bioRxiv preprint doi: https://doi.org/10.1101/2022.05.11.491518; this version posted January 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Title
Vast heterogeneity in cytoplasmic diffusion rates revealed by nanorheology and Doppelginger
simulations

Short title
Cytoplasmic Diffusion is Heterogenous

Authors
Rikki M. Garner">**4, Arthur T. Molines**", Julie A. Theriot"***, and Fred Chang>*#

1. Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA

2. Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle,
WA, USA

3. Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA,
USA

4. Marine Biological Laboratory, Woods Hole, MA 02543, USA

&. Current address: Harvard Medical School, Department of Systems Biology, Boston MA 02115

*. Authors had equal contributions to the work.

#. Authors had equal contributions to the work.

Corresponding authors: rikkimgarner @ gmail.com (R.M.G.), a.t.molines @ gmail.com (A.T.M.)
Keywords

Biological noise, diffusion, cytoplasm, viscosity, rheology, particle tracking, fission yeast
Schizosaccharomyces pombe, simulations


https://doi.org/10.1101/2022.05.11.491518
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.11.491518; this version posted January 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Graphical abstract

Freq.

log (Intracellular diffusivity)

log (Average cell diffusivity)

‘Vacuole - High local viscosity . Low local viscosity \g GEM diffusion ¥ GEM nanoparticle


https://doi.org/10.1101/2022.05.11.491518
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.11.491518; this version posted January 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Abstract

The cytoplasm is a complex, crowded, actively-driven environment whose biophysical characteristics
modulate critical cellular processes such as cytoskeletal dynamics, phase separation, and stem-cell fate.
Little is known about the variance in these cytoplasmic properties. Here, we employed particle-tracking
nanorheology on genetically encoded multimeric 40-nm nanoparticles (GEMs) to measure diffusion
within the cytoplasm of the fission yeast Schizosaccharomyces pombe. We found that the apparent
diffusion coefficients of individual GEM particles varied over a 400-fold range, while the differences
in average particle diffusivity among individual cells spanned a 10-fold range. To determine the origin
of this heterogeneity, we developed a Doppelgidnger Simulation approach that uses stochastic
simulations of GEM diffusion that replicate the experimental statistics on a particle-by-particle basis,
such that each experimental track and cell had a one-to-one correspondence with their simulated
counterpart. These simulations showed that the large intra- and inter-cellular variations in diffusivity
could not be explained by experimental variability but could only be reproduced with stochastic models
that assume a wide intra- and inter-cellular variation in cytoplasmic viscosity. The simulation
combining intra- and inter-cellular variation in viscosity also predicted weak non-ergodicity in GEM
diffusion, consistent with the experimental data. To probe the origin of this variation, we found that the
variance in GEM diffusivity was largely independent of factors such as temperature, cytoskeletal
effects, cell cycle stage and spatial locations, but was magnified by hyperosmotic shocks. Taken
together, our results provide a striking demonstration that the cytoplasm is not “well-mixed” but
represents a highly heterogeneous environment in which subcellular components at the 40-nm size-
scale experience dramatically different effective viscosities within an individual cell, as well as in
different cells in a genetically identical population. These findings carry significant implications for the
origins and regulation of biological noise at cellular and subcellular levels.

Significance

Biophysical properties of the cytoplasm influence many cellular processes, from differentiation to
cytoskeletal dynamics, yet little is known about how tightly cells control these properties. We developed
a combined experimental and computational approach to analyze cytoplasmic heterogeneity through
the lens of diffusion. We find that the apparent cytoplasmic viscosity varies tremendously — over 100-
fold within any individual cell, and over 10-fold among individual cells when comparing averages of
all particles measured for each cell. The variance was largely independent of temperature, the
cytoskeleton, cell cycle stage, and localization, but was magnified under hyperosmotic shock. This
suggests that cytoplasmic heterogeneity contributes substantially to biological variability within and
between cells, and has significant implications for any cellular process that depends on diffusion.
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Main Text
Introduction

Life at the molecular scale is stochastic, with macromolecules continually being jostled by
Brownian motion. This emergence of “biological noise” at the molecular level permeates all aspects of
cell biology, inducing stochastic fluctuations in subcellular processes and driving natural variation
among cells in a population. Previous work has outlined critical roles for biological noise in signaling
(1), cell size control (2—4), organelle size scaling (5-7), and gene expression (8—11). In general,
biological noise presents a challenge to cellular homeostasis and signaling mechanisms, and is often
suppressed in order for biological functions to be robust. For example, signaling frequently depends on
strong amplification of initially weak signals, which can erroneously amplify noise unless proofreading
mechanisms are in place (1). However, biological noise can also confer a selective advantage. In a
fluctuating and unpredictable environment, biological variation between cells in an isogenic population
can ensure population-level survival (12, 13).

One potentially significant source of biological noise that has been largely ignored is that of
heterogeneity in the cell cytoplasm. The cytoplasm is composed of a highly diverse and actively-mixed
assembly of resident macromolecules of various size (14, 15), charge (15), and hydrophobicity (16).
The complexity of the cytoplasmic milieu could influence molecules' behavior locally. Indeed,
spatiotemporal heterogeneity in the diffusion of particles has been observed in multiple contexts such
as E. coli, fungi, mammalian cells and even Xenopus egg extract using methods ranging from
fluorescence correlation spectroscopy (FCS) to particle tracking (17-31).

Heterogeneity of cytoplasmic properties have potentially far-reaching effects in cell biology, as
the cytoplasm hosts a wide variety of critical molecular processes ranging from protein synthesis and
turnover, to cytoskeletal transport and force production, metabolism, and beyond (32, 33). Further,
changes to physical cytoplasmic properties such as the macromolecular density, viscosity, and degree
of crowding have been shown to impart widespread effects within the cell—including sudden and
significant impacts on growth and viability (34, 35). For example, altering cytoplasmic crowding by
changing the concentration of ribosomes has strong effects on phase separation (36), and high osmotic
shocks can completely halt microtubule dynamics (37). Additionally, alterations in cytoplasmic density
have been implicated in cellular aging and senescence (38) and differentiation (39).

Here we establish a combined experimental and computational approach to examine
cytoplasmic heterogeneity through the lens of diffusion. Single particle motion-tracking allows for a
robust quantification and statistical analysis of particle behavior, revealing variations between particles
which would otherwise be averaged out in bulk measurements obtained in photobleaching (e.g. FRAP)
and FCS (33, 40) experiments. Further, this kind of “passive” rheology approach requires minimal
perturbations to the cell.

Previously, particle tracking rheology on fluorescent proteins has proven difficult due to their
fast diffusion rates and tendency to photobleach. The development of GEMs (Genetically Encoded
Multimeric nanoparticles (36)), has enabled large improvements on this front. These bright and
photostable protein spheres are expressed as fluorescently-tagged monomers which self-assemble into
hollow shells of nearly-uniform size and shape (36, 41). Because each particle contains tens of
fluorescent proteins, they can be tracked for relatively long periods of time without photobleaching.
Additionally, the near-diffusive movements of GEMs suggest they do not interact strongly with
eukaryotic cellular components, making them ideal reagents for rheological studies (22, 36). Critically,
their relatively large size and slow diffusion rates - comparable to large protein complexes such as
ribosomes - allow GEMs to be tracked using modern high-speed cameras (which is still not attainable
for individual fluorescent proteins). Initial studies have established their utility in quantitatively probing
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diffusion and crowding in the cytoplasm and nucleoplasm in various cell types including yeast and
mammalian cells (22, 36, 41-45).

The fission yeast Schizosaccharomyces pombe provides an excellent model system for the study
of cytoplasmic heterogeneity because of their uniformity in many other aspects of their cell biology. In
standard laboratory conditions, these rod-shaped cells exhibit very tight distributions in their cell size
at division (CV ~ 6% (3, 4)) and cell shape (46—48), as well as cell cycle progression and intracellular
density (CV ~ 10% (49)). The relatively low phenotypic variability within and between fission yeast
cells permits the study of cytoplasmic heterogeneity in a well-controlled system in the presence of
minimal confounding factors.

