
 

 

 

 

Asymmetric Signaling Across the Hierarchy of 

Cytoarchitecture within the Human Connectome 

 
Linden Parkes1, Jason Z Kim1*, Jennifer Stiso1*, Monica E Calkins2,3, Matthew 

Cieslak2,3,4, Raquel E Gur2,3,5,6, Ruben C Gur2,3,5,6, Tyler M Moore2,3, Mathieu Ouellet7, 
 David R Roalf2,3, Russell T Shinohara4,8, Daniel H Wolf2,4, Theodore D Satterthwaite2,3,4, 

& Dani S Bassett1,2,5,9,10,11 
 
1Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, 

Philadelphia, PA, 19104 USA. 
2Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 
19104, USA. 
3Lifespan Brain Institute, University of Pennsylvania & Children’s Hospital of Philadelphia, Philadelphia, 

USA 
4 Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of 

Pennsylvania, Philadelphia, PA 19104 USA. 
5Department of Neurology, Perelman School of Medicine, Philadelphia, PA 19104 USA. 
6Department of Radiology, Perelman School of Medicine, Philadelphia, PA 19104 USA. 
7Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of 

Pennsylvania, Philadelphia, PA 19104 USA. 
8Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and 
Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 
9Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of 

Pennsylvania, Philadelphia, PA, 19104 USA. 
10Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, 

Philadelphia, PA, 19104 USA. 
11Santa Fe Institute, Santa Fe, NM 87501 USA 

*These authors contributed equally 
 

Corresponding author: Linden Parkes, lindenmp@seas.upenn.edu, @LindenParkes, Suite 240 Skirkanich 

Hall, 210 Sth 33rd St, Philadelphia, PA 19104-6321, USA 
 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.05.13.491642doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491642
http://creativecommons.org/licenses/by-nc/4.0/


Abstract 

 

Cortical variations in cytoarchitecture form a sensory-fugal axis that systematically 
shapes regional profiles of extrinsic connectivity. Additionally, this axis is thought to 
guide signal propagation and integration across the cortical hierarchy. While human 
neuroimaging work has shown that this axis constrains local properties of the human 
connectome, it remains unclear whether it also shapes the asymmetric signaling that 
arises from higher-order connectome topology. Here, we used network control theory to 
examine the amount of energy required to propagate dynamics across the sensory-fugal 
axis. Our results revealed an asymmetry in this energy indicating that bottom-up 
transitions were easier to complete compared to top-down transitions. Supporting 
analyses demonstrated that this asymmetry was underpinned by a connectome 
topology that is wired to support efficient bottom-up signaling. Finally, we found that this 
asymmetry correlated with changes in intrinsic neuronal timescales and lessened 
throughout youth. Our results show that cortical variation in cytoarchitecture may guide 
the formation of macroscopic connectome topology. 
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INTRODUCTION 

 
Multiple lines of evidence suggest that the brain’s extrinsic structural connectivity is 
predicted from its cytoarchitecture1–4. This structural model suggests that the degree to 
which two regions share similar cytoarchitectural features predicts the distribution of 
their laminar projections. Critically, inter-regional similarity in cytoarchitecture varies 
gradually across the cortex, creating a sensory-fugal (S-F) axis5,6 that predicts regions’ 
profiles of extrinsic connectivity to the rest of the brain. This gradient positions 
contiguous visual and sensorimotor cortex at one end and distributed heteromodal 
association and paralimbic cortices at the other, and is correlated with other 
macroscopic gradients of brain structure and function7–15. Together, these multi-modal 
gradients form a hierarchy of brain organization that is thought to govern extrinsic 
connectivity3 and support the efficient propagation and integration of signals across the 
cortex16–18. However, the extent to which cytoarchitecture’s governance over 
connectivity manifests in the topology of the macroscopic structural connectome 
remains a key open question. Here, we examine whether the S-F axis constrains signal 
propagation across macroscopic connectome topology.  

Convergent evidence spanning the past three decades supports the premise that 
neuronal signaling is shaped and constrained by a globally ordered cortical 
hierarchy16,17,19,20. External stimuli arrive at functionally specialized sensory cortices 
before propagating up modality-specific hierarchies to then apex at association and 
paralimbic regions responsible for functional integration. This convergent bottom-up 
signal propagation is complemented by far-reaching modulatory top-down signals21–24 
that operate on longer timescales25 and that bind incoming sensory signals together to 
update predictive inferences about our environment and to complete goal-directed 
action26,27. Critically, these cooperative patterns of bottom-up and top-down signaling, 
and the asymmetries between them23, may be underpinned by graded variations in 
cortical cytoarchitecture2,3,28. Specifically, regions’ cytoarchitecture robustly predicts 
their extrinsic connectivity profiles1, including the strength29, distance29, and layer 
origination and termination29,30 of feedforward and feedback projections23. Further, inter-
regional similarity in cytoarchitecture follows a clear S-F axis5,6, suggesting that where a 
region is situated along the cortical hierarchy characterizes its bottom-up and top-down 
connectivity with the rest of the brain, and thus explains its capacity to support signal 
propagation across the hierarchy. Consistent with this notion, regional variation in the 
T1w/T2w ratio—a neuroimaging measurement that is thought to be a proxy of the S-F 
axis of cytoarchitecture5,31—correlates with regions’ intrinsic timescales of neuronal 
activity10, demonstrating that cytoarchitecture tracks the progressive lengthening of 
neuronal oscillations associated with hierarchical information integration25. Additionally, 
the S-F axis also correlates with regional weighted degree from diffusion-weighted 
structural networks32, demonstrating that cytoarchitecture tracks local properties of 
macroscopic connectome topology. 

Regional variations to cytoarchitecture are, in part, rooted in neurodevelopment1–
3,33–37. Differences in the developmental timing of neurogenesis leads to highly eulaminate 
regions—such as the primary visual cortex—developing more slowly than agranular 
regions38, suggesting that prenatal development lays the foundation for the S-F axis. 
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Once laid, the S-F axis scaffolds the formation of extrinsic feedforward and feedback 
connections that traverse up and down the hierarchy3. This connectivity formation also 
appears to track the S-F axis in a developmentally-staged manner, with synaptogenesis 
peaking earlier in lower-order primary visual areas than in higher-order frontal cortex39–

41. Furthermore, neuroimaging research shows that macroscopic proxies of the S-F axis 
(e.g., T1-weighted features), as well as structural connectivity, continue to change 
throughout postnatal development15,42–48, suggesting that the S-F axis continues to 
shape connectome topology. 

As the above literature demonstrates, the processes that govern patterns of 
extrinsic connectivity across the cortex are encoded by regional variations in 
cytoarchitecture, and this regional variation provides a blueprint for the refinement of 
connectivity throughout development. However, the extent to which the topology of the 
structural connectome can be leveraged to model bottom-up and top-down signal 
propagation across the S-F axis remains unknown. The literature reviewed above leads 
us to four predictions. First, if differences in extrinsic projections encoded by 
cytoarchitecture are reflected in connectome topology32, then we should be able to 
model asymmetries between bottom-up and top-down signal propagation across the S-
F axis in humans in vivo. Notably, recent work has shown that the topology of the 
undirected structural connectome generates spatially varied patterns of signal 
propagation49 and asymmetric signaling50, suggesting that such asymmetry may be 
assessable using non-invasive neuroimaging. Second, if asymmetric signal propagation 
is produced specifically by the cytoarchitectonic hierarchy, then asymmetries may not 
generalize to different views of the cortical hierarchy, such as those derived from 
patterns of functional connectivity12. Third, since signals propagating across the S-F axis 
will traverse through changing temporal receptive windows10, we expect asymmetries to 
correlate with differences in intrinsic neuronal timescales. Fourth, if signal propagation 
continues to be refined throughout development, then asymmetries should vary 
systemically as a function of age in youth. 

To evaluate evidence for the above reasoning, we turned to the minimum control 
energy framework from Network Control Theory (NCT)51,52. Using a linear model of 
dynamics, NCT estimates the amount of input energy—delivered to a set of control 
nodes (brain regions)—that is required to drive the brain to transition between pairs of 
activity states. In this context, we consider binary states in which one set of regions are 
active while the rest of the brain is inactive. Here, we sought to estimate the transition 
energy associated with trans-hierarchical state transitions. We found that bottom-up 
state transitions were more efficient (required less energy) compared to top-down 
transitions. We also observed that the hierarchical distance separating brain states 
correlated with the size of these energy asymmetries, suggesting that states with 
different underlying cytoarchitecture display the most pronounced asymmetries. In 
addition to these primary findings, we examined (i) whether our findings generalized to 
the principal gradient of functional connectivity12; (ii) whether our transition energies 
correlated with between-state differences in intrinsic timescales; (iii) whether brain 
regions’ position along the S-F axis explained their role in facilitating state transitions; 
and (iv) whether energy asymmetries correlated with age in a developing sample of 
youths. Our work extends the field's understanding of connectome topology by showing 
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that the neuroanatomical processes that give rise to extrinsic connectivity constrain the 
directional flow of macroscopic dynamics over the cortex. 
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RESULTS 

 

Mapping trans-hierarchical state transitions 

We characterized the energy required to complete trans-hierarchical state transitions. 
Here, we set our brain states to actuate patches of cortex with relatively homogenous 
profiles of cytoarchitecture. Briefly, we defined brain states by splitting the S-F axis of 
cytoarchitectonic similarity5,6 into � equally sized non-overlapping groups of regions that 
spanned the gradient (Fig. 1A; see Methods). Then, using a group-averaged structural 
connectome taken from the Philadelphia Neurodevelopmental Cohort53 (see Methods), 
we modeled the transition energy between all � pairs of brain states, generating a � × � 
matrix of energy values, �! (Fig. 1B, C). Critically, the hierarchically ordered nature of our 
brain states meant that bottom-up transition energies were naturally stored in the upper 
triangle of �! while top-down transition energies were stored in the lower triangle. We 
computed energy asymmetries by subtracting top-down energy from bottom-up energy 
(Fig. 1D; �!" =	�! 2 �!

