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Abstract 

Constructing atlas-scale comprehensive cell maps from publicly available data enables 

extensive data mining to achieve novel biological insights. Data integration to construct such 

maps require both harmonized datasets and an atlas-scale capable data integration tool. The 

first requirement is met by DISCO, a comprehensive repository of harmonized publicly available 

single cell data with standardized annotation. To meet the second requirement, the tool must 

have the capacity to integrate hundreds if not thousands of samples within an acceptable time 

frame. Moreover, it should output batch-corrected gene expression values to facilitate 
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downstream analyses. Here, we present FastIntegration, a package which allows users to 

access and integrate public data in a convenient way. FastIntegration provides a fast and high-

capacity version of Seurat Integration which can integrate more than 4 million cells within 2 

days. It outputs batch corrected values for all genes that we can use for downstream analyses. 

For the first time, we demonstrated that using batch corrected values can improve the 

performance of downstream analyses. In particular, we found more accurately identified 

differentially expressed genes for cell types that are not shared between batches. Moreover, we 

also showed that FastIntegration outperforms existing methods for both homogeneous and 

heterogeneous data integration. FastIntegration also provides an API for programmatic access 

to data hosted on DISCO, a single-cell RNA-seq database that contains more than 5200 single-

cell datasets. Users can filter for data at the sample level by tissue, disease and platform etc., 

and at cell level by specifying the expressed and unexpressed genes. 

Background 

Single-cell omics technologies are advancing at a rapid pace, with the data throughput still 

growing from new techniques being developed 1,2. Using these tools, researchers are 

generating ever larger datasets and uncovering new cell subpopulations in both healthy and 

diseased tissues. By integrating data across studies, the power and resolution of single cell 

studies are greatly increased to enable new discoveries 3,4. Integration of publicly available data 

into atlases is particularly needed to construct consensus reference maps, together with batch 

corrected gene expression values that can be used for various downstream analyses. However, 

existing batch integration methods suffer from different drawbacks, namely being unable to 

scale up to a large number (hundreds or even thousands) of samples and millions of cells, or 

unable to produce batch corrected values 5-9.  

In our published benchmarking study 10, we found Harmony, LIGER, and Seurat v3 to be the top 

performing methods for batch integration, while Luecken et al. found scANVI, Scanorama, scVI, 
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and scGen 11 to be superior for atlas-level data integration. Except for Seurat and Scanorama, 

the other methods do not return batch corrected values. Furthermore, scGen and scANVI 

require cell type information to guide the integration, which is often not available. Though Seurat 

Integration returns batch corrected values, it cannot handle large-scale data integration with 

about 100K cells being the upper limit. Moreover, Seurat by default integrates only 2000 highly 

variable genes (HVGs) and returns their corrected values. If all available genes are used, it 

encounters performance issues when integrating more than 30 samples. Meanwhile, it remains 

hotly debated whether batch corrected values or uncorrected values should be used for post-

integration downstream analyses such as identification of differentially expressed genes 

(DEGs), inference of regulon activities, and cell-cell interactions. Here, we present 

FastIntegration that performs efficient integration of hundreds and even thousands of samples, 

and outputs batch-corrected values for all genes. Furthermore, we demonstrate that the batch-

corrected values improve performance in downstream analyses including DEG identification and 

transcription factor activity quantification. 

Results and Discussion 

FastIntegration significantly improves time efficiency and memory usage over Seurat V4 

and enables large-scale data integration 

We created FastIntegration by improving the original Seurat batch integration functions in 

several aspects (Figure 1A, details given in Methods). Most importantly, FastIntegration 

performs principal component analysis (PCA) only once and employs the resulting latent space 

during the iterative batch correction. By avoiding PCA re-computation at each iteration, the gene 

expression correction step can be parallelized and sped up. We added outlier detection and 

remove them at each round of integration to prevent overcorrection. We also optimized the use 

of variables to reduce memory usage and parallelized various functions to improve overall 

runtime performance.  
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As we intend FastIntegration to be a fast and high-capacity version of Seurat integration, we first 

assessed the results produced by these two methods for consistency with the same input 

dataset of 20 blood samples. Both methods obtained high Adjusted Rand Index (ARI) scores 

based on the ground-truth cell type labels and were highly consistent between themselves with 

clusters showing high mutual ARI scores (Figure S1). In this dataset, neutrophils only appear in 

two batches, posing a challenge to batch integration methods to maintain them separate from 

other similar myeloid cells. Seurat mixed the neutrophils with monocytes while FastIntegration 

was able to retain them as a distinct cluster, which can be attributed to our overcorrection 

prevention steps (Figure S1A-B). Next, we compared their memory and time usage for 

integrating 10 to 200 samples (Figure 1B). When integrating the same number of samples, 

