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Abstract— Subjective tinnitus is an auditory phantom
perceptual disorder without an objective biomarker. Fast
and efficient diagnostic tools will advance clinical practice
by detecting or confirming the condition, tracking change in
severity, and monitoring treatment response. Motivated by
evidence of subtle anatomical or functional morphological
information in magnetic resonance images (MRI) of the brain,
we examined data-driven machine learning methods for joint
tinnitus classification (tinnitus or no tinnitus) and tinnitus
severity prediction. We propose a deep multi-task multi-
modal framework for joint functionalities using structural
MRI (sMRI) data. To leverage cross-information multimodal
neuroimaging data, we integrated two modalities of 3-
dimensional sMRI - T1 weighted (T1w) and T2 weighted (T2w)
images. To explore the key components in the MR images
that drove task performance, we segmented both T1w and
T2w images into three different components - cerebrospinal
fluid (CSF), grey matter (GM) and white matter (WM), and
examined performance of each segmented image. Results
demonstrate that our multimodal framework capitalizes
on the information across both modalities (T1w and T2w)
for the joint task of tinnitus classification and severity
prediction. Our model outperforms existing learning-based
and conventional methods in terms of accuracy, sensitivity,
specificity, and negative predictive value.

Index Terms— Deep learning, neuroimaging biomarker,
tinnitus classification, tinnitus severity, hearing-loss.

[. INTRODUCTION

Subjective tinnitus is an auditory phantom disorder char-
acterized by the perception of internally generated elemental
sounds, often described as ringing, humming, buzzing, chirping,
or clicking, in the absence of externally identifiable sources. In
its chronic phase, tinnitus manifests as a central nervous system
disorder. Some prevailing hypotheses include maladaptive
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neuroplasticity, misappropriated attention, and dysfunctional
striatal gating [1]-[3]. While hearing loss association is
common, tinnitus severity or distress is often modulated by
comorbid anxiety, depression, or mood disturbance. Bothersome
tinnitus can degrade activities of daily life, disrupt sleep, and
decrease work productivity [4]. There is a need for the scientific
community to develop novel diagnostic methods to advance
tinnitus management along its entire clinical course — starting
from detecting or confirming the condition, progressing to
tracking change in severity, and concluding in monitoring
treatment response. This challenge in clinical tool development
may be approached by machine learning methods [5] that
categorize a patient into binary or multiple classes for tinnitus
presence and use regression models of continuous clinical
assessment values for estimating tinnitus severity.

Neuroanatomical and neurophysiological evidence point to
tinnitus-related reshaping of the auditory pathway, with subtle
reorganization of auditory areas (cortical and sub-cortical)
over time [6], [7]. It has also been suggested that tinnitus
is a neurodegenerative disorder which causes structural and
functional changes in brain areas [8], [6], [9]. Researchers have
explored various neuroimaging techniques to determine whether
there are any structural abnormalities in the brain of tinnitus
patients. White matter tracking using diffusion tensor imaging
(DTI) shows alterations in both auditory and limbic areas [10].
Grey matter volume (GMV) extracted from structural MRI
(sMRI) shows significant changes in various areas of tinnitus
patients compared to healthy controls [11], [12]. A decline
in GMV has been reported in ventromedial and dorsomedial
prefrontal cortices, nucleus accumbens, anterior and posterior
cingulate cortices, hippocampus and supramarginal gyrus [12]-
[14].

In this work, our focus is to develop a data-driven framework
for joint tinnitus classification into the presence or absence of
auditory phantom percepts and estimation of tinnitus severity
using regression models. Specifically, we aim to apply statistical
and machine learning algorithms to sMRI data for the following
objectives: 1) assess sMRI-based algorithm performance to
differentiate tinnitus patients from healthy controls, and 2)
identify the key sMRI features most strongly associated with
clinical rating of tinnitus severity.
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A. Related Work

In this section, we briefly review prior work on neuroimaging-
based methods for diagnosis of several neurological diseases
and tinnitus. A critical consideration for optimizing clinical tool
performance is choice of feature space for neuroimaging data
extraction [15]-[17]. In terms of MRI feature representations,
there are three categories: 1) voxel-based features [15] such
as white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF), 2) region-of-interest (ROI) based features [16]
including regional cortical thickness, hippocampal volume, and
GM volume, and 3) patch-based features [17]. Amongst these
feature classes, voxel based features possess higher degrees of
freedom - millions of voxels. These are independent of any
hypothesis of brain structures. However, dimensional reduction
of the high dimensional data remains an integral part of voxel
based disease prognosis. Inspired by the tremendous success
of deep learning [16], we consider deep features in contrary
to hand-crafted feature.

