

1 Chromosome-scale assembly of the lablab genome - A model for inclusive 2 orphan crop genomics

3

4 Isaac Njaci^{1,2†}, Bernice Waweru^{1†}, Nadia Kamal^{3†}, Meki Shehabu Muktar⁴, David Fisher⁵, Heidrun
5 Gundlach³, Collins Muli¹, Lucy Muthui¹, Mary Maranga⁶, Davies Kiambi⁷, Brigitte L Maass⁸, Peter MF
6 Emmrich^{2,9}, Jean-Baka Domelevo Entfellner¹, Manuel Spannagl³, Mark A Chapman^{5*}, Oluwaseyi
7 Shorinola^{1,2*} and Chris S Jones^{1*}

8

9 ¹International Livestock Research Institute, Nairobi 00100, Kenya;

10 ²John Innes Centre, Norwich Research Park Norwich, NR4 7UH, UK

11 ³Helmholtz Zentrum München, German Research Center for Environmental Health, Plant Genome
12 and Systems Biology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany

13 ⁴International Livestock Research Institute, Addis Ababa, Ethiopia.

14 ⁵University of Southampton, School of Biological Sciences, Southampton, SO17 1BJ, UK

15 ⁶Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, Poland

16 ⁷Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße
17 1, 65366 Geisenheim, Germany

18 ⁸Department of Crop Sciences, Georg-August-University Göttingen, Grisebachstr. 6, 37077 Göttingen,
19 Germany

20 ⁹Department for International Development, University of East Anglia. Norwich, NR4 7TJ, United
21 Kingdom

22

23 [†]These authors contributed equally.

24 ^{*}Corresponding authors.

25

26 Abstract

27 Orphan crops (also described as underutilised and neglected crops) hold the key to diversified and
28 climate-resilient food systems. After decades of neglect, the genome sequencing of orphan crops is
29 gathering pace, providing the foundations for their accelerated domestication and improvement.
30 Recent attention has however turned to the gross under-representation of researchers in Africa in the
31 genome sequencing efforts of their indigenous orphan crops. Here we report a radically inclusive
32 approach to orphan crop genomics using the case of *Lablab purpureus* (L.) Sweet (syn. *Dolichos*
33 *lablab*, or hyacinth bean) – a legume native to Africa and cultivated throughout the tropics for food and
34 forage. Our Africa-led South-North plant genome collaboration produced a high-quality chromosome-
35 scale assembly of the lablab genome – the first chromosome-scale plant genome assembly locally
36 sequenced in Africa. We also re-sequenced cultivated and wild accessions of lablab from Africa
37 confirming two domestication events and examined the genetic diversity in lablab germplasm
38 conserved in Africa. Our approach provides a valuable resource for lablab improvement and also
39 presents a model that could be explored by other researchers sequencing indigenous crops
40 particularly from Low and middle income countries (LMIC).

41

42

43

44 Introduction

45 Three major crops currently provide more than 40% of global calorie intake¹. This over-dependence
46 on a few staple crops increases the vulnerability of global food systems to environmental and social
47 instabilities. One promising strategy to diversify food systems is to improve the productivity and
48 adoption of climate-resilient but underutilised orphan crops through genome-assisted breeding².

49 Genome-assisted breeding offers hope of a new green revolution by helping to uncover and unlock
50 novel genetic variation for crop improvement. Over the last 20 years, the genomes of 135
51 domesticated crops have been sequenced and assembled³, including those of orphan crops².
52 However, it has recently been acknowledged that researchers from Africa are grossly under-
53 represented in the genome sequencing efforts of their indigenous orphan crops^{3,4}. None of the
54 assemblies of native African plant species released till date were sequenced in Africa. The acute lack
55 of sequencing facilities and high-performance computing infrastructures as well as bioinformatics
56 capacity to handle big genome data, has meant that researchers in Africa have historically taken the
57 back seat in most genome sequencing efforts⁵.

58 Here we present a model to overcome this under-representation through an inclusive orphan crop
59 genomics approach. We applied an Africa-led, internationally collaborative approach to the genome
60 sequencing of lablab (*Lablab purpureus* L. Sweet) - a tropical legume native to Africa (Figure 1A).
61 Lablab is remarkably drought-resilient and thrives in a diverse range of environments, as such it is
62 widely cultivated throughout the tropical and subtropical regions of Africa and Asia⁶. Lablab is a
63 versatile multipurpose crop that contributes towards food, feed, nutritional and economic security, and
64 is also rich in bioactive compounds with pharmacological potential, including against SARS-CoV2⁷⁻¹⁰.
65 Climate change is driving researchers to investigate crops like lablab for its outstanding drought
66 tolerance¹¹.

67 Our Africa-led genome collaboration produced a chromosome-scale assembly of lablab – the first
68 chromosome-scale plant genome assembly sequenced in Africa. We also discuss the main features
69 and benefits from our inclusive approach, and suggest this can serve as a roadmap for future
70 genomic investigations of indigenous African crops.

71

72 Results

73 Genome sequencing

74 High acquisition and maintenance cost of sequencing platforms is a major limiting factor to genomics
75 research in Africa. To circumvent this limitation, we used the portable and low-cost Oxford Nanopore
76 Technology (ONT) MinION platform for in-country sequencing of the genome of lablab (cv.
77 Highworth). We generated 4.7 M reads with a mean read length of 6.1 Kbp (Table S1). This amounted
78 to 28.4 Gbp of sequences and 67x coverage of the lablab genome based on a previously estimated
79 genome size of 423 Mbp¹². The reads were initially assembled into 2,260 contigs with an N50 of 11.0

80 Mbp. The assembly was polished for error correction using ~380x of publicly available Illumina short
81 reads (NCBI Bioproject PRJNA474418).

82
83 Using high-throughput Chromosome Conformation Capture (Hi-C), we clustered and oriented the
84 contigs into 11 pseudomolecules covering 417.8 Mbp (98.6% of the estimated genome size) with an
85 N50 of 38.1 Mbp (Figure 1B, Table S2, Supplemental methods). Our chromosome-scale assembly of
86 the lablab genome has 61-fold improvement in contiguity compared to the previously published short
87 read assembly¹². For consistency with published legume genome sequences, we assigned
88 chromosome names based on syntenic relationship with *Phaseolus vulgaris* (common bean¹³) and
89 *Vigna unguiculata* (cowpea¹⁴) (Figure S1, Supplemental methods).

90 Genome annotation and gene family analyses

91 To annotate the genome, we established an international collaboration comprising locally trained
92 African researchers (see discussion) and international partners with established genome annotation
93 pipelines. We used an automated pipeline based on protein homology, transcript evidence and *ab*
94 *initio* predictions to identify protein coding genes in the lablab genome. This resulted in a total of
95 30,922 gene models (79,512 transcripts). A subset of 24,972 of these gene models show no
96 homology to transposable elements (TEs) and can be confidently considered as high quality protein-
97 coding non-TE gene models (Figure 1B, Table S3). BUSCO scores of the non-TE gene models were
98 97.3%, 96.4%, and 94.9% against the universal single copy genes from the embryophyta, eudicots,
99 and fabales lineages, respectively, suggesting a high level of completeness of the gene space (Figure
100 1C). The number of non-TE protein-coding genes identified in our study is 19.2% greater than in the
101 previous short-read assembly¹². A functional description could be assigned to 28,927 (93.3%) of the
102 genes.

103
104 A total of 168,174 TE sequences, occupying 28.1% of the genome, were identified in the lablab
105 genome (Figure 1B). Of these, 89.6% were classified into 13 superfamilies and 2,353 known families
106 (Table S4, Figure S2). Long Terminal Repeat - RetroTransposons (LTR-RTs) were the most abundant
107 TEs, with 85,149 sequences occupying 83 Mb (19.9%) of the genome (Figure 1B). Copia were the
108 most abundant LTR-RT superfamily, occupying 13.2% of the genome compared to gypsy elements
109 that occupied only 4.7%. We also report an average LTR Assembly Index (LAI) of 19.8 (Figure 1D).
110 DNA transposons were smaller in number and size relative to LTR-RTs, and were distributed more
111 evenly across the chromosomes (Table S4, Figure S2).

112
113 A further 100,741 repetitive sequences were identified but could not be classified as TEs. Combining
114 the annotated TEs and unclassified repeats reveals an overall repeat content of 43.4% of the
115 genome. We also identified 142,302 tandem repeats (TRs) covering 43 Mb (11.2%) of the genome
116 (Figure 1B, Table S5). Most of these were minisatellites (10-99 bp), while satellite repeats (>100 bp)
117 make up the largest total proportion of TRs in the genome (7.4% of the genome; Table S5). Both the
118 tandem and unclassified repeats were found to concentrate within a distinct, overlapping cluster at the
119 point of peak repeat density on each chromosome, indicating that they are likely centromeric repeats
120 (Figure S2A).

121
122 Gene family analysis and comparison to other legumes (*P. vulgaris*, *V. angularis*, *Cajanus cajan*,
123 *Medicago truncatula*), and using *Arabidopsis thaliana* as an outgroup, placed 24,397 (97.7%) of the
124 24,972 non-TE lablab genes into orthogroups. Comparison of the five legumes (Figure 2A) revealed
125 14,047 orthogroups in common, and identified 417 (1.7%) lablab genes in 119 species-specific
126 orthogroups that were absent from the other four legumes. These lablab-unique gene families were

127 enriched for fatty acid biosynthesis, arabinose metabolism gene ontology (GO) classifiers while
128 several were involved in pollen-pistil interactions and general plant development (Table S6). Using the
129 phylogenetic relationships between the species, 448 gene families were significantly expanded in
130 lablab compared to other legumes and *Arabidopsis*, while 899 were contracted (Figure 2B). Expanded
131 gene families were enriched for lignin and pectin metabolism, photosynthesis among others (Table
132 S7; Figure 2C).

133 Evidence for two domestications of lablab

134 Understanding the transition from wild species to domesticated crop can provide insight into the
135 location of domestication, the strength of genetic bottleneck (and identification of wild alleles not
136 present in the domesticated gene pool) and can lead to identifying candidate genes underlying
137 domestication traits. Previous work has suggested that lablab domestication occurred at least twice,
138 separately in the two-seeded and four-seeded gene pools^{15,16}. Using our chromosome-scale assembly
139 as a reference, we examined whether this is indeed the case by resequencing a panel of two-seeded
140 and four-seeded wild (ssp. *uncinatus*) and domesticated (ssp. *purpureus*) lablab accessions (Table
141 S8). We also gathered publicly available short read data for cv. Highworth and nine species from
142 three related genera (*Vigna*, *Phaseolus* and *Macrotyloma*, Table S8) as outgroups to determine the
143 phylogenetic position of lablab. All lablab samples had a >95% mapping against the lablab reference
144 genome at a depth of 7.0 - 11.2x while the related genera had considerably lower mapping of 30 -
145 54% at a depth of 3.5 - 10.9x; Table S8). A total of 39,907,704 SNPs were identified across all 22
146 samples and 15,428,858 across the 13 lablab samples.

147
148 A filtered SNP data set of 67,259 SNPs (see Methods) was used for phylogenetic and diversity
149 analyses. Neighbor Joining phylogenetic analysis rooted with two *Macrotyloma* samples revealed that
150 all lablab samples formed one group separate from the *Vigna* and *Phaseolus* samples which are each
151 reciprocally monophyletic. A clear division between the two- and four-seeded lablab samples could be
152 observed (100% bootstrap support) with wild and domesticated samples found in both groups (Figure
153 3). Our study thus confirms the previous hypotheses of two origins of domesticated lablab. Genetic
154 diversity (π per 100 Kb window) within each gene pool was relatively low and significantly greater
155 (unpaired T-test, $t = 8.2415$, $df = 2651$, $P < 0.0001$) in the two-seeded group (5.79×10^{-6} (+/- 2.51 x
156 10^{-6} [SD]) than the four-seeded group (5.04×10^{-6} (+/- 2.15 x 10^{-6} [SD])). Divergence between the two-
157 and four-seeded gene pools was high (mean Fst per 100kb window = 0.43 +/- 0.32 [SD]) which could
158 suggest that these gene pools should be taxonomically re-evaluated as separate species.

159 Genetic diversity in a global lablab collection

160 To assess within and between accession diversity in the global lablab gene pool, we genotyped 1,860
161 individuals from 166 lablab accessions using DArTseq genotyping-by-sequencing (GBS) (Table S9).
162 We identified 41,718 genome-wide SNP and 73,211 SilicoDArT markers, of which 91% and 57%
163 mapped onto the lablab genome, respectively (Figure S3). The two-seeded and wild samples mapped
164 with a significant amount of missing data (due to the high genetic divergence described above),
165 therefore we excluded these and report only results for the widespread four-seeded cultivated group.
166 In addition, only individuals that were considered true-to-type or progeny (see Supplementary
167 Information) were included. This resulted in 1,462 individuals from 138 accessions being retained for
168 the final analysis.

169
170 Using a subset of 2,460 quality-filtered genome-wide SNPs (see Methods) for STRUCTURE¹⁷
171 analysis, we identified four populations (cluster I - IV) in the lablab germplasm collection (Figure 4A).

172 Similar clustering and population stratification were detected by hierarchical clustering and PCA
173 (Figure 4B and C). The clustering shows some correspondence with the geographical origin of the
174 genotypes. Accessions in cluster I were mainly from outside Africa and included all the accessions of
175 ssp. *bengalensis*, which has long, relatively narrow pods with up to seven seeds and a particular seed
176 arrangement in the pod. More than 85% of the accessions in clusters II, III and IV are from Africa or
177 were originally collected by the Grassland Research Station in Kitale (Kenya, but most have uncertain
178 origin, Table S9).

