic cost on the inputs, such that

E,in = min fOT up (Hu, (t)de, Eqg. 3

subject to Eq. 2. To compute the minimum energy, we construct a useful mathematical
object called the controllability Gramian, given by
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W, = fOT eAtBBTeA Eq. 4

where e4t is the time-dependent matrix exponential of the matrix A, and is also the
impulse response of the system that governs the natural evolution of system dynamics.
Then, the minimum energy is given by

Epnin = (eAtxO - x*)Tng(eAtxo - x*)- Eq 5

Intuitively, the quantity in the parentheses measures the difference between the natural
evolution of the system from the initial condition, e4tx,, and the target state, x*. This
difference is precisely the difference for which the control input u,(t) needs to
compensate, and the projection of this difference onto W;! yields the minimum energy
for providing such compensation®.

Transition energy and energy asymmetries

We used the above derivation of minimum control energy to compute a k X k transition
energy matrix, T;. Elements of T; quantified the energy (E) required to transition between
all possible pairs of k = 20 brain states, where brain states were based on the subsets
of regions sampled along the S-F axis of cytoarchitecture outlined above (see section
entitled Cortical hierarchies). As mentioned in the main text and above, the hierarchically
ordered nature of our brain states endowed T; with a distinction between transitions
moving up the hierarchy (bottom-up energy) from those moving down the hierarchy (top-
down energy). Further, these bottom-up and top-down transition energies were naturally
compartmentalized into the upper and lower triangles of Ty, respectively. Hence,
asymmetries between bottom-up and top-down energy for all state pairs were calculated
as Tgp = Ty — Ty . Note that unlike Ty, Tga is symmetrical; thus, only the upper triangle
was carried forward for asymmetry analysis.

Null network models

In Fig. 2B in the main text, we showed that Ty, was negatively correlated with the
distance that separated states along the hierarchy. We compared this empirically
observed correlation with hierarchy distance to those expected under two spatially
embedded null models®. Alongside preserving the spatial embedding of network nodes,
these null models randomly rewired the network while preserving either the edge
distribution or the strength distribution of the network. For each of these null models, we
produced 5,000 rewired networks derived from the group-averaged structural
connectome (see section entitled Structural connectome construction above) using
publicly available code (https://github.com/breakspear/geomsurr). Then, to generate an
empirical null distribution, upon each rewired network we recomputed Ty, Tga, and the
corresponding hierarchy distance correlation with Ty,. Finally, p-values were estimated
as the probability that the magnitude of the observed distance correlation occurred
under a given null.



https://doi.org/10.1101/2022.05.13.491642
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.13.491642; this version posted November 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Uncontrolled dynamics
In addition to examining the energy required to complete state transitions between
specific state-pairs, we also examined how uncontrolled dynamics spread naturally
across the cortex from each of our cytoarchitectonic brain states. Specifically, for each
brain state, we set the constituent regions’ activity to 1 and all other regions’ activity to
0. Then, we allowed the activity to diffuse in an uncontrolled manner along the networks’
edges over time according to x = Ax(t); this approach stands in contrast to the
approach that we have discussed thus far of forcing activity to flow from one state to
another via a set of control signals. As mentioned in the main text, we analyzed these
natural dynamics in two ways. First, for each seed brain state and time point, t, we
correlated the pattern of simulated activity at each node with the sensory-fugal axis of
cytoarchitecture. Note that this correlation was computed excluding the regions that
made up a given seed state (i.e., where activity was propagating from). Thus, correlations
were not driven by activity leaving a given brain state, but rather only reflected where in
the brain that activity flowed to. Results of this analysis are shown in Fig. 3B and 3C.
Second, we averaged activity over regions within each brain state, creating a
20 x n matrix of state-averaged activity over time (see Fig. 3D for examples). We
repeated this process using each brain state to seed activity to create a 20 X 20 x n
activity matrix, where the first dimension denoted the brain state from which activity was
seeded and where dimensions two and three stored how activity spread to all other brain
states over time (including the seed state itself). Next, for each seed state, we estimated
the correlation between the position along the S-F axis of the remaining brain states and
the point in time when activity peaked within those states. Thus, a positive correlation
indicated that activity propagated up the hierarchy from a given seed state while a
negative correlation indicated that activity propagated down the hierarchy (see Fig. 3E).
Lastly, we compared the magnitude of these correlations between pairs of seed brain
states using 1,000 bootstrapped versions of our group-averaged structural connectome.
Specifically, we reproduced our group-averaged structural connectome for each of
1,000 bootstrapped samples of our 793 participant connectomes. Then, using these
1,000 bootstrapped connectomes, we re-simulated the spread of uncontrolled dynamics
and re-estimated the propagation correlations. This procedure allowed us to estimate
95% confidence intervals for the magnitude of the observed propagation correlations,
which in turn allowed us to compare their size (see Fig. 3F).