In contrast to choosing a-priori features here we consider
automated image based feature extraction using deep learning
[16]. Many researchers have made promising contributions
using deep learning methods for classification and regression
models for symptom prediction in a variety of brain disorders,
including Alzheimer’s disease [18]-[22], dementia [23], [24],
and autism [18], [25]-[27] but none exists for tinnitus. A graph
convolutional neural network that leverages both imaging and
non-imaging information for brain analysis in large populations
has been performed for autism [18]. Graph nodes are associated
with imaging-based (functional MRI) feature vectors within the
classification framework for autism and Alzheimer’s disease. A
deep learning framework to classify Alzheimer’s disease (AD)
based on whole brain sMRI using hierarchical structure of both
voxel-level and region-level features has been proposed [19].
Yet another deep learning method based on sMRI has been
introduced [20] to jointly detect AD disease and predicting
clinical scores using structural MRI. Oh et al. [22] proposed a
SMRI volumetric convolutional neural network (CNN) using
an end-to-end learning approach using sSMRI for AD classifi-
cation and spatial attention visualization. Neuroimaging with
computer-aided algorithms have made remarkable advances in
dementia prognosis [23]. In particular, Xia et al. [24] proposed
a novel dementia recognition framework based on deep belief
network using functional MRI. Arya et al. [25] have developed a
graph convolutional network by fusing structural and functional
MRIs for autism classification. The aforementioned works
motivate the current investigation using multimodal integration.
Understanding the driving structural components of human
brain towards capturing discriminating features for various brain
disorders is of broader interest to computational neuroscience
[28]. In particular, recent work on mild cognitive impairment
(MCI) classification in [29] reported a preliminary studies
on identifying the region-of-interests (ROI) with substantial
influence in the classification task. We note that the study on
correlation between GM and WM degeneration in various brain
disorders is a potential experimental research direction [30]-
[33]. Recent experimental findings suggest that tinnitus could
potentially reorganize anatomical substrates in the brain [34],

[35]. Motivated these works, we consider to explore how those
anatomical substrates (GM, WM, and CSF) do substantially
contribute our analysis framework.

We note that limited efforts using analytical and deep
learning frameworks have been made for tinnitus detection and
tinnitus severity prediction. Shoushtarian et al. [36] investigated
the sensitivity of functional near-infrared spectroscopy (fNIRS)
to differentiate individuals with and without tinnitus and to
identify fNIRS features associated with subjective ratings
of tinnitus severity. A machine learning method, including
feature extraction and classification were applied to fNIRS
data. An analytical approach based on whole-brain functional
connectivity and network analysis was introduced for binary
tinnitus classification [37]. A combined dynamic causal mod-
eling and exponential ranking algorithm applied to EEG data
yielded new insights into abnormal brain regions associated
with tinnitus [38]. An unsupervised learning framework using
a spiking neural network to analyze EEG data captured
neural dynamic changes [39], extending earlier EEG based
classification methods to capture neural dynamic changes [20].
To best of our knowledge, this is the first effort to explore deep
learning for joint tinnitus classification and tinnitus severity
prediction using structural MRI data.

Deep Multi-tasking in Medical Image Analysis: Multi-tasking
networks are of special interest to the deep learning research
community, where common discriminator features across
multiple tasks could be learnt from input data [20], [40]-
[44] including multimodal medical imaging data [45]. For
instance, the multi-tasking networks in [40] combined models
for regression and classification of lung nodules in CT images
by stacking computational features derived from deep learning
auto-encoder and CNN models with hand-crafted features were
found to have superior performance to single task networks
[40]. Similarly, authors in [43] introduced a novel multi-
tasking deep framework for both regression and classification
of the the Alzheimer’s Disease, wherein combining clinical
data of various modalities (i.e., genetic information and brain
scans) identified AD-relevant biomarkers. Multi-tasking of
reconstruction and segmentation of brain MR images was
successfully reported in [44] with impressive performance.
Inspired by [44], we introduce a deep network framework for
jointly solving classification models for tinnitus diagnosis and
regression models for tinnitus severity prediction.

B. Scientific Contributions

The main contributions are:

(a) Muti-tasking deep analysis of tinnitus disease: We
propose a convolutional neural network built using a
ResNet architecture for analysis of tinnitus using sSMRI
with whole brain 3D voxel-level features. We developed
a multi-tasking deep framework for jointly performing
tinnitus classification and tinnitus severity prediction. This
includes a novel loss function for training a multi-tasking
network. Our proposed method efficiently performs joint
tasking of classification and clinical score prediction of
tinnitus disease from the same set of deep features.

