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Abstract

White matter tracts form the structural basis ofidascale functional networks in the human braie &gplied
brain-wide tractography to diffusion images from&I® adult participants (UK Biobank), and foundngfigant
heritability for 90 regional connectivity measusesl 851 tract-wise connectivity measures. Multat&rigenome-
wide association analyses identified 355 indepethglassociated lead SNPs across the genome, ohwiviéo
had not been previously associated with human brawetrics. Enrichment analyses implicated
neurodevelopmental processes including neurogenesisal differentiation, neural migration, neupabjection
guidance, and axon development, as well as pretatah expression especially in stem cells, astasy
microglia and neurons. We used the multivariate association profiles of lead SNPs to identify 2& deciomi
implicated in structural connectivity between coegjions of the left-hemisphere language networkl also
identified 6 loci associated with hemispheric leffat asymmetry of structural connectivity. Polygescores for
schizophrenia, bipolar disorder, autism spectrusordier, attention-deficit hyperactivity disordexftihandedness,
Alzheimer’s disease, amyotrophic lateral scleraamsl eflepsy showed significant multivariate associati@rnith
structural connectivity, each implicating distirsgits of brain regions with trait-relevant functibpeofiles. This
large-scale mapping study revealed common genetitributions to the structural connectome of thenan
brain in the general adult population, highlightiigks with polygenic disposition to brain disordeand
behavioural traits.

One sentence summary: Variability in white matter fiber tracts of the ham brain is associated with hundreds
of newly discovered genomic loci that especiallyplicate stem, neural and glial cells during prehata
development, and is also associated with polyggisjgositions to various brain disorders and behawidraits.

Keywords

Diffusion magnetic resonance imaging, white mattennectivity, brain fiber tracts, structural contiaty,
multivariate association, genome-wide associatiam spolygenic scores, UK Biobank.
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Introduction

Cognitive functions and behaviours are supportedlynyamic interactions of neural signals within Eugrale
brain networksl). Neural signals propagate along white mattertdrtiwat link cortical, subcortical, and cerebellar
regions to form the structural connecto®e]). White matter tracts also modulate neural sigaald distribute
trophic factors between connected regidn$j, helping to establish and maintain functional csplezation of
sub-networks. Various heritable psychiatric andralegical disorders can involve altered white masteuctural
connectivity, relating for example to cognitive idés, clinical presentation or recovedyl0). It is therefore of
great interest to understand which DNA variantsjegead pathways affect white matter tracts in the human
brain, as they are likely to influence cognitivedahehavioural variability in the population, as Wwabk
predisposition to brain disorders.

Diffusion tensor imaging (DTI) enablea vivo non-invasive study of white matter in the braih(12). This
technique characterizes the diffusion of water males, which occurs preferentially in parallel terve fiber
tracts due to constraints imposed by axonal menaisramd myelin sheatds 14). Metrics commonly derived
from DTI, such as fractional anisotropy or mearfusiivity, reflect regional white matter microstruot and can
index its integrityl3-15). In contrast, white matter tractography invohasfining fiber tracts at the macro-
anatomical scale, and computing connectivity stfefny counting the streamlines that link each phanegions.
Streamlines are constructéa pass through multiple ajent voxks in DTI data, when the principal diffusion
tensor per voxel aligns well with some of its direeighbors{6). Tractography therefore produces subject-
specific measures of regional inter-connectivitgttare ideally suited for brain network-level arsiy

Recently, genome-wide association studies (GWASg heported that a substantial proportion of imelividual
variability in white matter microstructural meassirean be explained by common genetic variants, siitgle
nucleotide polymorphism (SNP)-based heritabilitteasnging from 22% to 66%{, 18). These studies also
identified specific genomic loci associated withcrostructural measures of white matter integtity(18).
However, to our knowledge, nerve fiber tractographg not previously been used for large-scale gengite
association analysis of brain structural netwolkly due to heavy computational requirements rienning
tractography in tens of thousands of individuals.

Here, we aimed to characterize the genetic architecf white matter structural network connecyivih the

human brain, using fiber tractography. DTI datarfr80,810 participants of the UK Biobank adult paioin

dataset were used to construct the brain-wide tsiraicconnectivity network of each individual. lorabination

with genome-wide genotype data, we then carriech@ét of genetic analyses of tractography-deniwettics, in
terms of the sum of white matter connectivity limgito each of 90 brain regions (as network nodes),each of
947 tract-wise measures that indicated connegtbétween specific pairs of regions (as networkesjigThese
analyses included SNP-based heritability estimation, multivariate GWAS (mvGWAS), and biologmaliann
of associated loci.

An important aspect of human brain organizationemispheric specialization — the tendency of cerfianctions

to be carried out dominantly by either the leftright cerebral hemispherd$®). Previous GWAS analyses have
identified genetic loci associated with left-righgymmetries of cerebral cortical anatomy and/odbdness0-
24). Aspects of language function show especiallgrgjriateralizations, with roughly 85% of people ingvieft-
hemisphere dominan@&). Such functional asymmetries may be partly uniderd by hemispheric asymmetries
of white matter connectivity. Therefore, we used our brain-wide mvGWAS results to identifjnigelloci that
are associated with tract connectivities between core language-related regions of the left-henmspdhditn,

for all structural connectivity metrics with paired left and right counterparts, we calculatedyrimetries and
performed mvGWAS for any significantly heritableyasnetry measures, to identify genetic influences on
hemispheric asymmetries of white matter connectivity.

Finally, we assessed how genetic disposition tinlaesorders and other behavioural traits manifests in tesins
white matter connectivity in the general populatiand how this relates to cognitive processes. deca we
mapped multivariate associations of white mattactobgraphy metrics with polygenic scores for araarof
heritable brain disorders and traits, including izgphrenia, bipolar disorder, autism, attentioniglef
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hyperactivity disorder, left-handedness, Alzheimmedlisease, amyotrophic lateral sclerosis, and ppileand
annotated the resulting brain maps with cognitivecfions, using large-scale meta-analyzed fundtiona
neuroimaging data.

Results
White matter connectomes of 30,810 adults at regional and tract levels

For each of 30,810 adult paipants with diffusion MRIland genetic da after quality control, we performed
deterministic fiber tractographif) between each pair of regions defined in the Aatieah Anatomical Labeling
atlase6) (45 regions per hemisphere comprising cerebndicad and subcortical structures) (Fig. 1; Methodis
the structural connectivity matrix of each indivadueach region was considered a node, and earttctnasidered
an edge, with each tract comprising all streamlitiies link a given pair of regions. We excludecctsawhen
more than 20% of individuals had no streamlinesnecting a pair of regions, resulting in 947 traafith
streamline counts. To quantify the connectivityeath tract in each individual, streamline counteeveivided by
the individual-specific grey matter volume of tineotregions that they connected, as larger regiemded to have
more streamlines connecting to them. The volumesd€g tract measures were also used to calcuategmonal
connectivity for each region (i.e. the sum of afes connecting with a given node) within eachigaent. The
resulting node and edge measures were adjustelfoographic and technical covariates, and nornthboeoss
individuals (Methods), before being used for thesagquent analyses of the study.

Individualized structural network construction

T1-weighted image Node definition

Anatomical
parcellation

- White matter structural
connectivity matrix

Diffusion-weighted image Edge definition

Fiber
tractography
—

Figure 1. Schematic of white matter network construction within an individual brain. Network nodes were defined by mapping the
Automated Anatomical Labeling atlas from common Mighce to individual space, with 45 regions per helneise (including cortal
and subcortical structures). The edge between egiclopregions was defined as the number of stresslconstructed by tramgraphy
based on the corresponding diffusion tensor imaddevadjusting for the volume of the connected ragiolhe process yieldex zero-
diagonal symmetrical 90x90 undirected connectivitytrinafor each of 30,810 participants (the upperngi@s were then usearf
subsequent analyses).
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Of the 947 tracts, 377 connected pairs of left-tspmere regions, 355 connected pairs of right hémispregions,
and 215 involved interhemispheric connections. Tdpe 10% of regions in terms of connectivity inclddine
supplementary motor cortex, precuneus, medial supé&ontal cortex, and subcortical regions bilatgr —
caudate and thalamus (Supplementary Figure 1 apfi@uentary Table 1). The latter observation issgiant
with previous studies showing that subcortical ®egi connect widely with the cerebral cortex, to egate
reciprocal cortical-subcortical interactions ttagdther support many cognitive functichs{7, 28).