Using live cell high-speed imaging and quantitative tracking of 40 nm-diameter GEMs in
Schizosaccharomyces pombe, we measured cytoplasmic diffusivity for thousands of individual
particles. These data revealed large heterogeneity in diffusion coefficients both within single cells as
well as between cells in the population. To analyze this variability, we developed an automated pipeline,
which we call the Doppelginger Simulation approach, to reproduce our experimental results
computationally using simulations of diffusion, and assay heterogeneity using statistical techniques for
analysis of variance. Using these methods, we showed that orders of magnitude of variability in GEM
cytoplasmic diffusivity within and between cells arose from an equally wide distribution of cytoplasmic
viscosity. This variance was not affected by temperature, the cytoskeleton, or cell size, but was
increased by hyperosmotic shock. Our studies support a growing body of evidence that the cytoplasm
is not physically well-mixed (17-20, 22, 23, 50) and reveal this heterogeneity in diffusion as an
important potential source of biological noise.

Results
Statistical characterization of cytoplasmic GEM particle diffusion in fission yeast

To assay cytoplasmic diffusion in fission yeast, we expressed 40 nm-diameter GEM
nanoparticles in wildtype S. pombe from a multicopy plasmid on an inducible promoter (37). Tuning
the expression of the GEMs construct allowed us to titrate particle formation to a small number of
particles (<10) per cell. To reduce environmental variability, these cells were grown at 30 °C under
optimal conditions in shaking liquid cultures to exponential growth phase and mounted in imaging
chambers with fixed dimensions under constant temperature and imaged acutely. Using variable angle
epifluorescence microscopy (VAEM) (36, 37, 44, 51) we tracked GEM particle motion at 100 Hz for
10 s, as described previously (36, 37, 44) (Fig. 1a-b, Methods). Each field of view (FOV) contained
multiple cells that were individualized post-acquisition. Images were manually curated to eliminate
from the data set a small subset of cells that had died, exhibited grossly abnormal morphologies, or
contained a single bright aggregate of GEM particles. From a dataset of 145 cells, 3681 tracks were
analyzed, with an average of 25 £ 10 (AVG % SD) tracks per cell, a mean step size of 104 £ 72 nm
(AVG % SD), and a mean track length of 273 + 268 ms (AVG + SD) (Fig. 1c).

From these trajectories we computed the time-averaged, ensemble-averaged (i.e., track-
averaged) mean squared displacement (MSD) as a function of time interval, and fitted the resulting
MSD curve to a power law (Fig. 1d, Methods). MSD analysis showed that GEM particle motion in the
cytoplasm was largely diffusive (MSD = Dr), following a robust power law with apparent diffusivity
Dapp,100ms = 0.3 £ 0.01 um?/sec (AVG = 95% CI) and anomalous diffusion exponent a = 0.92 + 0.02
(AVG %= 95% CI), which were similar to previously published measurements in fission yeast (43, 44).
The diffusivity of the 40 nm GEMs in the cytoplasm was roughly 40 times slower than the theoretical
prediction for simple Stokes-Einstein diffusion in water -- and corresponded to the particle’s expected
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Figure 1: High-speed particle-tracking nanorheology of GEMs allows detailed statistical analysis of
cytoplasmic diffusion. (a) Schematic of the experimental imaging set-up. (b) Example brightfield image (top
left) and maximum intensity projection through time of the GEM particle fluorescence (top right) for one
representative field of view, alongside the measured nanoparticle trajectories (bottom) for the upper cell in the
image. Trajectories are colored by the step size of the particle in nanometers between each time frame of the
movie. Gray indicates the mean step size across all tracks in the dataset. Scale bar is 5 um. (¢) Histograms of
the number of tracks per cell (left), the step-size for all time-points (middle), and the duration of time that each
particle was tracked (right). Note that tracks shorter than 10 time-points were not included in the analysis. (d)
The mean squared displacement (MSD) of the particle tracks. The time-averaged MSD was first calculated
individually for each track, and then a second averaging was performed to find the (ensemble averaged) MSD
across all tracks. Note the logarithmic scale along the x- and y-axes. (e) The average velocity autocorrelation
across all article tracks. Averaging was performed in the same order as the MSD. (d-e) Error bars represent the
standard error. (f) Plots of particle trajectories drawn from many experiments and cells, randomly subsampled
for better visibility of individual particle behaviors. Subsampled trajectories include at least one track from 141
of the 145 cells in the dataset. Gray indicates the mean step size across all tracks in the dataset. (c-f) Dataset
includes 3681 tracks among 145 cells, recorded from 5 different samples and over 3 different days. (g)
Individual trajectory plots for five of the longest-tracked particles (in time), excluding stationary particles. Color
scaling of the step size was identical in all panels included in f-g (using the mean and standard deviation of the
step size across the entire dataset).
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diffusion rate in a 75% glycerol solution in water. We note that diffusion along the long and short axes
of the cell were comparable by our measurements (Supp. Fig. 1a), and we found that the MSD plots do
not plateau, indicating that diffusion of the GEMs was not confined on timescales less than a second
(e.g., most particles do not run into the cell wall within the measured time window).The time-averaged,
ensemble-averaged (i.e., track-averaged) velocity autocorrelation of particle trajectories was also
consistent with simple unconstrained diffusion (Fig. 1e). Notably, the autocorrelation plot lacked the
characteristic negative peak associated with subdiffusive motion and viscoelastic response seen in other
systems (Supp. Fig. 1b-c) (52-55). Therefore, at least with this approach at this 40-nm size scale, we
detected no elastic response in the yeast cytoplasm.

Cytoplasmic diffusivity spans orders of magnitude

We next analyzed individual particle tracks, which revealed a rich phenotypic variability (Fig.
1f-g) that was obscured by the ensemble averaging-based analysis described above (e.g., MSD - Fig.
1d). Notably, even within a single trace, individual particles exhibited large fluctuations in their step
size (Fig. 1g). To investigate the variety of comportment displayed by individual particles, we calculated
and fit the time-averaged MSD individually for each track (Fig. 2a) and the time-averaged, ensemble-
averaged MSD over all tracks in each cell (Fig. 2b). These data showed that variability in particle motion
ranged over orders of magnitude; fits of particle and cell MSDs (Fig. 2c-d) showed that diffusivity
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Figure 2: GEM diffusivity varies over 400-fold across tracks and 10-fold across cells. (a-b) Mean squared
displacements averaged either (a) by track (averaged over time for each track), or (b) by cell (averaged over
time for each track and then averaged across all tracks in each cell). Note the logarithmic scale along the x- and
y-axes. (c-d) Apparent diffusivities (¢) and power law exponents (d) calculated from fits of the track-wise and
cell-wise MSDs to a power law. Note the logarithmic scale along the y-axis. Boxplots: Central line, median;
grey dot, mean; boxes, 25th and 75th percentiles; whiskers, furthest data point that is not an outlier; outliers,
any point that is more than 1.5 times the interquartile-range past the 25th and 75th percentiles. (e-f) The same
distributions of the fitted apparent diffusivities plotted in (c), now plotted as a histogram either on a linear scale
(e) or on a log scale (f). Probabilities represent the probability density per histogram bin width, such that the
sum of the bin heights multiplied by the bin width equals 1. (g-h) Results from a nested ANOVA performed on
track-wise fits of diffusivities (g) and power law exponents (h). The amount of the experimentally-observed
variance that can be explained by track-to-track, cell-to-cell, imaging session-to-session, and day-to-day
variability is plotted as a fraction of the total variance. (a-h) Dataset is identical to that shown in Fig. 1 c-f,
including 3681 tracks among 145 cells, recorded from 5 different samples and over 3 different days.
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follows a long-tailed, log-scale distribution, consistent with Brownian motion in a heterogeneous
environment (56, 57). The distribution of apparent diffusivities exhibited a single peak (Fig. 2c-f),
which appeared more normally-distributed on a log scale (Fig. 2f) than on a linear scale (Fig. 2e).
Therefore, we performed all further statistics and visualization on the logio of the fitted apparent
diffusivities. The median of the diffusivity distribution in log space, which we then converted to linear
space (see Methods), corresponded to a diffusivity of 0.29 um?¥/sec for the track-wise distribution and
0.33 um?/sec for the cell-wise distribution, both similar to the bulk estimate. The standard deviation of
the diffusivity distribution in log space (representing the number of orders of magnitude spanned by the
dataset) can be converted to linear space as a fold-range at 2.5 standard deviations away from the median
(see Methods), giving a 392-fold range across tracks and 11-fold range across cells. We chose 2.5¢ as
our cutoff as it gave a range consistent with our outlier estimation algorithm (Fig. 2c, see caption).
Overall, we showed that diffusivities vary by over 2.5 orders of magnitude among individual GEMs
and one order of magnitude among cells. Hereafter we use the terms infercellular variation to refer to
the spread of the cell-wise diffusivity (Fig. 2c, right) and infracellular variation to indicate the spread
in the track-wise diffusivity (Fig. 2c, left).