179
180 The pairwise Fst values among the four clusters varied from 0.31 between clusters I and III to 0.91
181 between clusters II and IV (Table S10). Analysis of molecular variance (AMOVA) further showed
182 presence of higher genetic variation between the four clusters (62.44%) than within the clusters
183 (37.56%) (Table S11). Within group genetic distance between accessions, Nei's D¹⁸, was lowest
184 within cluster IV (mean D = 0.003) and highest for cluster I (mean D = 0.164; Table S12). Mean Nei's
185 D between progenies of the 41 accessions with ≥2 progenies per accession ranged from 0.0015 to
186 0.1516 indicating that within accession genetic diversity is generally low, as expected for a
187 predominantly self-pollinating species such as lablab¹⁹.

188
189 We found that the population clusters often differed in their mean phenotypes based on historical data
190 describing phenology and morpho-agronomic traits²⁰. Twelve of 13 quantitative traits (Figure S4;
191 Table S13) and five of eight qualitative characters (Figure S5; Table S14) differed among the four
192 clusters despite a certain level of phenotypic variation within every cluster. Cluster I accessions are
193 phenotypically variable, containing early-flowering, short plants and includes the only three erect
194 accessions and all ssp. *bengalensis* in a sub-cluster. Plants had four to six relatively large seeds per
195 pod. Cluster II contains the earliest, only colored-flowering accessions, with high flowering node
196 density, and most producing up to four black, mottled seeds per pod. Plants were rather short and had
197 the smallest leaves. Cluster III also includes diverse phenotypes; overall plants were relatively tall,
198 broad, leafy and intermediate to late-flowering with the largest leaves and shortest pods with up to
199 four rather small seeds. Cluster IV comprises the most homogeneous phenotypes; it had the latest,
200 only white-flowering accessions and plants were rather tall, broad and leafy with long flower
201 peduncles, a high number of flowering nodes and four relatively small tan-colored seeds per pod.

202

203 Discussion

204 Africa has a rich plant biodiversity that includes 45,000 species²¹, most of which are under-studied and
205 under-utilised. To fully explore these genetic resources, it is important to develop inclusive research
206 models that enable and empower local researchers to study these species under a resource-limited
207 research setting. Our work describes an inclusive African-led effort to produce high-quality genome
208 resources for a climate-resilient and multipurpose native African orphan crop - lablab. Our
209 chromosome-scale reference assembly of lablab improves on the previous assembly in several ways
210 and also highlights some interesting features about lablab's genome, domestication and diversity.

211

212 With the use of long-reads and Hi-C scaffolding, we achieved 61-fold improvement in contiguity, and
213 identified a further 34 Mbp of repetitive sequences and 19.2% more gene content compared to the
214 short-read based assembly¹². In addition, the high average LTR Assembly Index (LAI)²² (19.8; Figure
215 1C), comparable to the LAI of a PacBio-based assembly of common bean²³, indicates a high-level of
216 completeness of the repeat space in our assembly. As has been found in other legumes, LTR-RTs
217 were the predominant TE class in our lablab assembly^{13,14,24}. In contrast to findings from lablab's close
218 relatives, however, we found copia LTR-RTs to be more abundant than gypsy LTR-RTs. It is

219 uncommon to see a greater abundance of copia LTR-RTs when compared to gypsy LTR-RTs in plant
220 genomes^{25,26}, and although the biological significance of elevated copia abundances remains to be
221 seen, further genome sequencing will determine whether this finding is indeed a distinguishing feature
222 of lablab.

223
224 Lablab has a smaller genome size than other sequenced legumes and also has a smaller number of
225 species-specific orthogroups. Nevertheless, the orthogroup analysis identified several GO categories
226 enriched in the lablab-specific orthogroups; of particular interest are those involved in fatty acid
227 metabolism, which could underlie seed oil content and composition. In addition arabinose metabolism
228 genes were enriched in the lablab-unique genes and several other cell wall-related GO terms
229 (specifically related to pectin and lignin) in the orthogroups expanded in lablab. Cell wall modification
230 could be related to protection from pathogens²⁷ or drought tolerance²⁸.

231
232 A dual origin of domesticated lablab was confirmed, with the localised (to Ethiopia) two-seeded and
233 the widespread four-seeded types being genetically distinct and domestication events occurring in
234 both of these groups. This therefore adds lablab to the relatively 'exclusive' list of crops with more
235 than one origin, which includes common bean¹³, lychee²⁹, Tartary buckwheat³⁰ and, potentially, rice³¹
236 and barley³². Data on reproductive isolation between the gene pools is unclear, and crosses are only
237 known between four-seeded samples³³⁻³⁵, thus any taxonomic reassessment (first suggested by
238 Maass et al. 2005¹⁵) should begin with assessing reproductive compatibility between the gene pools.

239
240 Importantly, our project provides a model for increasing the representation of local researchers in the
241 sequencing of their indigenous crops. Recent studies and commentaries have highlighted the
242 disconnect between the species origin and the location of the institutions leading their sequencing³⁻⁵.
243 This is particularly true for Africa, where none of its sequenced indigenous crops were sequenced on
244 the continent⁴. We surveyed 31 publications describing the genome sequencing of 24 indigenous
245 African crops. More than 85% of these publications do not have first or corresponding authors with
246 affiliations in Africa and 42% do not have any authors with an African affiliation (Table S15). Our
247 project breaks this trend because sequencing and coordination efforts were done or led from within
248 Africa, while still recruiting international partners where complementary expertise was beneficial to the
249 project. Thus we encourage contribution of the international community in African orphan crop
250 genomics while supporting more active involvement from local researchers.

251
252 Three main features characterised our inclusive genome collaboration model - access to low-cost
253 portable sequencing, in-depth capacity building and equitable international collaboration. The high
254 acquisition and maintenance costs of genome sequencing technologies has historically limited the
255 participation of researchers working in LMIC in genome collaborations. Low-cost and portable
256 sequencing platforms such as the ONT MinION, are now making long-read sequencing accessible to
257 researchers in LMIC, thus "democratising" genome sequencing. We spent less than \$4,000 to procure
258 the MinION sequencer and kits (ONT starter pack and extra flow cells) used to sequence our lablab
259 genome. This low cost is partly due to the small genome size of lablab, but it nonetheless
260 demonstrates how accessible modern portable sequencing platforms can be for researchers in
261 resource-limited research settings. Despite these low costs, there are, however, still logistical
262 challenges to overcome in getting needed reagents to local labs.

263
264 Secondly, our project benefited from efforts to build in-depth bioinformatics skills in Africa⁵. Four of the
265 African authors in our study, including two of the first authors, benefited from a residential 8-month
266 bioinformatics training in Africa. We posit that such in-country and long-term training, as opposed to
267 short training, are more effective in developing the high-competence bioinformatics skills that the

268 continent needs. Once trained, these researchers will feel empowered to participate or lead genomic
269 projects, and importantly use such projects as opportunities to train many more researchers, thus
270 creating a continuous stream of human resources equipped to explore the rich genetic resources on
271 the continent.

272
273 Lastly, establishing an international collaboration helped us to take advantage of existing expertise
274 and already developed pipelines for genome analyses. With over 20 years of plant genome
275 sequencing, the global plant science community have developed tools, pipelines and protocols for
276 plant genome analyses. This means African researchers do not have to 'reinvent the wheel' for
277 orphan crop genomics, but instead can form strategic collaborations to access needed expertise and
278 networks. To fully benefit from big-data and a suite of readily-available genomic tools, it is also vital
279 that African institutions are supported to build or access physical or cloud computing infrastructure for
280 high-throughput data analytics. This will also ensure that genomic data produced on the continent are
281 locally managed and made readily accessible to local researchers and the global community.

282
283 Our lablab genome assembly and collaboration provides a roadmap for improving agronomic, yield
284 and nutritional traits in other African orphan crops. Given the Africa-centred and inclusive nature of
285 our work, this could be used as a model by individual labs and multinational genome consortia
286 including the Africa Biogenome Initiative³ to generate high-quality genomic resources for many
287 indigenous species across the continent.

288

289 Methods

290 Reference genome DNA extraction and sequencing

291 *L. purpureus* (L.) Sweet cv. Highworth³⁶ seeds were germinated in a petri dish on filter papers
292 moistened with tap water. The sprouted seedlings were transferred to soil and allowed to grow for
293 one month in the greenhouse facility at the International Livestock Research Institute (ILRI, Kenya).
294 Two grams of young trifoliate leaves were harvested, flash frozen in liquid nitrogen and stored at -
295 80°C. The leaves were ground in liquid nitrogen using a pestle and mortar and High Molecular Weight
296 (HMW) DNA extracted with Carlson lysis buffer (100 mM Tris-HCl, pH 9.5, 2% CTAB, 1.4 M NaCl, 1%
297 PEG 8000, 20 mM EDTA) followed by purification using the Qiagen Genomic-tip 100/G based on the
298 Oxford Nanopore Technologies (ONT) HMW plant DNA extraction protocol. The library was prepared
299 following the ONT SQK-LSK109 ligation sequencing kit protocol. A total of 1 µg of genomic DNA was
300 repaired and 3'-adenylated with the NEBNext FFPE DNA Repair Mix and the NEBNext® Ultra™ II
301 End Repair/dA-Tailing Module and sequencing adapters ligated using the NEBNext Quick Ligation
302 Module (NEB). After library purification with AMPure XP beads, sequencing was conducted at ILRI
303 (Kenya) using the R9.4.1 flow cells on a MinION sequencer platform.

304 Genome Assembly

305 Guppy basecaller (v4.1.1)³⁷ was used for base calling the reads using the high accuracy basecalling
306 model and the resulting fastq files were used for genome assembly. Flye *de novo* long reads
307 assembler³⁸ (ver 2.7.1) was used for the assembly with the default parameters. The draft assembly
308 was polished with lablab Illumina shorts reads¹² using HyPo hybrid polisher³⁹. The draft genome
309 assembly quality was assessed using QUAST⁴⁰ and its completeness evaluated using BUSCO (ver.

310 4.0.6)⁴¹. The Hi-C library for genome scaffolding was prepared, sequenced and assembled by phase
311 genomics, USA (Supplemental Information).

312 **Gene Annotation**

313 Protein sequences from five closely related species (*P. vulgaris*, *V. angularis*, *C. cajan*, and *M.
314 truncatula*) as well as *Arabidopsis thaliana* were used as protein homology evidence. RNAseq data
315 from *Lablab purpureus* cv. Highworth leaves, stem, sepals, and petals¹² was used in *de novo*
316 transcript assembly with Trinity⁴² (ver 2.8.5) and provided as transcript evidence. The Funannotate
317 pipeline⁴³ (ver 1.8.7) was used for gene prediction using RNA-Seq reads, *de novo* assembled
318 transcripts and soft-masked genome as input to generate an initial set of gene models using PASA⁴⁴
319 (ver 2.4.1). Next, the gene models and protein homology evidence were used to train Augustus⁴⁵ (ver
320 3.3.3), SNAP⁴⁶ (ver 2006-07-28) and Glimmerhmm⁴⁷ (ver 3.0.4) *ab initio* gene predictors and predicted
321 genes passed to Evidence modeller⁴⁸ (ver 1.1.1) with various weights for integration. tRNAscan-SE⁴⁹
322 (ver 2.0.9) was used to predict non-overlapping tRNAs. Transcript evidence was then used to correct,
323 improve and update the predicted gene models and refine the 5'- and 3'-untranslated regions (UTRs).
324

325 The plant.annot pipeline (github.com/PGSB-HMGU/plant.annot) was also used for the prediction of
326 protein coding genes and incorporated homology information and transcript evidence as well. In the
327 evidence-based step, RNA-Seq data from cv. Highworth leaf, stem, sepal and petal¹² was used for the
328 genome-guided prediction of gene structures. HISAT2⁵⁰ (version 2.1.0, parameter –dta) was used to
329 map RNA-Seq data to the reference genome and the transcripts assembled with Stringtie⁵¹ (version
330 1.2.3, parameters -m 150 -t -f 0.3). For the homology-based step, homologous proteins from the
331 closely related species were mapped to the reference genome using the splice-aware mapper
332 GenomeThreader⁵² (version 1.7.1, parameters: -startcodon -finalstopcodon -species medicago -
333 gcmincoverage 70 -prseedlength 7 -prhdist 4). Transdecoder⁵³ (version 3.0.0) was used to predict
334 protein sequences and to identify potential open reading frames. The predicted protein sequences
335 were compared to a protein reference database (UniProt Magnoliophyta, reviewed/Swiss-Prot) using
336 BLASTP⁵⁴ (-max_target_seqs 1 -evaluate 1e⁻⁰⁵). Conserved protein family domains for all proteins were
337 identified with hmmscan⁵⁵ version 3.1b2. Transdecoder-predict was run on the BLAST and hmmscan
338 results and the best translation per transcript was selected. Results from the homology and transcript-
339 based gene prediction approaches were combined and redundant protein sequences were removed.
340

341 The results from both the funannotate and plant.annot pipelines were combined and redundant
342 protein sequences as well as non-coding genes removed. The functional annotation of transcripts as
343 well as the assignment of Pfam⁵⁶- and InterPro⁵⁷-domains, and GO^{58,59} terms, were performed using
344 AHRD (Automatic assignment of Human Readable Descriptions,
345 <https://github.com/groupschoof/AHRD>; version 3.3.3). AHRD assesses homology information to other
346 known proteins using BLASTP searches against Swiss-Prot, The Arabidopsis Information Resource
347 (TAIR), and TrEMBL. The functional annotations are defined using the homology information and the
348 domain search results from InterProScan and Gene Ontology terms. In order to distinguish
349 transposon related genes from other genes, the functional annotation was used to tag TE-related
350 genes in the genome annotation file. BUSCO⁴¹ v5.2.2 was used to assess the completeness of the
351 genome annotation, with sets of universal single copy gene orthologs from embryophyta, fabales, and
352 eudicots odb10 lineages⁴¹.
353

354 Repeat Annotation

355 Repeat annotations for transposable elements (TE) and tandem repeats were conducted
356 independently. For TE annotation, a novel Lablab TE library was constructed using the Extensive de
357 novo TE Annotator (EDTA v1.9.7) pipeline⁶⁰. EDTA incorporates both structure and homology-based
358 detection programs to annotate the predominant TE classes found in plant genomes. EDTA utilises
359 LTRharvest⁶¹, LTR_FINDER⁶², LTR_retriever⁶³, TIR-Learner⁶⁴, HelitronScanner⁶⁵, RepeatModeler2⁶⁶
360 and RepeatMasker⁶⁷ for identification of novel TE sequences. The outputs of each module are then
361 combined and filtered to compile a comprehensive, non-redundant TE library. EDTA's inbuilt whole
362 genome annotation function was then used to produce a non-overlapping TE annotation for lablab
363 using the TE library as input. Further calculation of metrics and data visualisation were carried out in
364 R⁶⁸ using the tidyverse suite⁶⁹ of packages.