Mutlimodal fusion: We attempt to intelligently combining
features from both T1-weighted (T1w) and T2- weighted

(b)
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(T2w) sMRI within our network. Integration of multimodal
structural imaging data within a joint framework leverages
the strength of each modality and their inter-relationships
for clinical tool performance.

(c) Structural controllability: Determination of imaging
features (white matter, gray matter, cerebrospinal fluid) that
contribute to tinnitus classification and tinnitus severity
prediction performance by examining them individually
and collectively.

(d) Novel multi-tasking loss function: We introduced a
novel loss function for efficient learning in multi-tasking
network. In particular, the proposed loss function jointly
penalizes both classification and prediction by some
form of convex combining of the individual losses. To
mitigate the shortcomings of class imbalance in our dataset,
we used focal loss [46] which focuses the training on
the misclassification samples and largely bypasses the
easy, correct classifications untouched. We also used data
augmentation to avoid over-fitting during training. The loss
which penalizes the regression is Ly error.

(e) Evaluation of clinical tool performance using the largest
tinnitus dataset: We validated our proposed framework
on the largest tinnitus dataset available to us from a
collaborative research between the Univesity of California
San Francisco and University of Minnesota. With elaborate
experiments, we show that our method could achieve
competitive classification accuracy over the state-of-the-art
approaches. On the other hand, the proposed method offers
satisfactory performance in predicting Tinnitus Functional
Index (TFI) scores from the sMRI data of the subjects.

C. Organization

The article is organized in the following manner. In Section
I, we describe the dataset in detail and explicate the data
processing pipeline. In Section III we explain our proposed
deep learning method: fundamental architecture, fusion of
SMRI T1w and T2w images, and dual-tasking framework. In
Section IV, we present experimental results comprehensively
and compare our method against the SVM benchmark. We
present an elaborate discussion on our experimental finding,
the connection and relevance of our work as compared to state-
of-the-art methods for tinnitus prognosis. In Section VI, we
provide the concluding comments.

[I. METHODS

In this section, we introduce the sSMRI datasets used in our
analysis. We further discuss the details on data collection and
preprocessing steps.

A. Dataset

A total of 379 subjects provided the training dataset (T1w
and T2w images) from two recruitment sites - University of
California San Francisco (UCSF) and University of Minnesota.
In total there were 183 tinnitus patients and 196 normal controls
(Table I, top and middle rows show site distributions). As 44
UCSF subjects underwent two data acquisition sessions, data

from the first or second session was chosen for use as the
independent validation dataset (Table I, bottom row). Tinnitus
or control binary labels and their corresponding structural
images were fed into the model for the classification task.
Further, there were 240 subjects from the training dataset also
completed the Tinnitus Functional Index (TFI) [47], which
measures tinnitus on a continuous scale from 0 to 100. Data
from those subjects were fed into the regression model. There
were 24 subjects from the independent validation dataset with
TFT scores that were used for the further model evaluation.

B. Data Processing

All Tlw and T2w sMRI images are subjected to the same
processing steps for quality control and image alignment. The
clinical MRI scans contain irrelevant bony skull, soft tissue,
and cervical regions, and variations in spatial orientation of
acquired images that may affect clinical tool performance.
Several steps for data co-registration are performed in order to
align the images into the template space and exclude irrelevant
or unnecessary regions. The FSL toolbox [48] is used for co-
registration. Mask generation is the standard method, which
has been proven to be reliable and consistent. The three steps
are: 1) structural images are processed with a skullstrip step
that removes the skull and other soft tissue regions that are not
considered to be brain, 2) skullstripped images are registered
into a MNI-152 2mm template space that aligns the structural
data spatially, and 3) registered image data are processed
with the intensity normalization step. These operations remove
artifacts due to magnetic field inhomogeneity from different
MRI scanners. These processed data are treated as the 3D
volumetric input of the classification and regression task.

To identify and compare the features that drive performance
in the volumetric whole-brain images and the brain region
segmentations, we use the FSL toolbox [48], [49] to generate
cerebrospinal fluid (CSF), grey matter (GM) and white matter
(WM) regions. The segmentation process in Fig. 1 is applied to
all available T1w and T2w images. We note that segmentation
routine of FSL is based on a hidden Markov random field
model that is optimized using the expectation-maximization
algorithm. We take the skullstripped images (not containing
skull and other soft tissue regions that are not considered to be
in brain) as discussed above as the input for the segmentation
routine. The pipeline takes into account the spatial information
in terms of mutual information in local neighborhoods. It also
includes a step of correcting the spatial intensity variations to
overcome the bias field. Finally, the segmentation pipeline of
FSL is able to classify the voxels of the structural MRIs of
brain into white matter, gray matter and CSF. Note that we
follow same form of FSL segmentation on both T1w and T2w
images for both classification and regression tasks.