Heritabilities of region-wise and tract-wise connectivities

GCTA(29) was used to estimate the SNP-based heritabiiflyf¢r each network measure, that is, the extent to
which variance in each measure was explained byrammygenetic variants across the autosomes (Methbds)
the 90 regional connectivities (i.e. connectivifyn@twork nodes) all were significantly heritabBofferroni-
corrected p<0.05), ranging from 7.8% to 29.5% (miefar18.5%; Fig. 2A and Supplementary Table 2). Most of
the homologous regions in the left and right hemésps showed similar heritabilities, while someiorg
showed prominent differences, such as the infe@oietal cortex (left: 27.0% vs. right: 19.42%)rpaiangularis
(left: 23.4% vs. right: 16.9%) and inferior occglitcortex (left: 8.0% vs. right: 15.7%; Fig. 2A and
Supplementary Table 2). Eleven regional conne@wishowed? estimates >25% (Supplementary Table 1), with
the superior temporal cortex in the left hemisphsiag highestt?=29.5%, p<1x18°).

851 of 947 tract-wise connectivities (network edgebowed significant heritability (Bonferroni-cocted
p<0.05), ranging from 4.6% to 29.5% (mean 9.6%}hvd meanh? of 9.9% for 351 tracts within the left
hemisphere, a medri of 10.0% for 333 tracts within the right hemispheand a meah® of 8.1% for 167 inter-
hemispheric tracts (Fig. 2B and Supplementary BalBlé). Eleven out of 851 tract-wise connectivithesd
h®>20%, primarily for tracts linking bilateral frordtaegions (e.g. superior and middle frontal cortex)
supplementary motor and occipital cortex (e.g. asrand lingual).

We calculated the Euclidean distance between thieaids of each pair of connected regions (Methasindex
the relative physical distances between them. Téwtdilities of tract-wise connectivities were aégely
correlated with Euclidean distance across the 8is (r=-0.14; Supplementary Figure 2), suggestiag short-
range tracts tend to be under stronger geneticaoand/or that they were more reliably measured.

M ultivariate genome-wide association analyses of regional and tract-wise connectivities

MOSTestB0) was used to perform two separate mvGWAS analylses, for the 90 regional connectivity
measures in a single multivariate genome-wide sci@ad then for the 851 tract-wise connectivities rother
single multivariate genome-wide screen, both tinmegelation to 9,803,735 SNPs spanning the gendrhes
analysis examined each SNP separately for its et with multiple structural network measurés,
simultaneously modelling the distributed naturgeietic influences across the brain (Methods). FUMAWas
used to clump mvGWAS results on the basis of liekdgequilibrium (LD) and to identify independeradl
SNPs at each associated genomic locus (Methodshefx1G significance level, we identified 154 lead SNPs
in 128 distinct genomic loci associated with regiotonnectivities (node level) (Fig. 2C, Supplenagpnf-igure 3
and Supplementary Table 6), and 231 lead SNPs in diStinct genomic loci associated with tract-wise
connectivities (edge level) (Fig. 2C, Supplementagure 3 and Supplementary Table 7). 97 genonticviere
found in common between the regional connectivityGWAS and tract-wise connectivity mvGWAS.
Permutation analysis under the null hypothesisoodssociation indicated that MOSTest correctly il type

I error (Methods; Supplementary Figures 4 and %¢efgt for chromosome 21, each chromosome had sttdea
locus associated with either regional connectigityract-wise connectivity.

For each lead SNP, MOSTest indicated the contobubif each brain metric to its multivariate assoomg by
reporting a z-score derived from each metric’'s anate association with that SNP (Methods; Suppidarg
Tables 8 and 9). In the regional connectivity (ntmel) mvGWAS, regions with the greatest magnitaeeores
considered across all lead SNPs were the bilateiddle frontal cortex (left mean |z|=2.02, rightandz|=1.89),
bilateral putamen (left mean |z|=2.01, right megr1|82), right superior frontal cortex (mean |Z86) and
middle cingulate cortex (mean |z|=1.78; Supplenmgritegure 6 and Supplementary Table 10). For exanthle
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left middle frontal cortex, which had the highesemll contribution across lead SNPs (mean |z|32@2s
especially strongly associated with rs756705025@i¥.2 (z=8.90), rs67827860 on 5q14.3 (z=8.37596826
on 17921.31 (z=7.11), rs55938136 on 17g21.31 (H366d rs4385132 on 4q12 (z=6.59; SupplementaryeTab
10).

A Heritability of regional connectivity Figure 2. SNP-based heritabi”ty and
multivariate GWAS analyses of regional
connectivity and tract-wise connectivity in
30,810 participants. (A) All 90 regional
connectivities showed significant SNP-based
heritability after Bonferroni correction,
ranging from 7.8% to 29.5%. (B) 851 out of
947 tract-wise  connectivities  showed
significant SNP-based heritability after
Bonferroni correction, ranging from 4.6% to
29.5%. Right panel: brain maps. Left panel:

e nodes grouped by frontal, prefrontal, parietal,

temporal, and occipital cortical lobes, and

B subcortical structures. (C) Miami plot for
multivariate GWAS of 90 regional
connectivities (upper) and 851 tract-wise
connectivities (lower). The black lines
indicate the genome-wide significance
threshold p<5x18 (Methods).
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In the mvGWAS of tract-wise connectivity (edge IBvéracts that showed high magnitude z-scoresidensd
across all lead SNPs mainly connected the precuiaicarine, middle temporal and pre- and postraénbrtex
(Supplementary Table 11 and Supplementary Figurd i@ tract linking the left and right precuneusl he
greatest contribution across lead SNPs (mean $8¥xland was especially associated with the varies846711
on10p12.31 (z=-5.58) and 3:190646282_TA T on 3928553).

Themajority of genomic loci associated with structural connectivity are novel

Together, our regional connectivity mvGWAS and traise connectivity mvGWAS identified 355 lead SNBE
which 105 were previously associated with at lease trait in the NHGRI-EBI GWAS cataldg)
(Supplementary Tables 6 and 7). This indicatestti@mmajority (70.4%) of loci implicated here iretktructural
connectome were not identified by previous studidsere were 68 SNPs in common with those repomed i
previous GWAS of brain measur&8( 30, 33-35). Specifically, 48 of our lead SNPs were previgusdsociated
with brain regional volume88, 36), 30 with regional cortical thicknessd6( 35), 35 with regional cortical
surface area85, 37), and 20 with white matter microstructut8(38). Apart from brain measures, 11 of our lead
SNPs were associated with mental health traits gtism, schizophrenia, and anxie8®,(40), 12 of our lead
SNPs with cognitive functions (e.g. cognitive ability and performadte®2), 4 of our lead SNPs with
neurological diseases (e.g. Alzheimer’s diseaseegmilépsy)43, 44), and 42 of our lead SNPs with non-brain
physiological and physical variables (e.g. waigt+aitio, cholesterol levels and lung functietb)(46). In addition,
we compared our results with those reported ircam&WAS of white matter microstructure integrity fohieh
the results have not been deposited in the GWASIG#HL7): 33 of their lead SNPs overlapped with those from
our mvGWAS analyses (Supplementary Table 12).

Functional annotations of genomic loci associated with the structural connectome

We used FUMABL) to annotate SNPs to genes at significantly aasedtiloci by three strategies: physical
position, expression quantitative trait locus (eQTformation and chromatin interactions (Methodsyr the
regional connectivity mvGWAS (node level), 960 ureqgenes were identified through these three gieste
(Supplementary Table 13 and Supplementary Figurel@) out of 154 lead SNPs had at least one eQTL or
chromatin interaction annotation, indicating that these variants (or other variants in higithLihem) affect
gene expression. For example, rs7935166Lbp11.2 (multivariate z=5.71, p=1.15¥)0s intronic toCD82,
which has been reported to promote oligodendrodifferentiation and myelination of white matirj. This
lead SNP is not only a brain eQ®BB 49) of CD82, but also shows evidence for cross-locus chromatin
interaction via the promoter @ZD82 in adult braing8). Another example: rs35396874 on 6qg21 (multivariat
7=6.64, p=3.17x18) affects the expression of its surrounding geF@X03, a core element of the
TLR/AKT/FoxO3 pathway that is important for repagi white matter injury mediated by oligodendrocyte
progenitor cell differentiatio®Q, 51).