FastIntegration required less memory and time than Seurat. Moreover, Seurat was unable to 

integrate more than 30 samples, showing a “Cholmod error” caused by a failure to create a 

large sparse matrix. In contrast, FastIntegration was able to integrate 200 samples within 40 

minutes with 100 threads.  

To further demonstrate the large-scale integration capabilities of FastIntegration, we integrated 

4.2 million cells from 877 blood samples collected from COVID-19 patients and healthy donors. 

The integration took less than two days with 150 threads and 2 TB peak memory usage. After 

integration, inter-study variations were removed (Figure 1C) while the major cell types were well 

separated, confirmed by their marker gene expressions (Figure S2). Strikingly, when we 

extracted the plasma cells and re-clustered them, we could clearly distinguish between IgG, 

IgM, and IgA expressing plasma cells (Figure 1D), which demonstrated that the integrated data 

retains the subtle differences between cells. We also applied FastIntegration on the DISCO 

database (https://www.immunesinglecell.org/) 12 to create integrated atlases for different tissues, 

diseases, and cell types. 

FastIntegration performs well on both homogeneous and heterogeneous data integration 
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Current benchmarking studies 10,11 have focused on the performance of integrating 

homogeneous datasets derived from the same tissue type. With the exponential growth of 

single-cell data, integration of heterogeneous datasets across different tissue types is becoming 

increasingly common. For example, several studies have integrated blood with lung tissue 

samples from COVID-19 patients to study the systematic immune responses at different sites 

13,14. Here, we evaluated the performance of FastIntegration and four other state-of-the-art 

methods, namely Harmony 6, BBKNN 7, scVI 8, and Scanorama 9 in integrating large numbers of 

homogeneous and heterogeneous datasets. The homogeneous datasets comprised of 50 blood 

samples, and the heterogeneous datasets consisted of 50 blood and 10 lung samples. Sample 

Local Inverse Simpson's Index (sLISI) and inverse cell type LISI (1/cLISI) scores were used to 

assess batch mixing and cell type separation respectively, with a higher value denoting better 

performance. As BBKNN outputs only a graph, we could not calculate its LISI scores. Adjusted 

rand index (ARI), a global evaluation metric, was used to assess the concordance between 

clustering and manual cell type annotation.  

For both homogeneous and heterogeneous data integration, FastIntegration and BBKNN 

produced the highest ARI scores (Figure 2A). However, BBKNN returns a distance-based 

neighbor list only, which prevents some downstream analyses. In terms of sLISI scores, 

Harmony was the top method with FastIntegration ranked second for both homogenous and 

heterogeneous integration (Figure 2B, Figure S3). In terms of cLISI, FastIntegration was the 

best method for both homogenous and heterogeneous integration (Figure 2B, Figure S3). 

Among the evaluated methods, FastIntegration struck the best balance between cell type 

separation (cLISI) and batch mixing (sLISI) (Figure 2B). In the homogeneous dataset, only 2 of 

50 samples contained neutrophils, and only scVI, Scanorama, and FastIntegration were able to 

maintain the neutrophils as a separate cluster (Figure S4). This means that they are less likely 

to overcorrect and can better maintain separation of batch-specific cell types than Harmony and 
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BBKNN. For the heterogeneous dataset, only FastIntegration was able to integrate the immune 

cells from both blood and lung samples (Figure S5). Collectively, FastIntegration showed 

superior and stable performance for both homogeneous and heterogeneous data integration. 

Batch corrected gene expression values generated by FastIntegration can be used for 

downstream analyses 

The batch correction functions of FastIntegration and Seurat aim to align shared cell types 

across batches, removing batch effects present in the gene expression values in this process. 