[1l. ALGORITHM

We start this section with the architecture of our proposed
multitask algorithm. This is followed by a novel loss function
to train the network for multi-tasking. Subsequently, we discuss
the implementation details including data augmentation and
transfer learning. The performance metrics to evaluate the


https://doi.org/10.1101/2022.05.07.491000
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.07.491000; this version posted May 8, 2022. The copyright holder for this preprint (WhICh

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the
available under aCC-BY-NC-NDIEEE: HRANGAGH:

re rintin perEetwty It is ma

HDNEAREMEDICAL IMAGING, VOL. XX, NO. XX, xxxx 2022

TABLE |
DEMOGRAPHIC AND CLINICAL INFORMATION OF THE TRAINING/VALIDATION AND INDEPENDENT DATASET.
Tinnitus Control
Number of subjects 95 84
UCSF Female/male 33/62 41/43
Age (mean = SEM) 56.4 + 13.6 443 + 18.0
Number of subjects 88 112
University of Minnesota Female/male 39/49 64/48
Age (mean = SEM) 50.5 + 15.2 345 4+ 13.8
Independent Validation Number of subjects 24 20
Dataset (UCSF) Female/male 6/18 10/10
Age (mean + SEM) 57.3 £ 143 42.8 + 19.1

Raw Structural
MRI

Fig. 1. The workflow of brain segmentation process with FSL toolbox
[49] to generate cerebrospinal fluid (CSF), grey matter (GM) and white
matter (WM) segmentations.

performance of classification and TFI score prediction are
also described. We also provide brief details of benchmark
comparison algorithms which are compared later.

A. Proposed Architecture

The algorithm for joint classification and regression tasks for
tinnitus is built on ResNet-18 deep neural network architecture
[42], which includes the residual information extracted from
the previous layer and mitigates the adverse performance by
using large number of layers. While we use the ResNet-18
architecture as our backbone, we then significantly modify
it to incorporate both multiple modalities of imaging and
the multi-tasking goals of our network. One attractive aspect
of our method is the efficient integration of both modalities
in structural MRI of each subject. In particular, the network

consists of two parallel feature extraction sub-networks: one
for Tlw and another for T2w. The outputs from both sub-
networks are concatenated. The fused composite features
are further processed for joint tasking as shown in Fig. 2.
Each of the sub-networks consists of 17 convolutional layers.
The first convolutional layer takes the input and applies
filters for the following convolutional layer input. Sixteen
convolutional layers are wrapped into four convolutional blocks
with four layers in each block. A detailed description of each
convolutional block is displayed in Fig. 2. Note that same
number of convolutional filters are used in each of convolutional
blocks. For example, there are 64 filters in each convolutional
layer of the first convolutional block. Each convolutional
layer (within each convolutional block) follows with a batch
normalization and a ReLu layer for more efficient gradient
convergence (i.e. accelerate the training process) and only
allows the positive values to pass to the next layer. Further,
after each convolutional block, extracted features are pooled.
The output from the fourth convolutional block of the two
sub-networks are the features extracted from T1lw and T2w
data separately. We flatten each feature map into 1-D array
to combine features. Next, we concatenate two 1-D arrays
into a longer length of feature array. This simple fusion step
essentially creates a double length fused feature array. The
extended feature array is passed through two fully connected
layers with different dimensions. The output layer of the final,
fully connected layer FC-2 in Fig. 2(A) is used for multi-
tasking: to simultaneously predict the class probability (via
soft-max) and estimate the TFI score. The proposed deep
learning method is referred to as multimodal multi-tasking
convolutional network (MMCN).