For the tract-wise connectivity mvGWAS (edge levdl)nctional annotation identified 1530 unique gene
(Supplementary Table 14 and Supplementary Figuré4 of 231 lead SNPs had at least one eQTL atioiota
or chromatin interaction. For example, rs&3842 on 3q26.31 (uftivariate z=6.34, p=2.32x10) is an eQTLE2)

of TNIK, a gene associated with neurogenesis and intadlledisabilityb3, 54). The same lead variant is also
located in a region having a chromatin interactioth TNIK promoters in fetal and adult corté&]. Similarly,
the SNP rs28413051 on 4q31.23 (multivariate z=6128,47x10°) is an eQTL oDCLK2 that is important for
axon growth cone formation and neural migrati@n(57), and is also within a region interacting with the
promoter of DCLK2 in neural progenitor cell8Q). A further example: allele C of rs13107325 on 4q2
(multivariate z=5.77, p= 7.99x£0n the regional connectivity mvGWAS and multivaeiz=8.74, p=2.37x1t}

in the tract-wise connectivity mvGWAS) is a missense coding variant in theSy€39A8 that showed a high
combined annotation-dependent depletion (CADD) esaufr 23.1 (Methods), which indicates that this SNP
deleterious (its frequency was 7.01%). The same 8B been associated with white matter microstractu
integrity(34), schizophreni&@, 59) and children’s behavioural probleré8.
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Figure 3. Genes associated
with variation in the adult
white matter connectome are
enriched for specific
neurodevelopmental roles. (A)
Sixty-one  functionally-defined
gene sets showed significant
enrichment of association with
regional connectivity. (B)
Seventy-two functionally-defined
gene sets showed significant
enrichment of association with
tract-wise connectivity. (C-D)
Based on BrainSpan data from
11 lifespan stages or 29 age
groups, genes associated with
variation in (C) adult regional
connectivity and (D) adult tract-
wise connectivity show
upregulation in the human brain
prenatally. (E-F) Based on
single-cell gene expression data
from the prenatal brain, genes
associated with variation in (E)
adult regional connectivity show
upregulation in astrocytes when
considering all prenatal age
groups combined, and in stem
cells and microglia at 10
gestational weeks, astrocytes at
19 gestational weeks, and
GABAergic neurons and
astrocytes at 26 gestational
weeks when breaking down by
developmental  stages, and
similarly genes associated with
variation in (F) adult tract-wise
connectivity show upregulation
in astrocytes when considering
all prenatal age groups combined,
and in stem cells and microglia at
10 gestational weeks, neurons at
16 gestational weeks, and
GABAergic neurons and
astrocytes at 26 gestational
weeks when breaking down by

developmental stages. (C-F)
Black lines indicate the
significance threshold p<0.05

after Bonferroni correction. PCW:
post-conceptional weeks.
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Gene-based association analysis and gene set enrichment analysisfor the brain’s structural connectome

We used MAGMAGR?) to perform gene-based association analysis, wtdchbines the mvGWAS evidence for
association at each SNP within a given gene, vdaitdrolling for LD.

For regional connectivities we identified 343 sfgrant genes after Bonferroni correction (SuppletagnTable
15 and Supplementary Figure 9), 255 of which oysréal with those annotated by at least one of theeth
strategies used above (i.e. physical location, e@otation or chromatin interaction). The genesldgs values
were then used as input to perform gene-set endnhranalysis, in relation to 15,488 previously dedi
functional sets within the MSigDB databa®&B( Sixty-one gene sets showed significant enriclin@anferroni
adjusted p<0.05, Fig 3A and Supplementary Tablewt6th mainly implicated neurodevelopmental proesss
such as “go_neurogenesis” (beta=0.18, p=5.53%1the most significant set), “go_neuron_differetitia”
(beta=0.18, p=1.55x1), and “go_cell_morphogenesis_involved_in_neuroffeintiation” (beta=0.25,
p=3.39x10"9).

For tract-wise connectivities we identified 618 ggnwith significant gene-based association (Boofe+r
corrected p values <0.05), 461 of which overlappath genes mapped through physical location, eQTL
annotation or chromatin interaction (SupplementBaple 17 and Supplementary Figure 9). Seventy-teiteg
sets were significant after Bonferroni correctidfig( 3B and Supplementary Table 18) related eslhed@a
neural migration and the development of neural qutigns, such as
“go_substrate_dependent_cerebral_cortex_tangemiigiation” (beta=3.98, p=2.61x1f) the most significant
set), “go_neuron_projection_guidance” (beta=0.4£8.p9x10'%), and “go_axa_development” (beta=0.29,
p=3.45x10").

We tested our genome-wide, gene-based p valuesresihect to human brain gene expression data fhem t
BrainSpan databa$¥]), grouped according to 11 lifespan stages or 2@rdint age groups. Genes associated
with regional connectivity showed upregulation eer@age across much of the prenatal period, rarfgimg early
(beta=0.04, p=5.84x1Y to late (beta=0.08, p=1.01xI0prenatal stages, or from 9 (beta=0.002, p=4.15)xi®d

26 (beta=0.003, p=1.18x%P post-conceptional weeks (Bonferroni-corrected glues <0.05; Fig. 3C and
Supplementary Table 19). Similarly, genes assatiatgh tract-wise connectivities showed upregulation
average during early (beta=0.06, p=2.35%1@0 late (beta=0.06, p=1.01x10prenatal stages, or from 9
(beta=0.003, p=5.92xT) to 24 (beta=0.003, p=2.67x10 post-conceptional weeks (Bonferroni-corrected p
values <0.05; Fig. 3D and Supplementary Table 20).

We also examined our genome-wide, gene-based atisagp values with respect to two independentisiagll
gene expression datasets derived from human ptafrgortex samples of different ages (GSE10483))(
Combining across age groups, average upregulatasolserved in astrocytes for genes associatedbetth
regional connectivity (beta=0.05, p=4.34%)@nd tract-wise connectivity (beta=0.04, p=1.27X1@onferroni-
corrected p values <0.05; Fig. 3E and 3F and Supgi¢ary Tables 21 and 22). Breaking down by ageege
associated with regional connectivity were upregulaon average in microglia (beta=0.02, p=3.72%14nd
stem cells (beta=0.05, p=3.51%)0at 10 gestational weeks of age (GW), astrocyte49GW (beta=0.02,
p=1.48x10" and 26GW (beta=0.05, p=1.35%9pand GABAergic neurons at 26GW (beta=0.04, p=8197)
(Fig. 3E and Supplementary Table 21). Similarlynege associated with tract-wise connectivities (edige)
showed upregulation on average in microglia (be@200=5.07x10) and stem cells (beta=0.06, p=5.18%)18t
10GW, neurons at 16GW (beta=0.06, p=9.3231@nd astrocytes (beta=0.05, p=3.50%91and GABAergic
neurons at 26GW (beta=0.05, p=1.01%tFig. 3F and Supplementary Table 22).

Genetics of |left-hemispher e language networ k connectivity

We selected four left-hemisphere regions that spoad to a network that is reliably activated bytsece-level
language tasks in a left-lateralized manner in hagority of people and across languagéds}7), i.e. the
opercular and triangular parts of inferior frontartex (Broca's region), and the superior and nadeimporal
cortex (including Wernicke’s region, Fig. 4). Thdear regions are linked by six tracts with herilitiles ranging
from 7.3% to 17.1% (Supplementary Table 3). Of2B& lead SNPs from our brain-wide mvGWAS of tractev
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connectivity, 26 were significantly associated watheast one of these six tracts according tdre-specific z-
scores derived from MOSTest (Bonferroni correctbi®.05; Supplementary Table 23). For example, 636275
on 3pll.1 is located within an intron BPHA3, a gene that encodes an ephmeceptor abunit that rgulates the
formation of axon projection maf@), and has also been associated with functionahectvity between
language-related regior®). Another example: rs7580864 on 2g33.1 is an eQfTRLCL1 that is implicated in
autism{0, 71), a neurodevelopmental disorder that often affeaaguage and social skills. Other positional
candidate genes based on the 26 SNPs in€lRHR1, encoding corticotropin releasing hormone recefpt@and
CENPW (centromere protein W) involved in chromosome rmiance and the cell cycle (Fig. 4and
Supplementary Table 23).

Closest genes to lead SNPs associated
with core language network fiber tracts

Left-hemisphere language network connectivity

AC074391.1,VCAN,
RP11-259G18.2,
RP11-855A2.5

o
@?\P\L\ﬁs R 2
W MOB4,EPHA3‘CTD-2015AG.‘1.VCAN‘q‘7
BTN3A1,0R2B7P.SUMO2P1 PLEC SSH2
CRHR1,KANSL1,RP11-259G18.2,
LRRC37A2,RP11-855A2.5

Superior
temporal

Figure 4. Genetics of left-hemisphere language network connectivity. Left: Four regions with core functions in the left-tisphere
language network, encompassing the classically e@fBroca’s (frontal lobe) and Wernicke’s (tempoadid) areas. Also showare the
six edges connecting these four regions when ceresidas network nodes. Right: The closest geneslepéndent lead SNPs finathe
brain-wide multivariate GWAS of tract-wise conneitfiythat showed significant association with atsteane of the six lefhemisphere
language network tracts (Bonferroni correction @60Supplementary Table 23).