To understand whether variation arose from cell-to-cell variability, from different
microenvironments within a single cell, or from experimental day-to-day variation, we performed an
Analysis of Variance (ANOVA) on the track-wise diffusivity measurements (Fig. 2g). The ANOVA
revealed that the vast majority (~80%) of the measured spread in diffusivity came from intracellular
variation (i.e., Track in Fig. 2g), but there was also a significant amount of variance (~20%) explained
by cell-to-cell variability (i.e., Cell in Fig. 2g). Only < 1% could be attributed to experiment-to-
experiment variability. Similar results were observed for the fitted anomalous diffusion exponent (Fig.
2d, h), which was not surprising given the strong correlation between the fitted apparent diffusivities
and power law exponents in our dataset (Supp. Fig. 2a).

Another common way to differentiate sources of noise in biological data is to separate the
observed spread into intrinsic (uncorrelated within cells) and extrinsic (correlated within cells)
components (9, 58). Our ANOVA results suggested that noise in this system was almost entirely
intrinsic, as ~80% of the variation was maintained after controlling for cell-to-cell variability. Indeed,
by plotting the apparent diffusivities of random pairs of GEM particles, where each pair is randomly
chosen from particles within a single cell, we found that the noise had only a very weak correlation
between particles within the same cell (Spearman correlation: r = 0.21, p = 510, Supp. Fig. 2b). We
noted that the large intercellular and intracellular variation observed in our data cannot be explained by
differences in GEM particle expression levels, as the mean apparent diffusivity among track-wise
diffusivity fits within a cell was not significantly correlated with the number of tracks in the cell
(Spearman correlation: r =-0.003, p =0.97, Supp. Fig. 2¢), and the coefficient of variation among track-
wise diffusivity values within a cell was only very weakly correlated with the number of tracks in the
cell (Spearman correlation: r = 0.25, p = 0.004, Supp. Fig. 2d). In addition, the coefficient of variation
of particle diffusivities within each cell was ~1, and was uncorrelated with the mean particle diffusivity
across all particles in the cell, consistent with Poisson statistics (Spearman correlation: r = -0.1, p =
0.15, Supp. Fig. 2e).

Stochastic simulations demonstrate that spread is not due solely to statistical measurement noise

As diffusion is an inherently stochastic process, we next explored whether the measured
variation in particle mobility was due to statistical properties of our measurements. It is known, for
example, that datasets with shorter track lengths will produce wider distributions of measured
diffusivities (55). We therefore developed what we called the Doppelgénger Simulation (DS) approach,
employing a custom algorithm to automatically read in and replicate the experimental measurement
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statistics in silico cell-for-cell and track-for-track (Fig. 3a). With DS, simulated cells have the exact
same cell length and number of tracks as their experimentally-measured counterparts, and each

simulated track has an identical length (i.e., number of time points tracked) to the associated

experimental trajectory. This straightforward and powerful approach allowed us to produce simulated
data that could be directly compared to the experimental tracks and analyzed using identical statistical

methods.
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Figure 3: Stochastic simulations reveal both spatial and cellular heterogeneity in viscosity are required
to reproduce experimentally observed variation. (a) Schematic of the Mirror Image Simulation approach.
Each experimentally-measured cell and particle were reproduced one-to-one in the simulated dataset, with
every simulated cell having the same long-axis length as its experimentally-measured counterpart, and each
particle being tracked for the same amount of time. (b) Schematic demonstrating different types of
heterogeneity in cytoplasmic viscosity included in each of the four models. Note: the choice of physical domain


https://doi.org/10.1101/2022.05.11.491518
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.11.491518; this version posted January 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

size for spatial heterogeneity in (c-g) is 1000 nm. (¢) Median apparent diffusivity (averaged across all tracks)
plotted for the experimental dataset as well as each model. Error bars represent the standard error of the median.
Significance stars represent the result of the Wilcoxon rank sum test for equality of the medians. (d-e)
Distributions of apparent diffusivities calculated from fits of the track-wise (d) or cell-wise (e¢) MSD curves
displayed for the experimental data as well as each of the models. Note the logarithmic scale along the y-axis.
Boxplots are drawn as in Figure 2. Significance stars represent the result of Levene’s test for equality of
variance. (c-e) * p<0.05. **¥p<0.01, *** p<0.001, **** p<0.0001. (f) Results from a nested ANOVA performed
on track-wise fits of diffusivities (d). The percent of the experimentally-observed cell-to-cell and track-to-track
variability that can be explained by each of the models. (g) The distribution of cytoplasmic viscosities, shown
relative to the viscosity of water, needed to most closely reproduce the experimental data (i.e., simulations from
Model #4, using the same parameters used to generate (c-f)). Histograms are shown for the distribution of
average cell viscosities (intercellular heterogeneity, red dashed line) and the distribution of intracellular
viscosities for three example cells (blue lines of varying darkness). The examples include a cell whose average
viscosity equals that of the cell-wide average (medium blue line), a cell with an average viscosity three standard
deviations above the cell-wide average (dark blue line), and a cell with an average viscosity three standard
deviations below the cell-wide average (light blue line). Note the logarithmic scale along the x-axis. The
simulation did not allow viscosities below that of water.

Using DS, particle motion was then recapitulated using stochastic Brownian dynamics
simulations of diffusion inside a box representing the exterior cell boundary (Fig. 3, Tables 2-3). We
opted for a simple diffusion model because GEM particle motion is observed experimentally to be
largely diffusive (Fig. 1d) and did not display characteristics of constrained or viscoelastic behavior
(Fig. 1d-e). The model assumes an average cytoplasm viscosity forty times that of water, giving a mean
diffusivity of 0.35 um?/s that closely matches that of the experimental data. The simplest iteration of
the model (Fig. 3b-f, Model #1: uniform viscosity), which we will hereafter refer to as the uniform
viscosity model (due to its assumption of constant viscosity within and among cells), accounted for only
a fraction of the experimentally-measured spread in GEM particle mobility (Fig. 3d-f) —including ~50%
of the track-to-track variability in diffusivity, and <10% of the cell-to-cell variability, as measured by
ANOVA (Fig. 3f). We therefore concluded that neither the stochastic nature of diffusion nor the
statistical properties of our experimental measurement statistics were the major source of heterogeneity
in GEM particle diffusion.

Simulations suggest that heterogeneity in diffusion must arise from an equally vast spread in
cytoplasmic viscosity.

As the data set of experimentally-measured GEM particle motion fitted well to a model of
simple diffusion, there were only a finite number of sources in this simple model from which
heterogeneity in mobility could arise. The major parameter defining diffusion is the diffusivity, D,
which theoretically (by the Stokes-Einstein equation) is simply equal to the ratio of the thermal energy,
kgT, to the viscous drag on the particle, y. For a spherical particle, y = 6znR, where # is the viscosity of
the cytoplasm and R is the radius of the particle (59). Of these parameters, viscosity is the only parameter
that could be varying within and between cells, as temperature is held constant and the radii of GEM
nanoparticles have been shown by electron microscopy to be fairly uniform (CV = 0.1) when expressed
in mammalian and budding yeast cells (36).