365

366 Tandem repeats were identified with TandemRepeatFinder⁷⁰ under default parameters and subjected
367 to an overlap removal by prioritising higher scores. Higher scoring matches were assigned first. Lower
368 scoring hits at overlapping positions were either shortened or removed. Removal was triggered if the
369 lower scoring hits were contained to $\geq 90\%$ in the overlap or if less than 50 bp of rest length remained.

370 Gene family and expansion analysis

371 Gene families were identified using a genome-wide phylogenetic comparison of the lablab protein
372 sequences and four other legumes. This comprised *P. vulgaris* (PhaVulg1_0), *V. angularis* (Vigan1.1),
373 *C. cajan* (V1.0), and *M. truncatula* (MtrunA17r5). Orthofinder⁷¹ (Version 2.4) was used to identify
374 orthologs and co-orthologs between these species and to group them into gene families. *Arabidopsis*
375 *thaliana* (Araport 11) was used as an outgroup. The longest transcript was selected for genes with
376 multiple splice variants.

377

378 In order to analyse gene family expansion and contraction in lablab, the gene family file produced by
379 Orthofinder was further analysed with CAFE5⁷². An ultrametric tree was built with Orthofinder ($r=160$)
380 and CAFE5⁷² was run with -k 3. Enrichment analysis using a fisher's exact test ($p_{adj} \leq 0.05$) of
381 significantly (p-value of gene family sizes⁷³ ≤ 0.05) expanded gene families was performed with
382 TopGO⁷⁴.

383 Resequencing and Phylogenetic Analyses

384 Lablab seeds (obtained from ILRI) for the resequencing were germinated in a 1:1 mixture of
385 vermiculite and Levingtons's M2+S compost in a greenhouse (22°C and 16 hour day) at the University
386 of Southampton. Young leaf tissue was harvested from one-month old seedlings and snap frozen in
387 liquid nitrogen. DNA was extracted from leaf tissue using a CTAB-based protocol⁷⁵ with minor
388 modifications. In total, 12 samples from two and four-seeded wild and domesticated lablab accessions
389 were sequenced using 2 x 150 bp PE sequencing on an Illumina platform at Novogene (Cambridge,
390 UK) (Table S6). Short read data from lablab cv. Highworth¹², three *Phaseolus*, four *Vigna*, and two
391 *Macrotyloma* species were downloaded from the NCBI Sequence Read Archive (Table S8). A
392 maximum of 100 M read pairs were downloaded.

393 The reads were trimmed using Trimmomatic⁷⁶ (ver 0.32) with the parameters;
394 ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10, LEADING:5, TRAILING:5, SLIDINGWINDOW:4:15,
395 MINLEN:72. Between 21.9 and 97.1 M reads remained after trimming. The trimmed reads were
396 mapped to the chromosome-scale lablab assembly (excluding unmapped contigs) using Bowtie2⁷⁷

397 (ver 2.2.3) and --very-sensitive-local settings. SAMtools⁷⁸ (ver 1.1) was used to convert .sam to .bam
398 files which were then sorted, and duplicated reads were removed using the Picard toolkit⁷⁹ (ver 2.8.3,
399 VALIDATION_STRINGENCY=LENIENT). Depth was estimated using SAMtools⁷⁸ (Table S6). Using
400 mpileup from bcftools⁸⁰ (ver 1.6.0), the individual sorted bam files were combined into a multi-sample
401 VCF using the settings -Q 13 and -q 10 and variant detection was performed with “bcftools call”.
402 Variants were subsequently filtered using “bcftools filter”, -i’QUAL>20 & DP>6’. The proportion of
403 missing data per individual was calculated using vcftools⁸¹ (ver 0.1.14; Table S6). Finally, vcftools was
404 used to trim the filtered VCF, removing SNPs that were missing in more than two samples and those
405 with a minor allele frequency of <5%. Finally, only SNPs that were at least 2 Kbp apart were included.
406 The final file contained 67,259 SNPs. VCF2Dis (github.com/BGI-shenzhen/VCF2Dis/; ver 1.36) was
407 used to create a distance matrix which was submitted to the FAST-ME server
408 (atgc-montpellier.fr/fastme) to generate a NJ tree. A total of 1000 replicate matrices were generated in
409 VCF2Dis and the phylib commands “neighbor” and “consense” were used to calculate bootstrap
410 values. Genetic diversity for the two subpopulations and Fst between the subpopulations were
411 calculated from the final VCF file using vcftools in 100kb windows.

412 Population structure and diversity

413 A total of 1,860 seedlings from 166 *Lablab purpureus* accessions, that have been maintained at the
414 ILRI forage genebank were grown from seed under screen house conditions at ILRI, Ethiopia.
415 Genomic DNA was extracted from leaves using a DNeasy® Plant Mini Kit (Qiagen Inc., Valencia, CA).
416 The DNA samples were genotyped by the DArTseq genotyping platform at Diversity Arrays
417 Technology, Canberra, Australia⁸². A subset of 2,460 robust SNP markers was filtered based on the
418 marker’s minor allele frequency (MAF ≥ 2 %), missing values (NA ≤ 10 %), independence from each
419 other (Linkage disequilibrium-LD ≤ 0.7), and their distribution across the genome.

420 A pairwise IBD (Identity-By-Descent) analysis was conducted using PLINK⁸³ and contaminants
421 excluded from the following analyses (see Supplemental Information) Genetic diversity was estimated
422 using pairwise Nei’s genetic distance¹⁸. Population stratification was assessed using the Bayesian
423 algorithm implemented in STRUCTURE¹⁷, in which the burn-in time and number of iterations were
424 both set to 100,000 with 10 repetitions, testing the likelihood of 1-10 subpopulations in an admixture
425 model with correlated allele frequencies. Using Structure Harvester⁸⁴ the most likely number of
426 subpopulations was determined by the Evanno ΔK method⁸⁵. Accessions with less than 60%
427 membership probability were considered admixed. Hierarchical clustering, principal component
428 analysis (PCA), fixation index (Fst), and analysis of molecular variance (AMOVA) were conducted
429 using the R-packages Poppr⁸⁶, adegenet⁸⁷, and APE⁸⁸.

430 Data availability

431 The lablab genome is available from NCBI BioProject (PRJNA824307) and at
432 https://hpc.ilri.cgiar.org/~bngina/lablab_longread_sequencing_March_2022/. Raw sequencing
433 reads for the resequencing are available from the NCBI SRA under project number
434 PRJNA834808.

435 References

- 436 1. FAOSTAT. *Food balance sheets*, <http://faostat.fao.org> (2022).
- 437 2. Chapman, M. A., He, Y. & Zhou, M. Beyond a reference genome: pangenomes and population
- 438 genomics of underutilized and orphan crops for future food and nutrition security. *New Phytol.*
- 439 (2022) doi:10.1111/nph.18021.
- 440 3. Marks, R. A., Hotaling, S., Frandsen, P. B. & VanBuren, R. Representation and participation
- 441 across 20 years of plant genome sequencing. *Nat Plants* **7**, 1571–1578 (2021).
- 442 4. Ebenezer, T. E. et al. Africa: sequence 100,000 species to safeguard biodiversity. *Nature* **603**,
- 443 388–392 (2022).
- 444 5. Ghazal, H. et al. Plant genomics in Africa: present and prospects. *Plant J.* **107**, 21–36 (2021).
- 445 6. Maass, B. L. et al. Lablab purpureus-A Crop Lost for Africa? *Trop. Plant Biol.* **3**, 123–135 (2010).
- 446 7. Habib, H. M., Theuri, S. W., Kheadr, E. E. & Mohamed, F. E. Functional, bioactive, biochemical,
- 447 and physicochemical properties of the Dolichos lablab bean. *Food Funct.* **8**, 872–880 (2017).
- 448 8. Weldeyesus, G. Forage productivity system evaluation through station screening and
- 449 intercropping of lablab forage legume with maize under Irrigated lands of smallholder farmers.
- 450 *Afr. J. Agric. Res.* **12**, 1841–1847 (2017).
- 451 9. Minde, J. J., Venkataramana, P. B. & Matemu, A. O. Dolichos Lablab-an underutilized crop with
- 452 future potentials for food and nutrition security: a review. *Crit. Rev. Food Sci. Nutr.* **61**, 2249–
- 453 2261 (2021).
- 454 10. Liu, Y.-M. et al. A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks
- 455 the Infections of Influenza Viruses and SARS-CoV-2. *Cell Rep.* **32**, 108016 (2020).
- 456 11. Missanga, J. S., Venkataramana, P. B. & Ndakidemi, P. A. Recent developments in Lablab
- 457 purpureus genomics: A focus on drought stress tolerance and use of genomic resources to
- 458 develop stress-resilient varieties. *Legume Science* **3**, (2021).
- 459 12. Chang, Y. et al. The draft genomes of five agriculturally important African orphan crops.
- 460 *Gigascience* **8**, (2019).
- 461 13. Schmutz, J. et al. A reference genome for common bean and genome-wide analysis of dual
- 462 domestications. *Nat. Genet.* **46**, 707–713 (2014).
- 463 14. Lonardi, S. et al. The genome of cowpea (*Vigna unguiculata* [L.] Walp.). *Plant J.* **98**, 767–782
- 464 (2019).
- 465 15. Maass, B. L., Jamnadass, R. H., Hanson, J. & Pengelly, B. C. Determining Sources of Diversity
- 466 in Cultivated and Wild Lablab purpureus Related to Provenance of Germplasm by using
- 467 Amplified Fragment Length Polymorphism. *Genet. Resour. Crop Evol.* **52**, 683–695 (2005).
- 468 16. Maass, B. L., Robotham, O. & Chapman, M. A. Evidence for two domestication events of
- 469 hyacinth bean (Lablab purpureus (L.) Sweet): a comparative analysis of population genetic data.
- 470 *Genet. Resour. Crop Evol.* **64**, 1221–1230 (2017).
- 471 17. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of Population Structure Using Multilocus
- 472 Genotype Data. *Genetics* vol. 155 945–959 (2000).
- 473 18. Nei, M. Genetic distance between populations. *Am. Nat.* (1972).
- 474 19. Daszkowska-Golec, A. The landscape of plant genomics after 20 years. *Trends Genet.* **38**, 310–
- 475 311 (2022).
- 476 20. Pengelly, B. C. & Maass, B. L. Lablab purpureus (L.) Sweet—diversity, potential use and
- 477 determination of a core collection of this multi-purpose tropical legume. *Genet. Resour. Crop*
- 478 *Evol.* (2001).
- 479 21. Linder, H. P. The evolution of African plant diversity. *Front. Ecol. Evol.* **2**, (2014).
- 480 22. Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR Assembly Index
- 481 (LAI). *Nucleic Acids Res.* **46**, e126 (2018).

482 23. Phytozome v13. <http://phytozome.jgi.doe.gov>.

483 24. Schmutz, J. *et al.* Genome sequence of the palaeopolyploid soybean. *Nature* **463**, 178–183
484 (2010).

485 25. Jaillon, O. *et al.* The grapevine genome sequence suggests ancestral hexaploidization in major
486 angiosperm phyla. *Nature* **449**, 463–467 (2007).

487 26. Argout, X. *et al.* The genome of Theobroma cacao. *Nat. Genet.* **43**, 101–108 (2011).

488 27. Houston, K., Tucker, M. R., Chowdhury, J., Shirley, N. & Little, A. The Plant Cell Wall: A Complex
489 and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions. *Front.*
490 *Plant Sci.* **7**, 984 (2016).

491 28. Wang, L. *et al.* A role for a cell wall localized glycine-rich protein in dehydration and rehydration
492 of the resurrection plant Boea hygrometrica. *Plant Biol.* **11**, 837–848 (2009).

493 29. Hu, G. *et al.* Two divergent haplotypes from a highly heterozygous lychee genome suggest
494 independent domestication events for early and late-maturing cultivars. *Nat. Genet.* **54**, 73–83
495 (2022).

496 30. Zhang, K. *et al.* Resequencing of global Tertary buckwheat accessions reveals multiple
497 domestication events and key loci associated with agronomic traits. *Genome Biol.* **22**, 23 (2021).

498 31. Civáň, P., Craig, H., Cox, C. J. & Brown, T. A. Three geographically separate domestications of
499 Asian rice. *Nat Plants* **1**, 15164 (2015).

500 32. Morrell, P. L. & Clegg, M. T. Genetic evidence for a second domestication of barley (*Hordeum*
501 *vulgare*) east of the Fertile Crescent. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 3289–3294 (2007).

502 33. Sultana, N., Ozaki, Y., Okubo, H. & Others. The use of RAPD markers in lablab bean (*Lablab*
503 *purpureus* (L.) Sweet) phylogeny. *Bulletin of the Institute of Tropical Agriculture, Kyushu*
504 *University* **23**, 45–51 (2000).

505 34. Liu, C. J. Genetic diversity and relationships among *Lablab purpureus* genotypes evaluated
506 using RAPD as markers. *Euphytica* **90**, 115–119 (1996).

507 35. Bohra, A., Jha, U. C., Kishor, P. B. K., Pandey, S. & Singh, N. P. Genomics and molecular
508 breeding in lesser explored pulse crops: current trends and future opportunities. *Biotechnol. Adv.*
509 **32**, 1410–1428 (2014).