Genetics of |eft-right asymmetry of the structural connectome

To investigate hemispheric specialization of stiadt connectivity in the brain, we computed thenasetry
index, Al=2(left-right)/(left+right), for each bitaral par of regional connectivity and fiber tract metricseach
individual (Methods). For regional connectivity] But one region showed population-level averagenasetry
(mean Al different from 0, Bonferroni-corrected p&®), with regions comprising Broca’s area, plus skperior
and middle temporal, postcentral, orbitofrontal aradcarine cortex, as well as the thalamus, showingng
leftward asymmetry of structural connectivity (Sigpentary Figure 10 and Supplementary Table 24ded+i
regional connectivity asymmetries were significantieritable, mearh®=4.54% (range 3.82% to 5.34%,
Bonferroni-corrected p<0.05; Supplementary Figuteahd Supplementary Table 25), including asymmnetfe
structural connectivity linking to the dorsolategaiefrontal cortex, Broca's area, supramarginal argiform
cortex (Supplementary Figure 11).

At the level of tract-wise connectivity asymmetries, none showed significant population-levekaasyagnetry
after multiple testing correction, but there wer@7 ltract-wise connectivity asymmetries with significan
heritability, mearh?=6.75% (range 4.34% to 12.17%, Bonferroni-correqt€@.05; Supplementary Figure 11 and
Supplementary Tables 26-29).
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We performed two further mvGWAS analyses, one fenithble regional connectivity asymmetries and fore
heritable tract-wise connectivity asymmetries, using MOS3@stThere were two independent lead SNPs in two
distinct genomic loci associated with regional cectivity asymmetries at the 5xi0Osignificance level
(Supplementary Figures 11 and 12 and Supplementatyle 30): rs28520337 on 15ql4 (multivariate
z=7.11,p=1.14x1%) is located in an intron oRP11-624L4.1 and its multivariate association was driven
particularly by the asymmetries of rolandic opeucnl(z-score=5.06) and supramarginal gyrus (z-s€de5
connectivity (Supplementary Table 31). This SNFhikigh LD with rs4924345 $£0.76), previously associated
with cortical surface are3§). The second lead SNP rs56023709 on 16q24.2 (ratite z=6.15, p=7.92x16)

is located inCl160rf95 and its multivariate association was driven patddy by the asymmetries of
supplementary motor cortex (z-score=-4.58) anddat (z-score=-3.63) connectivity. This SNP is ighhLD
with rs12711472 €=0.99), previously associated with thalamus volBa(

For tract-wise connectivity asymmetries, mvGWAS nitifeed four independent lead SNPs in four distinct
genomic loci at the 5x10significance level (Supplementary Figures 11 aBd Supplementary Table 32):
rs73219794 on 4p16.(multivariate z=5.66, p=1.54xfpnearest genBP11-180C1.1), rs182149107 on Xp21.2
(multivariate z=5.77, p=7.87xP9 nearest gend_1RAPL1, encoding a synaptic adhesion molecule, mutated in
intellectual disability and autisif?)), rs4824483 on Xp11.23 (ivariate z=5.80, p=6.56x19 downstream of
GAGEL, upregulated in some glioblastoni#®)j and rs140894649 on Xq11.2 (itivariate z=6.61, p=3.72x10,
nearest gen®BITMRS, a phosphatase enzyme that regulates actin filamedeling{f4) — consistent with possible
roles of cytoskeleton-related genes in patternaftrright asymmetn®0, 21, 75)). None of these SNPs had
association z-scores that stood out for any pdatictact connectivity asymmetries (Supplementaaipl& 33), i.e.
contributions to their significant multivariate associations were widely distributed across manyytraneties.

Gene-based association analyses for regional conitygasymmetries or tract-wise connectivity asyetnes did
not identify significantly associated genes, anidhee did these gene-based association statisims significant
enrichment with respect to functionally defined gesets, or differential expression levels in bragsue at
specific lifespan stages or cell types in the pi@riarain (Methods; Supplementary Tables 34-37).

Multivariate associations of the structural connectome with polygenic scores for brain disorders and
behavioural traits

For each of the 3810 individuals in our sidy sample we calculated polygenic scofés(for various brain
disorders or behavioural traits that have showro@ssons with white matter variation, using presty
published GWAS summary statistics: schizophrdma{7-79), bipolar disordeR0-82), autism{7, 20, 78, 83),
attention deficit/hyperactivity disord@&4-86), left-handednes2(, 23), Alzheimer’s diseas8{-89), amyotrophic
lateral sclerosi®0-92), and epileps@3-95) (Methods). There were 18 significant partial etations (i.e.
adjusted for confounds including sex and age —Methods) between different pairs of these polygetiores
across individuals (Bonferroni-corrected p<0.05B @Gorrelations were positive, with the highest hesgw
polygenic scores for schizophrenia and bipolar rdiso (r=0.36, p<1x1®%, and between attention
deficit/hyperactivity disorder and autism (r=0.38;1x10°%), while 2 were negative, between polygenic scores
for amyotrophic lateral sclerosis and bipolar disor(r=-0.03, p=2.26x1%), and amyotrophic lateral sclerosis
and autism (r=-0.03, p=8.81x{0Supplementary Table 38 and Supplementary Figdye 1

Separately for each of these polygenic scores, sexl wcanonical correlation analysis to investigdteirt
multivariate associations with the 90 heritableigrgl connectivity measures across the 30,810 iddals. All
canonical correlations were highly significant: igdphrenia r=0.07, p=8.98x% bipolar disorder r=0.07,
p=1.53x10"; autism r=0.06, p=7.87x¥0, attention deficit/hyperactivity disorder r=0.0p=7.84x10* left-
handedness r=0.07, p:1.74>'<°’i,0AIzheimer’s disease r=0.07, p:4.14>'<°’i,0amyotrophic lateral sclerosis r=0.06,
p=1.29x1C> epilepsy r=0.05, p=1.49xF8 Therefore, polygenic dispositions to these vavialisorders or
behavioural traits in the general population antlypeeflected in the brain’s white matter conneitii.
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Figure 5. Polygenic dispositions to various brain-related disorders or behavioural traits show multivariate associations with
regional white matter connectivities in 30,810 participants. Loadings are shown from canonical correlation ssedythat indicate the
extent and direction to which each regional conmitgtis associated with polygenic scores for (Bhgophrenia, (B) bipoladisorder, (C)
autism, (D) attention deficit/hyperactivity disorddE) (eft-handedness, (F) Alzheimer’s disease, (G) arapbic lateral s@rosis and (H)
epilepsy. A positive loading (red) indicates a leigiegional connectivity associated with increaselygamic disposition fora given
disorder/behavioural trait, while a negative load{bye) represents a lower regional connectivity assediwith increasegolygenic
disposition for a given disorder/behavioural trait. \Wolouds represent functions associated with the megnafns showinghe strongest
loadings (Jr|>0.2) for each polygenic score. Functiomse assigned using large-scale meta-analyzed idmattneuroimaging da
(Methods). The font sizes in the word clouds regmégorrelabn magnitudes between the meta-analyzed functional roaplscée terms
and the co-activation map for the set of regiorseiated with each polygenic score. See Supplemeiii@ble 41 for the corfation
values.

Canonical correlation analyses yielded loadingsefieh regional connectivity measure, reflectingetktent and
direction of each measure’s association with patygelisposition for a given disorder/behavioural traitr

psychiatric disorders the majority of loadings weegative, i.e. increased polygenic risk for théiserders was
more often associated with reduced than increasedectivity across regions (Fig. 5, Supplementalfl@ 39).
This was especially marked for polygenic risks $ohizophrenia (85 regions with negative loadingsegions
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with positive loadings), bipolar disorder (81 négat9 positive) and autism (64 negative, 26 pes)tiPolygenic
disposition to left-handedness was also associatigldl more reduced regional connectivities (62 niegat
loadings) than increased regional connectivities (28 positive loadings). In contrast, increaseuigpoglgéor
Alzheimer’'s disease was associated with incread@tewnatter connectivity for a majority of braingiens (62

out of 90) in the UK Biobank data, even while soowre regions of disorder pathology showed decreased
connectivity, such as posterior cingulate and madmporal cortex§6-98). (These results remained stable when
excluding theAPOE locus that is known to have a substantial indigldeffect on Alzheimer’s disease risk — see
Methods and Supplementary Table 40.) Similar olzgems were made for polygenic risk for amyotroghieral
sclerosis, where 74 out of 90 regions showed pesitiadings (Fig. 5, Supplementary Table 39).