We therefore generated three other versions of our model incorporating viscosity variation (Fig.
3b), while keeping the mean viscosity (and thus mean particle diffusivity) constant (Fig. 3c). In one
version, which we refer to as the spatial heterogeneity model (Fig. 3, Model #2: spatial heterogeneity),
we aimed to explore whether intracellular spatial variations in viscosity could account for the
experimentally measured spread in diffusivity. A spatially varying viscosity was consistent with the
observation that individual particles can display significant variations in step size within a single track
(Fig. 1g). This model assumed that viscosity varies across the cell with a fixed domain size,
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approximated by a grid of discrete viscosity domains where each region was randomly assigned a
distinct viscosity value. The average cellular viscosity was held constant. In another variation of the
model, termed the cellular heterogeneity model, viscosity was uniform within each cell, but the uniform
viscosity value varied between cells (Fig. 3, Model #3: cellular heterogeneity). Finally, we developed a
fourth model combining both intracellular and intercellular heterogeneity, which we called the
combined heterogeneity model (Fig. 3, Model #4: combined heterogeneity). In all three variations on
the original model, viscosity values were chosen from a log-normal distribution, mimicking the
distribution of the experimentally-measured step sizes (Fig. lc, middle) and diffusivities (Fig. 2f).

We then ran each model multiple times to account for their stochastic nature and assayed
whether each model could reproduce the experimentally-observed spread in diffusivity (1) as measured
by ANOVA (Fig. 3f), and (2) such that the variance was not statistically significantly different from the
experiments according to Levene’s test for equality of variances (Fig. 3d-e)(60). While the spatial
heterogeneity model could only account for the track-to-track variation in experimentally-measured
diffusivity (but not the cell-to-cell variation), and the cellular heterogeneity model could only reproduce
the cell-to-cell variation (but not the track-to-track variation), only the model combining both spatial
and cellular heterogeneity could fully reproduce the amount of spread observed in the experimental data
(Fig. 3d-f). Further, only a viscosity variation spanning orders of magnitude (Fig. 3g) could
quantitatively recapitulate the experimentally-measured spread. In particular, the viscosity was required
to vary 10-fold (on average) among cells, 100-fold within any individual cell, and 400-fold across the
dataset in order to best match the experiments. Importantly, this extreme degree of heterogeneity in
viscosity was required regardless of the choice of characteristic length scale for the spatial variation
(Table 4, Supp. Fig. 3). Overall, our simulations showed that our data is best explained by a model in
which the effective viscosity experienced by cytoplasmic GEM particles varies drastically within and
between cells.

Spatial heterogeneity in cytoplasm viscosity can lead to ergodicity breaking.

Heterogeneity in diffusion is frequently observed in non-ergodic systems, due to the fact that
individual particles within the system exhibit distinct behaviors compared to the ensemble average (27—
29, 61, 62). The experimentally-observed spread in GEM diffusivity thus suggested that the cytoplasm
may represent a non-ergodic system. To test this hypothesis, we assayed the ergodicity of the GEM
diffusion. A hallmark of a non-ergodic system is that the ensemble-averaged (EA) MSD diverges from
time-ensemble-averaged (TEA) MSD (62). In comparing the EA MSD with the TEA MSD of our
experimental dataset (Fig. 4) (62), we found that GEM diffusion was indeed weakly non-ergodic (Fig.
4a). In particular, the EA and TEA MSD exhibited a ~40% difference at short times, which decreased
to ~10% at longer times (Fig. 4d).

To determine the origin of the weak non-ergodicity of GEM particle diffusion, we returned to
our Doppelginger simulations. As expected, we found that simulations with no heterogeneity in
viscosity resulted in perfectly ergodic diffusion (Fig. 4b,e). However, simulations with both spatial and
cellular heterogeneity (Model #4) were able to reproduce the experimentally-observed non-ergodicity
(Fig. 4¢), including quantitative features of the decay in non-ergodicity at long times (Fig. 4f).

Another possible origin of non-ergodicity in particle diffusion is transient particle immobility,
which can be mathematically described by a continuous time random walk (CTRW) (27). However,
our longest-tracked diffusing particles (Fig. 1g) showed no evidence of transient immobilizations (Supp.
Fig. 4a-b). Further, the time-averaged MSDs of individual tracks did not have a power law exponent,
a, equal to 1 even for the longest-tracked particles (Supp. Fig. 4c), in contrast to what would be expected
for a CTRW. Overall, our data were more consistent with heterogeneity in cytoplasm viscosity (Fig. 4)
than a two-state system of mobile and immobile particles.
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Figure 4: Weak non-ergodicity of GEM diffusion can be explained by heterogeneity in viscosity. (a) GEM
particle mean squared displacement (MSD) vs time, calculated either by ensemble-averaging over all particle
tracks (EA MSD, red line), or by first time-averaging over each track and then ensemble-averaging over all
particles (TEA MSD, black line). 95% confidence intervals (CI) of the EA MSD were calculated by
bootstrapping and are plotted as a red shaded region around the EA MSD. Note the logarithmic scale along the
x- and y-axes. (b) The TEA and EA MSD calculated for a representative Doppelgidnger simulation for Model
#1: Uniform viscosity (see Fig. 3b). (c) The TEA and EA MSD calculated for a representative Doppelgénger
simulation for Model #4: Spatial + cellular heterogeneity in viscosity (see Fig. 3b), using a 100 nm spatial
domain size. (d-f) The percent difference between the EA and the TEA MSD ((EA-TEA)*100/EA) displayed
in (a-c), respectively, plotted as a function of time interval. The best fit of the data to an exponential decay plus
a constant: y = A*e(-Bt)+C is plotted as a thick dashed black line. (g) The percent difference between the EA
and TEA MSD for Model #4: Spatial + cellular heterogeneity in viscosity, where each subplot represents a
different choice for the domain size of the spatial heterogeneity. X- and y-axes for all subplots are identical.
Each light orange line represents an individual simulation, equivalent to the entire experimental dataset. 50
replicate simulations are superimposed onto the plot. Each curve was individually fit to an exponential decay
plus a constant: y = A*e(-Bt)+C, and the best fit parameters were averaged across all 50 simulations to produce
the best fit line (thick dashed orange line). The best fit to the experimental data shown in (d) is overlaid as a
thick dashed purple line. Of the domain sizes sampled, simulations using the 100 nm domain gives the closest
agreement to the experimental data, with the experimental data best fit line lying well within the range of
outcomes among replicate simulations. On average, the 100 nm simulation best fit line lies slightly below the
experimental best fit line, and the 300 nm simulation best fit line lies slightly above the experimental best fit
line. Thus we estimate the domain size of the cytoplasm is on the order of ~100-300 nm.
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In the Doppelginger simulations with heterogeneous viscosity, non-ergodicity arises from the
fact that particles within distinct spatial domains exhibit different diffusion rates. Therefore, non-
ergodicity in diffusion should depend on the domain size of the spatial heterogeneity in viscosity.
Indeed, we found that non-ergodicity in our simulations is strongly dependent on the domain size (Fig.
4g). Interestingly, while the experimentally-measured variability in GEM diffusion can be reproduced
using a wide range of different domain sizes (Table 4, Supp. Fig. 3), the experimentally-measured non-
ergodicity of GEM particle diffusion could only be reproduced quantitatively with a subset of
characteristic length scales (Fig. 4g). By comparing the simulations to the experimental data, we
estimate the size of spatial domains of cytoplasm viscosity for the 40 nm GEM particles to be on the
order of ~100-300 nm.

Heterogeneity in diffusion does not arise from density fluctuations related to the cell cycle or cell tip
growth

We next tested what factors might be responsible for such a large heterogeneity in cytoplasmic
viscosity. Within an asynchronous population, fission yeast cells exhibit an approximately two-fold
range in cell size, which corresponds to the cell cycle stage (63). A recent study used quantitative phase
imaging (QPI) to show that the overall intracellular dry-mass density of fission yeast cells fluctuates
over the cell cycle, with density decreasing during interphase and increasing during mitosis and
cytokinesis (49). To test whether GEM diffusion also varies over the cell cycle, we examined the
relationship of GEM diffusion with cell length as a proxy for cell cycle stage (Supp. Fig. 5a-b). We
detected no significant correlation of diffusivity with cell length, making it unlikely that the cell-to-cell
variability in GEM diffusion is cell cycle dependent.

We next tested whether spatial variations of density could explain the variability of GEM
diffusion. QPI experiments demonstrated a subtle gradient of intracellular density in a subset of fission
yeast cells, in which growing cell tips generally appear to be less dense than the rest of the cell (49).
Regional cytoplasmic differences have also been shown in Ashbya gossypii, in which GEMs have
decreased diffusivity in the perinuclear region (22). To test for spatial variations in fission yeast, we
mapped the GEM tracks relative to their positions in the cell (Supp. Fig. 5c-d). This analysis yielded no
obvious regional differences in diffusivity within the fission yeast cell; specifically, we noted no strong
differences in diffusion at growing cell tips or at the perinuclear regions. Therefore, it is unlikely that
systematic regional differences in intracellular density are responsible for the variance in diffusivity.

