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Abstract

Orphan crops (also described as underutilised and neglected crops) hold the key to diversified and
climate-resilient food systems. After decades of neglect, the genome sequencing of orphan crops is
gathering  pace,  providing  the  foundations  for  their  accelerated  domestication  and  improvement.
Recent attention has however turned to the gross under-representation of researchers in Africa in the
genome sequencing efforts of their indigenous orphan crops.  Here we report a radically inclusive
approach to orphan crop genomics using the case of  Lablab purpureus  (L.) Sweet (syn.  Dolichos
lablab, or hyacinth bean) – a legume native to Africa and cultivated throughout the tropics for food and
forage. Our Africa-led South-North plant genome collaboration produced a high-quality chromosome-
scale assembly of the lablab genome – the first chromosome-scale plant genome assembly locally
sequenced in  Africa.  We also  re-sequenced  cultivated and wild  accessions of  lablab  from Africa
confirming  two  domestication  events  and  examined  the  genetic  diversity  in  lablab  germplasm
conserved in Africa. Our approach provides a valuable resource for lablab improvement and also
presents  a  model  that  could  be  explored  by  other  researchers  sequencing  indigenous  crops
particularly from Low and middle income countries (LMIC).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

42

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.08.491073doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.08.491073
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

Three major crops currently provide more than 40% of global calorie intake1. This over-dependence
on a few staple crops increases the vulnerability of global food systems to environmental and social
instabilities.  One  promising  strategy  to  diversify  food  systems is  to  improve  the  productivity  and
adoption of climate-resilient but underutilised orphan crops through genome-assisted breeding2. 

Genome-assisted breeding offers hope of a new green revolution by helping to uncover and unlock
novel  genetic  variation  for  crop  improvement.  Over  the  last  20  years,  the  genomes  of  135
domesticated  crops  have  been  sequenced  and  assembled3,  including  those  of  orphan  crops2.
However,  it  has  recently  been  acknowledged  that  researchers  from  Africa  are  grossly  under-
represented  in  the  genome  sequencing  efforts  of  their  indigenous  orphan  crops3,4.  None  of  the
assemblies of native African plant species released till date were sequenced in Africa. The acute lack
of  sequencing  facilities  and high-performance computing  infrastructures  as  well  as  bioinformatics
capacity to handle big genome data, has meant that researchers in Africa have historically taken the
back seat in most genome sequencing efforts5. 

Here we present a model to overcome this under-representation through an inclusive orphan crop
genomics approach. We applied an Africa-led, internationally collaborative approach to the genome
sequencing of lablab (Lablab purpureus L. Sweet) - a tropical legume native to Africa (Figure 1A).
Lablab is remarkably drought-resilient and thrives in a diverse range of environments, as such it is
widely  cultivated throughout  the tropical  and subtropical  regions of  Africa  and Asia6.  Lablab  is  a
versatile multipurpose crop that contributes towards food, feed, nutritional and economic security, and
is also rich in bioactive compounds with pharmacological potential, including against SARS-Cov27–10.
Climate  change  is  driving  researchers  to  investigate  crops like  lablab  for  its  outstanding drought
tolerance11.

Our Africa-led genome collaboration produced a chromosome-scale assembly of lablab – the first
chromosome-scale plant genome assembly sequenced in Africa. We also discuss the main features
and  benefits  from our  inclusive  approach,  and  suggest  this  can  serve  as  a  roadmap  for  future
genomic investigations of indigenous African crops.

Results

Genome sequencing

High acquisition and maintenance cost of sequencing platforms is a major limiting factor to genomics

research in Africa. To circumvent this limitation, we used the portable and low-cost Oxford Nanopore

Technology  (ONT)  MinION  platform  for  in-country  sequencing  of  the  genome  of  lablab  (cv.

Highworth). We generated 4.7 M reads with a mean read length of 6.1 Kbp (Table S1). This amounted

to 28.4 Gbp of sequences and 67x coverage of the lablab genome based on a previously estimated

genome size of 423 Mbp12. The reads were initially assembled into 2,260 contigs with an N50 of 11.0

43

44

45
46
47
48

49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66

67
68
69
70

71

72

73

74

75

76

77

78

79

2

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.08.491073doi: bioRxiv preprint 

https://paperpile.com/c/8igmYI/BjsFJ
https://paperpile.com/c/8igmYI/JGOYl
https://paperpile.com/c/8igmYI/i5co5
https://paperpile.com/c/8igmYI/vxbNr+IkYK1+7cqnV+LPKXs
https://paperpile.com/c/8igmYI/3ZyJ0
https://paperpile.com/c/8igmYI/bdla
https://paperpile.com/c/8igmYI/mJl4+6TWW
https://paperpile.com/c/8igmYI/qzXG
https://paperpile.com/c/8igmYI/mJl4
https://paperpile.com/c/8igmYI/qzXG
https://doi.org/10.1101/2022.05.08.491073
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mbp. The assembly was polished for error correction using ~380x of publicly available Illumina short

reads (NCBI Bioproject PRJNA474418). 

Using high-throughput  Chromosome Conformation Capture  (Hi-C),  we clustered and oriented the

contigs into 11 pseudomolecules covering 417.8 Mbp (98.6% of the estimated genome size) with an

N50 of 38.1 Mbp (Figure 1B, Table S2, Supplemental methods).  Our chromosome-scale assembly of

the lablab genome has 61-fold improvement in contiguity compared to the previously published short

read  assembly12.  For  consistency  with  published  legume  genome  sequences,  we  assigned

chromosome names based on syntenic relationship with Phaseolus vulgaris (common bean13) and

Vigna unguiculata (cowpea14) (Figure S1, Supplemental methods).