For each polygenic score we identified the specdmional connectivities that showed the strongmesdings in
canonical correlation analyses, i.e. regions widdings >0.2 or <-0.2. These regions were usec:te a single
brain mask for each polygenic score, which was tiead to query the Neurosynth database of 14,3dtiéunal
brain imaging studie80). In this process, a brain-wide co-activation m&s generated for each mask, based on
all functional maps in the database, and these ther correlated with cognitive and behaviouraitapecific
maps derived from the studies included in the dega@9).

For example, the mask for schizophrenia polygeisic comprised 32 regions showing the strongestcéssons
with white matter connectivity, distributed in thdateral temporal, dorsoventral and posterior alatg cortex
(Fig. 5A and Supplementary Table 39), and thereeweérfunctional term-based correlations >0.2 witk th
corresponding co-activation map for these regidiig. A, Supplementary Figure 15 and Supplemerifatyle
41), including ‘working memory’ and ‘language’. This suggests that polygesiposition to schizophrenia
influences the connectivity of brain regions espigiinvolved in working memory and language (see
Discussion). The mask for bipolar disorder polygensk comprised 30 regions, including temporal,diak
frontal, superior parietal, and visual cortex, asllvas hippocampus and caudate, and these regigesher
received functional annotations of ‘mood’, ‘workingiemory’ and language-related processes (Fig. 5B,
Supplementary Figure 15 and Supplementary Tablem8@831). Polygenic risk for autism was mainly atsed
with white matter connectivity of the right dorsigeal prefrontal, right temporal, right sensorintadod bilateral
visual cortex, as well as the left amygdala, angs¢hregions were annotated with visual, working orgm
executive and attention functions (Fig. 5C, Supgetary Figure 15 and Supplementary Tables 39 and 41
Polygenic disposition to left-handedness was aategtiwith regional connectivity of Broca's aredt Euperior
temporal cortex, left medial prefrontal and lefswél cortex and right thalamus, functionally antextawith
language-related cognitive functions (Fig. 5E, Sepentary Figure 15 and Supplementary Tables 3944nd
See Fig. 5, Supplementary Figure 15 and Supplemehébles 39 and 41 for the equivalent maps andtiomal
annotations for all disorder/trait polygenic scores

The polygenic risks for bipolar disorder and schla@nia had the most similar brain maps, in teringgional
structural connectivity associated with each oséhpolygenic risks (r=0.56 between the loadingstiese two
polygenic scores, across the 90 regions; Supplemehigure 16 and Supplementary Table 42).

Discussion

This large-scale mapping study employed white matéetography and multivariate analysis to chamane the
contributions of common genetic variants to indivat differences in structural connectivity of thdult human
brain. Multivariate associations between structwahnectivity and polygenic dispositions to bragtated
disorders or behavioural traits were also charaetér and described in terms of functional actati of the
implicated brain regions. Together, these varioyses in over 30,000 individuals from the genpogdulation
linked multiple levels of biological organizatioftom genes and cell types through developmentgestéo adult
brain structure and function, behaviour and indiagilddifferences, newly implicating hundreds of gammloci.

Different brain regions are inter-connected throudtite matter nerve fibers - this fundamental propsub-
serves functional networks involved in cognitiondahehaviour. In over 30,000 adults from the general
population we found that inter-individual variationwhite matter connectivity is especially infliea by genes
that are i) active in the prenatal developing brajrupregulated in stem cells, astrocytes, microgiial aeurons
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of the embryonic and fetal brain; and iii) involvedneurodevelopmental processes including neurgtation,
neural projection guidance and axon developmenikely neurodevelopmental origin of much inter-inidiual
variation of adult white matter connectivity is sistent with findings from large-scale imaging gi#sestudies

of other aspects of brain structural and functiaaalation(L7, 20, 35). These statistical enrichment findings serve
as a strong biological validation of the multivéeiadGWAS findings, as there was no reason for suearly
relevant functional enrichment to occur by chamceelation to brain white matter tracts.

Astrocytes are the largest class of brain glialsc&lith a range of known functions, including newab
homeostasis and survival, regulation of synaptogisrend synaptic transmissidf0). Less well known is that
during neurodevelopment, astrocytes can expresgiqmas guidance cues, such as semaphorin 3a, atet
required for neuronal circuit formation, throughdiaing the attraction or repulsion of the growtine at the
axonal tip01). In our gene-based association analySJA3A was the most significantly associated individual
gene with brain-wide fiber tract connectivity inetwvhole genome. Taken together, our data suggastttik
formation of fiber tracts in the developing humasib may be affected substantially by positionasprovided
by astrocytes, in addition to neurons.

As regards microglia — these phagocytic cells alt known for immune functions but also help to e dying
neurons and prune synapses, as well as modulaternawactivity(l02). Less is known of their roles during
development, but embryonic microglia are unevergyrithuted in the brain and associate with deveigmxons,
which again suggests roles in regulating axonaivtiroand positional guidancHE{3). Mouse brains without
microglia, or with immune activated microglia, shabnormal dopaminergic axon outgrovii®q), while
disruption of microglial function or depletion oficnoglia results in a failure of growing axons tohare and
form bundles in the corpus callosum — the largést ftract of the braid(5). Our data support such observations,
through showing that genes up-regulated in micaoiglithe embryonic human brain are enriched foranés that
associate with individual differences in adult vehihatter connectivity. Further research on thesrofeastrocytes
and microglia in fiber tract development is therefowarranted.

While our results point especially to genes invdiie neurodevelopment, it is also likely that sogenetic
effects on white matter connectivity act later in lifeor example, astrocytes and microglia may affeet th
maintenance and aging of brain fiber tracts duddglthood, with implications for brain disordersdgpossibly
suggesting therapeutic targets. We mapped the vatiite associations of polygenic scores for varibtain-
related disorders and behavioural traits with negiavhite matter connectivities, and annotated the resulting brain
maps using meta-analyzed functional imaging dataneS maps and their annotations were consistent with
expectations — for example, polygenic dispositian bipolar disorder was associated with white matter
connectivity of brain regions prominently involveid mood, while polygenic dispositions to attention
deficit/hyperactivity disorder or autism were asated with the connectivity of regions important &xecutive
functions. Polygenic scores for left-handedness fandchizophrenia were associated with the corivigctof
language-related regions — consistent with altégfichemisphere functional dominance for languagéath of
these traits{b, 106), and a phenotypic association between ti@m)( Polygenic scores for left-handedness and
schizophrenia have also been associated with dltgreictural asymmetry of grey matter in languagjated
regionsgl, 78).

Regarding genetic risks for neurological disord@alygenic scores for Alzheimer’'s disease and aropbiic
lateral sclerosis were associated with the convigctf regions important for working memory, whipolygenic
scores for epilepsy were associated with connégtivi the default mode network — a set of brainioeg
involved in internally-initiated thoughts, and semia and episodic memord@8). Previous analysis of white
matter tracts in Alzheimer’s disease has indicatbtdoad-based reduction of connectivifi), so it was striking
that the majority of brain regions in the UK Biolkaadult population dataset showed increased comitgatith
higher polygenic risk for this disorder, even wtdteme core regions of pathology showed decreagsatkctvity
as expected. A similarly notable pattern was seearyotrophic lateral sclerosis, where increasgygenic risk
was associated with increased structural conngctior a majority of brain regions. It may be thatreased
connectivity of some regions occurs as a compensateconfiguration in response to decreased cdiviigcof
others(10). In addition, the UK Biobank volunteer sample is healthier than the general popualHtjoiihose at
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higher polygenic risk who manifest a given disordety tend not to participate, leaving an unusuadiglthy set
of volunteers among those with high polygenic riSkich recruitment bias may influence brain coreslabf
polygenic risk in the UK Biobank.