B. Proposed Multi-tasking Loss Function

1) Loss Function for Classification: We experimented with
two loss functions to optimize the classification performance,
specifically, cross-entropy and focal loss [31]. Let the training
set consisting of N number of subjects defined as X =
{X,,}V_,. Each subject has a label y¢, ¢ = {0,1} which
indicates whether the subject is a healthy control or a tinnitus
patient. In cross-entropy loss, the entropy H(X) is calculated
for a random variable with a set of x in X discrete states and
the corresponding probability P(x) as:

_ Z Z l{yn = C} log( (yvcz = | Xn; W))

XEX
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Fig. 2. Overview of the proposed multimodal multi-tasking convolutional network (MMCN) for joint classification and regression of tinnitus. The
pipeline takes the volumetric sMRI for both T1w and T2w as input in the first convolutional layer. There are four convolutional blocks in each
sub-network. In each block, there are four convolutional layers that take the learned features from the previous block. Each convolutional layer in the
block follows with a batch normalization and a Relu layer to converge the gradient more efficiently and accelerate the training process. A pooling
layer is applied at the end of each convolutional block to down sample and retain useful features. The filter size of each convolutional block are 64,
128, 256 and 512, respectively. A fusion step is applied after the final convolutional block to concatenate the features from each of the sub-networks.
Further, two fully connected layers are used to learn non-linear combinations from the feature map. In the output layer, soft-max is used for tinnitus
classification and ReLu is adapted for the regression task tinnitus severity prediction based on TFI scores.

where 1{-} is an indicator function; W is the collection of
learned network coefficients and P(y¢ = ¢|X,; W) indicates
the probability of subject X,, being correctly classified as the
correct label y<. Note that 1{-} = 1 if the condition {-} is true
and 0 otherwise.

The labels of classification task in our setting are either
tinnitus patient or healthy control. However, an imbalance
dataset may lead to suboptimal training of the network. To deal
with the limitation of class imbalance in the dataset, we further
use focal loss, which is a modified version of the commonly
used cross-entropy. Focal loss uses a modulating factor on top
of the original cross-entropy equation, with tunable focusing
parameter A > 0. It is denoted as follows:

2
Lo=-Y+ 3 1

c=1 Xn€X

e} (1 - p)* log(p),

where p = P(y = ¢|X,; W). We empirically choose A = 2.
In fact, we experiment with different values of A. Finally, we
found A = 2 to produce the most consistent results.

2) Loss Function for Regression Task: To guide the training
of regression task, we minimize L, distance between the
predicted and actual TFI scores. Suppose, there are K numbers

of discrete TFI scores in our datasets such that q = {¢*}, (k =
1,2,..., K). The mean squared loss between the estimated
TFI score and the ground truth is

K
L= X @S2 )

k=1~ X,€X
where f(X,,, W) is the predicted TFI score of subject n.

3) Loss Function for Multi-tasking: The training operation
in the multi-task network is controlled by a loss function
which could jointly penalize the error of both classification and
regression tasks. In fact, we consider a convex combination
of the cross-entry (or focal) and Lo loss. In particular, we use
the following two composite losses:

Ly =alc+ (1 — a)ER,

where « € [0,1] is a coefficient tuned using cross-validation.
The convex combination controlled by « leverages an improved
joint learning. The optimal value of « is set using cross-
validation. We note that o could vary depending class imbalance
and distribution of the ground-truth TFI scores in the datasets
used. However, the protocal of setting « using cross-validation
ensures the best possible training of the deep network.
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C. Implementation Details

The implementation of the proposed CNN model is based
on the Pytorch library. The experiments were conducted on a
NVIDIA GTX TITAN 16 GB GPU. We optimized the learning
rate, and found the optimal value to be 10~%. We used a
stochastic gradient descent (SGD) approach for optimization
[50]. The network gradients while performing optimization are
combined with the backpropagation algorithm. The learning
rate for SGD are empirically set to 1073,

We adopted the transfer learning to overcome the challenges
with limited number of subjects. Transfer learning is widely
used for obtained the weights for problems in the same
domain to reduce the training time, to improve the overall
performance, and to decrease overfitting. Here, we used pre-
trained parameters from MedicalNet [51] as weights for all four
convolutional blocks. Therefore, we only learnt the weights of
the subsequent portions of the network. We followed the same
form of transfer learning for both classification and regression
prediction tasks. In summary, our proposed MCNN network
learns the fully connected layers with transfer learning applied
to the convolutional weights.

Data Augmentation: Availability of sufficient amount of
data for adequately training a deep network is often a real
concern in medical imaging. In fact, it is recommended to have
at least 1000 samples of each class to train a classification
model. To overcome the limited of this high data requirement,
we performed data augmentation which also helps to avoid
data over-fitting during the training. The goal of evaluating
classification performance using an independent dataset was
to validate the robustness of training.

We performed on-the-fly data augmentation using two strate-
gies, i.e., 1) randomly flipping the sSMRI for each subject, and ii)
randomly distorting the sSMRI with non-linear transformation
for each subject. The operation of randomly shifts introduces
a reasonable perturbation to the training data for the network
to learn the useful features. When combined with the first
two operations, it could effectively augment the number and
variability of available samples for training our MMCN model.