Genome annotation and gene family analyses

To annotate  the genome,  we established  an international  collaboration  comprising  locally  trained

African researchers (see discussion) and international partners with established genome annotation

pipelines. We used an automated pipeline based on protein homology, transcript evidence and  ab

initio  predictions to identify protein coding genes in the lablab genome. This resulted in a total of

30,922  gene  models (79,512  transcripts).  A  subset  of  24,972  of  these  gene  models  show  no

homology to transposable elements (TEs) and can be confidently considered as high quality protein-

coding non-TE gene models (Figure 1B, Table S3). BUSCO scores of the non-TE gene models were

97.3%, 96.4%, and 94.9% against the universal single copy genes from the embryophyta, eudicots,

and fabales lineages, respectively, suggesting a high level of completeness of the gene space (Figure

1C). The number of non-TE protein-coding genes identified in our study is 19.2% greater than in the

previous short-read assembly12. A functional description could be assigned to 28,927 (93.3%) of the

genes.

A total  of  168,174 TE sequences,  occupying 28.1% of  the genome,  were identified  in  the lablab

genome (Figure 1B ). Of these, 89.6% were classified into 13 superfamilies and 2,353 known families

(Table S4, Figure S2). Long Terminal Repeat - RetroTransposons (LTR-RTs) were the most abundant

TEs, with 85,149 sequences occupying 83 Mb (19.9%) of the genome (Figure 1B).  Copia were the

most abundant LTR-RT superfamily, occupying 13.2% of the genome compared to gypsy elements

that occupied only 4.7%. We also report an average LTR Assembly Index (LAI) of 19.8 (Figure 1D).

DNA transposons were smaller in number and size relative to LTR-RTs, and were distributed more

evenly across the chromosomes (Table S4, Figure S2). 

A further 100,741 repetitive sequences were identified but could not be classified as TEs. Combining

the  annotated  TEs  and  unclassified  repeats  reveals  an  overall  repeat  content  of  43.4%  of  the

genome. We also identified 142,302 tandem repeats (TRs) covering 43 Mb (11.2%) of the genome

(Figure 1B, Table S5). Most of these were minisatellites (10-99 bp), while satellite repeats (>100 bp)

make up the largest total proportion of TRs in the genome (7.4% of the genome; Table S5). Both the

tandem and unclassified repeats were found to concentrate within a distinct, overlapping cluster at the

point of peak repeat density on each chromosome, indicating that they are likely centromeric repeats

(Figure S2A).

Gene family  analysis  and comparison to other legumes (P. vulgaris,  V. angularis, Cajanus cajan,

Medicago truncatula),  and using Arabidopsis thaliana as an outgroup, placed 24,397 (97.7%) of the

24,972 non-TE lablab genes into orthogroups. Comparison of the five legumes (Figure 2A) revealed

14,047  orthogroups  in  common,  and  identified  417  (1.7%)  lablab  genes  in  119  species-specific

orthogroups that were absent from the other four legumes. These lablab-unique gene families were
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enriched  for  fatty  acid  biosynthesis,  arabinose  metabolism  gene  ontology  (GO)  classifiers  while

several were involved in pollen-pistil interactions and general plant development (Table S6). Using the

phylogenetic  relationships  between the species,  448 gene families  were significantly  expanded in

lablab compared to other legumes and Arabidopsis, while 899 were contracted (Figure 2B). Expanded

gene families were enriched for lignin and pectin metabolism, photosynthesis among others (Table

S7; Figure 2C).

Evidence for two domestications of lablab

Understanding  the transition  from wild  species  to  domesticated crop can provide insight  into  the

location  of  domestication,  the  strength  of  genetic  bottleneck (and identification  of  wild  alleles  not

present  in  the  domesticated  gene  pool)  and  can  lead  to  identifying  candidate  genes  underlying

domestication traits. Previous work has suggested that lablab domestication occurred at least twice,

separately in the two-seeded and four-seeded gene pools15,16. Using our chromosome-scale assembly

as a reference, we examined whether this is indeed the case by resequencing a panel of two-seeded

and four-seeded wild (ssp. uncinatus) and domesticated (ssp.  purpureus) lablab accessions (Table

S8). We also gathered publicly available short read data for cv. Highworth and nine species from

three related genera (Vigna,  Phaseolus  and Macrotyloma,  Table S8) as outgroups to determine the

phylogenetic position of lablab. All lablab samples had a >95% mapping against the lablab reference

genome at a depth of 7.0 - 11.2x while the related genera had considerably lower mapping of 30 -

54% at a depth of 3.5 - 10.9x; Table S8). A total of 39,907,704 SNPs were identified across all 22

samples and 15,428,858 across the 13 lablab samples.

A filtered SNP data set  of  67,259 SNPs (see Methods)  was used for  phylogenetic  and diversity

analyses. Neighbor Joining phylogenetic analysis rooted with two Macrotyloma samples revealed that

all lablab samples formed one group separate from the Vigna and Phaseolus samples which are each

reciprocally monophyletic. A clear division between the two- and four-seeded lablab samples could be

observed (100% bootstrap support) with wild and domesticated samples found in both groups (Figure

3). Our study thus confirms the previous hypotheses of two origins of domesticated lablab. Genetic

diversity (π per 100 Kb window) within each gene pool was relatively low and significantly greater

(unpaired T-test, t = 8.2415, df = 2651, P < 0.0001) in the two-seeded group (5.79 x 10 -6 (+/- 2.51 x

10-6 [SD]) than the four-seeded group (5.04 x 10-6 (+/- 2.15 x 10-6 [SD]). Divergence between the two-

and four-seeded gene pools was high (mean Fst per 100kb window = 0.43 +/- 0.32 [SD]) which could

suggest that these gene pools should be taxonomically re-evaluated as separate species.

Genetic diversity in a global lablab collection

To assess within and between accession diversity in the global lablab gene pool, we genotyped 1,860

individuals from 166 lablab accessions using DArTseq genotyping-by-sequencing (GBS) (Table S9).

We identified 41,718 genome-wide SNP and 73,211 SilicoDArT markers, of which 91% and 57%

mapped onto the lablab genome, respectively (Figure S3). The two-seeded and wild samples mapped

with a significant  amount  of  missing data (due to the high genetic  divergence described above),

therefore we excluded these and report only results for the widespread four-seeded cultivated group.

In  addition,  only  individuals  that  were  considered  true-to-type  or  progeny  (see  Supplementary

Information) were included. This resulted in 1,462 individuals from 138 accessions being retained for

the final analysis. 