#). In the upper triangle of �!", positive values indicate bottom-up 
energy being greater than top-down energy whereas negative values indicate bottom-
up energy being lower than top-down energy. 
 

 
Figure 1. Estimating trans-hierarchical signal propagation. Using the Schaefer atlas, 
we sampled 20 non-overlapping groups of regions (n=10 per state) traversing up the S-
F gradient of cytoarchitectonic similarity6. These groups formed brain states spanning 
the cortical hierarchy. By definition, regions within each state had similar profiles of 
cyoarchitecture. Accordingly, pairs of states separated by long hierarchical distances 
have different underlying cytoarchitecture. A, An example pair of brain states (xi, xj) at 
different locations along the cytoarchitectonic hierarchy. B, For a given pair of states (xi, 
xj), we calculated the minimum control energy (�) required to complete the transition 
from xi to xj and from xj to xi. C, Minimum control energy between all pairs of states was 
assembled into a transition energy matrix, �!. Owing to the ordered nature of our brain 
states, transition energies were trivially grouped into bottom-up (transitions moving up 
the hierarchy; �!, upper triangle) and top-down (transitions moving down the hierarchy; 
�!, lower triangle). D, Given this grouping, we subtracted top-down energy from bottom-
up energy to create an energy asymmetry matrix (�!"). In the upper triangle of this 
asymmetry matrix, positive values represented state transitions where bottom-up energy 
was higher than top-down energy whereas negative values represented the opposite. 
Note that, apart from the sign of the & value, �!" is symmetric; hence, all analyses of 
asymmetries focused on the upper triangle of this matrix. 
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We found that bottom-up energy was significantly lower than top-down energy 
(Fig. 2A; t=5.94, p=1×10-8), demonstrating that state transitions moving up the 
cytoarchitectonic S-F axis required less energy (i.e., were easier to complete) compared 
to those moving down the same axis. Furthermore, in support of our hypothesis, we 
found that the hierarchical distance between brain states was negatively correlated with 
�!" (Fig. 2B, left). That is, as states’ cytoarchitecture became more dissimilar from one 
another (greater distance), energy asymmetries became more negative. Thus, 
asymmetries between bottom-up and top-down transition energies were largest when 
brain states had differing cytoarchitecture, with bottom-up transitions becoming 
progressively easier to complete than top-down. We found convergent results when we 
re-ran analyses on a single hemisphere, thereby excluding inter-hemispheric 
connections (bottom-up energy versus top-down, t=3.31, p=2×10-3; correlation with 
hierarchical distance, r=-0.30, pparametric=5×10-2). 
 
 

 
Figure 2. The topology of the structural connectome is sensitive to asymmetries 

between top-down and bottom-up signal propagation across the sensory-fugal 

axis of cytoarchitecture. A, Bottom-up energy was significantly lower than top-down 
energy, demonstrating that bottom-up state transitions were easier for our network 
control model to complete. B, The distance along the cytoarchitectonic gradient 
separating initial and target states was negatively correlated with energy asymmetry, 
demonstrating that high cytoarchitectonic dissimilarity between states was linked to 
greater negative energy asymmetries (left). This finding shows that when 
cytoarchitecture differs between brain states, bottom-up transitions required lower 
energy to complete compared to their top-down counterparts. This correlation with 
hierarchy distance was larger than expected under a pair of null network models (right), 
including one that preserved the spatial embedding and the edge weight distribution of 
the network and another that preserved the spatial embedding and the strength 
distribution. This observation suggests that this hierarchy distance effect may be 
supported by higher-order topology of the structural connectome. 

 
 
Next, to examine this distance effect’s dependence on topology, we recomputed 

�!" under two null network models. Specifically, we randomly rewired the underlying 
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group-averaged structural connectome 5,000 times using a spatially embedded 
permutation model that preserved either the edge distribution or the strength distribution 
of the network54 (see Methods). Then, for every rewired connectome, we re-estimated 
�!" as well as the correlation with hierarchical distance. We found that the observed 
correlation was stronger than expected under both null distributions (Fig. 2B, right). This 
result demonstrates that the negative correlation between hierarchical distance and �!" 
was not simply explained by a combination of the network’s spatial embedding and edge 
(or strength) distribution, suggesting instead that this effect may be specifically explained 
by variations in cytoarchitectonic profiles. 

To test whether our results were specific to the S-F axis of cytoarchitecture, we 
repeated all of the above analyses using the principal gradient of functional connectivity12 
to define brain states (Fig. S1). This is a relatively strong test of specificity as the gradient 
of cytoarchitecture and the gradient of functional connectivity were correlated (r=0.594).  
Using the functional connectivity gradient, we found that bottom-up and top-down 
transition energies did not differ significantly (Fig. S1A; t=1.147, p=0.142). Additionally, 
we observed a relatively weak positive correlation between hierarchical distance and �!" 
that was not larger than expected under our null network models (Fig. S1B; r=0.11, 
pedge=0.902, pstrength=0.843). This result demonstrates that asymmetries between bottom-
up and top-down transition energies were specific to the S-F axis of cytoarchitecture. 
This lack of energy asymmetry for the functional gradient may be explained by the fact 
that the two axes diverge at their apex5,55; the top of the S-F axis comprises paralimbic 
regions while the top of the functional connectivity axis comprises transmodal cortex. 
Previous work has suggested that this (relative) untethering of functional connectivity 
from cytoarchitectonic constraints may support the functional diversity of the transmodal 
cortex5. This untethering is also consistent with evidence that macroscopic structural 
and functional connectivity are relatively uncoupled in transmodal cortex compared to 
unimodal cortex56,57. Thus, together with past literature, our findings converge on the idea 
that while cytoarchitecture and structural connectivity are tightly intertwined, functional 
connectivity departs from both in a spatially patterned way. 
 
The gradient of cytoarchitecture constrains the flow of activity over the cortex  

The above results demonstrate that the energy asymmetries associated with trans-
hierarchical state transitions may be a consequence of more than brain regions’ spatial 
embedding and the distribution (or strength) of their direct links. Specifically, this 
evidence suggests that the entire pattern of connectome topology, not just direct 
connections, may be optimized to propagate activity up the cytoarchitectonic gradient 
more efficiently compared to down, in turn enabling more efficient completion of bottom-
up state transitions. To probe this possibility further, we examined whether the flow of 
uncontrolled activity followed the S-F axis as it spread throughout the cortex over time 
(Fig. 3A; see Methods). Briefly, seeding from each brain state, we examined the spread 
of natural dynamics across the whole brain as they unfolded over time (i.e., over a series 
of time steps; see Methods). Intuitively, this amounted to re-simulating our dynamical 
model for each initial state in the absence of both a target state and a control set. In a 
pair of analyses described below, we used this approach to show that the topology of 
the connectome may be optimized to propagate activity up the hierarchy.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.05.13.491642doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491642
http://creativecommons.org/licenses/by-nc/4.0/


First, we correlated the pattern of activity observed at each time step (�, arbitrary 
units) with the S-F axis (Fig. 3B). Here, for a given time step, negative correlations 
indicated that brain activity was higher at the bottom of the hierarchy than at the top, 
while positive correlations indicated the opposite. Fig. 3B shows that states lower on 
the hierarchy tend to show negative correlations between the S-F axis and early activity 
propagation (Fig. 3B, blue arrow), while states higher on the hierarchy tend to show 
positive correlations (Fig. 3B, peach arrow). Expectedly, this pattern demonstrates that 
early signal propagation tends to activate regions near to a given state’s location on the 
hierarchy. That is, activity propagating from low positions on the hierarchy reaches other 
low-hierarchy regions first, driving a negative correlation, while activity propagating from 
high on the hierarchy reaches other high-hierarchy regions first, driving a positive 
correlation. Critically, Fig. 3B also shows that the negative correlations low on the 
hierarchy diminish (i.e., become less negative) more quickly compared to the positive 
correlations for the high-hierarchy states. This effect is quantified and recapitulated in 
Fig. 3C, which shows the differences in correlations between neighboring time points 
(r$%& 2 r

$). Specifically, we found that differences in correlations between timepoints 
were greater when activity was seeded from the bottom of the hierarchy (Fig. 3C, blue 
arrow) compared to the top (Fig. 3C, peach arrow). Together, these results suggest that 
activity propagates more readily in the bottom-up direction than in the top-down 
direction. 