The brain-wide multivariate GWAS approach that veedi provided high statistical power to detect ratev
genomic loci, compared to a mass univariate app8ar At the same time, the multivariate results coloéd
gueriedpost hoc to identify loci associated with particular tragise connectivities of interest. We illustratedsthi
by querying the results with respect to six trdictsing four core regions of the left-hemispheradaage network
— together approximating to Broca’s and Wernickelassically defined functional area$R). Twenty-six
implicated loci included thEPHAS3 locus, encoding an ephrin receptor subunit thist @agositional guidance cue
for the formation of axon projection maps, and hE® been associated with functional connectivyeen
regional components of the language network thateapecially involved in semanti68). This is therefore a
concordant genetic finding with respect to bothuairal and functional connectivity of the humaraibts
language network.

We found the heritability of whitematter left-right asymmetry metrics to be generdiiyver than the
corresponding unilateral measures from which theyewderived, and accordingly many fewer geneticware
identified in our multivariate GWAS analyses of asyetry metrics at both node and edge levels. Tixsal
pattern has been found before with respect to @bpects of brain structure and their asymmeg®85). One
general explanation may be that asymmetry indexesifhected by measurement error in both of théaterial
metrics that are used to calculate them — this may then contribute to larger proportional estin@iegeoktic
variance in heritability analysis. It is also ligethat asymmetries are affected by a relativelyhhiiggree of
random developmental variation — the noise inheirereating complex organs from genomic compor(ais
113, 114). Nonetheless, we found some of the regional coiiy asymmetries and tract-wise connectivity
asymmetries to be significantly heritable. Thisamsistent with the existence of genetically-retpdalateralized
developmental biases that ultimately give rise émigpheric specializations, such as left-hemispherguage
dominance. Specific loci that we found associat@th white matter asymmetries implicated genes ivedlin
synaptic adhesion, glioblastomas, and cytoskeletodeling.

This study had some limitations: i) We maximized statistical power for GWAS by using the availabilga as
one large discovery sample, but this did not peemitiscovery-replication desigiis). Nonetheless, ultimately
the total combined analysis in the largest avadlaample is the most representative of the availabidence for
association. As mentioned earlier in this secttbe,various enrichment analyses indicated bioldgiahdity of

the GWAS findings. Indeed, it has been argued dismtovery-replication designs have less utilitythe current
era of Biobank-scale genetic studies than they use@nd that other forms of validation such addgical
enrichment should be given increased weight inrimégation(L16). ii) We used deterministic tractography which
we found to be computationally feasible in morentt8,000 individuals (and which took several monbiis
processing on a cluster server). An alternativereggh - probabilistic tractography - may have adxges insofar

as it permits modelling of multiple tract orientats per voxel(17, 118), although run times are generally higher,
and our approach yielded genetic results with digalogical validity for white matter tracts. iiljhis was a large-
scale observational mapping study, which meant ity of the analyses were screen-based and daserip
Science proceeds through a combination of observatind hypothesis testing — this study incorporatsith to
varying degrees. Some of the biological observatiamre striking and informative, for example thieely
involvements of microglia and astrocytes in affegtivhite matter tracts during embryonic and fetalelopment,
which should now be studied more extensively inrehimodels. iv) This study did not consider rareajie
variants (with population frequencies below 1%)tufe analysis of the UK Biobank's exome and genome
sequence data in relation to white matter conniggtimay reveal further genes and suggest additional
mechanisms, cell types and lifespan stages in affecting inter-individual variation.

In summary, we used large-scale analysis to cHheetvithite matter connectivity of the human brairs, it
multivariate genetic architecture, and its assamiat with polygenic dispositions to brain-relateidaiders and
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behavioural traits. The analyses implicated speajinomic loci, genes, pathways, cell types, devetmntal
stages, brain regions, fiber tracts, and cognifiections, thus integrating multiple levels of arsé, and
suggesting a range of future research directioraet of these levels.

Materialsand M ethods
Sample quality control

This study was conducted under UK Biobank applicati6066, with Clyde Francks as principal invesbga
The UK Biobank received ethical approval from thatibhal Research Ethics Service Committee North West-
Haydock (reference 11/NW/0382), anllil af their procedures were perined in accordanceith the World
Medical Association guidelinekl9). Written informed consent was provided by alltleé enrolled participants.
We used the dMRI data released in February 202@&ther with the genome-wide genotyping array data.
individuals with available dMRI and genetic datag Wirst excluded subjects with a mismatch of theatf-
reported and genetically inferred sex, with puggex chromosome aneuploidies, or who were outiecsrding
to heterozygosity (principle component correctedetozygosity >0.19) and genotype missingness (nmgssi
rate >0.05) as computed by Bycroft etl8({). To ensure a high degree of genetic homogenaitgysis was
limited to participants with white British ancestwyhich was defined by Bycroft et d20) using a combination
of self-report and cluster analysis based on ttgt §ix principal components that capture genatimeatry. We
also randomly excluded one subject from each piilr &kinship coefficient >0.0442, aslculated by Bycroft et
al.(120). This inclusion procedure finally resulted in 800 participants, with a mean age of 63.84 yeasgg
45-81 years), 14,636 were male and 16,174 wereléema

Genetic quality control

We downloaded imputed SNP and insertion/deletiamgge data from the UK Biobank (i.e. v3 imputedada
released in March 2018). QCTOOL (v.2.0.6) and PLIMKO(21) were used to perform genotype quality
control. Specifically, we excluded variants withnmii allele frequency <1%, Hardy-Weinberg equilibnitest p
value <1x10 and imputation INFO score <0.7 (a measure of ggreoimputation confidence), followed by
removing multi-allelic variants that cannot be hiaddby many programs used in genetic-related aaslyBhis
pipeline finally yielded 9,803,735 bi-allelic vanigs.

Diffusion M RI-Based Tractography

Diffusion MRI data were acquired from Siemens Sk@ scanners running protocol VD13A SP4, with a
standard Siemens 32-channel RF receive head 28)l(We downloaded the quality-controlled dMRI datiaieth
were preprocessed by the UK Biobank brain imagiagni22, 123) (UK Biobank data field 20250, first imaging
visit). The preprocessing pipeline included coimts for eddy currents, head motion, outlier sliGesd gradient
distortion. We did not make use of imaging-deriygeknotypes released by the UK Biobank team, sudhAas
and mean diffusivity. Rather, we used the qualdagtolled dMRI data to perform tractography in each
individual, which generated three-dimensional curves that characterize white matteattserBriefly, diffusion
tensors were modeled to generate a FA image irvenaliffusion space, which was used for deterministi
diffusion tensor tractography using MRtrit24). Streamlines were seeded on a 0.5 mm grid fayexaxel with

FA 0.15 and propagated in 0.5 mm steps using feandler Runge-Kutta integration. Tractography was
terminated if the seamline length was <20 or >250 mm, if it turre@dangle >45°, areached a voxel with an FA
<0.15. These parameters were consistent with aiquewstudy exploring the structural network cometaof
cognitive performance using the UK Biobank datdas). Tens of thousands of streamlines were genetated
reconstruct the white matter connectivity matrixeaich individual on the basis of the Automated Amatal
Labelling atlas?6) comprising a total of 90 regions encompassingiaarand subcortical structures (45 regions
per hemisphere). This deterministic tractograplocess took roughly 16 weeks on 6 cluster serveesiagnning

in parallel.

Page 15 of 28


https://doi.org/10.1101/2022.05.10.491289
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.10.491289; this version posted January 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

We calculated the Euclidean distance between thieaids of each pair of connected regions, accgrttinbrain
standard space (MNI template provided with the Adted Anatomical Labeling atl&§)), to index the relative
physical distances between regions.

Networ k construction and analysis

Describing the structural network of each partinipeequires the definition of network nodes andemddn this
study, the network nodes corresponded to the 9@nmeg@f the Automated Anatomical Labeling at28( The
labeling system integrates detailed anatomicalufeat from sulcal and gyral geometry, reducing anatal
variability that can arise from spatial registratiand normalization of brain images taken from ediht
individuals@6). For each participanthe T1 images were nbnearly transformed intthe ICBM152 T1template

in the MNI space to generate the transformationrir(d®6). Inverse transformation was used to warp the
Automated Anatomical Labeling atl@§] from the MNI space to native spadeiscrete labeling values were
preserved using a nearest-neighbor interpolaticinokl26). Two nodes were considered connected if they were
joined by the endpoints of at least one reconstdustreamline. Network edges were computed by tingber of
streamlines connecting a given pair of regionsJevlividing by the volume of the two regions, besauegions
with larger volumes tend to have more streamlimgsecting to them. We only included edges that wetected

in at least 80% of participants. This yielded aozeéiagonal symmetrical 90x90 undirected connegtimatrix for
each participant, invhich 947 edges were retaine@ihe regional connectivity of aode was thedefined as the
sum of all existing edges between that node andtlaéir nodes in the network, reflecting the impactof that
node in the overall network.