Using  a  subset  of  2,460  quality-filtered  genome-wide  SNPs  (see  Methods)   for  STRUCTURE17

analysis, we identified four populations (cluster I - IV) in the lablab germplasm collection (Figure 4A).
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Similar  clustering  and  population  stratification  were  detected  by  hierarchical  clustering  and  PCA

(Figure 4B and C). The clustering shows some correspondence with the geographical origin of the

genotypes. Accessions in cluster I were mainly from outside Africa and included all the accessions of

ssp. bengalensis, which has long, relatively narrow pods with up to seven seeds and a particular seed

arrangment in the pod. More than 85% of the accessions  in  clusters II, III and IV are from Africa or

were originally collected by the Grassland Research Station in Kitale (Kenya, but most have uncertain

origin, Table S9).

The pairwise Fst values among the four clusters varied from 0.31 between clusters I and III to 0.91

between clusters II  and IV (Table S10).  Analysis  of  molecular  variance (AMOVA) further showed

presence of  higher  genetic  variation  between the four  clusters  (62.44%)  than within  the clusters

(37.56%)  (Table  S11).  Within  group genetic  distance between accessions,  Nei’s  D18,  was lowest

within cluster IV (mean D = 0.003) and highest for cluster I (mean D = 0.164; Table S12). Mean Nei’s

D between progenies of the 41 accessions with ≥2 progenies per accession ranged from 0.0015 to

0.1516  indicating  that  within  accession  genetic  diversity  is  generally  low,  as  expected  for  a

predominantly self-pollinating species such as lablab19.

We found that the population clusters often differed in their mean phenotypes based on historical data

describing  phenology  and  morpho-agronomic  traits20.  Twelve  of  13  quantitative traits  (Figure  S4;

Table S13) and five of eight qualitative characters (Figure S5; Table S14) differed among the four

clusters despite a certain level of phenotypic variation within every cluster. Cluster I accessions are

phenotypically  variable,  containing  early-flowering,  short  plants  and  includes  the  only  three  erect

accessions and all ssp. bengalensis in a sub-cluster. Plants had four to six relatively large seeds per

pod.  Cluster  II  contains  the  earliest,  only  colored-flowering  accessions,  with  high  flowering  node

density, and most producing up to four black, mottled seeds per pod. Plants were rather short and had

the smallest leaves. Cluster III also includes diverse phenotypes; overall plants were relatively tall,

broad, leafy and intermediate to late-flowering with the largest leaves and shortest pods with up to

four rather small seeds. Cluster IV comprises the most homogeneous phenotypes; it had the latest,

only  white-flowering  accessions  and  plants  were  rather  tall,  broad  and  leafy  with  long  flower

peduncles, a high number of flowering nodes and four relatively small tan-colored seeds per pod. 

Discussion
Africa has a rich plant biodiversity that includes 45,000 species21, most of which are under-studied and

under-utilised. To fully explore these genetic resources, it is important to develop inclusive research

models that enable and empower local researchers to study these species under a resource-limited

research setting. Our work describes an inclusive African-led effort to produce high-quality genome

resources  for  a  climate-resilient  and  multipurpose  native  African  orphan  crop  -  lablab.  Our

chromosome-scale reference assembly of lablab improves on the previous assembly in several ways

and also highlights some interesting features about lablab’s genome, domestication and diversity.

With the use of long-reads and Hi-C scaffolding, we achieved 61-fold improvement in contiguity, and

identified a further 34 Mbp of repetitive sequences and 19.2% more gene content compared to the

short-read based assembly12. In addition, the high average LTR Assembly Index (LAI)22 (19.8; Figure

1C), comparable to the LAI of a PacBio-based assembly of common bean23, indicates a high-level of

completeness of the repeat space in our assembly. As has been found in other legumes, LTR-RTs

were the predominant TE class in our lablab assembly13,14,24. In contrast to findings from lablab’s close

relatives,  however,  we  found  copia  LTR-RTs  to  be  more  abundant  than  gypsy  LTR-RTs.  It  is

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.08.491073doi: bioRxiv preprint 

https://paperpile.com/c/8igmYI/33JJV+zwJa3+IPKtk
https://paperpile.com/c/8igmYI/SwcCh
https://paperpile.com/c/8igmYI/2fJt6
https://paperpile.com/c/8igmYI/JGOYl
https://paperpile.com/c/8igmYI/Is4eK
https://paperpile.com/c/8igmYI/AB807
https://paperpile.com/c/8igmYI/KEaTl
https://paperpile.com/c/8igmYI/sgoBu
https://doi.org/10.1101/2022.05.08.491073
http://creativecommons.org/licenses/by-nc-nd/4.0/


uncommon to see a greater abundance of copia LTR-RTs when compared to gypsy LTR-RTs in plant

genomes25,26, and although the biological significance of elevated copia abundances remains to be

seen, further genome sequencing will determine whether this finding is indeed a distinguishing feature

of lablab.

 

Lablab has a smaller genome size than other sequenced legumes and also has a smaller number of

species-specific orthogroups. Nevertheless, the orthogroup analysis identified several GO categories

enriched  in  the  lablab-specific  orthogroups;  of  particular  interest  are  those  involved  in  fatty  acid

metabolism, which could underlie seed oil content and composition. In addition arabinose metabolism

genes  were  enriched  in  the  lablab-unique  genes  and  several  other  cell  wall-related  GO  terms

(specifically related to pectin and lignin) in the orthogroups expanded in lablab. Cell wall modification

could be related to protection from pathogens27 or drought tolerance28.

A dual origin of domesticated lablab was confirmed, with the localised (to Ethiopia) two-seeded and

the widespread four-seeded types being genetically distinct and domestication events occurring in

both of these groups. This therefore adds lablab to the relatively ‘exclusive’ list of crops with more

than one origin, which includes common bean13, lychee29, Tartary buckwheat30 and, potentially, rice31

and barley32. Data on reproductive isolation between the gene pools is unclear, and crosses are only

known  between  four-seeded  samples33–35,  thus  any  taxonomic  reassessment  (first  suggested  by

Maass et al. 200515) should begin with assessing reproductive compatibility between the gene pools. 