Second, we sought to stringently assess this apparent difference between 
bottom-up and top-down propagation efficiency. For each seeded brain state, we 
identified the point in time when simulated activity peaked within each of the other brain 
states (see Methods). Then, to quantify the slope of this activity propagation, we 
calculated the Spearman correlation between these peak time points and states’ 
position on the hierarchy (Fig. 3D, E). Thus, this analysis quantified the extent to which 
activity spreading from each brain state peaked within the remaining brain states in an 
ordered fashion. Lastly, we regenerated the group averaged connectome 500 times 
using bootstrapping, which allowed us to test for differences in these slopes using 
confidence intervals (see Methods). In doing so, we found that the correlation quantifying 
bottom-up propagation from the lowest position on the S-F axis (mean |r|=0.4286; 95% 
CI=[0.4278, 0.4294]) was significantly larger than the correlation quantifying top-down 
propagation from the topmost position (mean |r|=0.3899; 95% CI=[0.3890, 0.3907]) (Fig. 

3F). This result provides evidence that waves of natural dynamics flowing up the S-F axis 
tend to traverse the hierarchy more readily than their top-down counterparts. 
Collectively, the results presented in Fig. 3 suggest that cytoarchitecture may constrain 
the topology of the network to enable more efficient bottom-up flow of information. 
Furthermore, these results are consistent with our observation of lower bottom-up 
energy compared to top-down (see Fig. 2); a topology that is organized to facilitate 
bottom-up activity flow will require less energy to complete controlled bottom-up state 
transitions compared to top-down. 
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Figure 3. Uncontrolled dynamics preferentially flow up the cortical gradient of 

cytoarchitecture. A, We simulated the spread of uncontrolled dynamics seeded from 
each of our cytoarchitectonic brain states and tracked the activity as it unfolded over 
time and spread throughout the cortex. For a given seed state, we performed two 
analyses. First, we quantified the Spearman rank correlation between the sensory-fugal 
axis of cytoarchitecture and the pattern of simulated activity at time t (results in panel B) 
as well as the difference in correlations between adjacent timepoints (results in panel C). 
Second, we examined when activity peaked within each of the other cytoarchitectonic 
brain states (results shown in panels D, E, and F). We quantified this peak effect by 
calculating the Spearman rank correlation between t and the location (i.e., state) of peak 
activity. B, Correlations between cytoarchitecture and simulated activity seeded from 
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each brain state as a function of time. C, Differences in correlations between neighboring 
timepoints as a function of time. D, Correlation between the location of peak activity and 
time. Activity seeded from the bottom of the S-F axis traversed up the gradient (top) 
whereas activity seeded from the top of the S-F axis traversed down the gradient 
(bottom). Black markers denote the timepoints when activity peaked within each brain 
state as it traversed the S-F axis. E, These propagating patterns of simulated activity 
were summarized using Spearman rank correlations separately for each seeded brain 
state. F, Finally, under 1,000 bootstrapped samples of the group-averaged connectome, 
we found that the magnitude of the bottom-up Spearman correlation (seeded from the 
bottom of the S-F axis) was significantly larger than the magnitude of the top-down 
Spearman correlation (seeded from the top of the S-F axis). Collectively, these results 
suggest that uncontrolled dynamics spread more readily across the S-F axis in the 
bottom-up direction than top-down. 
 
 
Energy asymmetries in trans-hierarchical state transitions are correlated with 

differences in intrinsic timescales and asymmetries in effective connectivity 

Our observations thus far are consistent with the notion that regional cytoarchitectonic 
similarity influences the difference between bottom-up and top-down signal propagation 
across the cortical hierarchy. Specifically, our results suggest that how patterns of brain 
activity spread across the hierarchy varies as a function of the direction of flow. However, 
the results presented thus far were only derived from linear dynamics simulated upon 
the structural connectome. We reasoned that if our results for simulated dynamics were 
neurobiologically meaningful, then we would observe two findings. 

First, we expected that energy asymmetries would correlate with changes in the 
intrinsic neuronal timescales of our brain states. Specifically, we predicted that 
transitions where bottom-up energy was lower than top-down would correspond to a 
lengthening of neuronal timescales between the initial and target states. In turn, this 
finding would suggest that the topology of the structural connectome is wired to support 
the integration of information that is thought be occurring as activity traverses up the 
hierarchy. Second, we expected that energy asymmetries would be consistent with 
asymmetries derived from dynamical models trained on functional neuroimaging data. 
To test the former prediction, we used open-access human electrocorticography (ECoG) 
data58,59 to index regions’ intrinsic timescales. Specifically, following Gao et al.10, we 
quantified timescales using the time constant (�) of an exponential decay function fitted 
to the autocorrelation function of the ECoG timeseries (Fig. 4A; see Methods). Larger � 
values correspond to longer (slower) fluctuations in a region’s intrinsic timescales. 
Subsequently, we averaged � within each of our brain states and then subtracted mean 
� between pairs of brain states (�"). Thus, positive �" represented larger � in state � 
compared to state �. Finally, we correlated �!" with �" and found that they were 
negatively correlated (Fig. 4B; r=-0.34, p=1×10-6). This result indicates that state 
transitions where bottom-up energy is lower than top-down (i.e., negative �!") are also 
characterized by an increase in � (i.e., positive �") going from state � to state � and vice 

versa. Thus, state transitions that are (relatively) easy to complete are coincident with a 
lengthening of the timescales of resting-state electrophysiological fluctuations. 
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Figure 4. Energy asymmetries correlate with differences between brain states’ 

intrinsic neuronal timescales. A, We used resting-state electrocorticography data to 
examine differences between brain states’ intrinsic neuronal timescales (as per methods 
described in Gao et al.10) between our cytoarchitectonic brain states. B, Energy 
asymmetries between brain states were negatively correlated with differences between 
brain states’ intrinsic timescales. This result shows that state transitions where bottom-
up energy is lower than top-down (negative energy asymmetry) are also characterized 
by a slowing of intrinsic timescales going from state � to state � and vice versa. 
 
 

Next, we turned from an evaluation of differences between brain states’ intrinsic 
neuronal timescales to an evaluation of asymmetries derived from effective connectivity. 
Specifically, we computed the effective connectivity (EC) between brain states using a 
spectral version of dynamic causal modeling60,61 applied to participants’ resting-state 
functional magnetic resonance imaging (rs-fMRI) data (see Methods). We subsequently 
computed EC asymmetries by subtracting top-down EC from bottom-up EC (��" =
	|��| 2 |��|#). We found that �!" was positively correlated with ��" (Fig. S2; r=0.24, 
p=1×10-3), indicating that for state transitions where bottom-up energy was lower than 
top-down the same was true for EC and vice versa. This result extends prior work50 by 
demonstrating that the topology of the undirected structural connectome supports 
directed signal propagation along the cortical gradient of cytoarchitectonic similarity.  
 

Optimized control weights increase energy asymmetries and track the sensory-

fugal axis of cytoarchitecture 

The preceding sections demonstrated that brain network topology may be optimized to 
facilitate more efficient bottom-up trans-hierarchical state transitions compared to top-
down, and that this effect (i) is not better explained by spatial embedding or lower-order 
topology, (ii) is specific to cytoarchitecture, and (iii) is consistent with asymmetries in 
intrinsic timescales and effective connectivity. Next, we sought to understand whether 
regions’ position along the hierarchy informed their capacity to facilitate trans-
hierarchical state transitions. To achieve this goal, we optimized state transitions by 
introducing a variable set of control weights that minimized transition energy. These 
weights change the relative influence of control assigned to different brain regions, rather 
than assuming that all regions have equal influence. We predicted that optimized weights 
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would maximize energy asymmetries and track the S-F axis. We tested these predictions 
in sequence, starting with the prediction that optimized weights would maximize energy 
asymmetries. For each state transition, we systematically perturbed the system to 
generate a set of control weights that minimized transition energy (Fig. 5A; see Methods). 
Then, upon these minimized transition energies, we recomputed �!". Similar to our 
primary analysis using uniform control weights (see Fig. 2A), we found that bottom-up 
energy was significantly lower than top-down when using optimized control weights (Fig. 

5B; t=6.46, p=9×10-10). However, this asymmetry in energies for optimized weights was 
larger compared to uniform control weights (t=6.46 in Fig. 5B versus t=5.94 in Fig. 2A). 
This finding is consistent with our first prediction. 

To assess whether this difference in asymmetry sizes was robust, we computed 
mean �!" for both uniform and optimized control weights under 500 bootstrapped 
samples (see Methods). Fig. 5C shows that mean �!" was unambiguously larger for 
optimized control weights (mean |�!"|=0.6474; 95% CI=[0.6470, 0.6478]) compared to 
uniform control weights (mean |�!"|=0.6046; 95% CI=[0.6043, 0.6049]), demonstrating 
that the former yielded significantly larger energy asymmetries. Note that optimized 
weights were only designed to minimize transition energy, including both bottom-up and 
top-down energies. Thus, this observed increase in mean |�!"| suggests that our 
optimized control weights minimized bottom-up energy to a greater extent than top-
down. 
 