The resulting batch-corrected values are potentially usable for various downstream analyses but 

there has been no study that systematically assessed the performance of batch corrected 

values in downstream analyses. Moreover, Seurat integration by default uses the top 2000 

highly variable genes and returns the corrected values only for these genes. If all available 

genes are used, it encounters performance issues when integrating more than 30,000 cells. As 

a result, using “FindConservedMarkers” on the uncorrected values is recommended for post-

integration Differential Gene Expression (DGE) analysis 

(https://github.com/satijalab/seurat/issues/1717). However, FindConservedMarkers cannot 

identify DEGs of clusters that only exist in a subset of batches. Given that FastIntegration can 

integrate thousands of batches and output batch corrected expression values for all genes, we 

evaluated the differences between using batch-corrected and raw values in DEG identification 

and quantification of transcription factor (TF) activity. 

The homogenous dataset of 50 blood samples was used to assess DEG identification. For each 

cell type pair, we identified their DEGs twice using different sample subsets. The first batch of 

DEGs was identified between cell type 1 in samples 1 to 25, and cell type 2 in samples 26 to 50, 

and the second batch was identified between cell type 1 in samples 26 to 50, and cell type 2 in 

samples 1 to 25 (Figure 2C). This mimics the situation where some cell types only exist in a 

subset of samples. We found that the percentage of overlapping DEGs identified using the 
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corrected values is much larger (58% vs 41%) than those identified using the uncorrected 

values, implying that the DEGs identified using the corrected values is more stable across 

batches (Figure 2D). Moreover, we found that 1.3% of the DEGs identified using the 

uncorrected values showed opposite fold changes in the different sample subset comparisons, 

which we attribute to batch effects. Comparatively, only 0.02% of the DEGs identified using the 

corrected values show such opposite fold changes. We next examined the difference in DEG 

overlap for each cell type using the F-score (Figure 2E). We found that for all cell types, the 

corrected values gave higher DEG overlaps in the subset comparisons. This higher overlap is 

particularly stronger among certain similar cell types such as the different B cell subtypes. This 

ability to identify subtle cell differences is especially attractive for big data integration. To check 

the reliability of the DEGs, we also computed the DEGs between all pairs of cell types using the 

batch-corrected and raw values of all 50 samples, and compared them with the DEGs computed 

within individual samples. Assuming that the true DEGs can also be found in most individual 

samples, we counted the frequency of conserved DEGs being found in the DEGs identified 

within individual samples. A higher frequency denotes higher reliability for the detected DEGs. 

We found the DEGs identified with batch-corrected values to be more conserved in each single 

sample than the DEGs identified with raw values (Figure 2F). 

Using batch corrected values for DEG identification is highly controversial with the choice of 

uncorrected values being commonly stated as the preferred approach. In this study, we 

demonstrated how batch effects can negatively affect the use of uncorrected values for DEG 

identification with cell types not found in all batches. By using batch corrected values, we 

reduced the number of DEGs with incorrectly identified fold change directions and increased the 

overall accuracy. For cell types found in all batches, the choice of uncorrected versus corrected 

values should not matter, as the presence of the cells across all batches should cancel out the 

batch effects. Another commonly encountered scenario in DEG identification is that of technical 
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batch effects confounding with biological or patient effects. While the former is nuisance and 

should be removed, the latter can be of significance to the study at hand. The disentanglement 

of both effects remains an unsolved challenge when all batches do not have matching biological 

samples to serve as a reference to guide the data integration. As such, uncorrected values 

remain the only choice for investigating biological effects present between samples.  

To test the impact of batch effects on TF activity prediction, we applied SCENIC15 to the raw 

and batch-corrected data to predict the TF activities of individual cells. In the TF activity 

generated UMAP for uncorrected values, the batch effects are clearly present among the same 

cell types across different batches (Figure 2G). For the FastIntegration’s corrected values, most 

of the batch effects was eliminated with the same cell types forming their respective clusters 

and the batches mixed within. 