Importantly, our project provides a model for increasing the representation of local researchers in the

sequencing  of  their  indigenous  crops.  Recent  studies  and  commentaries  have  highlighted  the

disconnect between the species origin and the location of the institutions leading their sequencing3–5.

This is particularly true for Africa, where none of its sequenced indigenous crops were sequenced on

the continent4.  We surveyed 31 publications describing the genome sequencing of 24 indigenous

African crops. More than 85% of these publications do not have first or corresponding authors with

affiliations in Africa and 42% do not have any authors with an African affiliation (Table S15). Our

project breaks this trend because sequencing and coordination efforts were done or led from within

Africa, while still recruiting international partners where complementary expertise was beneficial to the

project.  Thus  we  encourage  contribution  of  the  international  community  in  African  orphan  crop

genomics while supporting more active involvement from local researchers. 

Three main features characterised our inclusive genome collaboration model -  access to low-cost

portable sequencing,  in-depth capacity building and equitable international  collaboration.  The high

acquisition and maintenance costs of genome sequencing technologies has historically limited the

participation  of  researchers  working in  LMIC  in genome  collaborations.  Low-cost  and  portable

sequencing platforms such as the ONT MinION, are now making long-read sequencing accessible to

researchers in LMIC, thus “democratising” genome sequencing. We spent less than $4,000 to procure

the MinION sequencer and kits (ONT starter pack and extra flow cells) used to sequence our lablab

genome.  This  low  cost  is  partly  due  to  the  small  genome  size  of  lablab,  but  it  nonetheless

demonstrates  how  accessible  modern  portable  sequencing  platforms  can  be  for  researchers  in

resource-limited  research  settings.  Despite  these  low  costs,  there  are,  however,  still  logistical

challenges to overcome in getting needed reagents to local labs.  

Secondly, our project benefited from efforts to build in-depth bioinformatics skills in Africa5. Four of the

African authors in our study, including two of the first authors, benefited from a residential 8-month

bioinformatics training in Africa. We posit that such in-country and long-term training, as opposed to

short  training,  are more effective in  developing the high-competence bioinformatics skills  that  the
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continent needs. Once trained, these researchers will feel empowered to participate or lead genomic

projects, and importantly use such projects as opportunities to train many more researchers, thus

creating a continuous stream of human resources equipped to explore the rich genetic resources on

the continent. 

Lastly, establishing an international collaboration helped us to take advantage of existing expertise

and  already  developed  pipelines  for  genome  analyses.  With  over  20  years  of  plant  genome

sequencing, the global plant science community have developed tools, pipelines and protocols for

plant  genome analyses.  This  means  African  researchers  do not  have  to  ‘reinvent  the  wheel’  for

orphan crop genomics, but instead can form strategic collaborations to access needed expertise and

networks. To fully benefit from big-data and a suite of readily-available genomic tools, it is also vital

that African institutions are supported to build or access physical or cloud computing infrastructure for

high-throughput data analytics. This will also ensure that genomic data produced on the continent are

locally managed and made readily accessible to local researchers and the global community.

Our lablab genome assembly and collaboration provides a roadmap for improving agronomic, yield

and nutritional traits in other African orphan crops.  Given the  Africa-centred and inclusive nature of

our  work,  this  could  be used  as  a  model  by  individual  labs  and multinational  genome consortia

including  the  Africa  Biogenome  Initiative3 to  generate  high-quality  genomic  resources  for  many

indigenous species across the continent.

Methods

Reference genome DNA extraction and sequencing

L.  purpureus  (L.)  Sweet  cv.  Highworth36 seeds  were  germinated  in  a  petri  dish  on  filter  papers

moistened with tap water. The sprouted seedlings were transferred to soil and allowed  to grow for

one month in the greenhouse facility at the International Livestock Research Institute (ILRI, Kenya).

Two grams of young trifoliate leaves were harvested, flash frozen in liquid nitrogen and stored at -

800C. The leaves were ground in liquid nitrogen using a pestle and mortar and High Molecular Weight

(HMW) DNA extracted with Carlson lysis buffer (100 mM Tris-HCl, pH 9.5, 2% CTAB, 1.4 M NaCl, 1%

PEG 8000, 20 mM EDTA) followed by purification using the Qiagen Genomic-tip 100/G based on the

Oxford Nanopore Technologies (ONT) HMW plant DNA extraction protocol. The library was prepared

following the ONT SQK-LSK109 ligation sequencing kit protocol. A total of 1 µg of genomic DNA was

repaired and 3’-adenylated with the NEBNext FFPE DNA Repair Mix and the NEBNext® Ultra™ II

End Repair/dA-Tailing Module and sequencing adapters ligated using the NEBNext Quick Ligation

Module (NEB). After library purification with AMPure XP beads, sequencing was conducted at ILRI

(Kenya) using the R9.4.1 flow cells on a MinION sequencer platform.

Genome Assembly 

Guppy basecaller (v4.1.1)37 was used for base calling the reads using the high accuracy basecalling

model  and  the  resulting  fastq  files  were  used  for  genome  assembly.  Flye  de  novo long  reads

assembler38 (ver 2.7.1) was used for the assembly with the default  parameters. The draft assembly

was polished  with  lablab  Illumina  shorts  reads12 using  HyPo hybrid  polisher39.  The draft  genome

assembly quality was assessed using QUAST40 and its completeness evaluated using BUSCO (ver.
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4.0.6)41. The Hi-C library for genome scaffolding was prepared, sequenced and assembled by phase

genomics, USA (Supplemental Information).

Gene Annotation 

Protein  sequences  from five  closely  related  species  (P.  vulgaris,  V.  angularis, C.  cajan,  and  M.

truncatula) as well as  Arabidopsis thaliana were used as protein homology evidence. RNAseq data

from  Lablab  purpureus  cv.  Highworth  leaves,  stem,  sepals,  and  petals12 was  used  in  de  novo

transcript assembly with Trinity42 (ver 2.8.5) and provided as transcript evidence. The Funannotate

pipeline43 (ver  1.8.7)  was  used  for  gene  prediction  using  RNA-Seq  reads,  de  novo assembled

transcripts and soft-masked genome as input to generate an initial set of gene models using PASA44

(ver 2.4.1).  Next, the gene models and protein homology evidence were used to train Augustus45 (ver

3.3.3), SNAP46 (ver 2006-07-28) and Glimmerhmm47 (ver 3.0.4) ab initio gene predictors and predicted

genes passed to Evidence modeller48 (ver 1.1.1) with various weights for integration. tRNAscan-SE49

(ver 2.0.9) was used to predict non-overlapping tRNAs. Transcript evidence was then used to correct,

improve and update the predicted gene models and refine the 5’- and 3’-untranslated regions (UTRs).