Variance in diffusion is impacted by osmotic shock but not by cytoskeletal or temperature
perturbations.

We then probed what factors could affect the variance by submitting the cells to different
perturbations. For each perturbation, we measured the distribution of track-wise and cell-wise fits of
GEM diffusivities, and performed the Wilcoxon rank sum non-parametric test for equality of medians
(64) and Levene’s test for equality of variances (60) to establish whether changes to the median and
variance were statistically significant (Methods).

One cytoplasmic constituent implicated in the rheological properties of the cytoplasm is the
cytoskeleton. A rigid and interconnected cytoskeleton network can act as a barrier (65), or elastically
resist particle motion — properties which can be described by poroelastic models (40, 66). In addition,
the cytoskeleton is responsible for transporting and positioning organelles and “actively mixes” the
cytoplasm (67). The cytoskeleton may also create structured intracellular regions with distinct
biophysical properties (68). We used a combination of latrunculin A (LatA) and methyl benzimidazol-
2-yl-carbamate (MBC) to depolymerize actin and microtubules in interphase fission yeast cells (Fig.
5a). This treatment however had only subtle effects on GEM diffusivity; we detected a small,
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statistically insignificant increase in the median diffusivity (Fig. 5d, Wilcoxon t-test, Track-wise fits:
6% increase, p-value = 0.17; Cell-wise fits: 18% increase, p-value = 0.3), and a small, statistically
insignificant increase in the variance (Fig. 5g,j, Levene test, Track-wise fits: 71% increase, p-value =
0.08; Cell-wise fits: 27% increase, p-value = 0.18)). We therefore concluded that the cytoskeleton is
not the main determinant of cytoplasmic viscosity or variance at the 40-nm size scale in fission yeast.

Another main determinant of diffusivity D is temperature 7. In addition to purely physical
effects of temperature of diffusion as defined by the Stokes-Einstein equation where D & T. temperature
can also have also a multitude of biological effects. For instance, temperature shifts may alter active
mixing of the cytoplasm (69), and trigger viscosity adaptation mechanisms via production of viscogens
(70). There are also reports of regional differences in effective temperature within single cells (71-73).
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Figure 5: Heterogeneity in cytoplasmic diffusion has varied responsiveness to experimental
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perturbations. (a) Fluorescence images of fluorescent tubulin (top) and actin (bottom) in the context of the
DMSO control (left) and addition of cytoskeleton depolymerizing drugs (right). Scale bar is 5 um. (b)
Schematic of experiments varying the experimental temperature (top) and prediction of the relationships
between the diffusivity, D, and the experimental temperature, T, as well as the Boltzmann constant, kg, and the
viscous drag coefficient, 7 (bottom). (¢) Schematic of experiments varying osmotic shock with sorbitol (top)
and example brightfield images of osmotically-shocked cells showing a reduction in cell volume (bottom).
Scale bar is 5 pm. (d-f) The median diffusivity is plotted for each experimental condition. Significance stars
represent the result of the Wilcoxon rank sum test for equality of the medians. (g-1) Distributions of apparent
diffusivities calculated from fits of the track-wise (g-i) or cell-wise (j-1) MSD curves displayed for each
condition. Note the logarithmic scale along the y-axis. Boxplots are drawn as in Figure 2. Significance stars
represent the result of Levene’s test for equality of variance. (d-1) * p<0.05. **p<0.01, *** p<0.001, ****
p<0.0001.

To assay the effects of temperature on GEMs diffusivity, we grew fission yeast cells overnight at 30
°C, and then imaged them ~ 5 min after shifting cells down to 20 °C (Fig. 5b). This 10 °C decrease in
temperature corresponds to = 3% decrease in the absolute temperature (in Kelvin), and thus the Stokes-
Einstein equation predicted a similar decrease in diffusivity. We observed a slightly larger than
predicted drop in the median track-wise diffusivity of GEMs (Fig. Se, Wilcoxon test, Track-wise fits:
11% decrease, p-value = 0.03; Cell-wise fits: 6% decrease, p-value = 0.54). The track-wise variance
exhibited a statistically significant decrease, but the cell-wise variance did not change significantly
(Levene test, Track-wise fits: 49% decrease, p-value = 0.006; Cell-wise fits: 28% decrease, p-value =
0.43). Overall, increasing the temperature had no effect on cell-to-cell variation but slightly increased
intracellular heterogeneity.

Finally, we tested the effects of osmotic shocks. Osmotic shocks acutely alter the concentration
of molecules in the cytoplasm by removal or addition of water (34, 37, 44). We performed hyperosmotic
shocks with 1 M and 1.5 M sorbitol (Fig. 5c), which has been previously reported to roughly double the
concentration of the cytoplasm (37, 44). Consistent with previous reports (37, 44), these hyper-osmotic
shocks induced a striking decrease in the median track-averaged diffusivity of GEM particles compared
to control experiments (Wilcoxon t-test, Track-wise fits: 93% and 96% decreases, p-values = 5%107273,
3*107'% for 1 M and 1.5 M shocks, respectively; Cell-wise fits: 92% and 94% decreases, p-values =
3%10%', 4*10' for 1 M and 1.5 M, respectively). Interestingly, it also induced a sizable increase in both
the track-wise and cell-wise variance in measured diffusivity (Fig. 51,1, Levene test, Track-wise fits:
275% and 420% increases, p-values = 1*¥10°, 2*107° for 1 M and 1.5 M shocks, respectively; Cell-
wise fits: 530% and 16,083% increases, p-values = 4*10™, 3*10™ for 1 M and 1.5 M, respectively).
Thus we found that increasing the concentration of the cytoplasm slowed diffusion but also drastically
increased both intracellular and intercellular cytoplasmic heterogeneity. These results suggest that
hyperosmotic shocks may make the cytoplasm even more heterogeneous.

Discussion

Here we used a combined experimental and theoretical analysis to reveal a high degree of
cytoplasmic heterogeneity experienced by objects on the scale of large protein complexes. In particular,
our results indicated the effective cytoplasmic viscosity in fission yeast varies more than 10-fold among
cells, and 100-fold within cells. Although the source of this heterogeneity is not yet understood, our
analyses showed that viscosity variation is independent of the cytoskeleton, cell cycle stage, and
temperature — but increases under hyperosmotic shock.

Generalizability of cytoplasmic heterogeneity

It is highly likely that the large diffusive heterogeneity we observed in fission yeast is
generalizable to most, if not all, cell types. In fact, because fission yeast exhibit strikingly regular cell
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shape and growth properties, they may be expected to have much less cytoplasmic variability than many
other systems. Although most previous work has not explicitly focused on variability, studies of GEM
particle diffusion in the cytoplasm or nucleoplasm of budding yeast, the filamentous fungus Ashbya
gossypii, Xenopus egg extract, and several mammalian cell types (24, 26, 36, 41), as well as other studies
of diffusion in E. coli (30), show that comparable variability in diffusion exists in these diverse contexts.
In particular, McLaughlin et al. reported sizeable variation in both inter- and intra-cellular heterogeneity
of GEM diffusivity in Ashbya (22). Beyond measurements of diffusion, a study directly probing
viscosity also revealed substantial variability (74). Thus, large variability in cytoplasmic properties may
be a fundamental, conserved property of cells. Hints from the literature suggest that heterogeneous
cytoplasmic diffusion is also not limited to large protein complexes. Both larger objects such as lipid
droplets (28, 54) and smaller particles such as individual fluorescent proteins (17-21, 23, 29, 75) and
quantum dots (25, 26, 31) seem to exhibit substantial amounts of diffusive heterogeneity, as well as
ergodicity-breaking (28-30).