510 36. Habte, E., Gari, A., Lire, H. & Jones, C. Field trial of *Lablab* (*Lablab purpureus*) genotypes under
511 rain fed conditions in Ethiopia.
512 https://cgospace.cgiar.org/bitstream/handle/10568/116652/lablab_report.pdf?sequence=2 (2021).

513 37. Di Tommaso, P. *et al.* Nextflow enables reproducible computational workflows. *Nat. Biotechnol.*
514 **35**, 316–319 (2017).

515 38. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using
516 repeat graphs. *Nat. Biotechnol.* **37**, 540–546 (2019).

517 39. Kundu, R., Casey, J. & Sung, W.-K. HyPo: Super Fast & Accurate Polisher for Long Read
518 Genome Assemblies. *bioRxiv* 2019.12.19.882506 (2019) doi:10.1101/2019.12.19.882506.

519 40. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome
520 assemblies. *Bioinformatics* **29**, 1072–1075 (2013).

521 41. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO:
522 assessing genome assembly and annotation completeness with single-copy orthologs.
523 *Bioinformatics* **31**, 3210–3212 (2015).

524 42. Grabherr, M. G. *et al.* Full-length transcriptome assembly from RNA-Seq data without a
525 reference genome. *Nat. Biotechnol.* **29**, 644–652 (2011).

526 43. Palmer, J. & Stajich, J. *nextgenusfs/funannotate*: *funannotate* v1.5.3. (2019).
527 doi:10.5281/zenodo.2604804.

528 44. Haas, B. J. *et al.* Improving the *Arabidopsis* genome annotation using maximal transcript
529 alignment assemblies. *Nucleic Acids Res.* **31**, 5654–5666 (2003).

530 45. Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: a web server for gene

531 finding in eukaryotes. *Nucleic Acids Res.* **32**, W309–12 (2004).

532 46. Korf, I. Gene finding in novel genomes. *BMC Bioinformatics* **5**, 59 (2004).

533 47. Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab
534 initio eukaryotic gene-finders. *Bioinformatics* **20**, 2878–2879 (2004).

535 48. Haas, B. J. *et al.* Automated eukaryotic gene structure annotation using EVidenceModeler and
536 the Program to Assemble Spliced Alignments. *Genome Biol.* **9**, R7 (2008).

537 49. Chan, P. P. & Lowe, T. M. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences.
538 *Methods Mol. Biol.* **1962**, 1–14 (2019).

539 50. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment
540 and genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.* **37**, 907–915 (2019).

541 51. Pertea, M. *et al.* StringTie enables improved reconstruction of a transcriptome from RNA-seq
542 reads. *Nat. Biotechnol.* **33**, 290–295 (2015).

543 52. Gremme, G., Brendel, V., Sparks, M. E. & Kurtz, S. Engineering a software tool for gene
544 structure prediction in higher organisms. *Information and Software Technology* **47**, 965–978
545 (2005).

546 53. Haas, B., Papanicolaou, A. & Others. TransDecoder (find coding regions within transcripts).
547 *Google Scholar* (2016).

548 54. Camacho, C. *et al.* BLAST+: architecture and applications. *BMC Bioinformatics* **10**, 421 (2009).

549 55. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity
550 searching. *Nucleic Acids Res.* **39**, W29–37 (2011).

551 56. Mistry, J. *et al.* Pfam: The protein families database in 2021. *Nucleic Acids Res.* **49**, D412–D419
552 (2021).

553 57. Blum, M. *et al.* The InterPro protein families and domains database: 20 years on. *Nucleic Acids
554 Res.* **49**, D344–D354 (2021).

555 58. The Gene Ontology resource: enriching a GOld mine. *Nucleic Acids Res.* **49**, D325–D334
556 (2021).

557 59. Ashburner, M. *et al.* Gene Ontology: tool for the unification of biology. *Nature Genetics* vol. 25
558 25–29 (2000).

559 60. Ou, S. *et al.* Benchmarking transposable element annotation methods for creation of a
560 streamlined, comprehensive pipeline. *Genome Biol.* **20**, 275 (2019).

561 61. Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo
562 detection of LTR retrotransposons. *BMC Bioinformatics* **9**, 18 (2008).

563 62. Ou, S. & Jiang, N. LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid
564 identification of long terminal repeat retrotransposons. *Mob. DNA* **10**, 48 (2019).

565 63. Ou, S. & Jiang, N. LTR_retriever: A Highly Accurate and Sensitive Program for Identification of
566 Long Terminal Repeat Retrotransposons. *Plant Physiol.* **176**, 1410–1422 (2018).

567 64. Su, W., Gu, X. & Peterson, T. TIR-Learner, a New Ensemble Method for TIR Transposable
568 Element Annotation, Provides Evidence for Abundant New Transposable Elements in the Maize
569 Genome. *Mol. Plant* **12**, 447–460 (2019).

570 65. Xiong, W., He, L., Lai, J., Dooner, H. K. & Du, C. HelitronScanner uncovers a large overlooked
571 cache of Helitron transposons in many plant genomes. *Proc. Natl. Acad. Sci. U. S. A.* **111**,
572 10263–10268 (2014).

573 66. Flynn, J. M. *et al.* RepeatModeler2 for automated genomic discovery of transposable element
574 families. *Proc. Natl. Acad. Sci. U. S. A.* **117**, 9451–9457 (2020).

575 67. Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. 2013--2015. (2015).

576 68. R Core Team. R: A Language and Environment for Statistical Computing. (2019).

577 69. Wickham, H. *et al.* Welcome to the tidyverse. *J. Open Source Softw.* **4**, 1686 (2019).

578 70. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic Acids Res.*
579 **27**, 573–580 (1999).

580 71. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative
581 genomics. *Genome Biol.* **20**, 238 (2019).

582 72. Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in
583 evolutionary rates among gene families. *Bioinformatics* (2020)
584 doi:10.1093/bioinformatics/btaa1022.

585 73. De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study
586 of gene family evolution. *Bioinformatics* **22**, 1269–1271 (2006).

587 74. Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology. *R package version*
588 (2010).

589 75. Doyle, J. J. Isolation of plant DNA from fresh tissue. *Focus* **12**, 13–15 (1990).

590 76. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence
591 data. *Bioinformatics* **30**, 2114–2120 (2014).

592 77. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**,
593 357–359 (2012).

594 78. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–2079
595 (2009).

596 79. Picard toolkit. *Broad Institute, GitHub repository* (2019).

597 80. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**, (2021).

598 81. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156–2158 (2011).

599 82. Kilian, A. *et al.* Diversity arrays technology: a generic genome profiling technology on open
600 platforms. *Methods Mol. Biol.* **888**, 67–89 (2012).

601 83. Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based linkage
602 analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

603 84. Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: a website and program for visualizing
604 STRUCTURE output and implementing the Evanno method. *Conserv. Genet. Resour.* **4**, 359–
605 361 (2012).

606 85. Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the
607 software STRUCTURE: a simulation study. *Mol. Ecol.* **14**, 2611–2620 (2005).

608 86. Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of
609 populations with clonal, partially clonal, and/or sexual reproduction. *PeerJ* **2**, e281 (2014).

610 87. Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers.
611 *Bioinformatics* **24**, 1403–1405 (2008).

612 88. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R
613 language. *Bioinformatics* **20**, 289–290 (2004).

614 89. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree
615 display and annotation. *Nucleic Acids Res.* **49**, W293–W296 (2021).

616

617

Acknowledgements

618 This research was conducted as part of the CGIAR Research Program on Livestock, supported by
619 CGIAR Fund Donors. O.S. was supported by the Royal Society FLAIR award (FLR_R1_191850),
620 N.K., H.G. and M.S. were supported by the German Federal Ministry of Education and Research
621 (De.NBI, FKZ 031A536). D.F. was supported by the SoCoBio DTP (grant number BB/T008768/1;
622 BBSRC, UK) to carry out a PhD rotation project in the lab of MAC. DF and MAC acknowledge the use
623 of the IRIDIS High Performance Computing Facility, and associated support services at the University
624 of Southampton.

625 Authors' contributions

626 O.S., P.M.F.E., J.D.E., M.A.C., M.S. and C.S.J. conceived and planned the experiments. C.M., L.M.
627 and O.S. performed DNA extraction and Nanopore Sequencing. I.S., B.W., M.M. and D.K. performed
628 the genome assembly. N.K., B.W., M.S. and I.S. performed genome annotation. D.F. and H.G.
629 annotated the transposable elements and tandem repeats. N.K., B.W. and O.S performed gene family
630 analyses, M.A.C. analysed the re-sequencing data. M.S.M., C.S.J. and B.L.M. performed diversity
631 analyses on global collection. I.N., B.W., N.K., M.S.M., D.F., M.A.C., O.S. and C.S.J. wrote the
632 manuscript. All authors reviewed and approved the final manuscript.

633

634 Competing interests

635 All authors declare that there are no competing interests.

636

637 Materials & Correspondence.

638 Mark Chapman (m.chapman@soton.ac.uk), Oluwaseyi Shorinola (shorinolao@gmail.com), Chris
639 Jones (c.jones@cgiar.org).

640

641 Figures

642 **Figure 1: Genome Assembly of *Lablab*.** **a**, *Lablab purpureus* plant showing flowers, leaves and
643 pods; **b**, Gene and repeat landscape of the *lablab* genome. The tracks from the outer to the inner
644 track show 1) Gene density, 2) Repeat density, 3) LTR-RT density, 4) Tandem repeat density. **c**, LAI
645 index of the 11 *lablab* chromosomes; **d**, BUSCO scores of the *Lablab purpureus* genome annotation
646 using the embryophyta, eudicots and fabales reference lineages.

647

648 **Figure 2: Gene family evolution and expansion in *Lablab purpureus*.** **a**, Venn diagram of the
649 number of gene families common among and unique to *Lablab purpureus*, *Phaseolus vulgaris*, *Vigna*
650 *angularis*, *Medicago truncatula*, and *Cajanus cajan*. **b**, Cladogram of the analysed species showing
651 the number of expanded and contracted gene families in each. Figure constructed with iTol⁸⁹. **c**, Gene
652 ontology terms enriched in the set of expanded gene families in *Lablab purpureus*.

653

654 **Figure 3: Phylogenetics of lablab and related legumes.** Neighbor Joining phylogenetic
655 relationships among lablab samples (2-seeded and 4-seeded *purpureus* (domesticated) and
656 *uncinatus* (wild) subspecies) and other related legumes (see Table S8 for details). Tree is rooted on
657 *Macrotyloma*. All nodes received full (100%) bootstrap support. Asterisks indicate the two
658 domestication events.

659

660 **Figure 4: Clusters and subclusters of the lablab accessions used in the diversity study. a**, Bar
661 plots based on the admixture model in STRUCTURE for K = 4 (Membership of individual accessions
662 to each subgroup is given in Table S16). **b**, Clusters detected by hierarchical clustering. **c**, Clusters
663 detected by PCA. The colours in **b** and **c** are according to the STRUCTURE analysis in **a**.

664

665 Supplementary Information

666 Supplementary Methods

667 Hi-C Scaffolding

668 Chromatin conformation capture data was generated by Phase Genomics (Seattle, USA) using the
669 Proximo Hi-C 2.0 Kit, which is a commercially available version of the Hi-C protocol. Following the
670 manufacturer's instructions for the kit, intact cells from two samples were crosslinked using a
671 formaldehyde solution, digested using the DPNII restriction enzyme, end repaired with biotinylated
672 nucleotides, and proximity ligated to create chimeric molecules composed of fragments from different
673 regions of the genome that were physically proximal in vivo, but not necessarily genetically proximal.
674 Continuing with the manufacturer's protocol, molecules were pulled down with streptavidin beads and
675 processed into an Illumina-compatible sequencing library. Sequencing was performed on an Illumina
676 HiSeq, generating a total of 232,382,372 PE150 read pairs.

677 Reads were aligned to the draft assembly using BWA-MEM⁹⁰ with the -5SP and -t 8 options specified,
678 and all other options default. SAMBLASTER⁹¹ was used to flag PCR duplicates, which were later
679 excluded from analysis. Alignments were then filtered with SAMtools⁷⁷ using the -F 2304 filtering flag
680 to remove non-primary and secondary alignments. Putative misjoined contigs were broken using
681 Juicebox⁹² based on the Hi-C alignments. A total of 6 breaks in 6 contigs were introduced. The same
682 alignment procedure was repeated from the beginning on the resulting corrected assembly.

683 Phase Genomics Proximo Hi-C genome scaffolding platform was used to create chromosome-scale
684 scaffolds from the corrected assembly as described in Bickhart et al.⁹³. As in the LACHESIS method⁹⁴,
685 this process computes a contact frequency matrix from the aligned Hi-C read pairs, normalized by the
686 number of DPNII restriction sites (GATC) on each contig, and constructs scaffolds in such a way as to
687 optimize expected contact frequency and other statistical patterns in Hi-C data. Approximately 20,000
688 separate Proximo runs were performed to optimize the number of scaffolds and scaffold construction
689 in order to make the scaffolds as concordant with the observed Hi-C data as possible. This process
690 resulted in a set of 11 chromosome-scale scaffolds containing 417 Mbp of sequence (98% of the
691 corrected assembly) with a scaffold N50 of 38.1 Mbp.

692

693 Synteny-guided Chromosome naming

694 We adopted a naming scheme based on synteny with closely related legumes - *P. vulgaris* (common

695 bean¹³) and *V. unguiculata* (cowpea¹⁴). For this, we downloaded protein sequence and GFF files of
696 PacBio-based assembly of *P. vulgaris* (v2.1) and *V. unguiculata* (v1.2) from Phytozome²³ and
697 compared this separately to lablab proteins using BLASTP⁵⁴ (settings: -max_target_seqs 1, -evalue
698 1e-10, -qcov_hsp_perc 70). MCScanX⁹⁵ was used to process the individual BLAST output and to
699 detect inter-species collinear blocks.