 

 
Figure 5. Optimized control weights maximize energy asymmetries and track the 

cortical gradient of cytoarchitecture. A, For each trans-hierarchical state transition, 
we adopted the following procedure to generate optimized control weights that 
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minimized transition energy. First, for a given state transition, we calculated uniformly 
weighted transition energy; nodes of the system were provided the same degree of 
control over system dynamics. Note, results for uniformly weighted transition energy 
have been reported in all figures prior to this one. Second, we re-estimated the transition 
energy n times, each time providing one node with additional control over the system. 
This approach generated a vector of perturbed transition energies (purple vector). Third, 
we subtracted the uniformly weighted energy from each of the perturbed energies to 
generate a vector of perturbed energy deltas (blue vector), the magnitude of which 
encoded regions’ importance to the state transition. Fourth, we re-estimated transition 
energy one more time using the perturbed energy deltas as optimized control weights. 
B, Transition energies estimated using optimized control weights. Consistent with results 
observed for uniform control weights (see Fig. 2), here using optimized control weights 
we found that bottom-up energy was significantly lower than top-down energy. C, Mean 
energy asymmetries (|�!"|) for uniform (blue) compared to optimized (peach) control 
weights under 500 bootstraps (see Methods). Mean |�!"| was unambiguously larger for 
optimized control weights (mean |�!"|=0.6474; 95% CI=[0.6470, 0.6478]) compared to 
uniform control weights (mean |�!"|=0.6046; 95% CI=[0.6043, 0.6049]). D, Spatial 
correlations between optimized control weights and the S-F axis of cytoarchitecture 
averaged over state transitions. This average spatial correlation was larger than 
expected under a null network model that preserved spatial embedding and the strength 
distribution of the nodes. 
 
 

Next, we turned to our second prediction, and examined the correlation between 
optimized control weights and the S-F axis (see Methods). Here, any observed 
correlation implies that optimizing control weights uncovers a spatial mode of control 
variation that tracks the gradient of cytoarchitecture. When averaged across state 
transitions, we found that the correlations between optimized control weights and 
cytoarchitecture were |r|=0.23±0.14 (this was true at the level of specific state transitions 
as well; see Fig. S3). Note that we examine and report absolute correlations here as we 
are interested in whether optimized weights couple to the gradient generally (signed 
correlations are reported in Fig. S3). Further, this correlation was significantly larger than 
expected under our spatially informed strength preserving null network model (Fig. 5D; 
and see Fig. S3). Together, these results illustrate that a region’s position along the S-F 
axis explains its role in facilitating trans-hierarchical state transitions, and that imbuing 
our model with knowledge of these roles optimizes the efficiency of bottom-up signal 
propagation across the hierarchy. 
 
Asymmetries in trans-hierarchical state transitions are refined throughout 

development 

Having illustrated that a region’s position along the S-F axis explains its role in facilitating 
state transitions, we next sought to characterize the developmental trajectories of 
transition energies. Based on previous literature, we expected that ongoing 
developmental refinement of structural connectivity would result in age-related changes 
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to bottom-up and top-down energy. To test this expectation, we estimated the 
correlation between participant-specific transition energies and age, while controlling for 
sex, total brain volume, and in-scanner motion (Fig. 6A). Here, energy was estimated 
using participant-specific optimized weights (see Methods and previous section). On 
average, we found that age correlated negatively with both bottom-up (Fig. 6B) and top-
down energy (Fig. 6C), with the latter effect being stronger. These results illustrate that 
the energy asymmetry we observe in our data (see Fig. 2A) may weaken as a function of 
age. In turn, neurodevelopmental refinement of the connectome may involve converging 
toward a balance between bottom-up and top-down signal propagation. We also found 
that the transition-level age effects were negatively correlated with �!" taken from the 
group-average connectome (Fig. 6D). This result demonstrates that state transitions with 
stronger energy asymmetries also showed the strongest age effects. Lastly, using a 
cross-validated penalized regression model (Fig. 6E; see Methods), we found that 
energy asymmetries were able to robustly predict participants’ age in out-of-sample 
testing (Fig. 6F; see also Fig. S4 which shows that optimized energies better predicted 
participants’ age compared to non-optimized energies derived from uniform control 
weights). Consistent with our expectations, these results show that development plays 
a critical role in refining trans-hierarchical transition energies, and that this refinement is 
concentrated in state transitions with divergent cytoarchitecture. 
 
 

 
Figure 6. Energy asymmetries in trans-hierarchical state transitions vary 

systematically over development. We estimated correlations between age and trans-
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hierarchical transition energy in 793 individuals, while controlling for sex, total brain 
volume, and in-scanner motion (see Methods). A, Correlations between age and 
transition energy for all state transitions. We observed widespread negative correlations 
between age and transition energy, suggesting that state transitions became easier to 
complete as individuals got older. B, Correlation between age and average bottom-up 
energy. C, Correlation between age and average top-down energy. We found that while 
both bottom-up and top-down energy reduced as a function of age, the age effect for 
top-down energy was larger than that observed for bottom-up. This result suggests that 
the energy asymmetry between bottom-up and top-down closed throughout youth. D, 
Correlation between state level age effects (from A) and the �!" derived from the group-
averaged structural connectome (see Fig. 2). We found that the size of the age effects 
(Pearson’s r) was negatively correlated with �!", demonstrating that the strongest age 
effects were concentrated in the state transitions with the largest energy asymmetries. 
E, Schematic illustration of a cross-validated regression model that was used to assess 
out-of-sample prediction of participants’ age. F, Results from out-of-sample prediction 
of participants’ age. Energy asymmetries robustly predicted participants’ age in out-of-
sample testing when scored using both the correlation between true and predicted y 
(top, left) and negative root mean square error (bottom, left). Note, these prediction 
effects were replicated when using both a higher resolution version of our parcellation 
that included 400 parcels (Schaefer 400; correlation(ytrue, ypredicted)=0.32; 
negative[RMSE]=-3.14) as well as a 360-parcel multi-modal parcellation developed in 
the Human Connectome Project (correlation(ytrue, ypredicted)=0.31; negative[RMSE]=-3.14). 
Taken together, these results show clearly that asymmetries in trans-hierarchical signal 
propagation and neurodevelopment are intimately intertwined. 
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DISCUSSION 
  
Here, we investigated how the relationship between cytoarchitecture and connectivity 
constrains the dynamics engendered by the structural connectome. Using NCT51,52,62,63, 
we modeled the amount of control energy that was required to propagate linear 
dynamics up and down the S-F axis of cytoarchitecture. We reported several key 
findings. First, we found that the energy required to complete bottom-up state transitions 
was lower compared to their top-down counterparts, indicating that bottom-up 
transitions were easier for our model to complete. Additionally, through a combination 
of null network models and analyses of uncontrolled dynamics, we found that this energy 
asymmetry was underpinned by a network topology that is wired to enable efficient 
bottom-up signaling across the cortical hierarchy. Second, we found that energy 
asymmetries correlated with differences in intrinsic neuronal timescales estimated from 
ECoG as well as asymmetries in effective connectivity estimated from resting-state fMRI. 
The former finding demonstrates that efficient bottom-up signaling across the structural 
connectome is coincident with a lengthening of regions’ temporal receptive windows, 
while the latter shows that our model of dynamics is consistent with those drawn from 
functional data. Third, we found that regions’ position along the S-F axis was correlated 
with their importance in facilitating state transitions, demonstrating that the spatial 
modes of control embedded in our model were coupled to the cortical hierarchy. Finally, 
we found that bottom-up and top-down energy decreased as a function of age in a 
sample of developing youths. Notably, while age correlated negatively with both bottom-
up and top-down energy, effects were more pronounced for top-down—indicating that 
energy asymmetries tended to lessen as a function of development in our sample—and 
reductions were strongest for the state transitions with the largest asymmetries. Overall, 
our results demonstrate that the higher-order topology of the human connectome may 
be wired to support asymmetric signaling across the cortical hierarchy, and that this 
signaling is rooted in the spatial patterning of cytoarchitecture that is itself guiding the 
ongoing refinement of connectivity throughout youth. 
 
Cytoarchitecture shapes the connectome 

Understanding how cytoarchitecture shapes connectivity is a central goal of 
neuroscience64. In humans, recent research has shown a clear link between cortical 
cytoarchitecture and local properties of structural connectivity32,65,66. Using graph theory, 
Wei et al.32 found that several indices of regions’ local network importance correlated 
moderately with regions’ cytoarchitectonic similarity to the rest of the brain, 
demonstrating that regions with similar cytoarchitecture were more strongly, and more 
globally, connected to the rest of the network. Paquola et al.66 defined a regional 
embedding space that fused together edge-level structural connectivity, geodesic 
distance, and cytoarchitectonic similarity5. Paquola et al.66 found that their wiring 
diagram explained variance in regional externopyramidization—which tracks the laminar 
origin of neuronal projections64—supporting the notion that variance in the laminar origin 
of feedback and feedforward connections is intertwined with variance in cytoarchitecture 
and macroscopic connectivity. Our findings extend these prior studies by showing that 
cytoarchitecture shapes not only the local connectivity but also the higher-order 
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topology of the structural connectome. Specifically, our findings suggest that 
cytoarchitecture may constrain the traversal of structural pathways to engender efficient 
bottom-up signal routing over the hierarchy. Thus, it appears that cytoarchitecture not 
only predicts which pairs of regions are connected (i.e., “like connects with like” cf. the 
structural model1–4), but also the spatial embedding of senders and receivers in the 
brain50,67,68. 
 