Asymmetry of network measures at the node and kxigds was assessed by the asymmetry index (Algdich
pair of network measures with left and right herhisg homologues, using the following formula petividual:

/- Left — Right
~ (Left + Right)/2
In this formula, the denominator normalizes by the bilateral measure. Positiss wf the Al represent leftward

asymmetry (greater left than right), and vice vei$ahe corresponding left and right measures dogiven
individual and homologous pair were both zero, efetlse Al as zero.

Rank-based inverse normalization across individwals performed on each network measure, and régmesss
age, nonlinear age (i.e. (age-mean_3gessessment center, genotype measurement balckean Residuals
were then further regressed on the first ten gengtincipal components that capture population tiene
diversity(120), followed by rank-based inverse normalizationtioé residuals once more. These normalized,
transformed measures were used for subsequenigeanatyses.

SNP-based heritability

We constructed a genetic relationship matrix usgl6,306 variants on the autosomes with minorlealle
frequencies >1%, INFO score >0.7 and Hardy-Weinleepgjlibrium p value >1x10 using GCTAR9) (version
1.93.0beta). We further excluded one random pp#idi from each pair having a kinship coefficiergh@r than
0.025 (as SNP-based heritability analysis is egflg@ensitive to participants with higher levefsrelatedness),
yielding 29,027 participants for this particularatysis. Genome-based restricted maximum likelihandlyses
were then performed to estimate the SNP-basedbéity for each normalized structural network measugajra
using GCTAR9). Bonferroni correction was applied separatelydach type of network measure to identify those
that were significantly heritable at adjusted p$0.90 regional connectivities, 851 tract-wise cativities, 15
regional connectivity Als and 107 tract-wise cortigty Als were significantly heritable.

M ultivariate genome-wide association analysis

A total of 9,803,735 bi-allelic variants were usémt mvGWAS analysis, spanning all autosomes and
chromosome X. The sample size for mvGWAS was 30(826 sample quality control, above). We applied th

multivariate omnibus statistical test (MOSTest)lbox(30) to perform mvGWAS analysis for the significantly

heritable measures, separately for regional connectivitees;wise connectivities, regional connectivitisAand
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tract-wise connectivity Als (therefore four mvGW/Asalyses in total). MOSTest can leverage the Higied
nature of genetic influences acrdsmdreds of spatily distributed brain phenotyge while accounting for their
covariances, which can boost statistical power @tect variant-phenotype associati@®( Specifically, the
multivariate correlation structure is determined randomly permuted genotype data. MOSTest calcultte
Mahalanobis norm as the sum of squared de-corcelatalues across univariate GWAS summary stagistc
integrate effects across measures into a multieadastatistic for each genetic variant, and ubesgamma
cumulative density function to fit an analytic fofior the null distribution. This permits extrapatat of the null
distribution below the p=5xIsignificance threshold without performing an ussibée number of permutations
(5x10°8 is a widelyused threshold for GWAS multiple test correctiorEiropean-descent populatioh2f, 128)).
Close matching of the null p value distributionsnfr the permuted and analytic forms indicate thatrtiethod
correctly controls type 1 error — this was the dasall four of our mvGWAS analyses (Supplementaigures 4,
5, 12 and 13). In this framework the signs (positiv negative) of univariate z scores indicatedbreesponding
directions of effects (with respect to increasingnbers of minor alleles at a given SNP), whereaklivatiate z
scores are always positive.

I dentification of genomic loci and functional annotations

We used FUMA (version v1.3.B1) to identify distinct genomic loci showing sigmi#int multivariate
associations with brain structural connectivitydaapply functional annotations, using default partars.
Linkage disequilibrium (LD) structure was appliedcarding to the 1000 Genomes European reference
panel29). SNPs with genome-wide significant mvGWAS p valu®x10° that had LD %<0.6 with any others
were identified. For each of these SNPs, other SMis had 0.6 with them were included for further
annotation (see below), and independent ‘lead SMes also defined among them as having low [R0(1)

with any others. If LD blocks of significant SNP®#e located within 250kb of each other, they were merged
into one genomic locus. Therefore, some genomicdould include one or more independent lead SNBs.
major histocompatibility complex region on chromasn6 was excluded from this process by defaultabse of

its especially complex and long-range LD structure.

Functional annotations were applied by matchingoegtosome location, base-pair position, reference and
alternate alleles to databases containing knowatifumal annotations, which were ANNOVAERJ0) categories,
Combined Annotation-Dependent Depletit®l) scores, RegulomeDBB2) scores and chromatin stal8s,
134):

1. ANNOVAR catogorizes SNPs on the basis of their fiores with respect to genes, e.g. exonic, intronic
and intergenic, using Ensembl gene definitions.

2. Combined Annotation-Dependent Depletion scoresipgreeleteriousness, with scores higher than 12.37
suggesting potential pathogenicitgp).

3. RegulomeDB scores integrate regulatory informafrom eQTL and chromatin marks, and range from
lato 7, with lower scores representing more ingoae for regulatory function.

4. Chromatin states show the accessibility of genomic regions, and were labelled by 15 categorical states on
the basis of five chromatin marks for 127 epigen®inethe Roadmap Epigenomics Proj&84), which
were H3K4me3, H3K4mel, H3K36me3, H3K27me3 and H3&3ntor each SNP, FUMA calculated
the minimum chromatin state across 127 tissuetgpéls in the Roadmap Epigenomics Projezfy.
Categories 1-7 are considered open chromatin states

We also used FUMA to annotate significantly asgede&SNPs, and other candidate SNPs that fraider with
them, according to previously reported phenotypsoeations (p<5x10°) in the National Human Genome
Research Institute-European Bioinformatics Instittatalogueg2).

Multivariate association profiles of independently associated lead SNPs

For each SNP, MOSTest derives a z-score for eaah bmeasure, calculated from the p value of thearidte
association of that SNP with each individual measurhe z-scores give an indication of which measure
contribute most to the multivariate associationdagiven SNF0). We used the z-scores from the mvGWAS of
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fiber tracts to identify lead SNPs that were sigaiftly associated with at least one from a sesigfleft-
hemisphere language-related fiber tracts (see teath To determine significance in this contextheeshold z-
score with unsigned magnitude >3.7 was appliediesponding to a p value of 2.16X41@.e. p<0.05 after
Bonferroni correction for all 231 lead SNPs frore thvGWAS of fiber tracts, and considering six fibracts).

To determine which structural connectivity measucesitributed most to the multivariate associati@ss
considered across lead SNPs, we summed the unsigmettiate z-scores separately for each measuossall
lead SNPs (separately for the mvGWAS analysesgiémal connectivities and fiber tracts).

SNP-to-gene mapping

Independent lead SNPs, and candidate SNPs having~006 with a lead SNP, were mapped to genes in FUMA
using the following three strategies.

1. Positional mapping was used to map SNPs to prat&iling genes based on physical distance (within
103kb) in the human reference assembly (GRCh37/hg19).

2. eQTL mapping was used to annotate SNPs to gende tpMb away based on a significant eQTL
association, i.e. where the expression of a gergssociated with the allelic variation, accordimg t
information from four brain-expression data repméés, including PsychENCOREY), CommonMind
Consortiumd8), BRAINEAC(136) and GTEx v8 Brainf9). FUMA applied a FDR of 0.05 within each
analysis to define significant eQTL associations.

3. Chromatin interaction mapping was used to map SidRgnes on the basis of seven brain-related Hi-C
chromatin conformation capture datasets: PsychENE@® link (one wayi2), PsychENCORE
promoter anchored loopk), HIiC adult cortexg5), HiC fetal cortex$5), HIC (GSE87112) dorsolateral
prefrontal corteX§0), HIC (GSE87112) hippocampis) and HiC (GSE87112) neural progenitor
cells0). We further selected only those genes for whieé or both regions involved in the chromatin
interaction overlapped with a predicted enhancepromoter region (280bp upstream and 50Mp
downstream of the transcription start site) in afiythe brain-related repositories from the Roadmap
Epigenomics ProjectB4), that is; EO53 (neurospheres) cortex, E054 (rsglreres) ganglion eminence,
E067 (brain) angular gyrus, E068 (brain) anteriandate, E069 (brain) cingulate gyrus, EQ70 (brain)
germinal matrix, EO71 (brain) hippocampus middI®7E (brain) inferior temporal lobe, EOQ73 (brain)
dorsolateral prefrontal cortex, E074 (brain) sutigtanigra, E0O81 (brain) fetal brain male, EO082a{by
fetal brain female, EO03 embryonic stem (ES) Hisc&008 ES H9 cells, EO07 (ES-derived) H1 derived
neuronal progenitor cultured cells, EO09 (ES-det)ud9 derived neuronal progenitor cultured celld an
E010 (ES-derived) H9 derived neuron cultured cel8MA applied a FDR of 1xIDto identify
significant chromatin interactions (default paraengtseparately for each analysis.