700

701 Filtering for true-to-type genotypes in global genebank collection.

702 The lablab accessions used for evaluating global diversity in this study were acquired from different
703 sources and conserved *ex situ* as seeds in the ILRI forage genebank, the earliest since 1982, with
704 periodic monitoring for viability and regeneration for renewal of the seeds. These periodic genebank
705 management practices involve risks to the genetic integrity of the accessions through pollen
706 contamination, seed contamination, segregation, mislabeling, and other factors (e.g. as described in
707 Chebotar et al., 2003⁹⁶). Hence, it was necessary to ensure the genetic integrity of plants within
708 accessions and avoid potential contaminants before the genetic diversity analysis. Using pairwise IBD
709 (Identity-By-Descent) analysis, plants within accessions were classified into “true-to-type”, “progeny”,
710 or “contaminant” based on a PI_HAT⁸³ value of above 0.80, between 0.125 and 0.80, or less than
711 0.125, respectively. Six accessions with a single plant each were excluded from the analysis.

712 For nine accessions, all plants were unrelated to each other, and therefore considered
713 “contaminants”. Out of the remaining 151 accessions, 85 were 100% true-to-type, indicating that there
714 was no cross-pollination or seed mixing. Twenty-four accessions had a mixture of true-to-type and
715 their progeny, indicating that some level of cross-pollination or segregation had taken place in this
716 group. Another 24 accessions had a mixture of true-to-type and contaminants, and other 18
717 accessions had a mixture of the true-to-type, their progenies, and contaminants (Figure S6). After
718 removing contaminants, a total of 1680 plants were retained from these 151 accessions for genetic
719 diversity analysis. Of these, 1541 plants were true-to-type with 2 to 26 plants per accession, and 139
720 were progenies from 41 accessions (1 to 12 plants per accession).

721

722 Analysing historical lablab phenotype datasets

723 Phenotypic variation among the identified major molecular groups was assessed based on historical
724 data summarised by Pengelly and Maass (2001)²⁰ (127 accessions) and Wiedow (2001)⁹⁷ (95
725 accessions), in which morpho-agronomic traits on lablab accessions were evaluated in field trials at
726 Ziway site in Ethiopia, in 1998 and 2000, respectively. Seventeen accessions were analysed in both
727 trials, hence we could determine whether traits varied across the seasons. Where variation was low
728 (correlation between seasons was 80% or greater; 6 traits), data from the two trials were combined.
729 For the remaining 15 traits, only the 1998 phenotype data on 75 accessions was used for the analysis
730 of trait variation among the four genetic groups identified above. Analysis of variance (ANOVA) and
731 Tukey’s multiple comparison test were employed to compare phenotypic variation of agro-
732 morphological quantitative traits with significant p values ($P < 0.01$) among clusters identified by
733 population structure analysis. A chi-square test was used for similar comparisons among clusters in
734 qualitative traits.

735 **Supplemental References**

736 90. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform.
737 *Bioinformatics* **26**, 589–595 (2010).

738 91. Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and structural variant read
739 extraction. *Bioinformatics* **30**, 2503–2505 (2014).

740 92. Durand, N. C. et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with
741 Unlimited Zoom. *Cell Syst* **3**, 99–101 (2016).

742 93. Bickhart, D. M. et al. Single-molecule sequencing and chromatin conformation capture enable
743 de novo reference assembly of the domestic goat genome. *Nat. Genet.* **49**, 643–650 (2017).

744 94. Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on
745 chromatin interactions. *Nat. Biotechnol.* **31**, 1119–1125 (2013).

746 95. Wang, Y. et al. MCSpanX: a toolkit for detection and evolutionary analysis of gene synteny
747 and collinearity. *Nucleic Acids Res.* **40**, e49 (2012).

748 96. Chebotar, S. et al. Molecular studies on genetic integrity of open-pollinating species rye
749 (*Secale cereale* L.) after long-term genebank maintenance. *Theor. Appl. Genet.* **107**, 1469–1476
750 (2003).

751 97. Wiedow, C. Morphological and agronomical characterization of *Lablab purpureus* in Ethiopia.
752 (Dipl.-Ing. agr.), University of Rostock, 2001).

753

754 **Supplementary Figures**

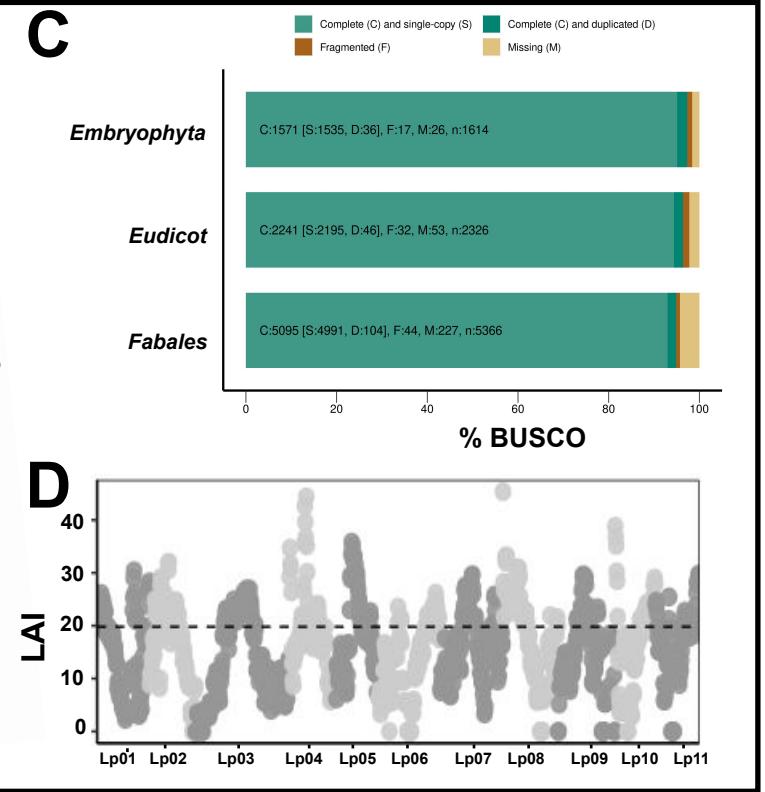
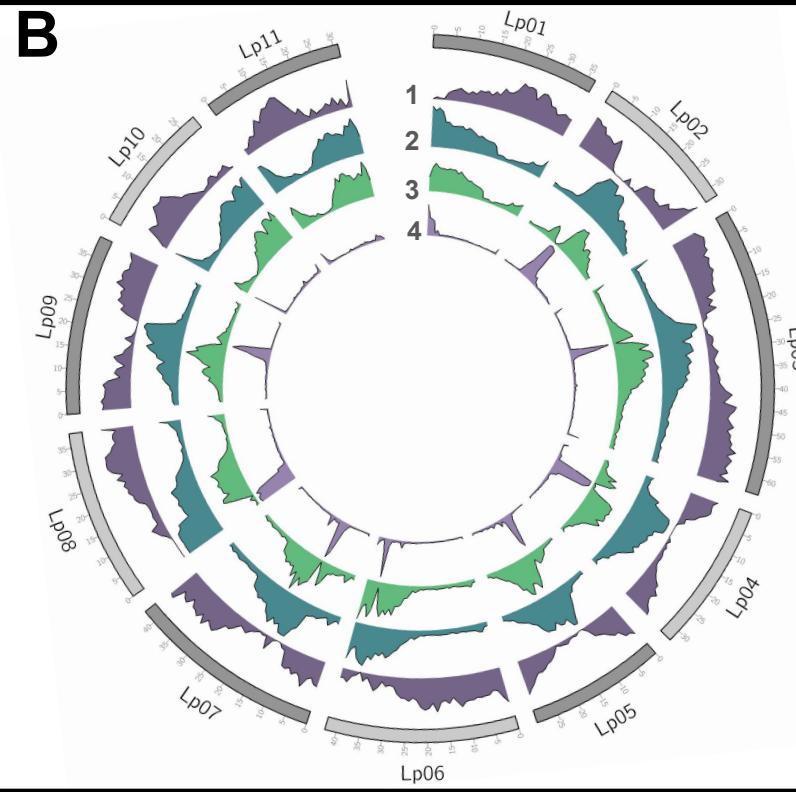
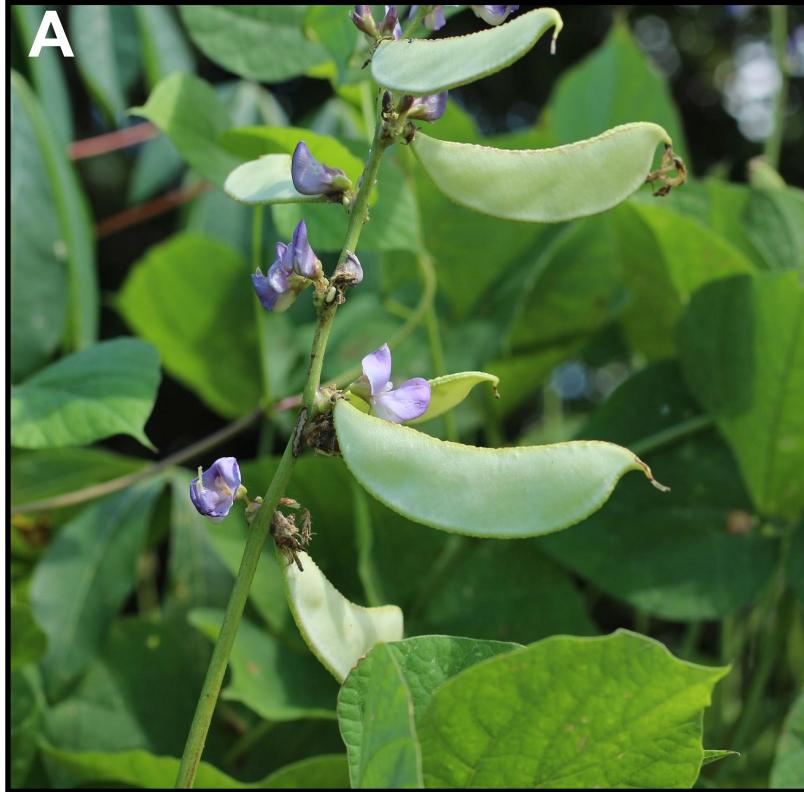
755 **Figure S1: Chromosome-level synteny of *Lablab purpureus* with related species.** *L. purpureus*
756 chromosomes have been named according to synteny with *P. vulgaris* (a) and *V. unguiculata* (b)
757 chromosomes.

758 **Figure S2: Chromosomal repeat content in *Lablab purpureus*.** (a) Relative densities of repeat
759 elements along each chromosome. 1) Long Terminal Repeat RetroTransposons (LTR-RT), 2)
760 Tandem Inverted Repeats (TIR), 3) Miniature Inverted Transposable Elements (MITE), 4) Helitron 5)
761 Unclassified repeats, 6) Tandem repeats (b) Proportional abundance of identified transposable
762 element orders on each chromosome.