Energy asymmetries link to changes in intrinsic neuronal timescales and effective 

connectivity 

Recent work has shown that the spatial patterning of regions’ intrinsic neuronal 
timescales correlate with the patterning of the T1w/T2w ratio10, suggesting that the 
brain’s timescale hierarchy reflects its cytoarchitectonic hierarchy. Here, we found that 
the asymmetries in trans-hierarchical state transitions were tightly coupled to differences 
in state-level intrinsic neuronal timescales. Specifically, the easier a bottom-up state was 
to complete (compared to its top-down counterpart) the more the timescale of the target 
state lengthened compared to the initial state. Lengthening timescales are thought to be 
associated with progressive changes to longer temporal receptive windows, which in 
turn is thought to underpin shifts from segregated to integrated functional processing69. 
Thus, our findings show that the topology of the structural connectome may be wired to 
support the progressive integration of lower-order properties of our environment into 
higher-order percepts and cognitions. Our findings also serve as a functional validation 
of our network control model; we observed a positive correlation between energy 
asymmetries and asymmetries in effective connectivity, which is consistent with past 
literature50. Thus, our findings contribute to a growing body of evidence demonstrating 
that asymmetric signal routing is measurable from the topology of the connectome, 
despite being derived from an undirected description of brain connectivity. 
 
Energy asymmetries refine systematically throughout youth 

The effects of development on connectome topology are increasingly well studied42,70–72, 
including with network control theory where the amount of control energy required to 
activate the executive function system (from baseline) has been shown to decrease 
throughout youth73. This observation is consistent with the current study, wherein the 
energy associated with trans-hierarchical state transitions also reduced4 throughout 
youth. Here, we provide a key extension to prior work that deepens our understanding 
of these developmental energy effects; we observed that age effects were (i) stronger for 
top-down compared to bottom-up energy and (ii) concentrated in state transitions with 
the most pronounced energy asymmetries. These findings suggest that maturation 
throughout youth alters the balance between bottom-up and top-down signal 
propagation, refining the connectome towards an equilibrium between the two. This 
interpretation is consistent with a staging account of neurodevelopment that suggests 
that lower-order connections are refined earlier in development compared to their 
higher-order counterparts3,39–41. That is, the energy asymmetry we observed might reflect 
the relatively advanced refinement of lower-order connections that is already well 
underway by 8 years of age (the youngest in our sample). In turn, the stronger age effect 
observed for top-down energy might reflect the relatively delayed onset of refinement of 
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higher-order connections that may be occurring within the age range of our sample. 
Examining how our results present on either side of the age range of the PNC, as well 
as whether it is supported by longitudinal data, will be a critical avenue for future 
research.  
 
Limitations 

Similar to our recent work74, a limitation of this study is the use of a linear model of 
neuronal dynamics to estimate signal propagation across the S-F axis. While this 
assumption is an over-simplification of brain dynamics, linear models explain variance 
in the slow fluctuations in brain activity recorded by fMRI75,76, suggesting that they 
successfully approximate the kinds of data commonly used to examine brain function. 
An additional limitation is the use of a single map of cytoarchitecture to define brain 
states, which precluded us from defining participant-specific states. As mentioned 
above, previous work has shown that the T1w/T2w ratio forms a reasonable proxy of the 
S-F axis of cytoarchitecture that is measurable in vivo5. However, while the PNC includes 
T1-weighted imaging, it does not include T2-weighted imaging53, which prevented us 
from estimating the T1w/T2w ratio in our sample. Replication of our findings using 
participants’ T1w/T2w maps is warranted given well-known individual variability in the 
spatial patterning of cortical structural features. However, this approach must be 
weighed against the fact the T1w/T2w ratio is imperfectly correlated with 
cytoarchitecture. Thus, such replication efforts must consider the trade-off between the 
value of individual variability and the cost of potentially disconnecting from the relevant 
underlying neurobiology (i.e., cytoarchitecture). 
 

Conclusions 

Our results demonstrate that cytoarchitecture may constrain network topology in such a 
way as to induce asymmetries in signal propagation across the cortical hierarchy. 
Specifically, we found that bottom-up trans-hierarchical state transitions were easier to 
complete than their top-down counterparts, that asymmetries correlated with changes 
to neuronal timescales, that control signals tracked the sensory-fugal axis, and that 
asymmetries reduced with age in youth. Collectively, our work highlights that variation 
in the properties of cortical microstructure that govern extrinsic connectivity may guide 
the formation of macroscopic connectome topology. 
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Materials and Methods 

 
Participants 

Participants included 793 individuals from the Philadelphia Neurodevelopmental 
Cohort77,78, a community-based study of brain development in youths aged 8 to 22 
years79,80. The institutional review boards of both the University of Pennsylvania and the 
Children’s Hospital of Philadelphia approved all study procedures. The neuroimaging 
sample of the PNC consists of 1,601 participants77. From this original sample, 156 were 
excluded due to the presence of gross radiological abnormalities distorting brain 
anatomy or due to a medical history that might impact brain function. Next, a further 159 
participants were excluded because they were taking psychoactive medication at the 
time of study. An additional 466 individuals were excluded because they did not pass 
rigorous manual and automated quality assurance for their T1-weighted scan81, their 
diffusion scan82, or their resting-state functional magnetic resonance imaging (rs-fMRI) 
scan83,84. Finally, 27 participants were excluded owing to the presence of disconnected 
regions in their structural connectivity matrix (see section entitled Structural connectome 

construction below). This process left a final sample of 793 participants. 
 
Imaging data acquisition 

MRI data were acquired on a 3 Tesla Siemens Tim Trio scanner with a 32-channel head 
coil at the Hospital of the University of Pennsylvania. Diffusion weighted imaging (DWI) 
scans were acquired via a twice-refocused spin-echo (TRSE) single-shot echo-planar 
imaging (EPI) sequence (TR=8100 ms, TE=82 ms, FOV=240mm2/240mm2; Matrix=RL: 
128, AP: 128, Slices: 70, in-plane resolution of 1.875 mm2; slice thickness=2 mm, gap=0; 
flip angle=90°/180°/180°, 71 volumes, GRAPPA factor=3, bandwidth=2170 Hz/pixel, PE 
direction=AP). The sequence utilized a four-lobed diffusion encoding gradient scheme 
combined with a 90-180-180 spin-echo sequence designed to minimize eddy-current 
artifacts53. The sequence consisted of 64 diffusion-weighted directions with b=1000 
s/mm2 and 7 interspersed scans where b=0 s/mm2. The imaging volume was prescribed 
in axial orientation and covered the entire brain. 

In addition to the DWI scan, a B0 map of the main magnetic field was derived 
from a double-echo, gradient-recalled echo (GRE) sequence, allowing for the estimation 
and correction of field distortions. Prior to DWI acquisition, a 5-min magnetization-
prepared, rapid acquisition gradient-echo T1-weighted (MPRAGE) image (TR=1810 ms, 
TE=3.51 ms, FOV=180 x 240 mm, matrix 256 x 192, effective voxel resolution of 0.94 x 
0.94 x 1 mm) was acquired for each participant. 

Finally, approximately 6 minutes of rs-fMRI data was acquired using a blood 
oxygen level-dependent (BOLD-weighted) sequence (TR=3000 ms; TE=32 ms; FoV=192 
x 192 mm; resolution 3 mm isotropic; 124 volumes). These data were used primarily to 
generate the principal cortical gradient of functional connectivity discussed in the main 
text12 (see section entitled Principal gradient of functional connectivity below). 
 
Imaging data quality control 

All DWI and T1-weighted images underwent rigorous quality control by highly trained 
image analysts (see Roalf et al. (2016) and Rosen et al. (2018) for details on DTI and T1-
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weighted imaging, respectively). Regarding the DWI acquisition, all 71 volumes were 
visually inspected and evaluated for the presence of artifacts. Every volume with an 
artifact was marked as contaminated and the fraction of contaminated volumes was 
taken as an index of scan quality. Scans were marked as ‘poor’ if more than 20% of 
volumes were contaminated, ‘good’ if more than 0% but less than 20% of volumes were 
contaminated, and ‘great’ if 0% of volumes were contaminated. Regarding the T1-
weighted acquisition, images with gross artifacts were considered ‘unusable’; images 
with some artifacts were flagged as ‘usable’; and images free of artifact were marked as 
‘superior’. As mentioned above in the section entitled Participants, 466 individuals were 
removed due to quality. Of these, 318 individuals were removed due to either ‘poor’ 
DWIs or ‘unusable’ T1-weighted images. In the final sample of 793 participants, a total 
of 535 participants had diffusion tensor images identified as ‘great’, with the remaining 
identified as ‘good’, and 701 participants had T1-weighted images identified as 
‘superior’, with the remaining identified as ‘usable’. Regarding the rs-fMRI data, as in 
prior work83,84, the remaining 148 of 466 excluded participants were removed either 
because their mean relative root mean square (RMS) framewise displacement was higher 
than 0.2 mm or their scan included more than 20 frames with motion exceeding 0.25 
mm. 
 
Structural image processing 

Structural image processing was carried out using tools included in ANTs85. The 
buildtemplateparallel pipeline from ANTs86 was used to create a study-specific T1-
weighted structural template with 120 participants that were balanced on sex, race, and 
age. Structural images were processed in participants’ native space using the following 
procedure: brain extraction, N4 bias field correction87, Atropos tissue segmentation88, 
and SyN diffeomorphic registration86,89. 
 