Gene-based association analysis

MAGMA (v1.08)(37), with default parameters as implemented in FUMA (SNP-wise mean model), was used to
test the joint association arising from all SNPghimi a given gene (including 5&b upstream to 50kb
downstream), while accounting for LD between SNE$Ps were mapped to 20,146 protein-coding genéiseon
basis of National Center for Biotechnology Inforioat build 37.3 gene definitions, and each gene was
represented by at least one SNP. Bonferroni cooreatas applied for the number of genes (p<0.034%),
separately for each mvGWAS.

Gene-set enrichment analysis

MAGMA (v1.08), with default settings as implemented FUMA, was used to examine the enrichment of
association for predefined gene sets. This proeests whether gene-based p values among all 2@ddés are
lower for those genes within pre-defined functiosetls than the rest of the genes in the genomdég wirirecting
for other gene properties such as the number ofsSMRotal of 15,488 gene sets from the MSigDB dHasz
version 7.061) (5500 curated gene sets, 7343 gene ontology (@@¢gical processes, 1644 GO molecular
functions, and 1001 GO cellular components) wesgéete Bonferroni correction was applied to corffectthe
number of gene sets (p<0.05/15,488), separatelgaoin mvGWAS.
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Céll-type-specific expression analysisin developing human cortex

Based on a linear regression model, the CELL TY&kction of FUMA was used to test whether gene-based
association z-scoragere positively associated with higher expressasels in certain cell types, based on single-
cell RNA sequencing data from the developing hunpaiefrontal cortex (GSE104276§). This dataset
comprised 1) expression per cell type per age groamging from 8 to 26 postconceptional weeks, ahd
expression profiles per cell type, averaged ovelagés combined. Results were considered signffidatine
association p values were smaller than the releBanferroni threshold for the number of cell ty@ag groups.
Analysis was performed separately for each mvGWAS.

Developmental stage analysis

We used MAGMA (default settings as implemented in FUMA) to examine whether lowebgsee-association
p values tended to be found for genes showingivelgthigher expression in BrainSpan gene expressaia62)
from any particular lifespan stages when contrastgd all other stages, separately for 29 differagé groups
ranging from 8 postconceptional weeks to 40 yeltsand 11 defined developmental stages from gadypatal
to middle adulthood. A FDR threshold of 0.05 waplegal separately for each analysis. Positive betdficients
for this test indicate that genes showing more eneg for association are relatively upregulateéwerage at a
given lifespan stage.

Polygenic disposition to brain-related disordersor behavioural traits

We used PRS-C3%§) to compute polygenic scores for 30,810 UK Bioband#tividuals (see Sample quality
control) for each of the following brain-relatedsdiders or behavioural traits, using GWAS summégatissics
from previously published, large-scale studies:izmgthrenia (n=82,315j7), bipolar disorder (n=51,71@Q),
autism(n=46,350)83), attention deficit/hyperactivity disorder (n=53884), , left-handedness (n=306,3721),
Alzheimer’s disease (n=63,9287), amyotrophic lateral sclerosis (n=152,288)(and epilepsy (n=44,889%).
None of these previous studies used UK Biobank, adateept for the GWAS of left-handedne&d9(— however
the individuals in that GWAS were selected to ba-neerlapping and unrelated to those with braingendata
from the February 2020 data release, so that nbtieed30,810 UK Biobank individuals from the presstudy
had been included in that GWAS. This ensured tia@ihg and target sets for polygenic score catmriavere
independent. PRS-CS infers posterior effect siZemutbsomal SNPs on the basis of genome-wide adsmti
summary statistics, within a high-dimensional Bagegegression framework. We used default parameted
the recommended global effect size shrinkage pamme0.01, together with linkage disequilibrium infortiaa
based on the 1000 Genomes Project phase 3 Eurdpsaaent reference pari8{). Polygenic scores were
calculated using 1,097,390 SNPs for schizophrehi@98,372 SNPs for bipolar disorder, 1,092,080 SKPs
autism, 1,042,054 SNPs for attention deficit/hypevity disorder, 1,103,632 SNPs for left-handednes
1,105,067 SNPs for Alzheimer's disease, 1,085,0NRsSfor amyotrophic lateral sclerosis, and 852 SKIPs for
epilepsy (these numbers came from 3-way overlapwdesn UK Biobank data, GWAS results, and 1000
Genomes data). PRS-CS has been shown to perfarhighly similar manner to other established pahygeisk
algorithms, with noticeably better out-of-samplediction than an approach based on p value thrdstzold LD
clumping(138, 139).

Polygenic scores were linearly adjusted for theaf of age, nonlinear age (i.e. (age-mean“agejsessment
centre, genotype measurement batch, sex, andrgiidein genetic principal components that captagufation
genetic diversity, before performing rank-basedeise normalization (i.e. the same set of covaeffects that
the brain metrics were adjusted for - see Netwamistruction and analysis). These adjusted and riaeda
polygenic scores were used as input for subseguatyses.

Separately for polygenic scores for each disordéebavioural trait, canonical correlation analysisoss 30,810
participants (canoncorr’ function in MATLAB) was used to test multivariagessociation with the 90 heritable
regional connectivity measures (which had also badjusted for covariates and normalized - see N#two
construction and analysis). This multivariate asalyidentified a linear combination of the 90 regib
connectivity measures (i.e. a canonical variablgt tmaximally correlated with the polygenic scomr &
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particular disorder or behavioural trait acrosgipigrants. Separately for the polygenic score ahedisorder or
behavioural trait, the cross-participant Pearsametation between each regional connectivity areldanonical
variable was used as a loading, reflecting thergxdad direction of the contribution that a regioo@nnectivity
made to a particular multivariate association.

We also assessed the pairwise correlations aandssduals between adjusted and normalized polygeaores
for the different disorders and behavioural traits.

As theAPOE locus is known to have a substantial effect orrigleof Alzheimer’s disease, we also re-calculated
polygenic scores for this disease after excludingegion from Chrl9:45,116,911 to Chrl9:46,318,605
(GRCh37)140) around this locus, and repeated the residuadizathormalization and canonical correlation
analyses to check that the results stably reflettegholygenic contribution to risk.

Functional annotation of brain regions associated most strongly with polygenic scores

From each separate canonical correlation analysslggenic scores and regional connectivity, weniified the
regions showing loadings of >0.2 or <-0.2, whichrevihen used to define a single masistandard brain space
(Montreal Neurological Institute spad®?2) (i.e. one mask fagach polygenic score). Each mask was analyzed
using the ‘decoder’ function of the Neurosynth date (http://neurosynth.org), a platform for lasgele
synthesis of functional MRI da@f). This database defines brain-wide activation magweesponding to specific
cognitive or behavioural task terms using metayawal functional activation maps. The database derul,334
term-specific activation maps corresponding to @bgn or behavioural terms from 14,371 studies. leatask
that we created was used separately as input ioedafbrain-wide co-activation map based on alllistin the
database. The resulting co-activationpsavere then correlatedith each ofthe 1,334 term-sgific activation
mapsP9). We report only terms with correlation coefficienr>0.2, while excluding anatomical terms,
nonspecific terms (e.g., ‘Tasks’), and one fromhepair of virtually duplicated terms (such as ‘Wsaré@nd
‘Word"). This method does not employ inferentiahtigttical testing, but rather ranks terms basedthan
correlations between their activation maps anddh#tie input mask.
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Data Availability

The primary data used in this study are availali(etire UK Biobank websitevww.ukbiobank.ac.uk Other
publicly available data sources and applicatiomscited in the Methods section. The GWAS summaaiistics
are made available online within the GWAS catditigs://www.ebi.ac.uk/gwas/

Code availability

This study used openly available software and codesspecifically GCTA
(https://cnsgenomics.com/software/qcta/#GRBML  MRtrix3 (https://www.mrtrix.org), MOSTest
(https://github.com/precimed/mostgst FUMA (https:/ffuma.ctglab.nl/), MAGMA
(https://ctg.cncr.nl/software/magimalso implemented in FUMA), PRS-CBttps://github.com/getian107/PR$cs
and Neurosynthhftps://www.neurosynth.orjy/
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