FastIntegration allows users filter and download public single-cell data in a convenient 

way 

While there are many databases that host single-cell datasets, they possess various drawbacks 

that make them difficult to exploit for multi-sample integrated analyses. Firstly, sample 

associated metadata are typically inconsistent across studies. Secondly, different studies use 

different versions of the reference genome, making it challenging for integration. To solve these 

problems, we developed the DISCO single-cell database in 2021 to host harmonized single-cell 

data from different public data sources. Here, we provide functions in FastIntegration that 

enable users to programmatically access DISCO’s hosted data. With FastIntegration’s API, 

users can filter samples by various criteria, like tissue, disease, and platform. Moreover, users 

can also filter the data at cell level by providing expressed or/and unexpressed genes. 

Combined with the FastIntegration algorithm, users can now explore the DISCO hosted public 

datasets and integrate them with their own in-house data conveniently and offline. 
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Conclusion 

Here, we introduced FastIntegration for integrating large single-cell RNA-seq datasets and 

outputting batch corrected gene expression values. We demonstrated its capacity for large 

scale batch integration with 4 million cells in 48 hours of runtime through good multicore scaling. 

With large datasets, it achieved good performance for both homogeneous and heterogeneous 

data integration when compared with other methods. The batch corrected values produced by 

FastIntegration can be used for downstream analyses including DEG analysis and regulatory 

network inference. It also offers programmatic access to DISCO’s hosted single-cell RNA-seq 

datasets. With the continued growth in single-cell RNA-seq data, FastIntegration will be a 

valuable tool for large scale data integration tasks. 

Method 

Optimization of Seurat framework for big data integration 

Seurat (v3 and v4) integrates data in three steps (anchor identification, sample tree construction, 

and stepwise batch effect correction). We optimized the pipeline and code of each step to speed 

them up and reduce memory usage. Although Seurat provide a parallelized version of 

“FindIntegrationAnchors” using the “future” framework for the anchor identification step, it is 

memory intensive as it initially loads the data of all batches into memory and R’s garbage 

collection for parallelization is very slow. To solve this problem, FastIntegration first stores each 

sample in a separate file and loads them as required. For parallelization, we use the “pbmcapply” 

package which is comparatively lighter and more user-friendly than “future” framework. 

Seurat constructs the sample tree using an iterative function which has an n2 x (time to 

filter anchor table) time complexity where n is the number of samples/batches. The time 

complexity for filtering the anchor table is also O(n2). Therefore, the time complexity for this step 

is about O(n4). To speed up it, FastIntegration converts the anchor table into a “data.table” 

object which has a key and index for each data row. The time complexity for filtering the 
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“data.table” object is therefore O(log n). To calculate the similarities between samples, 

FastIntgeration uses the “group_by” functions which have a O(n) time complexity. Thus, the 

resulting time complexity of our sample tree construction in FastIntegration is reduced to 

O(nlog(n)). 

At the integration stage, Seurat integrates input samples according to the sample tree 

and needs n-1 iterations (n is the number of samples). At each iteration, PCA is performed on 

the query data to find the k nearest neighbors (KNN) of each query cell in the PCA space. 

These operations become the processing bottleneck for big data integration. While the 

motivation for doing PCA in each round of integration is to get the precise KNN graph, we 

reasoned that the nearest neighbors are most likely to fall within the same unintegrated dataset 

as the query cell. Thus, FastIntgeration only runs PCA once on all unintegrated datasets and 

identifies the nearest anchors in this PCA space, which is used for the subsequent integration. 

This allows the calculation of integrated expression values for different genes to be parallelized, 

accelerating integration. Another problem in Seurat’s integration scheme is the risk of over- or 

mis-correcting gene expression values. To alleviate this problem, in each round of integration, 

the corrected gene expression value will be set to 0 if it is less than the minimal value of 

uncorrected value, or set to the maximal value of uncorrected value if it is greater than the 

maximal value of uncorrected value. Furthermore, Seurat computes a fixed number of k 

neighbors for each cell to construct the weight matrix of anchors while FastIntegration fits a 

Gaussian distribution to the distances of k neighbors and removes neighbors with a Z score 

great than 3. With these modifications, FastIntgeration can remove outlier gene expression 

values and keep the sparsity of data, avoiding problem of long vector being unsupported in 

large sparse matrices. 