Sources of cytoplasmic heterogeneity

What might be the origin of this variability in cytoplasmic properties? Heterogeneity may
originate from multiple non-exclusive sources. At the submicron and micron-scale, obstruction by
organelles (76, 77) and other cytoplasmic structures such as condensates, as well as localized active
mixing, could contribute to cytoplasmic variability (78). Local differences in the composition of specific
macromolecules, for instance in the vicinity of organelles, may also contribute to cytoplasmic
heterogeneity (79, 80). In addition, GEMs and other intracellular constituents may become transiently
trapped between or inside membrane-bound and membrane-less compartments, thereby lowering the
particle’s apparent diffusion rate. These various scenarios are consistent with our rough estimate of
spatial domain size on the order of hundreds of nanometers for the 40 nm GEM particles.

At the nanometer-scale there are some enticing sources of heterogeneity that remain
unexplored, notably those intrinsic to the macromolecular milieu: crowder density, size, charge, and
hydrophobicity. Indeed, the fact that diffusion varies strongly with probe size and molecular species
(25, 81-86), suggests that the local molecular structure of the cytoplasm plays a large role in the
diffusion of macromolecules. Similarly, all-atom molecular dynamics simulations of the cytoplasm
show that thermal fluctuations in the local cytoplasmic composition can lead to significant variability
in diffusion rates (87). Therefore, the molecular and cellular features contributing to viscosity may
themselves be highly dynamic and transient. Future studies of diffusive heterogeneity across different
species, cell types, and physiological states will be invaluable for dissecting the biophysical
determinants of cytoplasmic variation.

Consequences of cytoplasmic heterogeneity

The heterogeneity of the cytoplasm may act as a highly significant source of biological noise
for any diffusion-limited process. For example, spatial heterogeneity in diffusivity could lead to
differences in diffusion-limited reaction rates across the cell. In particular, if the regions of high
viscosity (low diffusivity) are long lived, they could act as “traps”, locally increasing the concentration
of larger protein complexes or organelles, potentially influencing the speed and localization of certain
reactions. The effects of stochasticity should be particularly strong for complexes which exist at low
copy number or whose biological function depends on rare binding events. At the cell population level,
having a wide range of diffusivities might be advantageous, allowing different cells to react to changes
in the environment at different rates, permitting strategies such as bet-hedging to take place.
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In fact, it is hard to imagine a biological process that would not be affected by such a large
variation in the effective viscosity. For example, many reactions driving gene expression, biosynthesis
and metabolism are considered to be diffusion limited. For example, cytoplasmic viscosity has been
demonstrated to have strong effects on microtubule dynamics in vivo (37). Interestingly, the dynamics
of individual microtubules were much less variable than those of the GEMs, suggesting that cellular
systems may employ compensatory mechanisms that buffer the effects of heterogeneity in viscosity.
Cellular control of viscosity and other aspects of the cytoplasm such as intracellular density represents
a potential global mode of regulation.

Generalization of the Doppelginger simulation approach

Our analyses of biological noise were made possible by using our Doppelgidnger simulation
approach. This approach explicitly reproduces the experimental measurement statistics in silico, which
allowed us to definitively distinguish between statistical noise and biological heterogeneity. This
simulation approach may be generalizable to many other systems (Supp. Fig. 6), and could be useful
for instance in the analysis of noise suppression. Overall, we believe this powerful approach combining
experiment and theory will provide needed clarity for studies of stochastic processes in biology, such
as cytoskeletal dynamics, signaling, and gene expression.
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Methods

Table 1: Reagents and Resources

REAGENT AND RESOURCE SOURCE IDENTIFIER

S. pombe strains

h- [pREP41X-PfV-Sapphire] Chang lab collection FC3287

ade+ his+ leu+ ura+ (37)

h+ GFP-atb2:kanMX Chang lab collection FC2861

ade6- leul-32 ura4-D18 his+

h+ pActl-Lifeact-mCherry::leu+ Chang lab collection FC2781

ade6-M216 leul-32 ura4-D18 his+ (88)

Chemicals

D-sorbitol Sigma S1876

Carbendazim Sigma 378674

Latrunculin A Abcam ab144290

Edinburgh Minimal Media (EMM) MP Biomedicals 4110-032

YES 225 Sunrise Science Products 2011-500

Lectin (glycine max) Sigma L1395

Dimethyl sulfoxide Sigma 472301

Supplies

u-Slide V1 0.4 ibiTreat IBIDI 80606

Software

FlJI Schindelin et al., 2012 https://imagej.net/contribut
e/fiji

Image) Schneider et al., 2012 https://imagej.nih.gov/ij/

MOSAIC for Imagel Sbalzarini et al., 2005 https://imagej.net/plugins/m
osaicsuite

Matlab Mathworks https://www.mathworks.co
m/

Micromanager Edelstein et al., 2010 https://micro-
manager.org/Citing_Micro-
Manager
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Yeast strains and culture conditions

Standard methods for growing and genetically manipulating Schizosaccharomyces pombe were
used (89). The constructions of the GEMs expressing strains were described previously (37, 44). In
brief, the encapsulin-mSapphire chimera was expressed under the control of the inducible nmtl
promoter (90) on a multcopy pREP41X plasmid containing a leucine selection cassette. Cells were
grown overnight in Edinburgh minimal medium (EMM) containing adenine, histidine and, uracil at
0.25 g per liter (here called EMM LEU-) and 0.1 pg/mL thiamine with shaking at 30 °C to exponential
phase (OD600 between 0.2 - 0.8). See Table 1 for reagents and strain list. Expression of the Pyrococcus
furiosus encapsulin-mSapphire construct produces particles of 40 nm in diameter, with the encapsulin
proteins facing the inside of the particle and the fluorescent proteins facing the cytoplasm (36, 41).

Microscopy

S. pombe cells were imaged in commercial microchannels (Ibidi p-slide VI 0.4 slides; Ibidi
80606, Ibiditreat #1.5). Channels were pre-treated with 50 pl of 100 pg/ml lectin solution for 5 min.
The lectin solution was removed by pipetting and 50 ul of cell culture were introduced then incubated
for 5 to 10 minutes to allow adhesion to the lectin then cells were washed with EMM LEU-. For the
20°C condition the Ibidi slide and the buffer were equilibrated at 20°C before cells were added. For the
30°C condition, slides and buffers were equilibrated at 30°C before cells were added to it. For hyper-
osmotic shocks, the medium was manually removed from the channel via pipetting and quickly replaced
with pre-warmed (30°C) hyper-osmotic media. Cells were imaged immediately and for no longer than
5 minutes after the medium was exchanged to minimize adaptation. For cytoskeleton depolymerization
cells were introduced in the Ibidi slide as described previously then the buffer was exchanged for pre-
warmed (30°C) EMM LEU- containing Latrunculin A (8.4 pg/mL or 20 uM) and methyl benzimidazol-
2-yl-carbamate (MBC) (25 pg/mL or 131 uM). Cells were incubated at 30°C with the drug cocktail for
5 minutes prior to imaging. We confirmed that this treatment caused depolymerization of the
microtubule and actin cytoskeletons in < 5 min by imaging cells expressing Lifeact-mCherry or GFP-
Atb2.

For imaging GEMs, yeast cells were imaged with a Nikon TI-2 equipped with a Diskovery
Multi-modal imaging system from Andor and a SCMOS camera (Andor, Ixon Ultra 888) using a 60x
TIRF objective (Nikon, MRDO01691). Cells were imaged sequentially, first a brightfield (BF) image
then 1,000 fluorescence images at 100 Hz (for ~ 10 s) with a 488 nm excitation laser and a GFP emission
filter 525 +/- 25 nm. Variable angle epifluorescence microscopy (VAEM) (51) was used to reduce
background fluorescence and allow for the high imaging frequency required. Cells were selected for
sparse numbers of labeled motile nanoparticles (< 10 GEMs per cell) to ensure proper particle tracking.
Note that each GEM can be imaged multiple times during the acquisition giving more tracks per cell
than the number of visible nanoparticles.

Particle tracking

Cells were individualized from the field of view by cropping the images. Images of individual
cells were rotated so that cell length (long axis) was horizontal. From the brightfield image cell length
was measured by tracing a straight line joining each pole and passing through the center of the cell. Cell
contours were drawn manually from the brightfield image and used to determine cell centroid. Cell
length and centroid were used to plot GEMs tracks in linear and normalized space (Figure 1). GEMs
nanoparticles in each cell were tracked using the MOSAIC plugin (Fiji ImageJ)(91, 92) with the
following parameters for the 2D Brownian dynamics tracking in MOSAIC: radius = 3, cutoff = 0,
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per/abs = 0.2-0.3, link = 1, and displacement = 6. Tracks shorter than 10 timepoints were removed from
further analysis.