The plant.annot pipeline (github.com/PGSB-HMGU/plant.annot) was also used for the prediction of

protein coding genes and incorporated homology information and transcript evidence as well. In the

evidence-based step, RNA-Seq data from cv. Highworth leaf, stem, sepal and petal12 was used for the

genome-guided prediction of gene structures. HISAT250 (version 2.1.0, parameter –dta) was used to

map RNA-Seq data to the reference genome and the transcripts assembled with Stringtie51 (version

1.2.3,  parameters -m 150 -t  -f  0.3).  For the homology-based step,  homologous proteins from the

closely  related  species  were  mapped  to  the  reference  genome  using  the  splice-aware  mapper

GenomeThreader52 (version  1.7.1,  parameters:  -startcodon  -finalstopcodon  -species  medicago  -

gcmincoverage 70 -prseedlength 7 -prhdist 4).  Transdecoder53 (version 3.0.0) was used to predict

protein sequences and to identify potential open reading frames. The predicted protein sequences

were compared to a protein reference database (UniProt Magnoliophyta, reviewed/Swiss-Prot) using

BLASTP54 (-max_target_seqs 1 -evalue 1e-05). Conserved protein family domains for all proteins were

identified with hmmscan55 version 3.1b2. Transdecoder-predict was run on the BLAST and hmmscan

results and the best translation per transcript was selected. Results from the homology and transcript-

based gene prediction approaches were combined and redundant protein sequences were removed.

The  results  from  both  the  funannotate  and  plant.annot  pipelines  were  combined  and  redundant

protein sequences as well as non-coding genes removed. The functional annotation of transcripts as

well as the assignment of Pfam56- and InterPro57-domains, and GO58,59 terms, were performed using

AHRD  (Automatic  assignment  of  Human  Readable  Descriptions,

https://github.com/groupschoof/AHRD; version 3.3.3). AHRD assesses homology information to other

known proteins using BLASTP searches against Swiss-Prot, The Arabidopsis Information Resource

(TAIR), and TrEMBL. The functional annotations are defined using the homology information and the

domain  search  results  from  InterProScan  and  Gene  Ontology  terms.  In  order  to  distinguish

transposon related genes from other genes, the functional annotation was used to tag TE-related

genes in the genome annotation file. BUSCO41 v5.2.2 was used to assess the completeness of the

genome annotation, with sets of universal single copy gene orthologs from embryophyta, fabales, and

eudicots odb10 lineages41.
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Repeat Annotation 

Repeat  annotations  for  transposable  elements  (TE)  and  tandem  repeats  were  conducted

independently. For TE annotation, a novel Lablab TE library was constructed using the Extensive de

novo TE Annotator (EDTA v1.9.7) pipeline60. EDTA incorporates both structure and homology-based

detection programs to annotate the predominant TE classes found in plant genomes. EDTA utilises

LTRharvest61,  LTR_FINDER62,  LTR_retriever63,  TIR-Learner64,  HelitronScanner65,  RepeatModeler266

and RepeatMasker67 for identification of novel TE sequences. The outputs of each module are then

combined and filtered to compile a comprehensive, non-redundant TE library. EDTA’s inbuilt whole

genome annotation function was then used to produce a non-overlapping TE annotation for lablab

using the TE library as input. Further calculation of metrics and data visualisation were carried out in

R68 using the tidyverse suite69 of packages.

Tandem repeats were identified with TandemRepeatFinder70 under default parameters and subjected

to an overlap removal by prioritising higher scores. Higher scoring matches were assigned first. Lower

scoring hits at overlapping positions were either shortened or removed. Removal was triggered if the

lower scoring hits were contained to ≥ 90% in the overlap or if less than 50 bp of rest length remained.

Gene family and expansion analysis

Gene families were identified using a genome-wide phylogenetic comparison of the lablab protein

sequences and four other legumes. This comprised P. vulgaris (PhaVulg1_0), V. angularis (Vigan1.1),

C. cajan  (V1.0),  and  M. truncatula  (MtrunA17r5). Orthofinder71 (Version 2.4)  was used to identify

orthologs and co-orthologs between these species and to group them into gene families. Arabidopsis

thaliana (Araport 11) was used as an outgroup. The longest transcript was selected for genes with

multiple splice variants.

In order to analyse gene family expansion and contraction in lablab, the gene family file produced by

Orthofinder was further analysed with CAFE572. An ultrametric tree was built with Orthofinder (r=160)

and CAFE5  72 was run with -k 3.  Enrichment analysis using a fisher’s exact test (padj ≤ 0.05) of

significantly  (p-value of  gene family  sizes73 ≤  0.05)  expanded gene families  was performed with

TopGO74.

Resequencing and Phylogenetic Analyses

Lablab  seeds  (obtained  from  ILRI)  for  the  resequencing  were  germinated  in  a  1:1  mixture  of

vermiculite and Levingtons’s M2+S compost in a greenhouse (22°C and 16 hour day) at the University

of Southampton. Young leaf tissue was harvested from one-month old seedlings and snap frozen in

liquid  nitrogen.  DNA  was  extracted  from  leaf  tissue  using  a  CTAB-based  protocol75 with  minor

modifications. In total, 12 samples from two and four-seeded wild and domesticated lablab accessions

were sequenced using 2 x 150 bp PE sequencing on an Illumina platform at Novogene (Cambridge,

UK) (Table S6). Short read data from lablab cv. Highworth12, three  Phaseolus, four  Vigna, and two

Macrotyloma species  were  downloaded  from  the  NCBI  Sequence  Read  Archive  (Table  S8).  A

maximum of 100 M read pairs were downloaded.