We examined the effectiveness of the proposed framework
for the multi-modal multitask learning based test data and the
independent dataset. To prevent the introduction of potential
bias for not including the entire dataset, we constructed non-
overlapping 5-fold cross validation in the training process.
Specifically, we randomly selected 20% of the sample size
from each class as the testing dataset, while the remaining 80%
of the subjects were treated as the training dataset. This way
we could utilize the existing available subjects to produce an
unbiased performance.

D. Performance Metrics

Classification performance was evaluated by five metrics,
including classification accuracy (ACC), sensitivity (SENS),
specificity (SPEC), positive predictive values (PPV), and
negative predictive values (NPV). These standard metrics are
defined as [19]:

TP 4+ TN
TP + TN + FP + FN

ACC =

TP + FN
SPEC— 1N
TN + FP
TP + FP
N
NPV =
TN + FN

where TP, TN, FP, and FN denote the true positive, true
negative, false positive, and false negative values respectively.
For all of these five metrics, a higher value indicates a better
classification performance.

Regression performance was evaluated using an r-squared
(r?) metric, which is a statistical measure that represents
the proportion of the variance for a dependent variable
that’s explained by an independent variable or variables in
a regression model [52]. The definition of the coefficient of
determination is as follows. Suppose the ground-truth and
predicted TFI scores of n-th subject are given by ¢, and §,.
There are total /N subjects used for testing to evaluate the
regression performance. Also, we refer the mean of the ground-
truth scores of all subjects as g. Then, the r-squared (2) metric
is defined as:

N o
— > n—1(dn — Qn)Q). )

SN (g0 —7)?

We clearly see from the above expression in (2) that it will
take values between O and 1. At perfect prediction of TFI
scores, by setting ¢,, = ¢, for all n in (2), we obtain r2=1,.
In summary, a higher value of r? indicates a better regression
performance achieved by the proposed method.

E. Influence of Structural Regions on Multi-tasking

We perform detailed study to understand whether it is the
whole brain MRI or a particular structural regions such as
CSF, WM or GM that plays a dominant role in the multimodal
multi-tasking performance of our method. In particular, both
T1lw and T2w images are first segmented into respective GM,
WM, and CSF components. Thus, including whole brain (WB),
we got total 4 sets of data for each subject. The detailed
steps of using WB data into our network are explained in
Fig. 2. For the analysis using these three structural segments,
we simply substitute the respective segment of both T1w and
T2w images. For example, to perform the joint tasking based
on gray matter (GM), we use GMs derived from Tlw and
T2w respectively as inputs. We follow simlar steps for both
WM and CSF based joint tasking. Note that we perform the
training and test for these four cases completely independently.
Therefore, the independent way of training the network allows
to learn the joint tasking selection parameter « at best possible
fraction. However, we use same form of transfer learning and
data augmentation for all four cases.
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F. Benchmark Methods

The proposed MMCN method was first compared against two
conventional learning-based methods - least squares support
vector machine (LS-SVM) [53] and K-nearest neighbor (KNN)
[54]. Beyond this, MMCN was compared with a state-of-the-
art deep-learning method, the hierarchical fully convolutional
network (H-FCN) [19], which has been used to extract useful
features from imaging data to classify Alzheimer’s disease. To
the best of our knowledge, there is no existing deep learning
methods for tinnitus classification or severity prediction. We
now briefly summarize the three benchmark methods.

1) LS-SVM: We use a modified version of support vector
machine (SVM), a widely used classification model in
neuroimaging analysis [53], [55]. We directly train a least
squares SVM model on T1w whole brain volumetric MRI
images that contains all available structural information.
The trained model is applied on the test data to obtain
final classification results in the test sample.

2) KNN: K-nearest neighbor is another popular, classical
method used for performing unsupervised classification.
This simple machine learning algorithm is based on the
distance between feature vectors [54]. The k-NN algorithm
classifies new unknown data points by finding the most
common class among the k-closest centroids. In our case,
T1w whole brain volumetric MRI of each subject is treated
as sample points for k-NN algorithm. Test subjects are
classified based on neighborhood of the learned centers
(k-means).

3) H-FCN: H-FCN was a recent deep learning network with
a unified discriminative feature extraction algorithm for
successful classification of Alzheimer’s disease (AD) using
volumetric 3D sMRI data [19]. The hierarchical fully
convolutional network (H-FCN) method uses the same
data format as our method, MMCN, and motivates a
comparison.