Diffusion image processing 
For each participant, a binary mask was created by registering the standard fractional 
anisotropy mask provided by FSL (FMRIB58 FA) to the participant’s mean b=0 reference 
image using FLIRT90. To correct for eddy currents and head motion, this mask and the 
participant’s diffusion acquisition was passed to FSL’s eddy91 (version 5.0.5). Diffusion 
gradient vectors were subsequently rotated to adjust for the motion estimated by eddy. 
Distortion correction was conducted via FSL’s FUGUE92 using the participant’s field 
map, estimated from the B0 map. 
 

rs-fMRI processing 

State-of-the-art processing of functional data is critical for valid inference93. Thus, 
functional images were processed using a top-performing preprocessing pipeline 
implemented using the eXtensible Connectivity Pipeline (XCP) Engine83, which includes 
tools from FSL92,94 and AFNI95. This pipeline included (1) correction for distortions 
induced by magnetic field inhomogeneity using FSL’s FUGUE utility, (2) removal of 4 
initial volumes, (3) realignment of all volumes to a selected reference volume using FSL’s 
MCFLIRT, (4) interpolation of intensity outliers in each voxel’s time series using AFNI’s 
3dDespike utility, (5) demeaning and removal of any linear or quadratic trends, and (6) 
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co-registration of functional data to the high-resolution structural image using boundary-
based registration. Images were de-noised using a 36-parameter confound regression 
model that has been shown to minimize associations with motion artifact while retaining 
signals of interest in distinct sub-networks83,96. This model included the six framewise 
estimates of motion, the mean signal extracted from eroded white matter and 
cerebrospinal fluid compartments, the mean signal extracted from the entire brain, the 
derivatives of each of these nine parameters, and quadratic terms of each of the nine 
parameters and their derivatives. Both the BOLD-weighted time series and the artifactual 
model time series were temporally filtered using a first-order Butterworth filter with a 
passband of 0.01–0.08 Hz97. 
 
Imaging-derived nuisance covariates 

In our analyses of individual differences, we used total brain volume and mean in-
scanner motion as imaging-derived nuisance covariates. Total brain volume was 
generated from the T1-weighted images using ANTs. In-scanner head motion was 
estimated for each participant from their DWI sequence as relative framewise 
displacement82. Specifically, rigid-body motion correction was applied to the seven high 
quality b=0 images interspersed throughout the diffusion acquisition. Once estimated, 
framewise displacement was averaged across time to create a single measure for each 
participant. 
 
Structural connectome construction 
For each participant, whole-brain deterministic fiber tracking was conducted using DSI 
Studio98 with a modified fiber assessment by continuous tracking (FACT) algorithm with 
Euler interpolation. A total of 1,000,000 streamlines were generated for each participant 
that were between 10mm and 400mm long. Fiber tracking was performed with an 
angular threshold of 45° and step size of 0.9375 mm. Next, following our previous work74, 
the number of streamlines intersecting region � and region � in a 200-parcel cortical 
parcellation99 was used to weight the edges of an undirected adjacency matrix, � (see 
Fig. S5 for sensitivity analyses covering different parcellation resolutions and definitions). 
Note that �'( = 0 for � = �. This process yielded 793 subject-specific � matrices that 

were used in subject-level analyses reported in the main text (i.e., Fig. 6). Our primary 
analyses, however, were based on a group-averaged � matrix. To obtain this � matrix, 
we averaged over the entries of the individuals’ � matrices and thresholded using an 
edge consistency-based approach100. Specifically, edges in the group-averaged � matrix 
were only retained if non-zero edge weights were present in at least 60% of participants’ 
� matrices101. If not, edges were set to zero. This process yielded a group-averaged 
structural connectome with a sparsity value of approximately 8%. This group-averaged 
structural connectome was used for analyses reported in Figs. 2, 3, 4, and 5. See Fig. 

S6 for sensitivity analyses spanning a range of consistency thresholds and 
corresponding sparsity values. 
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Trans-hierarchical state transitions 

 
Cortical hierarchies 

Below we describe two views of the cortical hierarchy that were used in the present 
study to examine trans-hierarchical state transitions. 
 
Sensory-fugal axis of cytoarchitecture 
We primarily characterized the cortical hierarchy using the gradient of cytoarchitectonic 
similarity developed in previous work5,66 and disseminated as part of the BigBrainWarp 
toolbox6. Specifically, from BigBrainWarp, we retrieved the histological gradient (‘Hist-
G2’) corresponding to the sensory-fugal (S-F) axis of cytoarchitecture stored in fsaverage 
space. Next, we averaged over the vertex values within each of our 200 cortical parcels 
(see section entitled Structural connectome construction above). This process resulted 
in a 200 × 1 vector describing regions’ positions along the S-F axis of cytoarchitectonic 
similarity. 
 

Principal gradient of functional connectivity  

As stated above and in the main text, our primary constituent of the cortical hierarchy 
was the S-F axis of cytoarchitectonic similarity. To test the specificity of our primary 
results, we also examined another view of the cortical hierarchy: the principal gradient 
of functional connectivity12. This gradient situates unimodal sensorimotor cortex at one 
end and transmodal association cortex at the other. Conceptually, this approach 
amounts to a dimensionality reduction technique that positions regions with similar 
functional connectivity profiles near to one another, and positions regions with dissimilar 
functional connectivity profiles distant from one another. Here, as in our previous work74, 
we generated this gradient using whole-brain resting-state functional connectivity 
obtained from the PNC data (see section entitled rs-fMRI processing above). Specifically, 
for each participant, processed rs-fMRI timeseries were averaged regionally and a 
Pearson correlation coefficient was estimated between each pair of regional timeseries 
to generate a functional connectome. Correlation coefficients were normalized using 
Fisher’s r-to-z transform, and then connectomes were averaged over participants. The 
principal gradient of functional connectivity was generated from this group-average 
functional connectome using a diffusion map embedding implemented in the BrainSpace 
toolbox102. We selected the first gradient output from this approach, which was closely 
aligned to that observed previously12. Note that this gradient is the same as that reported 
in our previous work74. This process resulted in a 200 × 1 vector that describes regions’ 
positions along the unimodal-to-transmodal (U-T) axis of functional connectivity. 
 
Hierarchical brain states 

As discussed in the main text and illustrated in Fig. 1, we divided our 200 × 1 S-F axis 
of cytoarchitecture—as well as the U-T axis of functional connectivity—into 20 evenly 
sized (n=10) and non-overlapping sets of brain regions that traversed up the cortical 
hierarchy. This procedure yielded 20 groups of cortical regions that differed based on 
their position along the S-F (U-T) axis. Thus, regions within each group had similar 
profiles of cytoarchitecture (functional connectivity) while regions between groups had 
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dissimilar profiles of cytoarchitecture (functional connectivity). Moreover, this 
dissimilarity increased with greater distance between pairs of groups along the S-F (U-
T) axis. These 20 groups of regions formed the brain states that we used in the network 
control theory analysis (see section entitled Network control theory below), thus allowing 
us to model transitions between states moving up and down the cortical hierarchy. See 
Fig. S7 for sensitivity analyses covering different set sizes for brain states. 
 
Network control theory 

To model trans-hierarchical state transitions, we employed tools from network control 
theory51,52,62,63. Given an � matrix as input (either group-averaged or individual; see 
section entitled Structural connectome construction above), we first apply the following 
normalization: 
 
 

� = 	
�

�(�))*+ + �
	2 �. Eq. 1 

 
Here, �(�))*+ is the largest eigenvalue of �, � = 1 to ensure system stability, and � 
denotes the identity matrix of size � × �. In our analyses, � is equal to the number of 
brain regions, which is 200. Within this normalized � matrix, we allow each node of the 
network to carry a real value representing that node’s activity. These values are 
represented in � and collectively describe the pattern of whole-brain activity as it 
changes over time. Next, we use a simplified noise-free linear continuous-time and time-
invariant model of network dynamics: 
 
 �� = ��(�) + �,�,(�), Eq. 2 

 
where �(�) is a � × 1 vector that represents the state of the system at time �. The matrix 
�, identifies the control input weights, which by default we set to the � × � identity 
matrix to compute unweighted energy (see section entitled Minimizing transition energy 

through optimized control weights below for the weighted case). 
 

Given this model of the dynamics, we compute the control inputs, �,(�), that drive 
the system from some initial state, �-, to some target state, �7, in a finite amount of time 
� = 1	. Here, initial and target states were constructed using the 20 non-overlapping 
groups of 10 brain regions spanning the S-F axis (see above section entitled Hierarchical 

brain states). That is, each initial or target state was defined as an � × 1 vector within 
which 10 elements that represented cytoarchitecturally similar areas contained a 1, and 
the remaining elements contained a 0. Among the many possible inputs, we chose the 
minimum energy51,103 input which minimizes a quadratic cost on the inputs, such that 
 
 �)'/ = min + �,

#(�)�,(�)��
0

-
, Eq. 3 

 
subject to Eq. 2. To compute the minimum energy, we construct a useful mathematical 
object called the controllability Gramian, given by 
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 �1 = + ��$��#��

!$��
0

-
, Eq. 4 

 
where ��$ is the time-dependent matrix exponential of the matrix �, and is also the 
impulse response of the system that governs the natural evolution of system dynamics. 
Then, the minimum energy is given by 
 
 �)'/ = (��$�- 2 �7)#�1

3&(��$�- 2 �7). Eq. 5 

 
Intuitively, the quantity in the parentheses measures the difference between the natural 
evolution of the system from the initial condition, ��$�-, and the target state, �7. This 
difference is precisely the difference for which the control input �,(�) needs to 
compensate, and the projection of this difference onto �1

3& yields the minimum energy 
for providing such compensation52. 
 