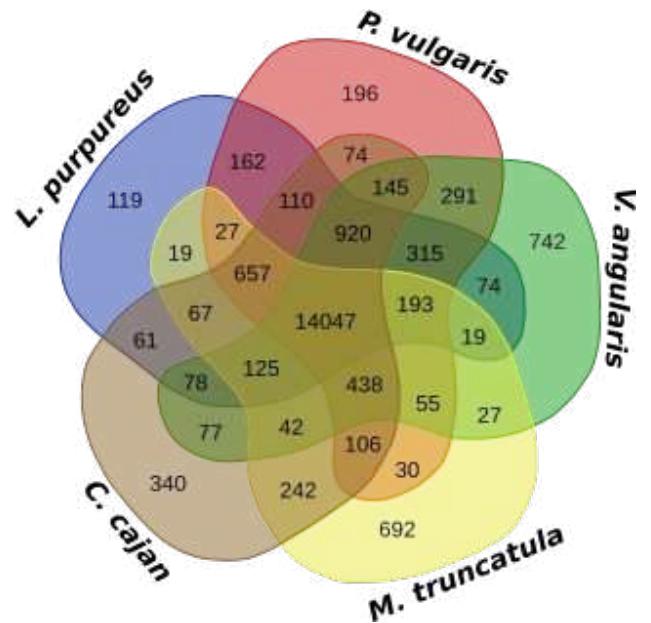
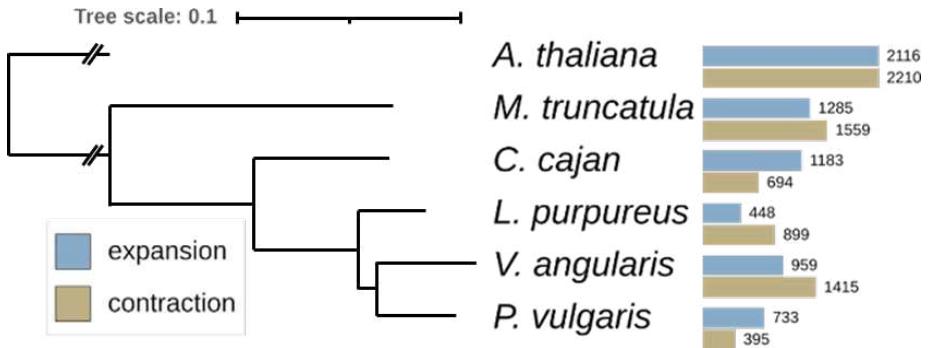
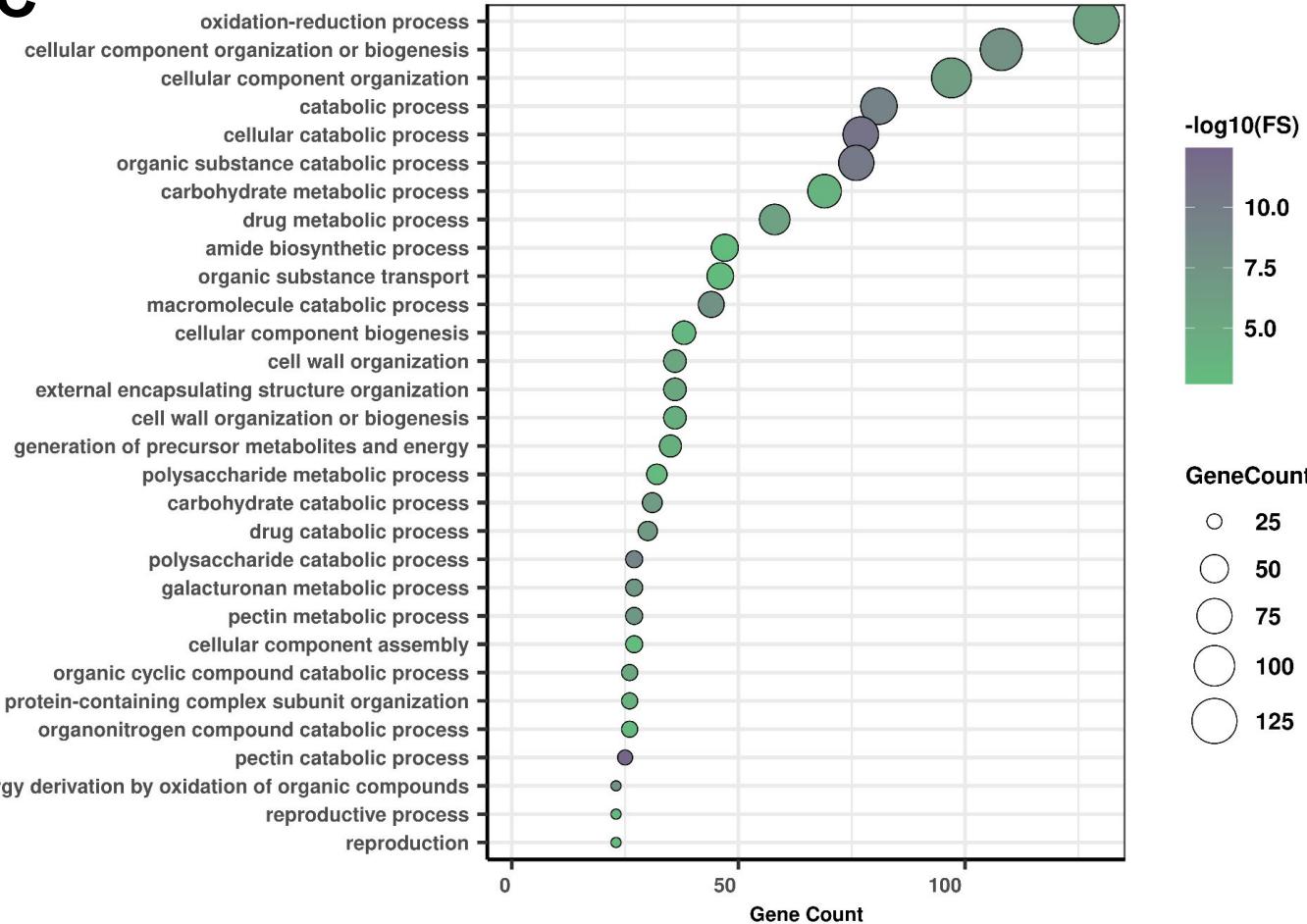
763 **Figure S3: GBS polymorphism in global lablab collection:** Genome-wide distribution of SNPs (a)
764 and SilicoDArT (b) markers across the eleven chromosomes of the lablab reference genome. The
765 total number of SNPs or SilicoDArT markers are presented beside each chromosome. Plots produced
766 with SRplot.

767 **Figure S4: Quantitative phenotypic variation in global lablab collection.** Boxplots showing
768 phenotypic variation of different morpho-agronomic quantitative traits among the four genetic clusters
769 identified in lablab. The colours are according to the STRUCTURE analysis with $k = 4$, and trait
770 abbreviations are explained in Table S13.

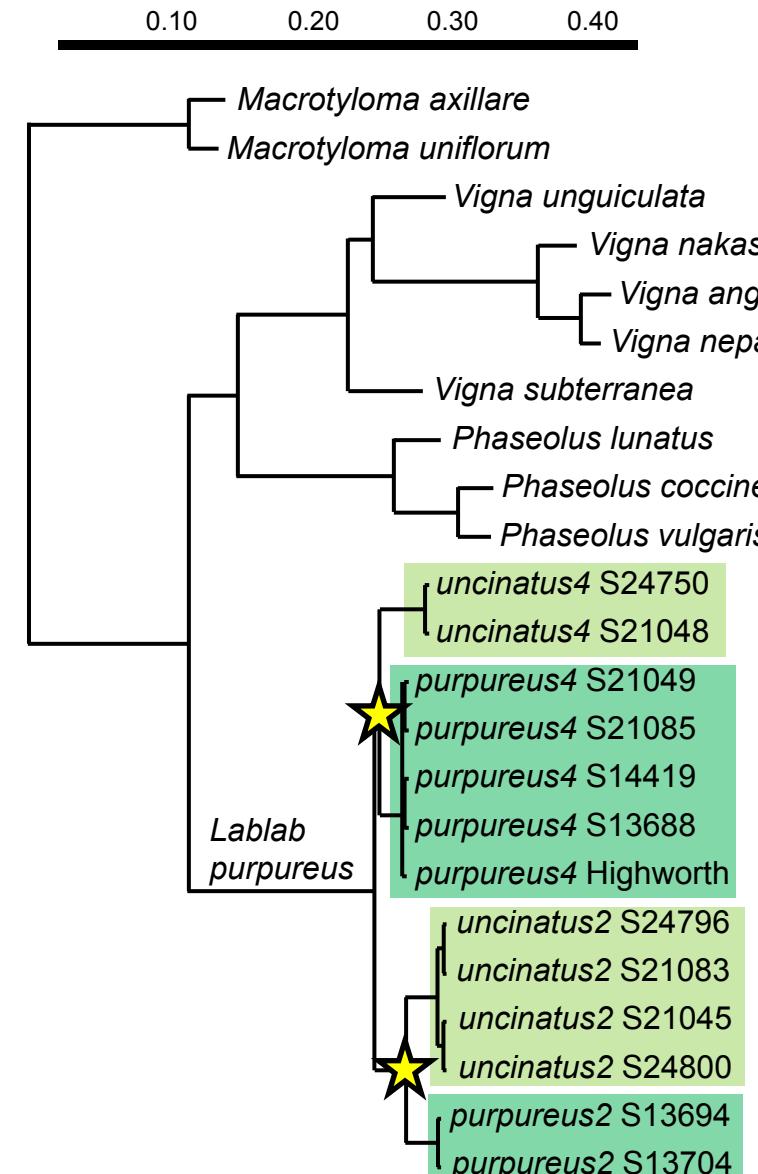
771 **Figure S5: Qualitative phenotypic variation in global lablab collection.** Plots showing phenotypic
772 variation of seven qualitative traits among the four genetic clusters identified in lablab. The colours are
773 according to the STRUCTURE analysis with $k = 4$, and trait abbreviations are explained in Table S14.
774 Points are scattered if identical values are present.

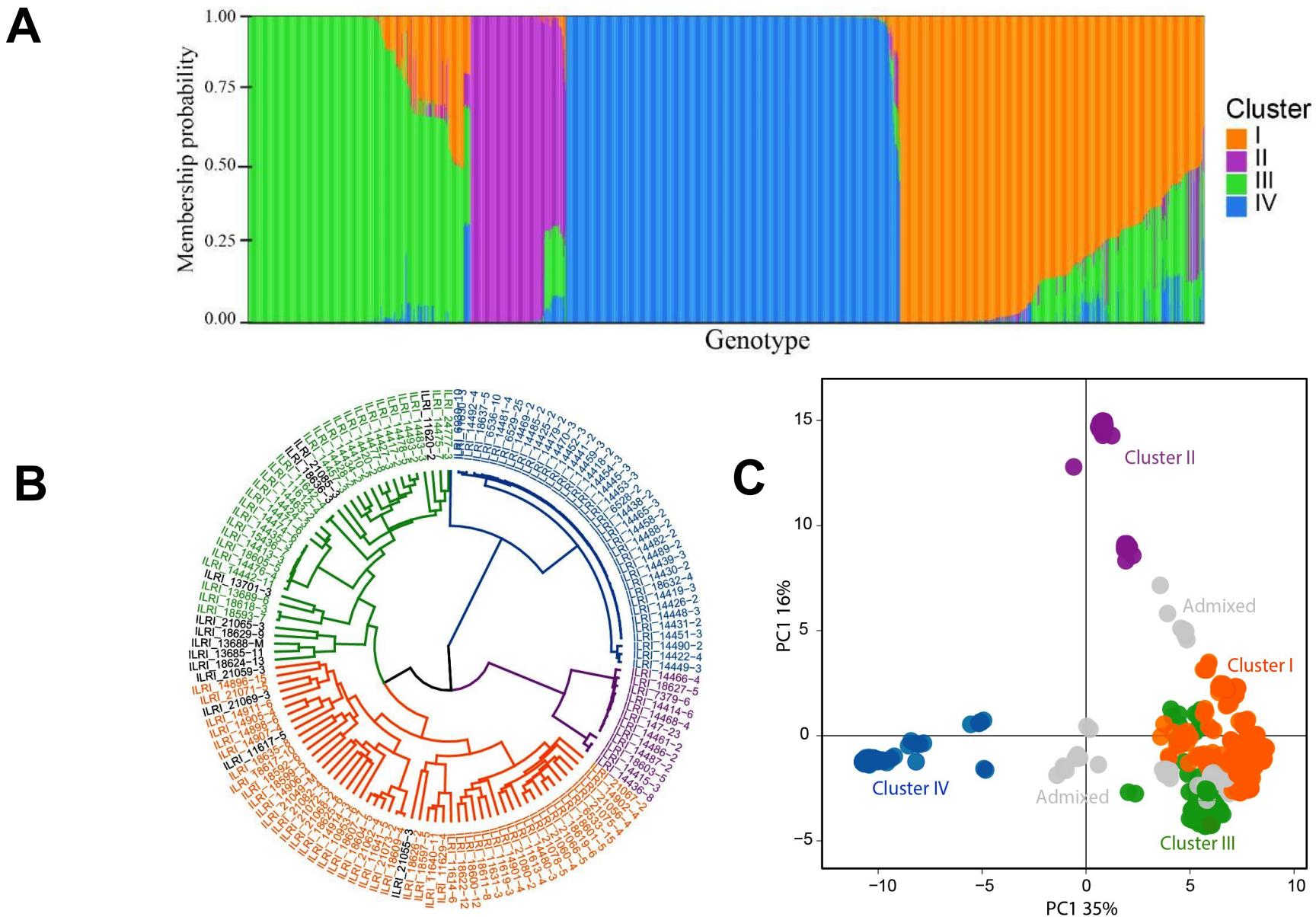



775

780 **Figure S6: Identity-By-Descent classification of global lablab collection.** Number of accessions
781 classified as true-to-type (TTT), true-to-type and progenies (TTT+NP), true-to-type and contaminants
782 (TTT+Cont), true-to-type and progenies and contaminants (TTT+NP+Cont), and accessions with
783 100% contaminants (Cont), based on a pairwise Identity-By-Descent (IBD) analysis.

