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Abstract— Subjective tinnitus is an auditory phantom
perceptual disorder without an objective biomarker. Fast
and efficient diagnostic tools will advance clinical practice
by detecting or confirming the condition, tracking change in
severity, and monitoring treatment response. Motivated by
evidence of subtle anatomical or functional morphological
information in magnetic resonance images (MRI) of the brain,
we examined data-driven machine learning methods for joint
tinnitus classification (tinnitus or no tinnitus) and tinnitus
severity prediction. We propose a deep multi-task multi-
modal framework for joint functionalities using structural
MRI (sMRI) data. To leverage cross-information multimodal
neuroimaging data, we integrated two modalities of 3-
dimensional sMRI - T1 weighted (T1w) and T2 weighted (T2w)
images. To explore the key components in the MR images
that drove task performance, we segmented both T1w and
T2w images into three different components - cerebrospinal
fluid (CSF), grey matter (GM) and white matter (WM), and
examined performance of each segmented image. Results
demonstrate that our multimodal framework capitalizes
on the information across both modalities (T1w and T2w)
for the joint task of tinnitus classification and severity
prediction. Our model outperforms existing learning-based
and conventional methods in terms of accuracy, sensitivity,
specificity, and negative predictive value.

Index Terms— Deep learning, neuroimaging biomarker,
tinnitus classification, tinnitus severity, hearing-loss.

I. INTRODUCTION

Subjective tinnitus is an auditory phantom disorder char-

acterized by the perception of internally generated elemental

sounds, often described as ringing, humming, buzzing, chirping,

or clicking, in the absence of externally identifiable sources. In

its chronic phase, tinnitus manifests as a central nervous system

disorder. Some prevailing hypotheses include maladaptive
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neuroplasticity, misappropriated attention, and dysfunctional

striatal gating [1]–[3]. While hearing loss association is

common, tinnitus severity or distress is often modulated by

comorbid anxiety, depression, or mood disturbance. Bothersome

tinnitus can degrade activities of daily life, disrupt sleep, and

decrease work productivity [4]. There is a need for the scientific

community to develop novel diagnostic methods to advance

tinnitus management along its entire clinical course – starting

from detecting or confirming the condition, progressing to

tracking change in severity, and concluding in monitoring

treatment response. This challenge in clinical tool development

may be approached by machine learning methods [5] that

categorize a patient into binary or multiple classes for tinnitus

presence and use regression models of continuous clinical

assessment values for estimating tinnitus severity.

Neuroanatomical and neurophysiological evidence point to

tinnitus-related reshaping of the auditory pathway, with subtle

reorganization of auditory areas (cortical and sub-cortical)

over time [6], [7]. It has also been suggested that tinnitus

is a neurodegenerative disorder which causes structural and

functional changes in brain areas [8], [6], [9]. Researchers have

explored various neuroimaging techniques to determine whether

there are any structural abnormalities in the brain of tinnitus

patients. White matter tracking using diffusion tensor imaging

(DTI) shows alterations in both auditory and limbic areas [10].

Grey matter volume (GMV) extracted from structural MRI

(sMRI) shows significant changes in various areas of tinnitus

patients compared to healthy controls [11], [12]. A decline

in GMV has been reported in ventromedial and dorsomedial

prefrontal cortices, nucleus accumbens, anterior and posterior

cingulate cortices, hippocampus and supramarginal gyrus [12]–

[14].

In this work, our focus is to develop a data-driven framework

for joint tinnitus classification into the presence or absence of

auditory phantom percepts and estimation of tinnitus severity

using regression models. Specifically, we aim to apply statistical

and machine learning algorithms to sMRI data for the following

objectives: 1) assess sMRI-based algorithm performance to

differentiate tinnitus patients from healthy controls, and 2)

identify the key sMRI features most strongly associated with

clinical rating of tinnitus severity.
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A. Related Work

In this section, we briefly review prior work on neuroimaging-

based methods for diagnosis of several neurological diseases

and tinnitus. A critical consideration for optimizing clinical tool

performance is choice of feature space for neuroimaging data

extraction [15]–[17]. In terms of MRI feature representations,

there are three categories: 1) voxel-based features [15] such

as white matter (WM), gray matter (GM), and cerebrospinal

fluid (CSF), 2) region-of-interest (ROI) based features [16]

including regional cortical thickness, hippocampal volume, and

GM volume, and 3) patch-based features [17]. Amongst these

feature classes, voxel based features possess higher degrees of

freedom - millions of voxels. These are independent of any

hypothesis of brain structures. However, dimensional reduction

of the high dimensional data remains an integral part of voxel

based disease prognosis. Inspired by the tremendous success

of deep learning [16], we consider deep features in contrary

to hand-crafted feature.

In contrast to choosing a-priori features here we consider

automated image based feature extraction using deep learning

[16]. Many researchers have made promising contributions

using deep learning methods for classification and regression

models for symptom prediction in a variety of brain disorders,

including Alzheimer’s disease [18]–[22], dementia [23], [24],

and autism [18], [25]–[27] but none exists for tinnitus. A graph

convolutional neural network that leverages both imaging and

non-imaging information for brain analysis in large populations

has been performed for autism [18]. Graph nodes are associated

with imaging-based (functional MRI) feature vectors within the

classification framework for autism and Alzheimer’s disease. A

deep learning framework to classify Alzheimer’s disease (AD)

based on whole brain sMRI using hierarchical structure of both

voxel-level and region-level features has been proposed [19].