Transition energy and energy asymmetries 

We used the above derivation of minimum control energy to compute a � × � transition 
energy matrix, �!. Elements of �! quantified the energy (�) required to transition between 
all possible pairs of � = 20 brain states, where brain states were based on the subsets 
of regions sampled along the S-F axis of cytoarchitecture outlined above (see section 
entitled Cortical hierarchies). As mentioned in the main text and above, the hierarchically 
ordered nature of our brain states endowed �! with a distinction between transitions 
moving up the hierarchy (bottom-up energy) from those moving down the hierarchy (top-
down energy). Further, these bottom-up and top-down transition energies were naturally 
compartmentalized into the upper and lower triangles of �!, respectively. Hence, 
asymmetries between bottom-up and top-down energy for all state pairs were calculated 
as �!" =	�! 2 �!

#. Note that unlike �!, �!" is symmetrical; thus, only the upper triangle 
was carried forward for asymmetry analysis. 
 
Null network models 

In Fig. 2B in the main text, we showed that �!" was negatively correlated with the 
distance that separated states along the hierarchy. We compared this empirically 
observed correlation with hierarchy distance to those expected under two spatially 
embedded null models54. Alongside preserving the spatial embedding of network nodes, 
these null models randomly rewired the network while preserving either the edge 
distribution or the strength distribution of the network. For each of these null models, we 
produced 5,000 rewired networks derived from the group-averaged structural 
connectome (see section entitled Structural connectome construction above) using 
publicly available code (https://github.com/breakspear/geomsurr). Then, to generate an 
empirical null distribution, upon each rewired network we recomputed �!, �!", and the 
corresponding hierarchy distance correlation with �!". Finally, p-values were estimated 
as the probability that the magnitude of the observed distance correlation occurred 
under a given null. 
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Uncontrolled dynamics 
In addition to examining the energy required to complete state transitions between 
specific state-pairs, we also examined how uncontrolled dynamics spread naturally 
across the cortex from each of our cytoarchitectonic brain states. Specifically, for each 
brain state, we set the constituent regions’ activity to 1 and all other regions’ activity to 
0. Then, we allowed the activity to diffuse in an uncontrolled manner along the networks’ 
edges over time according to �� = ��(�); this approach stands in contrast to the 
approach that we have discussed thus far of forcing activity to flow from one state to 
another via a set of control signals. As mentioned in the main text, we analyzed these 
natural dynamics in two ways. First, for each seed brain state and time point, �, we 
correlated the pattern of simulated activity at each node with the sensory-fugal axis of 
cytoarchitecture. Note that this correlation was computed excluding the regions that 
made up a given seed state (i.e., where activity was propagating from). Thus, correlations 
were not driven by activity leaving a given brain state, but rather only reflected where in 
the brain that activity flowed to. Results of this analysis are shown in Fig. 3B and 3C.  

Second, we averaged activity over regions within each brain state, creating a 
20 × � matrix of state-averaged activity over time (see Fig. 3D for examples). We 
repeated this process using each brain state to seed activity to create a 20 × 20 × � 
activity matrix, where the first dimension denoted the brain state from which activity was 
seeded and where dimensions two and three stored how activity spread to all other brain 
states over time (including the seed state itself). Next, for each seed state, we estimated 
the correlation between the position along the S-F axis of the remaining brain states and 
the point in time when activity peaked within those states. Thus, a positive correlation 
indicated that activity propagated up the hierarchy from a given seed state while a 
negative correlation indicated that activity propagated down the hierarchy (see Fig. 3E). 
Lastly, we compared the magnitude of these correlations between pairs of seed brain 
states using 1,000 bootstrapped versions of our group-averaged structural connectome. 
Specifically, we reproduced our group-averaged structural connectome for each of 
1,000 bootstrapped samples of our 793 participant connectomes. Then, using these 
1,000 bootstrapped connectomes, we re-simulated the spread of uncontrolled dynamics 
and re-estimated the propagation correlations. This procedure allowed us to estimate 
95% confidence intervals for the magnitude of the observed propagation correlations, 
which in turn allowed us to compare their size (see Fig. 3F). 
 

Intrinsic neuronal timescales 

As mentioned in the main text, we sought to validate our transition energy analysis in 
functional data using intrinsic neuronal timescales derived from electrocorticography 
(ECoG) data. Thus, we compared energy asymmetries from our NCT analysis with 
differences between brain states’ intrinsic timescales. Following previous work10, we 
estimated regions’ intrinsic timescales using the time constant (�) of an exponential 
decay function fitted to the autocorrelation function of ECoG timeseries. Specifically, we 
downloaded sensor-level � data processed by Gao et al. (https://github.com/rdgao/field-
echos/data/df_human.csv) and, using the provided MNI coordinates, matched each 
sensor to our parcellation (200 Schaefer parcels); matching was done by finding the 
smallest Euclidean distance between each sensor and the centroid of each parcel. We 
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then averaged � over sensors within each parcel as well as over regions within each 
cytoarchitectonic brain state. This process generated state-level � values that were then 
subtracted to produce �", a matrix of change in � between all pairs of brain states. 
 

Effective connectivity 
As mentioned in the main text, we sought to validate our transition energy analysis in 
functional data using effective connectivity derived from rs-fMRI data. Thus, we 
compared energy asymmetries from our NCT analysis with asymmetries in effective 
connectivity. As per our previous work104, effective connectivity was estimated using a 
spectral version of dynamic causal modeling (spDCM)60,61 implemented in SPM12 r7765 
(Wellcome Trust Centre for Neuroimaging, London, UK). To generate timeseries for 
modeling effectivity connectivity, we first averaged participants’ processed rs-fMRI data 
across the regions that comprised each cytoarchitectonic brain state. This process 
yielded one timeseries of 120 volumes per subject per brain state. Next, owing to the 
low number of volumes in our rs-fMRI acquisition, we deployed an averaging and 
concatenation approach that yielded a single group-averaged timeseries of 1200 
volumes for each brain state. This process proceeded as follows. First, we randomly 
excluded 3 participants from our sample to retain 790 participants. Second, we divided 
our sample of 790 participants into 10 equally sized groups (n=79) and averaged the 
state-level rs-fMRI timeseries across participants within each group separately. Finally, 
we concatenated these group-averaged timeseries end-to-end across the 10 groups. 
This process yielded resting-state timeseries for each brain state with 1200 volumes that 
represented averages over distinct subsets of participants taken from our sample. These 
timeseries were used as inputs to the spDCM algorithm, together with a fully connected 
model of coupling strengths, enabling the estimation of effective connectivity between 
all cytoarchitectonic brain states spanning the S-F axis. As per our primary analysis of 
transition energies, effective connectivity estimates were trivially grouped into bottom-
up and top-down, and were then subtracted to create an effective connectivity 
asymmetry matrix. 
 
Minimizing transition energy through optimized control weights 

Our primary analyses involved examining uniformly weighted transition energies, where 
all nodes of the dynamical system were assigned control weights equal to 1 (i.e., setting 
the diagonal entries of �, in Eq. 2 to the � × � identity matrix). This uniform weighting 
meant that all brain regions were endowed with the same degree of control over all � × � 
state transitions. However, as discussed in the main text (see section entitled Optimized 

control weights increase energy asymmetries and track the sensory-fugal axis of 

cytoarchitecture), we were also interested in examining regional variation in facilitating 
trans-hierarchical state transitions. 

To achieve this goal, we systematically perturbed each region’s degree of control 
over the system and measured the corresponding change in transition energies. 
Specifically, for each brain region, �, we recomputed �! after adding a constant amount 
of additional control to the corresponding diagonal element of �, (the remaining diagonal 
entries were left equal to 1). This process generated a � × � × 200 matrix of perturbed 
transition energies, �!. Next, for each perturbed region (dimension 3 of �!), we 
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subtracted the perturbed transition energies from the uniformly weighted energies (�!) 
to create �!", a � × � × 200 matrix of perturbed transition energy deltas. For each state 
transition, this subtraction yielded a 200 × 1 vector that quantified how perturbing each 
node of the system one at a time—by a constant arbitrary amount—impacted transition 
energy. Note that increasing the influence of a single node’s control necessarily reduces 
energy; the task of completing a state transition is easier for the model when any node 
in �, is granted a greater degree of control over the system, leading to lower energy. 
Accordingly, all values in �!"	were positive and the magnitude of these deltas encoded 
the relative importance of each region to completing a specific state transition, with 
regions with larger deltas being more important.  

To assess correspondence with the S-F axis, we calculated the Spearman rank 
correlation between perturbed deltas for each state transition and the gradient of 
cytoarchitecture (see Fig. S3). Next, we re-estimated �! (and �!") one more time using 
each state transition’s vector of perturbed deltas as optimized control weights. This 
process yielded optimized trans-hierarchical transition energies and optimized energy 
asymmetries. Finally, to assess whether the size of the mean �!" was significantly 
different for optimized weights compared to uniform weights, we derived �!" for both 
weight sets using bootstrapped group-averaged connectomes (see section entitled 
Uncontrolled dynamics above) and assigned 95% confidence intervals to the mean �!". 
 