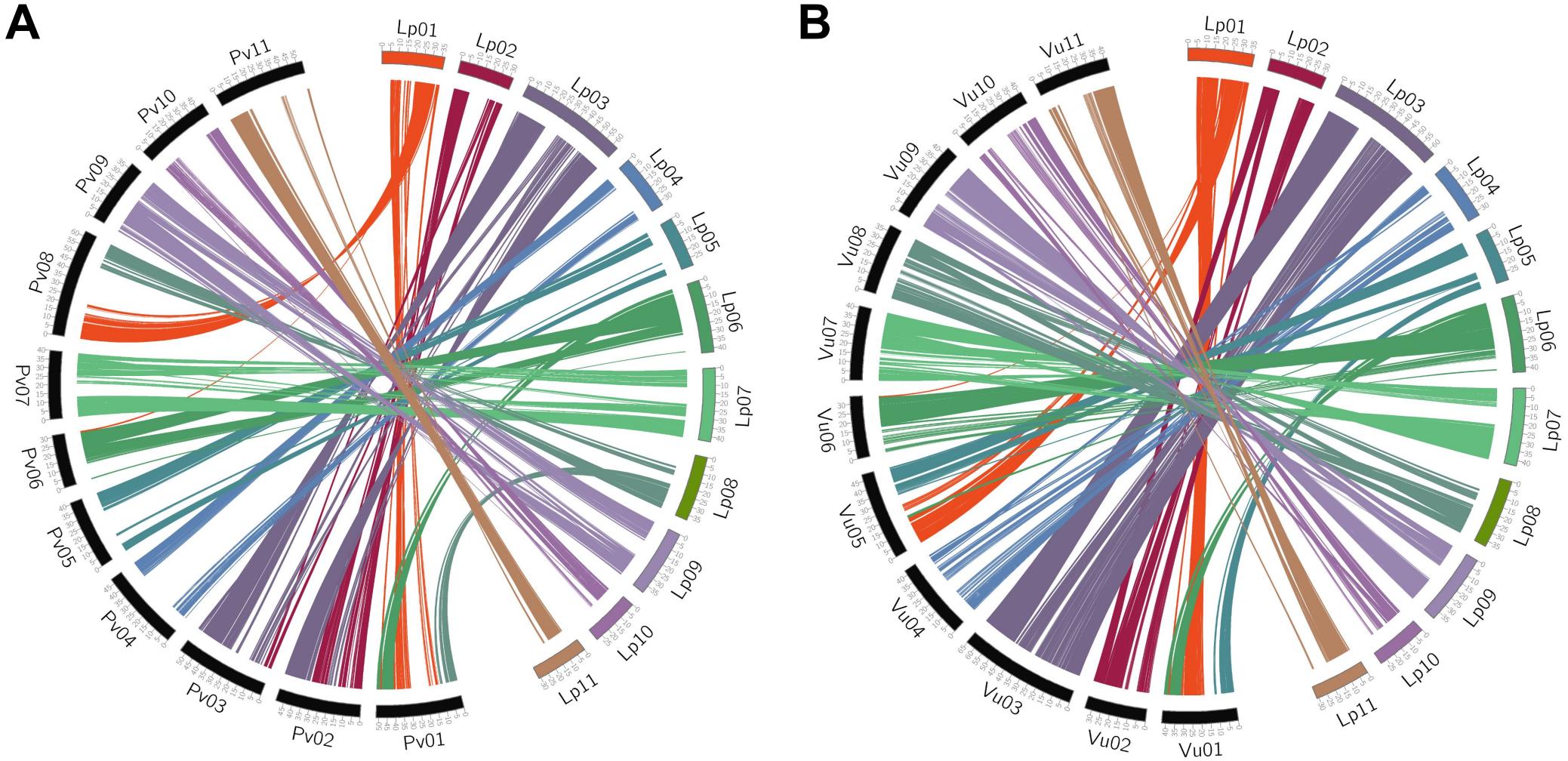



784

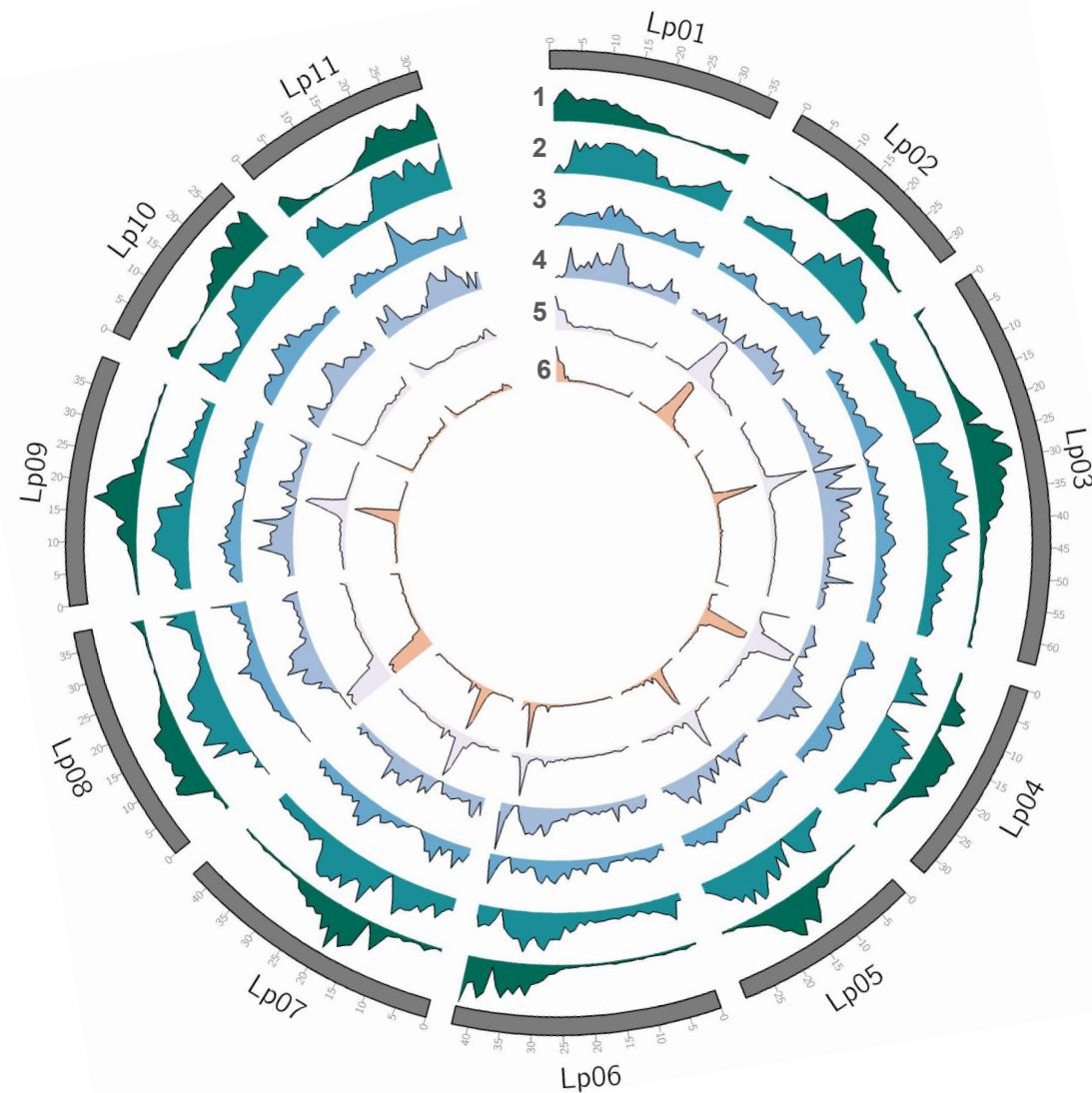
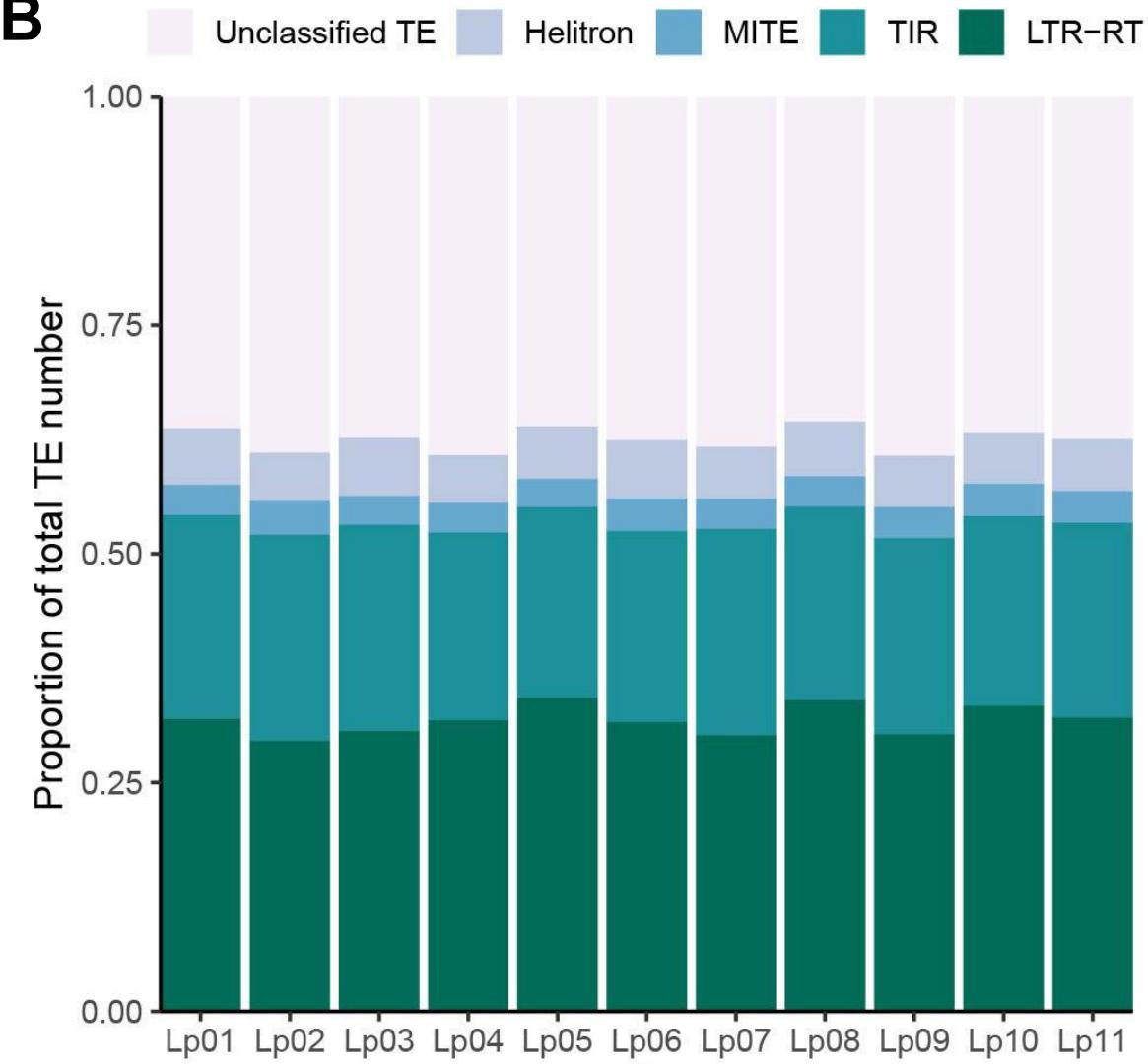
785 **Supplementary Tables**

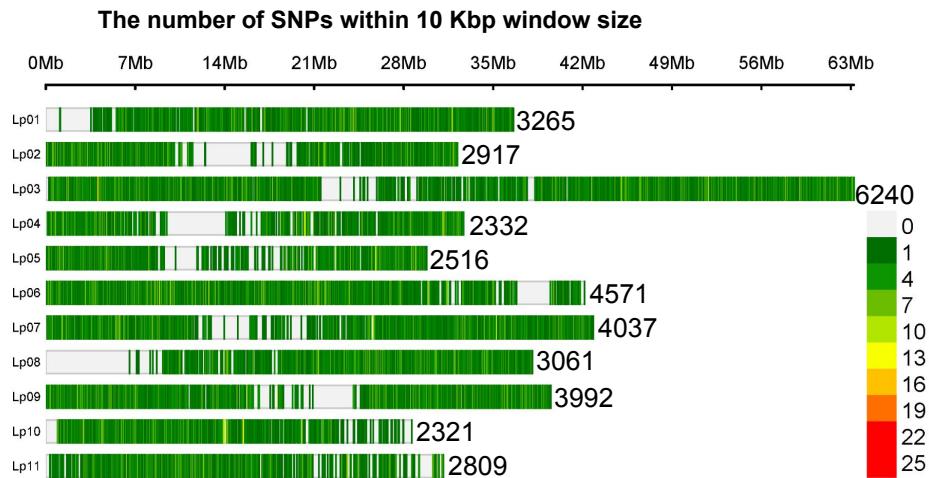
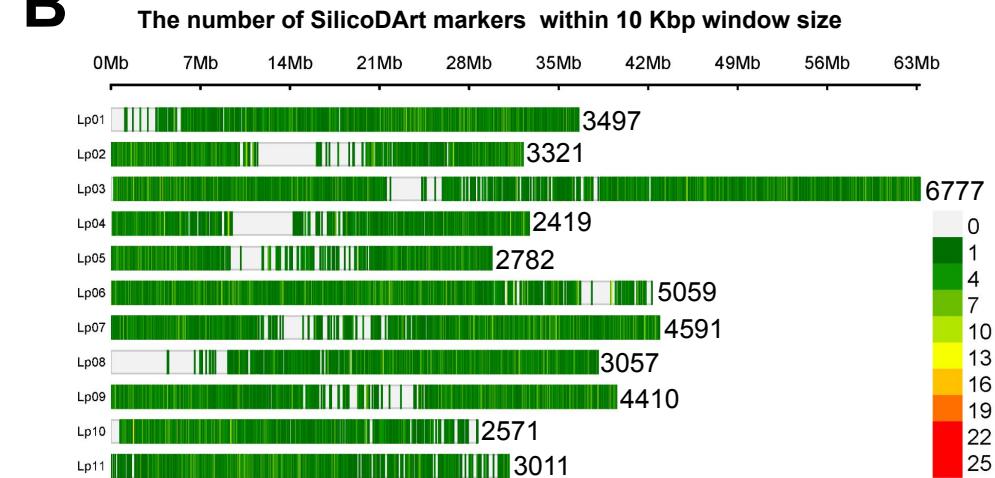

786 Table S1: Summary of Nanopore Reads Statistics
787 Table S2: Comparison of assembly statistics for the lablab genome based on short reads
788 and long reads.
789 Table S3: Summary statistics of genes in the lablab genome.
790 Table S4: The number of TEs, TE families and the proportion of occupied assembly length by different
791 classes of repeats identified and annotated in the lablab genome.
792 Table S5: Types, amount and proportion of tandem repeats in the lablab genome
793 Table S6: GO annotation of lablab-specific gene clusters
794 Table S7: GO annotation of gene families expanded in lablab
795 Table S8: Details and sequencing statistics of resequencing samples
796 Table S9: Population group membership
797 Table S10. Pairwise Fixation index (Fst) among the four major clusters (C) detected by the
798 STRUCTURE analysis
799 Table S11: AMOVA showing the genetic variance among and within clusters
800 Table S12: Minimum, maximum and average genetic divergence (Nei's D) between accessions within
801 the four clusters identified by STRUCTURE.
802 Table S13: Results of the analysis of variance for 13 quantitative traits among the four genetic
803 clusters.
804 Table S14: Results of the χ^2 analysis for seven quantitative traits among the four genetic clusters.
805 Table S15: Data on inclusive crop genomics
806 Table S16: Membership probability of accessions from the STRUCTURE analysis
807
808
809
810