Assessment of memory usage and runtime 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.05.10.491296doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491296
http://creativecommons.org/licenses/by/4.0/


 11

We compared the memory usage and CPU runtime of FastIntegration with Seurat. For a fair 

comparison, we also enabled parallelization in Seurat using 150 threads. We then tested their 

performance on different sample sizes ranging from 10 to 200. To obtain the runtime, we used 

the command “time -v” to evaluate. To obtain the total memory usage by all threads, we used an 

in-house script to get the maximum memory usage of each job. We first cleared all jobs in the 

server and then recorded the used memory at every second during the run and determined the 

peak memory usage after the job finished. All jobs were run on a Linux server with 2x AMD® 

EPYC 7552 CPUs at 2.20GHz, 2�TB of DDR4 memory, and an 8T SSD disk.  

Benchmark of data integration 

We compared FastIntegration with four state-of-the-art methods, BBKNN, Harmony, Scanorama, 

and scVI. We used two different datasets that represent two common scenarios. The first 

dataset is a homogeneous dataset which contains 235,886 cells from 50 blood samples, and 

the second is a heterogeneous dataset with 235,886 cells from 50 blood samples and 32,582 

cells from 10 lung samples. We used two evaluation metrics to compare the local and global 

performance of each method. The local level metric used was the Local inverse Simpson’s 

index (LISI) by Korsunsky et al (https://github.com/immunogenomics/LISI). We calculated the 

cell type LISI (cLISI) and batch LISI (bLISI) scores of the integration results from each method 

and used the F1 score 16 of cLISI and bLISI as a combined assessment of cell type purity and 

batch mixing. We also used the Adjusted Rand Index (ARI) to evaluate the global integration 

performance. We annotated each sample manually and calculated the ARI between cell clusters 

and cell type annotation. To avoid the influence of clustering resolution, we tested a range of 

resolutions (0.1 to 1) and used the maximum ARI achieved. The first 50 PCs were used as input 

to BBKNN and Harmony, and 3000 features selected by FindIntegrationFeatures were used as 

input to FastIntegration, Scanorama, and scVI. The number of epochs was set to 100 for scVI. 

All other parameters were set as defaults. 
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Differential gene expression analysis and single-cell regulatory network inference 

The dataset of 50 blood samples was used to test the performance of DEGs identification and 

regulatory network inference. We first removed cell types with fewer than 50 cells or greater 

than 30% in only one sample. After that, 253 cell type pairs were retained for DEGs 

identification. For each cell type pair, we identified the DEGs twice. The first batch of DEGs was 

identified between cell type 1 in samples 1-25 and cell type 2 in samples 26-50 and the second 

batch was identified between cell type 1 in samples 26-50 and cell type 2 in samples 1-25. The 

“FindMarkers” function in the Seurat package was used for DEG identification and only DEGs 

with an q value less than 0.05 were retained for further analyses. The F-score (measuring 

accuracy) is defined as (TP�+�TN)/(TP�+�TN�+�FP�+�FN), which was also used in our 

previous benchmarking paper 10. SCENIC was used to infer the single-cell regulatory network 

and predicted TF activity. The AUC scores produced by SCENIC were used to do cell clustering. 
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Additional file 5: Figure S4: Visualisation of homogeneous data integration by different 

methods. UMAP of homogeneous data integration by the different integration methods, colored 
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Additional file 6: Figure S5: Visualisation of heterogeneous data integration by different 

methods. UMAP of heterogeneous data integration by the different integration methods, 
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Additional file 7: Figure S6: UMAPs of heterogeneous data integration by different 

integration methods, colored by tissue. 
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 Figure Legends 

Figure 1: Comparison between FastIntegration and Seurat. A) The framework of 

FastIntegration. B) Computational efficiency benchmarks of Seurat and FastIntegration. C) 

UMAP of COVID-19 atlas, encompassing 4.2 million cells from 877 blood samples. D) UMAP 

and feature plots of data integrated plasma cells. 

Figure 2: Qualitative evaluation of FastIntegration and batch-corrected gene expression 

value. A) ARI and B) LISI of different data integration methods for integrating the homogeneous 

(left) and heterogeneous (right) datasets. C) The strategy for DEGs identification. D) 

Conservation of DEGs identified when using raw and corrected values. E) The differences in F-

scores between raw and corrected values for each cell type. F) The frequency of each DEG 

found in individual samples (conservative score). G) UMAPs generated with TF activities 

computed from the raw (left) and corrected (right) values. 
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