Diffusivity Analysis

Mean Square Displacement (MSD) Analysis: Unless explicitly stated otherwise, all analysis
was performed using the time-ensemble averaged (TEA) MSD = <(x(t+1)-x(t))*>... The time-averaged
MSD was first calculated individually for each track, and then a second averaging was performed to
find the (ensemble averaged) MSD across all tracks. For the time-averaging of each track, MSDs were
calculated using non-overlapping windows and plotted versus time interval, t. For example, a track with
7 time steps and time interval T = 3 time steps would have an MSDy = ((x(t=4)-x(t=1))"2 + (x(t=7)-
x(t=4))"2) / 2). For the subsequent ensemble-averaging step, the MSDs for each time interval were
averaged across all tracks.

Fitting the MSD: A linear fit of In(MSD) vs In(t/ty) for the first 7 time intervals (~70 ms) was
used to determine the values of the anomalous exponent and the apparent diffusivity (see our rationale
for choice of 7o below in this paragraph). As the length of the trajectories is an exponentially decaying
distribution (Fig. 1d - histograms), the statistical error grows with time (Fig. 1e - MSD) -- hence, we fit
the only first part of the MSD function. The fitting resulted in two fit parameters corresponding to the
equation MSD = A(t/t0)", where A has units of nm? (representing the MSD when 7 = 79) and « is unitless.
We can convert these values to an apparent diffusivity by assuming MSD; - = A = 2nD 070, Where
n is the number of spatial dimensions (in this case, n=2). Solving for the apparent diffusivity D, in
nm’ms™!, we find the following conversion: D, = A/(2nt) (representing the apparent diffusivity
specifically at 7p). We choose 7o = 100ms, to represent the intermediate regime measured in our dataset.
For track-wise fits, the time-averaged MSD was calculated and fit separately for each trajectory. For
cell-wise and condition-wise MSD calculations, the time-averaged MSDs for each track were then
ensemble-averaged over all tracks in each cell or condition, respectively, and subsequently fit. The 95%
confidence intervals (CI) for o and D,,, were calculated using bootstrapping of the TEA MSD by
sampling the individual TA MSDs; the bootci() function in MATLAB was called using the basic
percentile method and a sample size equal to the number of tracks in the dataset.

Doppelganger Simulations

Simulations of particle diffusion were implemented using fixed time step Brownian dynamics,
according to the Stokes-Einstein relation for diffusion of a spherical particle in a viscous medium (D =
kgT/y, where D is the diffusion coefficient such that the mean-squared displacement MSD = 2nDt is
linear with time ¢ and the number of dimensions #, k is the Boltzmann constant, T is the temperature,
and y = 6znR, where # is the viscosity of the cytoplasm and R is the radius of the particle). See Tables
2-3 for a list of the parameters used. All code was written in custom MATLAB scripts. Cells were
implemented as 2D rectangular boxes with reflecting boundary conditions at the edges of each box. All
simulated cells had a short-axis width of 3 pm, and a long-axis width equal to that of its experimentally-
measured doppelgénger. (Note that the short-axis width was chosen to be 3 pum, rather than the known
4 um diameter of fission yeast cells, to best represent the imaging conditions in the experimental data.
VAEM imaging only captures the lower portion of the cell near the coverslip, where the cross-section
is smaller than at the equatorial plane.)

Each simulated cell had the same number of particles as its experimental doppelgédnger. Each
particle was initialized randomly within the rectangular cell wall boundary. After initialization, particle
positions were updated using fixed time step Brownian dynamics, where the fixed time step, A4¢, was
equal to the acquisition frame rate of the experimental measurements. In each time step, a random
number generator (randn, seeded randomly at the beginning of each set of simulations with


https://doi.org/10.1101/2022.05.11.491518
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.11.491518; this version posted January 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

rng('shuffle')) selected each particle’s step size and direction from a normal distribution with a mean of
zero and a standard deviation of & = sqrt(2*kgT*4t/y). If a particle left the cell boundary during a
timestep, the particle’s position was reflected across the cell boundary (or boundaries) that the particle
crossed, in order to keep the particle inside the cell (i.e., reflective boundary conditions). For ease of
implementation, all particle tracks were simulated for the longest length of time any particle in the
experimental dataset was tracked; then after simulations were complete, each simulated particle’s data
were pruned to match their experimental doppelgénger -- all other timepoints that were not tracked for
the experimental doppelgidnger were deleted from the simulated dataset.

For simulations with cell-cell variations in viscosity (Models #3 and #4), viscosity values for
each cell were chosen from a random log-normal distribution (5 = ue” "0y with a mean viscosity
equal to 40 times that of water, and a standard deviation of 45% of the mean. For simulations with
spatially-varying viscosity (Models #2 and #4), each rectangular cell was broken up into spatial domains
of equally-sized squares with 1 um side-length. As all cells were 3 um in width but variable in length,
simulated spatial domains within cells were arranged in a 3xm grid, where m is the number of domains
along the long axis. If the cell length along the long dimension was not an integer multiple of 1 pm,
then the remainder was placed in its own spatial domain of smaller size. Viscosity values in each domain
were chosen from a random log-normal distribution (1 = xe”"*¥0), with a mean equal to the mean
viscosity of that «cell, and a standard deviation equal to 85% of the mean.

For simulations varying the domain size of spatial heterogeneity, the mean and variance in
viscosity was fit to the experimental data in order to replicate the mean and variance of the
experimentally-measured GEM particle diffusivity (Supp. Fig. 4, Table 4). The ergodicity was then
compared between different spatial domain sizes under these conditions.

Statistical analysis

Velocity autocorrelation analysis: Velocity autocorrelations were defined as VAC(t) = <(v(t+t)v(t))>;
and were performed using non-overlapping intervals.

ANOVA: A nested, n-way analysis of variance was performed using MATLAB’s anovan()
function. Track identity was nested under cell, session, and day identities, cell identity was nested under
session and day identities, and the session identity was nested under the day identity. ANOVA was
performed separately on the power law exponents and the natural logarithm of the diffusivities.
ANOVA was performed identically on the experimental and simulated datasets. Because the
Doppelgénger simulation approach computationally reproduces the exact experimental distribution of
tracks, cells, sessions, and days, the exact magnitudes of the variance attributed to each category can be
directly quantitatively compared (e.g. Fig. 3f).

Comparison of median diffusivity values between conditions: A Wilcoxson rank sum non-
parametric test for equality of medians (64) was performed to determine whether differences in the
medians between conditions were statistically significant. We chose a non-parametric test, and
compared the medians instead of the means, so that our analysis would be less sensitive to the fact that
the distributions were long-tailed and not perfectly Gaussian (even on a log scale). Statistical tests were
performed on the logarithm (base 10) of the apparent diffusivities.

Comparison of variance in diffusivity values between conditions: Levene’s test for equality of
variance (60) was performed to determine whether differences in the variances between conditions were
statistically significant. While Levene’s test is not a non-parametric test, it is less sensitive to non-
normality than many other parametric tests, and is MATLAB’s recommended test for equality of
variance for non-normal distributions. Statistical tests were performed on the logarithm (base 10) of the
apparent diffusivities.
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Converting summary statistics from log space to linear space: Because the diffusivities were
more normally distributed on a log scale than a linear scale, all of the summary statistics (medians,
standard deviations, etc.) were calculated on the distribution in log space. For a distribution that is log-
normally distributed, medians and standard deviations calculated in log space are not the same as those
calculated in linear space and so are not interchangeable (i.e. 10> =/= <10*>, and 10s¢<@<2>)"2) =/
sqrt(<(10*-<10>>)>>) and have different interpretations. The median of the log-scale diffusivity
distribution (piog = <logio(Dapp,100ms)> represents the median order of magnitude of diffusivities in the
dataset.The medians reported in this work were first calculated from the distribution in log space, and
then converted to linear space as Linear = 10*-°2, and also represents the median order of magnitude (but
now presented in linear space). The standard deviation of the log-scale diffusivity distribution (¢ =
sqrt(<(1ogi0(Dapp,100ms)-<log10(Dapp,100ms)>)2>) represents the number of orders of magnitude spanned
by the dataset). In linear space, the associated number which best captures the data’s span in order of
magnitudes is the fold-range of the distribution measured at some specified number of standard
deviations away from the mean. In our dataset, a 2.5¢ threshold best matched the outlier exclusion
algorithm used in our box-plotting software (1.5 times the interquartile range past the 25th and 75th
percentiles, Fig. 2c, see caption). To determine the fold-range, the standard deviation was calculated for
the diffusivity distribution in log space, then the ratio of the diffusivities at 10®-1°g*25%.10¢) (j ¢ the fold-
range) was evaluated as 10#2579/10®25%) = 105, In perturbation conditions (Fig. 5), the reported
percent change in the median and fold-range were determined using the converted linear space median
and fold-range as described above in this paragraph.