The  reads  were  trimmed  using  Trimmomatic76 (ver  0.32)  with  the  parameters;

ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10,  LEADING:5,  TRAILING:5,  SLIDINGWINDOW:4:15,

MINLEN:72.  Between 21.9  and 97.1 M reads remained  after  trimming.  The trimmed reads were

mapped to the chromosome-scale lablab assembly (excluding unmapped contigs) using Bowtie277
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(ver  2.2.3) and --very-sensitive-local settings. SAMtools78 (ver 1.1) was used to convert .sam to .bam

files which were then sorted, and duplicated reads were removed using the Picard toolkit79 (ver 2.8.3,

VALIDATION_STRINGENCY=LENIENT). Depth was estimated using SAMtools78 (Table S6). Using

mpileup from bcftools80 (ver 1.6.0), the individual sorted bam files were combined into a multi-sample

VCF using the settings  -Q 13  and  -q 10  and variant detection was performed with “bcftools call”.

Variants were subsequently  filtered using “bcftools  filter”, -i'QUAL>20 & DP>6'. The proportion of

missing data per individual was calculated using vcftools81 (ver 0.1.14; Table S6). Finally, vcftools was

used to trim the filtered VCF, removing SNPs that were missing in more than two samples and those

with a minor allele frequency of <5%. Finally, only SNPs that were at least 2 Kbp apart were included.

The final file contained 67,259 SNPs. VCF2Dis (github.com/BGI-shenzhen/VCF2Dis/; ver 1.36) was

used  to  create  a  distance  matrix  which  was  submitted  to  the  FAST-ME  server

(atgc-montpellier.fr/fastme) to generate a NJ tree. A total of 1000 replicate matrices were generated in

VCF2Dis  and the phylip  commands “neighbor”  and “consense”  were used to calculate  bootstrap

values.  Genetic  diversity  for  the  two  subpopulations  and  Fst  between  the  subpopulations  were

calculated from the final VCF file using vcftools in 100kb windows.

Population structure and diversity

A total of 1,860 seedlings from 166 Lablab purpureus accessions, that have been maintained at the

ILRI  forage  genebank  were  grown  from  seed  under  screen  house  conditions  at  ILRI,  Ethiopia.

Genomic DNA was extracted from leaves using a DNeasy® Plant Mini Kit (Qiagen Inc., Valencia, CA).

The  DNA  samples  were  genotyped  by  the  DArTseq  genotyping  platform  at  Diversity  Arrays

Technology, Canberra, Australia82. A subset of 2,460 robust SNP markers was filtered based on the

marker’s minor allele frequency (MAF ≥ 2 %), missing values (NA ≤ 10 %), independence from each

other (Linkage disequilibrium-LD ≤ 0.7), and their distribution across the genome.

A  pairwise  IBD  (Identity-By-Descent)  analysis  was  conducted  using  PLINK83 and  contaminants

excluded from the following analyses (see Supplemental Information) Genetic diversity was estimated

using pairwise Nei’s  genetic distance18.  Population stratification was assessed using the Bayesian

algorithm implemented in STRUCTURE17, in which the burn-in time and number of iterations were

both set to 100,000 with 10 repetitions, testing the likelihood of 1-10 subpopulations in an admixture

model  with  correlated  allele  frequencies.  Using  Structure  Harvester84 the  most  likely  number  of

subpopulations  was  determined  by  the  Evanno  ∆K  method85.  Accessions  with  less  than  60%

membership  probability  were  considered  admixed.  Hierarchical  clustering,  principal  component

analysis (PCA), fixation index (Fst), and analysis of molecular variance (AMOVA) were conducted

using the R-packages Poppr86, adegenet87, and APE88.

Data availability 

The  lablab  genome  is  available  from  NCBI  BioProject  (PRJNA824307)  and  at

https://hpc.ilri.cgiar.org/~bngina/lablab_longread_sequencing_March_2022/. Raw sequencing

reads  for  the  resequencing  are  available  from  the  NCBI  SRA  under  project  number

PRJNA834808. 
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Figures
Figure 1: Genome Assembly of Lablab. a,  Lablab purpureus plant showing flowers, leaves and

pods; b, Gene and repeat landscape of the lablab genome. The tracks from the outer to the inner

track show 1) Gene density, 2) Repeat density, 3) LTR-RT density, 4) Tandem repeat density. c, LAI

index of the 11 lablab chromosomes; d, BUSCO scores of the Lablab purpureus genome annotation

using the embryophyta, eudicots and and fabales reference lineages.

Figure 2: Gene family evolution and expansion in  Lablab purpureus.  a,  Venn diagram of the

number of gene families common among and unique to Lablab purpureus, Phaseolus vulgaris, Vigna

angularis, Medicago truncatula,  and Cajanus cajan.  b,  Cladogram of the analysed species showing

the number of expanded and contracted gene families in each. Figure constructed with iTol89. c, Gene

ontology terms enriched in the set of expanded gene families in Lablab purpureus.

Figure  3:  Phylogenetics  of  lablab  and  related  legumes.  Neighbor  Joining  phylogenetic

relationships  among  lablab  samples  (2-seeded  and  4-seeded  purpureus  (domesticated)  and

uncinatus (wild) subspecies) and other related legumes (see Table S8 for details). Tree is rooted on

Macrotyloma.  All  nodes  received  full  (100%)  bootstrap  support.  Asterisks  indicate  the  two

domestication events.
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Figure 4: Clusters and subclusters of the lablab accessions used in the diversity study. a, Bar

plots based on the admixture model in STRUCTURE for K = 4 (Membership of individual accessions

to each subgroup is given in Table S16).  b, Clusters detected by hierarchical clustering.  c, Clusters

detected by PCA. The colours in b and c are according to the STRUCTURE analysis in a.