IV. RESULTS
A. Classification Performance

In this section, we focus on classification performance of
the proposed MMCN deep model and compare performance
against contemporary methods. We focus on three aspects: 1)
exhibit performance of our proposed MCNN pipeline with
different segmented regions, 2) compare performance against
benchmarks, and 3) evaluate the classification accuracy on an
independent dataset.

Tinnitus classification results for whole-brain and segmented
brain regions, specifically CSF, GM and WM, are summarized
in Table II. For all metrics, higher values indicate better
performance. The bolded best performance metric highlights
the corresponding structural region. Overall the whole brain
outperforms the other three segmented brain regions. In
particular, it achieves 72.9% in accuracy, 70.8% in sensitivity,
75.4% in specificity, 69.7% in positive predictive value, and
75.1% in negative predictive value, and the highest 12 value.
Gray matter sSMRI input has best performance metrics in
sensitivity (77.7%) and positive predictive value (70.6%). While
whole brain sSMRI images provide the most useful features

to drive the performance, other brain regions retain partial
information.

In Figure 3, we show the classification performance on the
independent dataset. Note that our proposed MMCN method
achieves around 70% accuracy using whole brain 3D data (both
T1w and T2w). Here whole brain data refers to the case where
no segmentation is performed on the 3D sMRI images. To
further investigate the impact of segmented brain regions, we
report the results using CSF, GM, and WM. The bar plots in
Fig. 3 indicates that among these three brain regions, WM
offers superior performance with respect to accuracy, sensitivity
and specificity. WM segmented from sMRI images captures
more prominent and representative features of tinnitus.

Taken together, the proposed MMCN method offers best
performance results using the whole brain in terms of all
metrics except SENS and NPV. That said, GM achieves
superior performance in terms of SENS and NPV. Based on this
experiment, we conclude that GM contains tinnitus descriptive
features at best among three structural regions. Whole brain
3D structural image data for input to MMCN appears to be
the single best choice.

B. Regression Performance

The task in regression modelling is to predict tinnitus
severity based on TFI scores from the sMRI data. In Figure 4,
we provide the scatter plots of whole brain, and the other
three brain segmented regions, CSF, GM and WM, with
corresponding prediction versus ground truth values. The x-
axis shows the actual TFI scores (0 to 80) and the y-axis
shows the predicted TFI scores (0 to 100). The shaded area
represents the 95% confidence interval of the corresponding
linear approximation. The slope in each scatter plot reveals
whether the regression exhibits a positive or negative trend.
The evidence of positive slope in each case validates our
method can predict TFI scores reasonably well from sMRI
images. The r? value is the percentage of the variance in the
dependent variable that the independent variable can explain.
Whole brain outperforms the other three segmented regions
with 72 = 0.429. This resonates with superior whole brain
classification performance.

C. Benchmark Comparisons

We compare our MMCN method with two classical ma-
chine learning methods and one state-of-the-art deep learning
approach in Table III. Note that our method is capable of
performing both tasks: tinnitus classification and tinnitus
severity. In addition, it is a multimodal methods approach,
handling two modalities of sMRI data as input in parallel. In
contrast, the three existing approaches are unimodal - they are
capable of classification based on only one modality at a time,
either T1lw or T2w.

MMCN has superior classification performance compared
to the best performance of these three methods. LS-SVM
and KNN produce best performance using Tlw images;
whereas H-FCN produces best performance using T2w images.
Notice that our MMCN method outperforms both classical
machine learning methods by a large margin across all five
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TABLE II
INFLUENCE OF STRUCTURAL REGIONS OF BRAIN ON MULTI-TASKING PERFORMANCE USING OUR MULTIMODAL METHOD.
Structural Regions ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%) r?
Whole Brain 729 + 4.2 70.8 + 1.8 754 + 2.1 69.7 + 3.7 75.1 + 3.9 0.429
(WB)
Cerebrospinal Fluid 71.2 + 4.0 737 £ 4.2 643 £ 2.8 66.9 £ 5.1 747 £ 1.6 0.235
(CSF)
Gray Matter 720 £ 2.5 717 £ 2.0 66.9 £ 4.1 70.6 + 4.2 73.7 £ 3.6 0.380
(GM)
White Matter 70.1 £ 3.9 72.1 £ 35 68.1 £ 3.0 67.5 £ 2.8 74.6 £ 2.6 0.356
(WM)
100
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Fig. 3. The MCNN performance on UCSF independent dataset.
WB GM WM

100 100

CSF

100

100

80

E
z
C%
2 g

k=

2

A . . -

o " p
o r<=0.429 . 220.235 . 220,380 220.356
0 0 0
0 80 0 80 0 80 0
Measured TFI

Fig. 4. Scatter plots of measured TFI scores with predicted TFI scores.