Intrinsic neuronal timescales

As mentioned in the main text, we sought to validate our transition energy analysis in
functional data using intrinsic neuronal timescales derived from electrocorticography
(ECoG) data. Thus, we compared energy asymmetries from our NCT analysis with
differences between brain states’ intrinsic timescales. Following previous work™, we
estimated regions’ intrinsic timescales using the time constant (7) of an exponential
decay function fitted to the autocorrelation function of ECoG timeseries. Specifically, we
downloaded sensor-level T data processed by Gao et al. (https://github.com/rdgao/field-
echos/data/df human.csv) and, using the provided MNI coordinates, matched each
sensor to our parcellation (200 Schaefer parcels); matching was done by finding the
smallest Euclidean distance between each sensor and the centroid of each parcel. We
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then averaged t over sensors within each parcel as well as over regions within each
cytoarchitectonic brain state. This process generated state-level T values that were then
subtracted to produce 7,, a matrix of change in T between all pairs of brain states.

Effective connectivity

As mentioned in the main text, we sought to validate our transition energy analysis in
functional data using effective connectivity derived from rs-fMRI data. Thus, we
compared energy asymmetries from our NCT analysis with asymmetries in effective
connectivity. As per our previous work'®, effective connectivity was estimated using a
spectral version of dynamic causal modeling (spDCM)®®" implemented in SPM12 r7765
(Wellcome Trust Centre for Neuroimaging, London, UK). To generate timeseries for
modeling effectivity connectivity, we first averaged participants’ processed rs-fMRI data
across the regions that comprised each cytoarchitectonic brain state. This process
yielded one timeseries of 120 volumes per subject per brain state. Next, owing to the
low number of volumes in our rs-fMRI acquisition, we deployed an averaging and
concatenation approach that yielded a single group-averaged timeseries of 1200
volumes for each brain state. This process proceeded as follows. First, we randomly
excluded 3 participants from our sample to retain 790 participants. Second, we divided
our sample of 790 participants into 10 equally sized groups (n=79) and averaged the
state-level rs-fMRI timeseries across participants within each group separately. Finally,
we concatenated these group-averaged timeseries end-to-end across the 10 groups.
This process yielded resting-state timeseries for each brain state with 1200 volumes that
represented averages over distinct subsets of participants taken from our sample. These
timeseries were used as inputs to the spDCM algorithm, together with a fully connected
model of coupling strengths, enabling the estimation of effective connectivity between
all cytoarchitectonic brain states spanning the S-F axis. As per our primary analysis of
transition energies, effective connectivity estimates were trivially grouped into bottom-
up and top-down, and were then subtracted to create an effective connectivity
asymmetry matrix.

Minimizing transition energy through optimized control weights

Our primary analyses involved examining uniformly weighted transition energies, where
all nodes of the dynamical system were assigned control weights equal to 1 (i.e., setting
the diagonal entries of B, in Eq. 2 to the N x N identity matrix). This uniform weighting
meant that all brain regions were endowed with the same degree of control over all k x k
state transitions. However, as discussed in the main text (see section entitled Optimized
control weights increase energy asymmetries and track the sensory-fugal axis of
cytoarchitecture), we were also interested in examining regional variation in facilitating
trans-hierarchical state transitions.

To achieve this goal, we systematically perturbed each region’s degree of control
over the system and measured the corresponding change in transition energies.
Specifically, for each brain region, i, we recomputed T after adding a constant amount
of additional control to the corresponding diagonal element of B, (the remaining diagonal
entries were left equal to 1). This process generated a k x k x 200 matrix of perturbed
transition energies, P;. Next, for each perturbed region (dimension 3 of Pg), we
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subtracted the perturbed transition energies from the uniformly weighted energies (T%)
to create Pgp, a k X k X 200 matrix of perturbed transition energy deltas. For each state
transition, this subtraction yielded a 200 x 1 vector that quantified how perturbing each
node of the system one at a time—Dby a constant arbitrary amount—impacted transition
energy. Note that increasing the influence of a single node’s control necessarily reduces
energy; the task of completing a state transition is easier for the model when any node
in B, is granted a greater degree of control over the system, leading to lower energy.
Accordingly, all values in Pz, were positive and the magnitude of these deltas encoded
the relative importance of each region to completing a specific state transition, with
regions with larger deltas being more important.