Supplementary Information

Supplementary Methods

Hi-C Scaffolding

Chromatin conformation capture data was generated by Phase Genomics (Seattle, USA) using the
Proximo Hi-C 2.0 Kit, which is a commercially available version of the Hi-C protocol. Following the
manufacturer's  instructions  for  the  kit,  intact  cells  from  two  samples  were  crosslinked  using  a
formaldehyde solution, digested using the DPNII restriction enzyme, end repaired with biotinylated
nucleotides, and proximity ligated to create chimeric molecules composed of fragments from different
regions of the genome that were physically proximal in vivo, but not necessarily genomically proximal.
Continuing with the manufacturer's protocol, molecules were pulled down with streptavidin beads and
processed into an Illumina-compatible sequencing library. Sequencing was performed on an Illumina
HiSeq, generating a total of 232,382,372 PE150 read pairs.

Reads were aligned to the draft assembly using BWA-MEM90 with the -5SP and -t 8 options specified,
and all  other options default. SAMBLASTER91 was used to flag PCR duplicates, which were later
excluded from analysis. Alignments were then filtered with SAMtools77 using the -F 2304 filtering flag
to  remove non-primary  and  secondary  alignments.  Putative  misjoined  contigs  were broken  using
Juicebox92 based on the Hi-C alignments. A total of 6 breaks in 6 contigs were introduced. The same
alignment procedure was repeated from the beginning on the resulting corrected assembly.

Phase Genomics Proximo Hi-C genome scaffolding platform was used to create chromosome-scale
scaffolds from the corrected assembly as described in Bickhart et al.93. As in the LACHESIS method94,
this process computes a contact frequency matrix from the aligned Hi-C read pairs, normalized by the
number of DPNII restriction sites (GATC) on each contig, and constructs scaffolds in such a way as to
optimize expected contact frequency and other statistical patterns in Hi-C data. Approximately 20,000
separate Proximo runs were performed to optimize the number of scaffolds and scaffold construction
in order to make the scaffolds as concordant with the observed Hi-C data as possible. This process
resulted in a set of 11 chromosome-scale scaffolds containing 417 Mbp of sequence (98% of the
corrected assembly) with a scaffold N50 of 38.1 Mbp.

Synteny-guided Chromosome naming

We adopted a naming scheme based on synteny with closely related legumes - P. vulgaris (common
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bean13) and  V. unguiculata  (cowpea14). For this, we downloaded protein sequence and GFF files of

PacBio-based  assembly  of  P.  vulgaris (v2.1)  and  V.  unguiculata (v1.2)  from  Phytozome23 and

compared this separately to lablab proteins using  BLASTP54 (settings: -max_target_seqs 1, -evalue

1e-10, -qcov_hsp_perc 70). MCScanX95 was used to process the individual  BLAST output and to

detect inter-species collinear blocks. 

Filtering for true-to-type genotypes in global genebank collection.

The lablab accessions used for evaluating global diversity in this study were acquired from different
sources and conserved ex situ  as seeds in the ILRI forage genebank, the earliest since 1982, with
periodic monitoring for viability and regeneration for renewal of the seeds. These periodic genebank
management  practices  involve  risks  to  the  genetic  integrity  of  the  accessions  through  pollen
contamination, seed contamination, segregation, mislabeling, and other factors (e.g. as described in
Chebotar et al.,  2003  96).  Hence,  it  was necessary to ensure the genetic integrity of plants within
accessions and avoid potential contaminants before the genetic diversity analysis. Using pairwise IBD
(Identity-By-Descent) analysis, plants within accessions were classified into “true-to-type”, “progeny”,
or “contaminant” based on a PI_HAT83 value of above 0.80, between 0.125 and 0.80, or less than
0.125, respectively. Six accessions with a single plant each were excluded from the analysis. 

For  nine  accessions,  all  plants  were  unrelated  to  each  other,  and  therefore  considered
“contaminants”. Out of the remaining 151 accessions, 85 were 100% true-to-type, indicating that there
was no cross-pollination or seed mixing. Twenty-four accessions had a mixture of true-to-type and
their progeny, indicating that some level of cross-pollination or segregation had taken place in this
group.  Another  24  accessions  had  a  mixture  of  true-to-type  and  contaminants,  and  other  18
accessions had a mixture of the true-to-type, their progenies, and contaminants (Figure S6). After
removing contaminants, a total of 1680 plants were retained from these 151 accessions for genetic
diversity analysis. Of these, 1541 plants were true-to-type with 2 to 26 plants per accession, and 139
were progenies from 41 accessions (1 to 12 plants per accession).

Analysing historical lablab phenotype datasets

Phenotypic variation among the identified major molecular groups was assessed based on historical

data  summarised by  Pengelly  and  Maass  (2001)20 (127  accessions)  and  Wiedow  (2001)97 (95

accessions), in which morpho-agronomic traits on lablab accessions were evaluated in field trials at

Ziway site in Ethiopia, in 1998 and 2000, respectively. Seventeen accessions were analysed in both

trials, hence we could determine whether traits varied across the seasons. Where variation was low

(correlation between seasons was 80% or greater; 6 traits), data from the two trials were combined.

For the remaining 15 traits, only the 1998 phenotype data on 75 accessions was used for the analysis

of trait variation among the four genetic groups identified above. Analysis of variance (ANOVA) and

Tukey’s  multiple  comparison  test  were  employed  to  compare  phenotypic  variation  of  agro-

morphological  quantitative  traits  with  significant  p  values (P <  0.01)  among clusters identified  by

population structure analysis. A chi-square test was used for similar comparisons among clusters in

qualitative traits. 
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Supplementary Figures 

Figure S1: Chromosome-level synteny of Lablab purpureus with related species.  L. purpureus

chromosomes have been named according to synteny with  P. vulgaris  (a) and  V. unguiculata (b)

chromosomes.

Figure S2: Chromosomal repeat content in  Lablab purpureus. (a) Relative densities of repeat

elements  along  each  chromosome.  1)  Long  Terminal  Repeat  RetroTransposons  (LTR-RT),  2)

Tandem Inverted Repeats (TIR), 3) Miniature Inverted Transposable Elements (MITE), 4) Helitron 5)

Unclassified  repeats,  6)  Tandem  repeats  (b) Proportional  abundance  of  identified  transposable

element orders on each chromosome. 

Figure S3: GBS polymorphism in global lablab collection: Genome-wide distribution of SNPs (a)

and SilicoDArT (b) markers across the eleven chromosomes of the lablab reference genome. The

total number of SNPs or SilicoDArT markers are presented beside each chromosome. Plots produced

with SRplot.