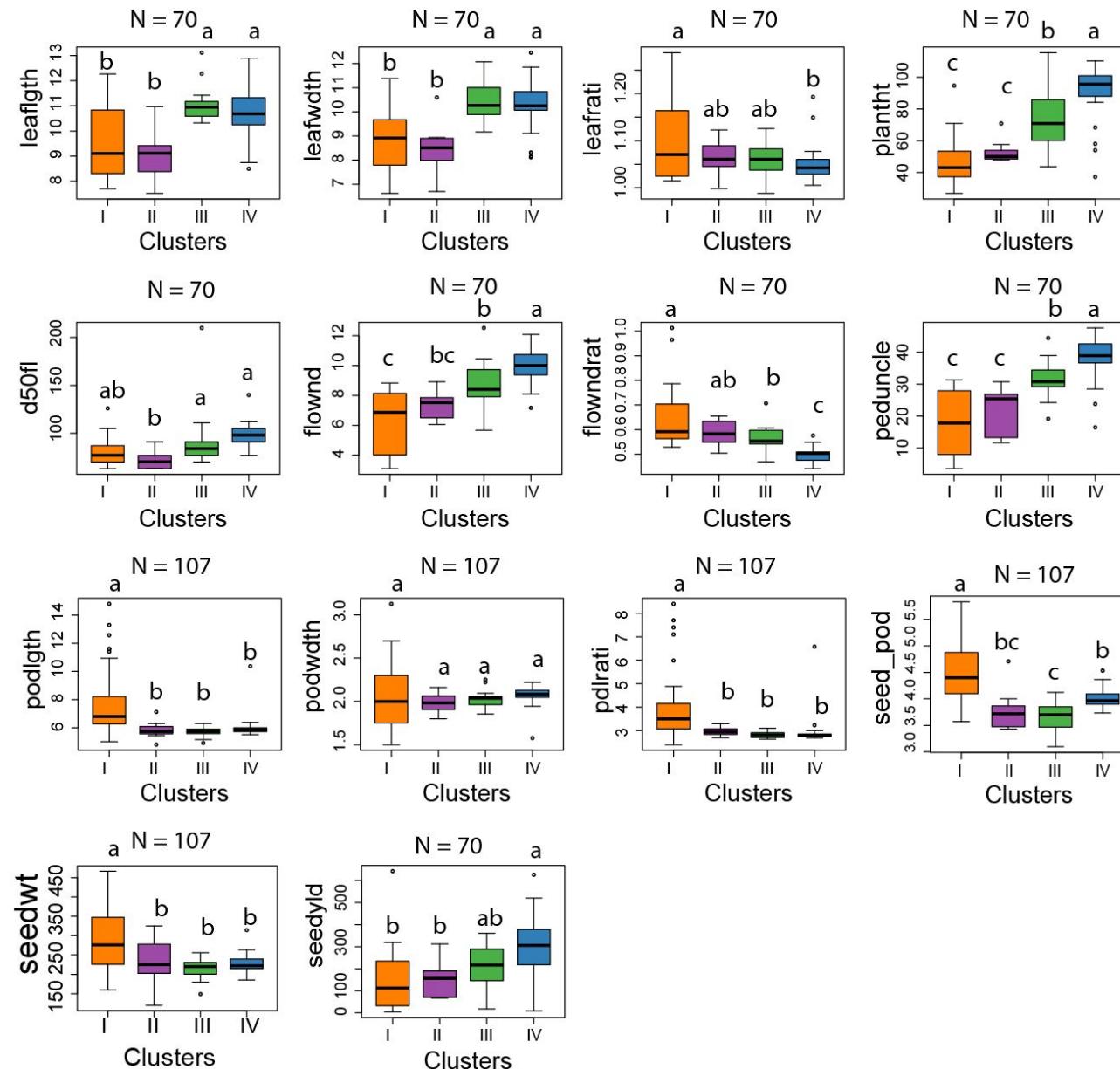

Figure 1: Genome Assembly of *Lablab*. a, *Lablab purpureus* plant showing flowers, leaves and pods. b, Gene and repeat landscape of the *lablab* genome. The tracks from the outer to the inner track show 1) Gene density, 2) Repeat density, 3) LTR-RT density, 4) Tandem repeat density. c, LAI index of the 11 *lablab* chromosomes. d, BUSCO scores of the *Lablab purpureus* genome annotation using the embryophyta, eudicots and and fabales reference lineages.

A**B****C**

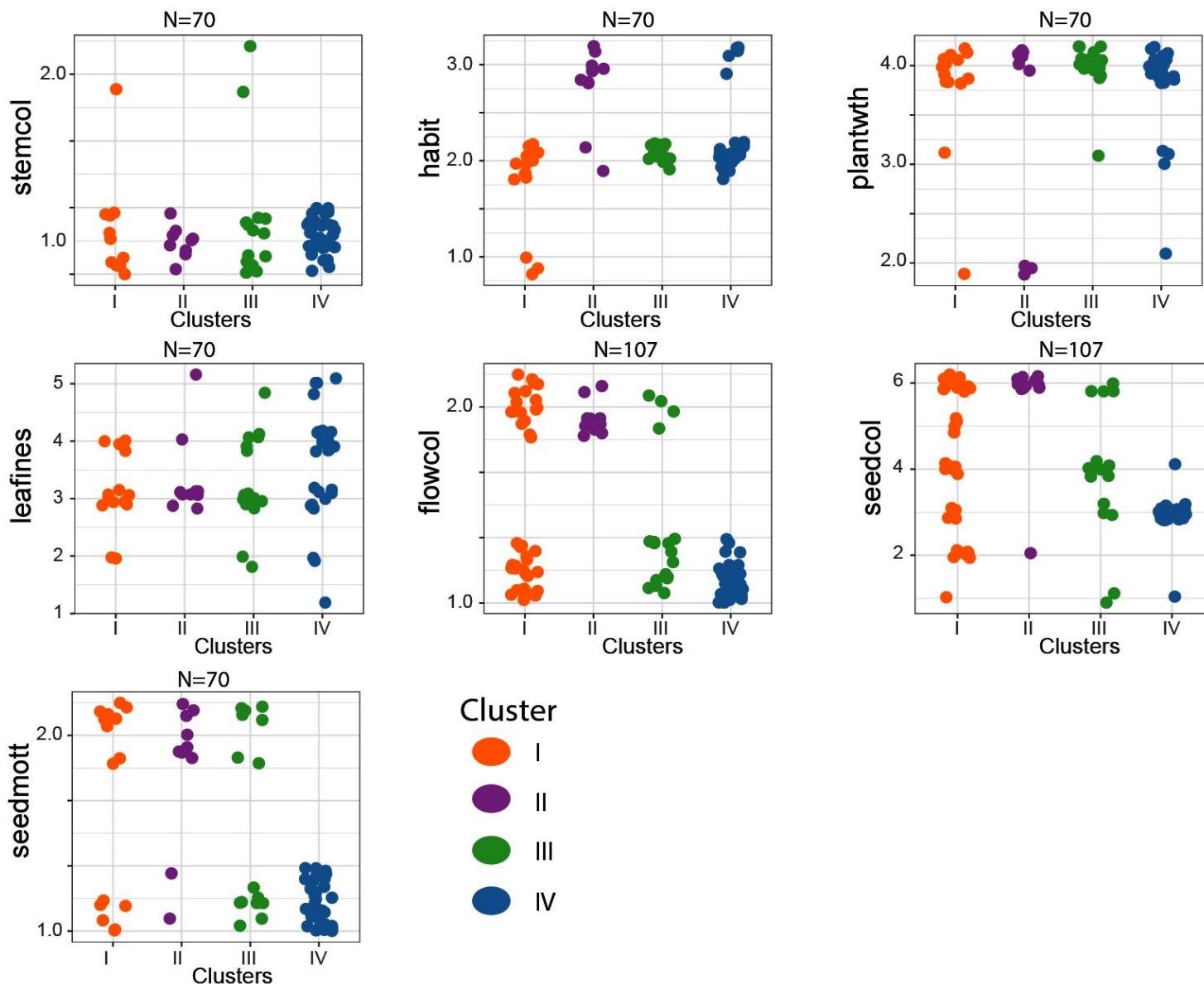

Figure 2: Gene family evolution and expansion in *Lablab purpureus*. a, Venn diagram of the number of gene families common among and unique to *Lablab purpureus*, *Phaseolus vulgaris*, *Vigna angularis*, *Medicago truncatula*, and *Cajanus cajan*. b, Cladogram of the analysed species showing the number of expanded and contracted gene families in each. Figure constructed with iTol⁸⁹. c, Gene ontology terms enriched in the set of expanded gene families in *Lablab purpureus*.



Figure 3: Phylogenetics of lablab and related legumes. Neighbor Joining phylogenetic relationships among lablab samples (2-seeded and 4-seeded purpureus (domesticated) and uncinatus (wild) subspecies) and other related legumes (see Table S8 for details). Tree is rooted on *Macrotyloma*. All nodes received full (100%) bootstrap support. Asterisks indicate the two domestication events.



Figure 4: Clusters and subclusters of the lablab accessions used in the diversity study. **a**, Bar plots based on the admixture model in STRUCTURE for $K = 4$ (Membership of individual accessions to each subgroup is given in Table S16). **b**, Clusters detected by hierarchical clustering. **c**, Clusters detected by PCA. The colours in **b** and **c** are according to the STRUCTURE analysis in **a**.


Figure S1: Chromosome-level synteny of *Lablab purpureus* with related species. *L. purpureus* chromosomes have been named according to synteny with *P. vulgaris* (a) and *V. unguiculata* (b) chromosomes.

A**B**


Figure S2: Chromosomal repeat content in *Lablab purpureus*. (a) Relative densities of repeat elements along each chromosome. 1) Long Terminal Repeat RetroTransposons (LTR-RT), 2) Tandem Inverted Repeats (TIR), 3) Miniature Inverted Transposable Elements (MITE), 4) Helitron 5) Unclassified repeats, 6) Tandem repeats **(b)** Proportional abundance of identified transposable element orders on each chromosome.

A**B**

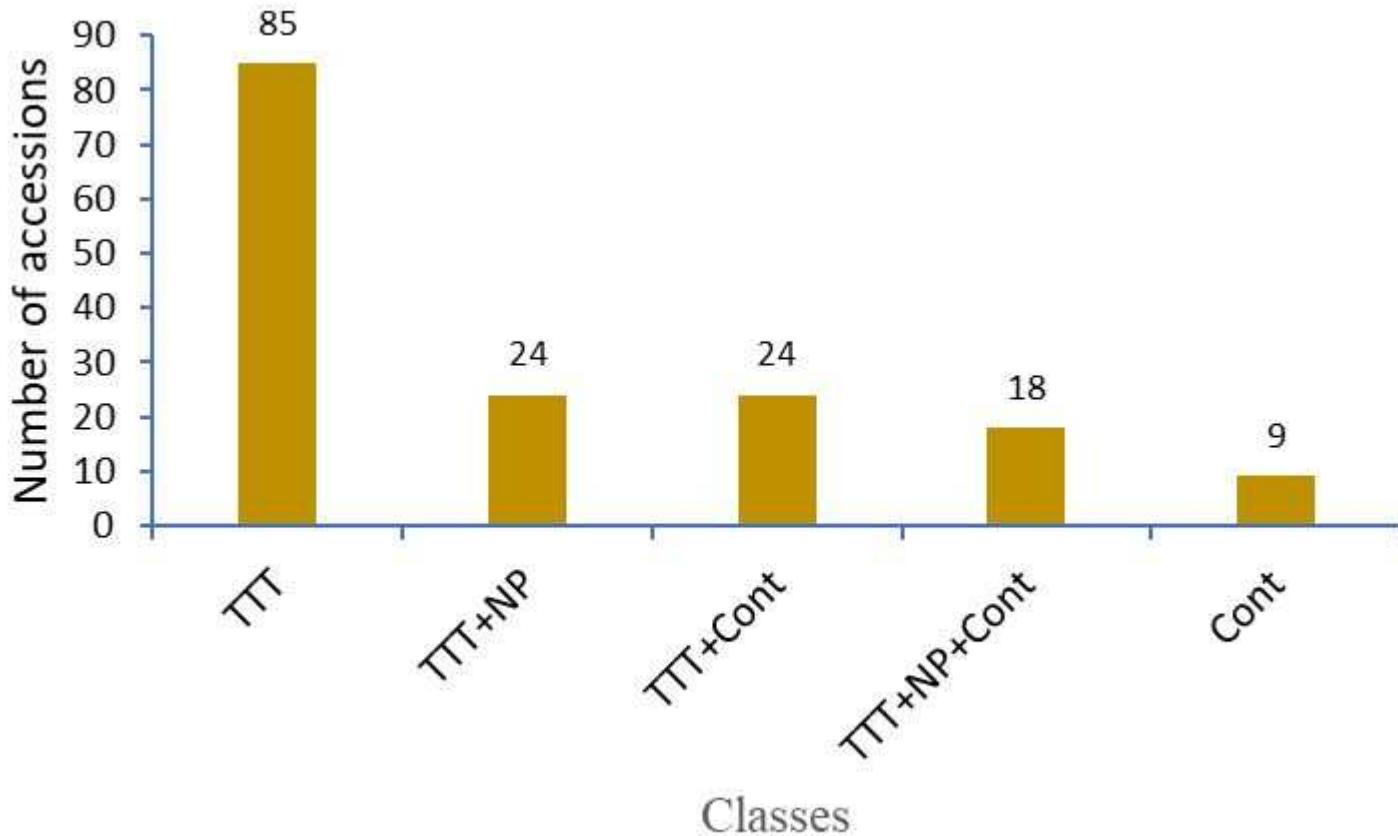

Figure S3: GBS polymorphism in global lablab collection: Genome-wide distribution of SNPs (a) and SilicoDArT (b) markers across the eleven chromosomes of the lablab reference genome. The total number of SNPs or SilicoDArT markers are presented beside each chromosome. Plots produced with SRplot.

Figure S4: Quantitative phenotypic variation in global lablab collection. Boxplots showing phenotypic variation of different morpho-agronomic quantitative traits among the four genetic clusters identified in lablab. The colours are according to the STRUCTURE analysis with $k = 4$, and trait abbreviations are explained in Table S13.

Figure S5: Qualitative phenotypic variation in global lablab collection. Plots showing phenotypic variation of seven qualitative traits among the four genetic clusters identified in lablab. The colours are according to the STRUCTURE analysis with $k = 4$, and trait abbreviations are explained in Table S14. Points are scattered if identical values are present.

Figure S6: Identity-By-Descent classification of global lablab collection. Number of accessions classified as true-to-type (TTT), true-to-type and progenies (TTT+NP), true-to-type and contaminants (TTT+Cont), true-to-type and progenies and contaminants (TTT+NP+Cont), and accessions with 100% contaminants (Cont), based on a pairwise Identity-By-Descent (IBD) analysis.