Ergodicity

The ensemble-average (EA) MSD = <(x(7)-x(0))*> was computed as the squared displacement
at each time interval relative to the particle’s origin position, and then averaged across all particles. The
95% confidence intervals (CI) for the EA MSD were calculated using bootstrapping; the bootci()
function in MATLAB was called using the basic percentile method and a sample size equal to the
number of tracks in the dataset. The time-ensemble-average (TEA) MSD = <(x(t+1)-x(t))*> was first
time-averaged across each individual track using non-overlapping time intervals, and then the time-
averages were again averaged across all particles (exactly as in Diffusivity Analysis). The percent
difference between the EA and TEA MSD was calculated as (EA-TEA)*100/EA MSD. The percent
difference as a function of the time interval was then fit to an exponential decay plus a constant: y =
A*e(-Bt)+C using the MATLAB fit() function. The fitting was weighted by the inverse of the standard
error for each data point.
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Table 2: Model Parameters - Input parameters

Variable Meaning Value Source
ks Boltzmann'’s constant 0.0138pN nm /K -
T Cytoplasm temperature 303.15 K (30 °C) This work
R Particle radius 20 nm (36)
L Cell length That of the experimentally- This work
measured counterpart
w Cell width 3 um This work
Nw Dynamic viscosity of water 2.414x108x10(2478/(T-140)) -
(8x107pN ms / nm? at 30
oC)
(Nes Dynamic viscosity of the 40 nw Approximated to match
cytoplasm experimentally-measured
(mean across all cells and (320x107pN ms / nm? at 30 | average diffusivity assuming the
subcellular spatial domains) °C) Stokes-Einstein relationship D =
ksTly
Onec Standard deviation of the 0.45 {nes Best fit to this work
average cellular viscosity
across all cells in the
population
Ons Standard deviation of the 0.85 <{ne Best fit to this work
viscosity among all spatial )
domains in a cell where {ne is the average
across all spatial domains
in a particular cell
A Spatial domain size within a 1 um Best fit to this work
single cell

Table 3: Model Parameters - Derived parameters

Variable Meaning Value
ksT Thermal energy 4.18 pN nm
{y Viscous drag coefficient given 0.012 pN ms /nm (at 30
Stokes’ law °C)
(for the average particle)
y=6m {no> R
{Desy Diffusivity 350 nm2/ms
(averaged across all cells and
spatial domains)
D = ksT/y
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Table 4: Model Parameters - Best fit parameters for each spatial heterogeneity domain
size in order to match the experimentally-observed mean and variance in GEM
diffusivity

Spatial Mean cytoplasm viscosity Standard deviation of the Standard deviation of the
domain average cellular viscosity viscosity among all spatial
size within Nes) across all cells in the domains in a cell ons

a single population Onc

cell A

100 nm 50 Nw 0.375 {nes) 1.1 {ne

300 nm 39 nw 0.4 {nes 1.0 {ne

600 nm 38 nw 0.4 {nes 0.9 {ne

1000 nm | 40.5nw 0.4 {Nes 0.8 {ne

3000 nm [ 41.5nw 0 {Nes 0.775 {ne
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Supplementary Figures
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Supp. Fig. 1: Experimental data is consistent with nearly unconstrained diffusion. (a) Mean-squared
displacement (MSD) along the long and short axes of the cell, plotted alongside the total MSD. (b) The
predicted MSD for Fractional Brownian motion (FBM), including both analytical theory and results from
simulated data, using the experimentally-measured values of D and a. The experimental data is also plotted for
comparison, showing good agreement with the theory. (a-b) Note the logarithmic scale along the x- and y-axes.
(¢) Same legend as in (b). The predicted velocity autocorrelation for FBM, showing the characteristic negative
peak which then decays to zero. Experimental data shows a wide and very shallow negative basin, which does
not match the shape or depth of the peak predicted by FBM.
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Supp. Fig. 2: Additional evidence for intrinsic and extrinsic sources of noise. (a) The relationship between
the apparent diffusivity and power law exponent. (b) The apparent diffusivity of each particle in the dataset
plotted against a randomly chosen particle from the same cell. Each particle is represented exactly once in the
plot. For cells with an odd number of particles, one particle would not be represented for that cell. (¢) Mean
diffusivity across tracks in each cell plotted vs the number of tracks in each cell. (d) Coefficient of variation
across tracks in each cell plotted vs the number of tracks in each cell. (e) Coefficient of variation vs mean
diffusivity calculated by averaging across all tracks for each cell. (a-e) Fits of track-wise MSD data are shown
in light blue, with cell-wise fits overlaid in dark blue. (a-b) Note the logarithmic scale along the y-axis. (b)
Note the logarithmic scale along the x-axis. (b-d) r- and p-values determined by a Spearman correlation
algorithm.
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a Model #4: Viscosity parameters required to fit the experimental data
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Supp. Fig. 3: Best fit parameters for each spatial domain size preserve the experimentally-observed mean
and variance in diffusivity. (a) Simulation input parameters for viscosity (Model #4: Spatial and cellular
heterogeneity) that best recapitulate the experimentally-measured spread in diffusivity. Left: The mean viscosity
relative to the viscosity of water (e.g., A mean of 40 would indicate the cytoplasm has 40X the viscosity of
water). Middle: The coefficient of variation (CV, mean divided by the standard deviation) of the viscosity
among different spatial domains within each cell. Right: The coefficient of variation (CV, mean divided by the
standard deviation) of the cell-averaged viscosities among a population of cells. (b) Median apparent diffusivity
(averaged across all tracks) plotted for the experimental dataset as well as each model. X-labels for the models
represent the domain size for the spatial heterogeneity. Error bars represent the standard error of the median.
Significance stars represent the result of the Wilcoxon rank sum test for equality of the medians. (c-d)
Distributions of apparent diffusivities calculated from fits of the track-wise (¢) or cell-wise (d) MSD curves
displayed for the experimental data as well as each of the models. Note the logarithmic scale along the y-axis.
Boxplots are drawn as in Figure 2. Significance stars represent the result of Levene’s test for equality of
variance. (a-c) * p<0.05. **p<0.01, *** p<0.001, **** p<0.0001.
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a Particle Trajectories (from Fig 1g)
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Supp. Fig. 4: Weak non-ergodicity of GEM diffusion cannot be explained by a continuous time random
walk model. (a) X- and y-trajectories of the tracks shown in Fig. 1g. (b) X- and y-trajectories of a completely
immobilized particle observed within the experimental dataset. (¢) The best fit of the power law exponent, a,
for time-averaged MSD of each track, plotted as a function of the track length. Each dot represents the best fit
for an individual track. The mean across all tracks of a given length is displayed as a thick black line, and the
standard error of the mean (SE) is plotted as error bars.
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Supp. Fig. 5: The large heterogeneity in diffusivity cannot be explained by the cell cycle or subcellular
GEM particle localization. (a-b) Fitted values for diffusivity (a) and power law exponent (b) plotted as a
function of cell length. (¢-d) Track-wise fit values for diffusivity (c¢) and power law exponent (d) plotted against
the mean (time-averaged) particle position along the long axis of the cell. There are fewer cells and tracks
represented in (c-e) compared to (a-b) because the new pole could be distinguished from the old pole for only
a subset of cells. (a-d) Fits of track-wise MSD data are shown in light blue, with cell-wise fits overlaid in dark
blue. (a, ¢) Note the logarithmic scale along the y-axis.
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Supp. Fig. 6: Schematic of the generalized Doppelginger approach.
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