To assess correspondence with the S-F axis, we calculated the Spearman rank
correlation between perturbed deltas for each state transition and the gradient of
cytoarchitecture (see Fig. 83). Next, we re-estimated T (and Tz,) one more time using
each state transition’s vector of perturbed deltas as optimized control weights. This
process yielded optimized trans-hierarchical transition energies and optimized energy
asymmetries. Finally, to assess whether the size of the mean Ty, was significantly
different for optimized weights compared to uniform weights, we derived Tz, for both
weight sets using bootstrapped group-averaged connectomes (see section entitled
Uncontrolled dynamics above) and assigned 95% confidence intervals to the mean Tg,.

Age effects

As mentioned in the main text, we sought to link subject-specific energy asymmetries
with age to examine developmental effects. To achieve this goal, we derived Ty (and Tg,)
from each participant’s A matrix (see section entitled Structural connectome
construction above) using optimized control weights. Note that the process of computing
optimized transition energies was performed on a subject-specific basis using subject-
specific optimized control weights; this was done by applying the above perturbation
procedure (see section entitled Minimizing transition energy through optimized control
weights) to each participant’s A matrix separately (see Fig. S8 for correlations between
subject-specific optimized weights and the gradient of cytoarchitecture). Next, for each
state transition, we calculated the Pearson’s correlation between T, and age, while
controlling for sex, total brain volume, and in-scanner motion (see section entitled
Imaging-derived nuisance covariates above). We repeated this process for average
bottom-up and top-down energy, where energy was averaged over the upper and lower
triangles of each participant’s Ty matrix, respectively.

In addition to estimating within-sample age effects, we also sought to test
whether energy asymmetries could be used to predict participants’ ages in out-of-
sample testing. To achieve this, we assembled the upper triangle of each subject’s Ty,
matrix into a 793 x 190 feature table, X. To ensure normality, columns of X were
normalized using an inverse normal transformation'®'®. Then, we used a cross-
validated ridge regression model implemented in scikit-learn' with default parameters
(e =1) to predict participants’ ages (y). Specifically, we assessed out-of-sample
prediction performance using 10-fold cross-validation scored by root mean squared
error (RMSE) and by the correlation between the true y and predicted y. Note, as per
scikit-learn defaults, to standardize the interpretation of both scoring metrics as higher
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scores represent better performance, we flipped the sign for RMSE and examined
negative RMSE.

Models were trained using all columns of X as input features and scoring metrics
were each averaged across folds. As above, we included sex, total brain volume, and in-
scanner motion as nuisance covariates. Nuisance covariates were controlled for by
regressing their effect out of X before predicting y. Within each fold, nuisance covariates
were fit to the training data and applied to the test data to prevent leakage.
Subsequently, we applied principal component analysis (PCA) to reduce the
dimensionality of X, retaining enough PCs to explain 80% of the variance in the data.
Finally, owing to evidence that prediction performance can be biased by the arbitrariness
of a single split of the data'®®, we repeated 10-fold cross-validation 100 times, each time
with a different random 10-fold split. This process yielded a distribution of 100 mean
negative RMSE values and 100 mean correlations between true y and predicted y.

Our above prediction model generated robust estimates of prediction
performance, but it did not examine whether prediction performance was itself
significant. To test whether prediction performance was better than chance, we
compared point estimates of each of our scoring metrics—taken as the mean over the
100 values—to the distribution of values obtained from permuted data. Specifically, we
subjected the point estimates of our scoring metrics to 5,000 random permutations,
wherein the rows (i.e., participants) of y were randomly shuffled. The associated p-values
were assigned as the proportion of permuted scores that were greater than or equal to
our true scores.
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Citation diversity statement:

Recent work in several fields of science has identified a bias in citation practices such
that papers from women and other minority scholars are under-cited relative to the
number of such papers in the field'®"’. Here we sought to proactively consider
choosing references that reflect the diversity of the field in thought, form of contribution,
gender, race, ethnicity, and other factors. First, we obtained the predicted gender of the
first and last author of each reference by using databases that store the probability of a
first name being carried by a woman''*""®, By this measure (and excluding self-citations
to the first and last authors of our current paper), our references contain 7.82%
woman(first)/woman(last), 12.25% man/woman, 16.98% woman/man, and 62.95%
man/man. This method is limited in that a) names, pronouns, and social media profiles
used to construct the databases may not, in every case, be indicative of gender identity
and b) it cannot account for intersex, non-binary, or transgender people. Second, we
obtained predicted racial/ethnic category of the first and last author of each reference
by databases that store the probability of a first and last name being carried by an author
of color'™®'®, By this measure (and excluding self-citations), our references contain
6.03% author of color (first)/author of color(last), 19.77% white author/author of color,
20.93% author of color/white author, and 53.27% white author/white author. This
method is limited in that a) names and Florida Voter Data to make the predictions may
not be indicative of racial/ethnic identity, and b) it cannot account for Indigenous and
mixed-race authors, or those who may face differential biases due to the ambiguous
racialization or ethnicization of their names. We look forward to future work that could
help us to better understand how to support equitable practices in science.
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Figure S1. Counterpart to Figure 2 using the principal gradient of functional
connectivity (Margulies et al., 2016) to define brain states instead of the sensory-
fugal axis of cytoarchitecture (Paquola et al., 2019). A, No significant differences
between bottom-up and top-down energy were observed when the principal gradient of
functional connectivity was used to define brain states. B, The distance along the
functional connectivity gradient separating initial and target states was not significantly
correlated with energy asymmetry.
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Figure S2. Energy asymmetries correlate with asymmetries in effective connectivity
measured from resting-state functional magnetic resonance imaging. A, We used
resting-state functional magnetic resonance imaging to examine asymmetries in
effective connectivity (estimated using dynamic causal modeling) between our
cytoarchitectonic brain states (see Methods). B, Energy asymmetries between brain
states correlated positively with asymmetries in effective connectivity between brain
states. This result shows that for state transitions where bottom-up transition energy was
lower than top-down (negative energy asymmetry) the same was true for effective
connectivity and vice versa.
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Figure S3. Significant correlations between the sensory-fugal axis of
cytoarchitecture and optimized control weights for each state transition. Optimized
control weights correlated positively with the cortical hierarchy of cytoarchitecture,
indicating that regions higher on the hierarchy were more important for control. The p-
values for correlations were estimated using a null network model that preserved the
spatial embedding of brain region as well as the strength distribution. The p-values were
corrected for multiple comparisons using the Benjamini-Hochberg False Discovery Rate
(Benjamini & Hochberg, 1995). Significance was determined as pror<0.05.
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Figure S4. Optimized energy asymmetries improve the out-of-sample prediction of
participants’ age. A cross-validated out-of-sample regression model revealed that
optimized energy asymmetries (peach) better predicted participants’ age compared to
uniform control weights (blue). Out-of-sample prediction was scored using both negative
root mean square error (left) and the correlation between true and predicted y (right). For
the latter, mean prediction performance (gray horizontal lines) was significantly higher
for optimized compared to uniformly weighted energy asymmetries (p=2x107?). For the
former, mean prediction performance was higher for optimized compared to uniformly
weighted energy asymmetries but this effect was only marginally significant (p=6x10?).
Additionally, all mean prediction performance estimates were significantly higher than
expected under their respective empirical nulls.
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Figure S5. Sensitivity analysis, connectome parcellation. In the main text, we
reported network control theory results that were modeled on a connectome built from
a parcellation with 200 regions (Schaefer et al., 2018). Here, we examined whether our
primary findings were robust to our choice of parcellation by reproducing results from
Figure 2 twice, once using a higher resolution version of the same parcellation (Schaefer
400, left) and once using a parcellation with 360 regions defined according to different
criteria (Glasser 360, right) (Glasser et al., 2016). For both Schaefer 400 and Glasser 360,
we observed that bottom-up energy was significantly lower than top-down energy and
that hierarchical distance correlated negatively with energy asymmetry. However, we
found that the distance correlation was weaker for both Schaefer 400 and Glasser 360
(compared to the original parcellation, Schaefer 200), suggesting that this effect may be
somewhat scale/parcellation dependent.
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Figure S6. Sensitivity analysis, connectome sparsity. In the main text, we reported
network control theory results derived from a group-averaged connectome that was
thresholded to retain edges that were present in at least 60% of participants. This
thresholding yielded a connectome with 8% sparsity. Here, we examined whether our
primary findings were robust to that choice by reproducing results from Figure 2 at a
range of consistency thresholds (40%, 50%, 70%, and 80%). We observed that our
results were highly consistent across this range of thresholds.
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Figure S7. Sensitivity analysis, number of regions per brain state. In the main text,
we reported network control theory results for transitions between 20 cytoarchitectonic
brain states, each comprising 10 regions. Here, we examined whether our primary
findings were robust to that choice by reproducing results from Figure 2 twice, once
incrementing and once decrementing the size of brain states by one region. For both
brain states of sizes 9 and 11, we observed that bottom-up energy was significantly
lower than top-down energy and that hierarchical distance correlated negatively with
energy asymmetry. However, we found that the distance correlation was weaker for state
sizes 9 and 11 (compared to the original size of 10), suggesting that this effect may be
somewhat scale dependent.
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Figure S8. Distributions of correlations between subject-specific optimized
weights and the sensory-fugal axis of cytoarchitecture. For each subject, optimized
control weights were generated for each state transition (see main text) and correlated
with the sensory-fugal axis of cytoarchitecture. Then, for each subject, correlations were
averaged over all state transitions yielding a single correlation per subject; these
summary correlations are plotted here.
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