Figure  S4:  Quantitative  phenotypic  variation  in  global  lablab  collection.  Boxplots  showing

phenotypic variation of different morpho-agronomic quantitative traits among the four genetic clusters

identified in lablab.  The colours are according to the STRUCTURE analysis  with k = 4,  and trait

abbreviations are explained in Table S13.

Figure S5: Qualitative phenotypic variation in global lablab collection. Plots showing phenotypic

variation of seven qualitative traits among the four genetic clusters identified in lablab. The colours are

according to the STRUCTURE analysis with k = 4, and trait abbreviations are explained in Table S14.

Points are scattered if identical values are present.
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Figure S6: Identity-By-Descent classification of global lablab collection. Number of accessions

classified as true-to-type (TTT), true-to-type and progenies (TTT+NP), true-to-type and contaminants

(TTT+Cont),  true-to-type  and  progenies  and  contaminants  (TTT+NP+Cont),  and  accessions  with

100% contaminants (Cont), based on a pairwise Identity-By-Descent (IBD) analysis.

Supplementary Tables

Table S1: Summary of Nanopore Reads Statistics

Table S2: Table S2: Comparison of assembly statistics for the lablab genome based on short reads 

and long reads.

Table S3: Summary statistics of genes in the lablab genome.

Table S4: The number of TEs, TE families and the proportion of occupied assembly length by different

classes of repeats identified and annotated in the lablab genome.

Table S5: Types, amount and proportion of tandem repeats in the lablab genome

Table S6: GO annotation of lablab-specific gene clusters

Table S7: GO annotation of gene families expanded in lablab

Table S8: Details and sequencing statistics of resequencing samples

Table S9: Population group membership

Table S10. Pairwise Fixation index (Fst) among the four major clusters (C) detected by the 

STRUCTURE analysis

Table S11: AMOVA showing the genetic variance among and within clusters

Table S12: Minimum, maximum and average genetic divergence (Nei's D) between accessions within 

the four clusters identified by STRUCTURE.

Table S13: Results of the analysis of variance for 13 quantitative traits among the four genetic 

clusters.

Table S14: Results of the χ2 analysis for seven quantitative traits among the four genetic clusters.

Table S15: Data on inclusive crop genomics

Table S16: Membership probability of accessions from the STRUCTURE analysis
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Figure 1: Genome Assembly of Lablab. a, Lablab purpureus plant showing flowers, leaves and pods. b, Gene and repeat landscape of the lablab 
genome. The tracks from the outer to the inner track show 1) Gene density, 2) Repeat density, 3) LTR-RT density, 4) Tandem repeat density. c, LAI index of 
the 11 lablab chromosomes. d, BUSCO scores of the Lablab purpureus genome annotation using the embryophyta, eudicots and and fabales reference 
lineages.

https://doi.org/10.1101/2022.05.08.491073
http://creativecommons.org/licenses/by-nc-nd/4.0/


A C

B

Figure 2: Gene family evolution and expansion in Lablab purpureus. a, Venn diagram of the number of gene families common among and unique 
to Lablab purpureus, Phaseolus vulgaris, Vigna angularis, Medicago truncatula, and Cajanus cajan. b, Cladogram of the analysed species showing the 
number of expanded and contracted gene families in each. Figure constructed with iTol89. c, Gene ontology terms enriched in the set of expanded gene 
families in Lablab purpureus.
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Figure 3: Phylogenetics of lablab and related legumes. Neighbor Joining phylogenetic 
relationships among lablab samples (2-seeded and 4-seeded purpureus (domesticated) and 
uncinatus (wild) subspecies) and other related legumes (see Table S8 for details). Tree is rooted on 
Macrotyloma. All nodes received full (100%) bootstrap support. Asterisks indicate the two 
domestication events.
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Figure 4: Clusters and subclusters of the lablab accessions used in the diversity study. a, Bar plots based on the 
admixture model in STRUCTURE for K = 4 (Membership of individual accessions to each subgroup is given in Table S16). 
b, Clusters detected by hierarchical clustering. c, Clusters detected by PCA. The colours in b and c are according to the 
STRUCTURE analysis in a.

https://doi.org/10.1101/2022.05.08.491073
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure S1: Chromosome-level synteny of Lablab purpureus with related species. L. purpureus chromosomes have 
been named according to synteny with P. vulgaris (a) and V. unguiculata (b) chromosomes.
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Figure S2: Chromosomal repeat content in Lablab purpureus. (a) Relative densities of repeat elements along each chromosome. 1) Long 
Terminal Repeat RetroTransposons (LTR-RT), 2) Tandem Inverted Repeats (TIR), 3) Miniature Inverted Transposable Elements (MITE), 4) Helitron 
5) Unclassified repeats, 6) Tandem repeats (b) Proportional abundance of identified transposable element orders on each chromosome.
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Figure S3: GBS polymorphism in global lablab collection: Genome-wide distribution of SNPs (a) and SilicoDArT (b) 
markers across the eleven chromosomes of the lablab reference genome. The total number of SNPs or SilicoDArT 
markers are presented beside each chromosome. Plots produced with SRplot. 
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Figure S4: Quantitative phenotypic variation in global lablab collection. Boxplots showing phenotypic 
variation of different morpho-agronomic quantitative traits among the four genetic clusters identified in lablab. The 
colours are according to the STRUCTURE analysis with k = 4, and trait abbreviations are explained in Table S13.
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Figure S5: Qualitative phenotypic variation in global lablab collection. Plots showing 
phenotypic variation of seven qualitative traits among the four genetic clusters identified in 
lablab. The colours are according to the STRUCTURE analysis with k = 4, and trait 
abbreviations are explained in Table S14. Points are scattered if identical values are present.
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Figure S6: Identity-By-Descent classification of global lablab collection. Number 
of accessions classified as true-to-type (TTT), true-to-type and progenies (TTT+NP), 
true-to-type and contaminants (TTT+Cont), true-to-type and progenies and 
contaminants (TTT+NP+Cont), and accessions with 100% contaminants (Cont), 
based on a pairwise Identity-By-Descent (IBD) analysis.
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