TABLE IlI

COMPARISON OF CLASSIFICATION PERFORMANCE. NOTE THAT ALL THE EXISTING METHODS CAN SUPPORT ONLY A SINGLE MODALITY. FOR THESE
METHODS WE REPORT THE BEST PERFORMANCE USING EITHER T1W OR T2W. OUR PROPOSED APPROACH MMCN TAKES BOTH BOTH T1W AND
T2W AS INPUTS.

ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%)
LS-SVM 563 + 3.1 578 £ 2.1 53.01 £ 2.1 573+ 1.3 532+ 34
KNN 532+ 26 524 £29 552425 50.7 & 1.9 58.01 4+ 1.1
H-FCN 67.6 £ 3.4 70.1 £ 4.2 65.0 £ 2.9 69.2 & 3.6 623 £ 45
MMCN 729 4 42 70.8 + 1.8 75.4 & 2.1 69.7 + 3.7 75.1 &+ 3.9

metrics (Table III). In direct comparison to the state-of-the-
art H-FCN method, our MMCN method outperforms in all
five metrics. The proposed MMCN achieves superior state-

of-the-art classification performance. Two key factors may
be contributing to superior performance. First, the proposed
MMCN method jointly learns the discriminative features of
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structural MRI along with the classifier and regressor, and thus
those learned features can be more suitable for subsequent
classifiers/regressors. The proposed deep architecture perhaps
can capture the discriminative features from the samples more
accurately than H-FCN. Second, MMCN explicitly integrates
both T1w and T2w modalities of sMRI data. Our multimodal
deep network MMCN efficiently exploits cross-information
present in both modalities.

V. DISCUSSION

Deep convolutional neural network (CNN) methods have
achieved extraordinary success in medical image alaysis by
extracting and adapting the highly discrimative features present
in the images. One key research focus in deep learning
based image analysis is on further improving the classification
accuracy by applying insightful architectures and modules. In
this work, we introduce a novel deep learning framework for
classification of tinnitus subjects from its structural MRI data.
Besides the intuitive (binary) classification result, the method
can also output TFI scores as an indicator of the severity
of the disease. From mathemitical point of view, this deep
module provides a data-driven nonlinear relationship between
MRI volume (consists of thousands of voxels) and TFI score.
A remarkable aspect of the proposed network is that both
classification and score prediction are achieved by same set
of learnt deep features and nonlinear weights. Finally, our
proposed multi-task deep model could be an efficient tool
for structural MRI analysis to determine whether a patient is
having tinnitus or not and if so, also to predict the severity of
the disorder. Thus, we provide a fast and efficient diagnostic
tool is essential early detection, monitoring clinical trails and
tracking the progression of tinnitus.

Considering the lack of interpretability for CNN-extracted
features, it is difficult to directly connect the classifica-
tion/prediction results with the morphological attributes of
MRI data. To improve the interpretability of our deep network
module, we made an attempt by segmenting the MRI data into
three micro-structural components - gray matters, white matters
and cerebrospinal fluid (CSF). Then, we studied the multi-
tasking performance by using each of these micro-structural
components separately and compare them with the results
obtained from unsegmented (whole brain) data.

One important aspect of our proposed method is the
integration of multimodal structural MRI data within out joint
framework to capitalize on the strength of both T1w and T2w
modalities. The multimodal fusion of deep features allowed to
exploit cross-modal information. Finally, we are able to achieve
superior performance rather than the one obtained from each
modality separately. By maximizing joint information available
in both modalities, we integrate the learned features within
our pipeline. We note that none of the methods compared in
Section IV can support multiple modality for classification. We
also add that our proposed method does not require much of
preprocessing of the input data, unlike multi-tasking scheme in
[20], which includes computationally intensive step of landmark
patch extraction.

VI. CONCLUSION

In this paper, we introduced a novel deep learning framework
for simultaneous tinnitus classification and tinnitus severity
prediction using structural MR imaging data. In particular, we
integrated deep features from of two modalities - T1w and
T2w of the available MRI data. Experiment results confirmed
that the proposed method MMCN outperforms several recent
methods for both tinnitus classification. In future, the proposed
framework may potentially be deployed in real-time health
care settings to confirm tinnitus, track change in severity, and
monitor treatment response.
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