Age effects 

As mentioned in the main text, we sought to link subject-specific energy asymmetries 
with age to examine developmental effects. To achieve this goal, we derived �! (and �!") 
from each participant’s � matrix (see section entitled Structural connectome 

construction above) using optimized control weights. Note that the process of computing 
optimized transition energies was performed on a subject-specific basis using subject-
specific optimized control weights; this was done by applying the above perturbation 
procedure (see section entitled Minimizing transition energy through optimized control 

weights) to each participant’s � matrix separately (see Fig. S8 for correlations between 
subject-specific optimized weights and the gradient of cytoarchitecture). Next, for each 
state transition, we calculated the Pearson’s correlation between �! and age, while 
controlling for sex, total brain volume, and in-scanner motion (see section entitled 
Imaging-derived nuisance covariates above). We repeated this process for average 
bottom-up and top-down energy, where energy was averaged over the upper and lower 
triangles of each participant’s �! matrix, respectively. 
 In addition to estimating within-sample age effects, we also sought to test 
whether energy asymmetries could be used to predict participants’ ages in out-of-
sample testing. To achieve this, we assembled the upper triangle of each subject’s �!" 
matrix into a 793 × 190 feature table,	 �. To ensure normality, columns of � were 
normalized using an inverse normal transformation105,106. Then, we used a cross-
validated ridge regression model implemented in scikit-learn107 with default parameters 
(a = 1) to predict participants’ ages (�). Specifically, we assessed out-of-sample 
prediction performance using 10-fold cross-validation scored by root mean squared 
error (RMSE) and by the correlation between the true � and predicted �. Note, as per 
scikit-learn defaults, to standardize the interpretation of both scoring metrics as higher 
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scores represent better performance, we flipped the sign for RMSE and examined 
negative RMSE.  

Models were trained using all columns of � as input features and scoring metrics 
were each averaged across folds. As above, we included sex, total brain volume, and in-
scanner motion as nuisance covariates. Nuisance covariates were controlled for by 
regressing their effect out of � before predicting �. Within each fold, nuisance covariates 
were fit to the training data and applied to the test data to prevent leakage. 
Subsequently, we applied principal component analysis (PCA) to reduce the 
dimensionality of �, retaining enough PCs to explain 80% of the variance in the data. 
Finally, owing to evidence that prediction performance can be biased by the arbitrariness 
of a single split of the data108, we repeated 10-fold cross-validation 100 times, each time 
with a different random 10-fold split. This process yielded a distribution of 100 mean 
negative RMSE values and 100 mean correlations between true � and predicted �. 
  Our above prediction model generated robust estimates of prediction 
performance, but it did not examine whether prediction performance was itself 
significant. To test whether prediction performance was better than chance, we 
compared point estimates of each of our scoring metrics—taken as the mean over the 
100 values—to the distribution of values obtained from permuted data. Specifically, we 
subjected the point estimates of our scoring metrics to 5,000 random permutations, 
wherein the rows (i.e., participants) of � were randomly shuffled. The associated p-values 
were assigned as the proportion of permuted scores that were greater than or equal to 
our true scores. 
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Citation diversity statement: 

Recent work in several fields of science has identified a bias in citation practices such 
that papers from women and other minority scholars are under-cited relative to the 
number of such papers in the field109–117. Here we sought to proactively consider 
choosing references that reflect the diversity of the field in thought, form of contribution, 
gender, race, ethnicity, and other factors. First, we obtained the predicted gender of the 
first and last author of each reference by using databases that store the probability of a 
first name being carried by a woman113,118. By this measure (and excluding self-citations 
to the first and last authors of our current paper), our references contain 7.82% 
woman(first)/woman(last), 12.25% man/woman, 16.98% woman/man, and 62.95% 
man/man. This method is limited in that a) names, pronouns, and social media profiles 
used to construct the databases may not, in every case, be indicative of gender identity 
and b) it cannot account for intersex, non-binary, or transgender people. Second, we 
obtained predicted racial/ethnic category of the first and last author of each reference 
by databases that store the probability of a first and last name being carried by an author 
of color119,120. By this measure (and excluding self-citations), our references contain 
6.03% author of color (first)/author of color(last), 19.77% white author/author of color, 
20.93% author of color/white author, and 53.27% white author/white author. This 
method is limited in that a) names and Florida Voter Data to make the predictions may 
not be indicative of racial/ethnic identity, and b) it cannot account for Indigenous and 
mixed-race authors, or those who may face differential biases due to the ambiguous 
racialization or ethnicization of their names.  We look forward to future work that could 
help us to better understand how to support equitable practices in science. 
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Figure S1. Counterpart to Figure 2 using the principal gradient of functional 

connectivity (Margulies et al., 2016) to define brain states instead of the sensory-

fugal axis of cytoarchitecture (Paquola et al., 2019). A, No significant differences 

between bottom-up and top-down energy were observed when the principal gradient of 

functional connectivity was used to define brain states. B, The distance along the 

functional connectivity gradient separating initial and target states was not significantly 

correlated with energy asymmetry. 
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Figure S2. Energy asymmetries correlate with asymmetries in effective connectivity 

measured from resting-state functional magnetic resonance imaging. A, We used 

resting-state functional magnetic resonance imaging to examine asymmetries in 

effective connectivity (estimated using dynamic causal modeling) between our 

cytoarchitectonic brain states (see Methods). B, Energy asymmetries between brain 

states correlated positively with asymmetries in effective connectivity between brain 

states. This result shows that for state transitions where bottom-up transition energy was 

lower than top-down (negative energy asymmetry) the same was true for effective 

connectivity and vice versa.  
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Figure S3. Significant correlations between the sensory-fugal axis of 

cytoarchitecture and optimized control weights for each state transition. Optimized 

control weights correlated positively with the cortical hierarchy of cytoarchitecture, 

indicating that regions higher on the hierarchy were more important for control. The p-

values for correlations were estimated using a null network model that preserved the 

spatial embedding of brain region as well as the strength distribution. The p-values were 

corrected for multiple comparisons using the Benjamini-Hochberg False Discovery Rate 

(Benjamini & Hochberg, 1995). Significance was determined as pFDR<0.05. 
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Figure S4. Optimized energy asymmetries improve the out-of-sample prediction of 

participants’ age. A cross-validated out-of-sample regression model revealed that 

optimized energy asymmetries (peach) better predicted participants’ age compared to 

uniform control weights (blue). Out-of-sample prediction was scored using both negative 

root mean square error (left) and the correlation between true and predicted y (right). For 

the latter, mean prediction performance (gray horizontal lines) was significantly higher 

for optimized compared to uniformly weighted energy asymmetries (p=2×10-2). For the 

former, mean prediction performance was higher for optimized compared to uniformly 

weighted energy asymmetries but this effect was only marginally significant (p=6×10-2). 

Additionally, all mean prediction performance estimates were significantly higher than 

expected under their respective empirical nulls.  
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Figure S5. Sensitivity analysis, connectome parcellation. In the main text, we 

reported network control theory results that were modeled on a connectome built from 

a parcellation with 200 regions (Schaefer et al., 2018). Here, we examined whether our 

primary findings were robust to our choice of parcellation by reproducing results from 

Figure 2 twice, once using a higher resolution version of the same parcellation (Schaefer 

400, left) and once using a parcellation with 360 regions defined according to different 

criteria (Glasser 360, right) (Glasser et al., 2016). For both Schaefer 400 and Glasser 360, 

we observed that bottom-up energy was significantly lower than top-down energy and 

that hierarchical distance correlated negatively with energy asymmetry. However, we 

found that the distance correlation was weaker for both Schaefer 400 and Glasser 360 

(compared to the original parcellation, Schaefer 200), suggesting that this effect may be 

somewhat scale/parcellation dependent. 
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Figure S6. Sensitivity analysis, connectome sparsity. In the main text, we reported 

network control theory results derived from a group-averaged connectome that was 

thresholded to retain edges that were present in at least 60% of participants. This 

thresholding yielded a connectome with 8% sparsity. Here, we examined whether our 

primary findings were robust to that choice by reproducing results from Figure 2 at a 

range of consistency thresholds (40%, 50%, 70%, and 80%). We observed that our 

results were highly consistent across this range of thresholds. 
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Figure S7. Sensitivity analysis, number of regions per brain state. In the main text, 

we reported network control theory results for transitions between 20 cytoarchitectonic 

brain states, each comprising 10 regions. Here, we examined whether our primary 

findings were robust to that choice by reproducing results from Figure 2 twice, once 

incrementing and once decrementing the size of brain states by one region. For both 

brain states of sizes 9 and 11, we observed that bottom-up energy was significantly 

lower than top-down energy and that hierarchical distance correlated negatively with 

energy asymmetry. However, we found that the distance correlation was weaker for state 

sizes 9 and 11 (compared to the original size of 10), suggesting that this effect may be 

somewhat scale dependent. 
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Figure S8. Distributions of correlations between subject-specific optimized 

weights and the sensory-fugal axis of cytoarchitecture. For each subject, optimized 

control weights were generated for each state transition (see main text) and correlated 

with the sensory-fugal axis of cytoarchitecture. Then, for each subject, correlations were 

averaged over all state transitions yielding a single correlation per subject; these 

summary correlations are plotted here. 
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