Yet another deep learning method based on sMRI has been

introduced [20] to jointly detect AD disease and predicting

clinical scores using structural MRI. Oh et al. [22] proposed a

sMRI volumetric convolutional neural network (CNN) using

an end-to-end learning approach using sMRI for AD classifi-

cation and spatial attention visualization. Neuroimaging with

computer-aided algorithms have made remarkable advances in

dementia prognosis [23]. In particular, Xia et al. [24] proposed

a novel dementia recognition framework based on deep belief

network using functional MRI. Arya et al. [25] have developed a

graph convolutional network by fusing structural and functional

MRIs for autism classification. The aforementioned works

motivate the current investigation using multimodal integration.

Understanding the driving structural components of human

brain towards capturing discriminating features for various brain

disorders is of broader interest to computational neuroscience

[28]. In particular, recent work on mild cognitive impairment

(MCI) classification in [29] reported a preliminary studies

on identifying the region-of-interests (ROI) with substantial

influence in the classification task. We note that the study on

correlation between GM and WM degeneration in various brain

disorders is a potential experimental research direction [30]–

[33]. Recent experimental findings suggest that tinnitus could

potentially reorganize anatomical substrates in the brain [34],

[35]. Motivated these works, we consider to explore how those

anatomical substrates (GM, WM, and CSF) do substantially

contribute our analysis framework.

We note that limited efforts using analytical and deep

learning frameworks have been made for tinnitus detection and

tinnitus severity prediction. Shoushtarian et al. [36] investigated

the sensitivity of functional near-infrared spectroscopy (fNIRS)

to differentiate individuals with and without tinnitus and to

identify fNIRS features associated with subjective ratings

of tinnitus severity. A machine learning method, including

feature extraction and classification were applied to fNIRS

data. An analytical approach based on whole-brain functional

connectivity and network analysis was introduced for binary

tinnitus classification [37]. A combined dynamic causal mod-

eling and exponential ranking algorithm applied to EEG data

yielded new insights into abnormal brain regions associated

with tinnitus [38]. An unsupervised learning framework using

a spiking neural network to analyze EEG data captured

neural dynamic changes [39], extending earlier EEG based

classification methods to capture neural dynamic changes [20].

To best of our knowledge, this is the first effort to explore deep

learning for joint tinnitus classification and tinnitus severity

prediction using structural MRI data.
Deep Multi-tasking in Medical Image Analysis: Multi-tasking

networks are of special interest to the deep learning research

community, where common discriminator features across

multiple tasks could be learnt from input data [20], [40]–

[44] including multimodal medical imaging data [45]. For

instance, the multi-tasking networks in [40] combined models

for regression and classification of lung nodules in CT images

by stacking computational features derived from deep learning

auto-encoder and CNN models with hand-crafted features were

found to have superior performance to single task networks

[40]. Similarly, authors in [43] introduced a novel multi-

tasking deep framework for both regression and classification

of the the Alzheimer’s Disease, wherein combining clinical

data of various modalities (i.e., genetic information and brain

scans) identified AD-relevant biomarkers. Multi-tasking of

reconstruction and segmentation of brain MR images was

successfully reported in [44] with impressive performance.

Inspired by [44], we introduce a deep network framework for

jointly solving classification models for tinnitus diagnosis and

regression models for tinnitus severity prediction.

B. Scientific Contributions

The main contributions are:

(a) Muti-tasking deep analysis of tinnitus disease: We

propose a convolutional neural network built using a

ResNet architecture for analysis of tinnitus using sMRI

with whole brain 3D voxel-level features. We developed

a multi-tasking deep framework for jointly performing

tinnitus classification and tinnitus severity prediction. This

includes a novel loss function for training a multi-tasking

network. Our proposed method efficiently performs joint

tasking of classification and clinical score prediction of

tinnitus disease from the same set of deep features.

(b) Mutlimodal fusion: We attempt to intelligently combining

features from both T1-weighted (T1w) and T2- weighted
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(T2w) sMRI within our network. Integration of multimodal

structural imaging data within a joint framework leverages

the strength of each modality and their inter-relationships

for clinical tool performance.

(c) Structural controllability: Determination of imaging

features (white matter, gray matter, cerebrospinal fluid) that

contribute to tinnitus classification and tinnitus severity

prediction performance by examining them individually

and collectively.

(d) Novel multi-tasking loss function: We introduced a

novel loss function for efficient learning in multi-tasking

network. In particular, the proposed loss function jointly

penalizes both classification and prediction by some

form of convex combining of the individual losses. To

mitigate the shortcomings of class imbalance in our dataset,

we used focal loss [46] which focuses the training on

the misclassification samples and largely bypasses the

easy, correct classifications untouched. We also used data

augmentation to avoid over-fitting during training. The loss

which penalizes the regression is L2 error.

(e) Evaluation of clinical tool performance using the largest

tinnitus dataset: We validated our proposed framework

on the largest tinnitus dataset available to us from a

collaborative research between the Univesity of California

San Francisco and University of Minnesota. With elaborate

experiments, we show that our method could achieve

competitive classification accuracy over the state-of-the-art

approaches. On the other hand, the proposed method offers

satisfactory performance in predicting Tinnitus Functional

Index (TFI) scores from the sMRI data of the subjects.

C. Organization

The article is organized in the following manner. In Section

II, we describe the dataset in detail and explicate the data

processing pipeline. In Section III we explain our proposed

deep learning method: fundamental architecture, fusion of

sMRI T1w and T2w images, and dual-tasking framework. In

Section IV, we present experimental results comprehensively

and compare our method against the SVM benchmark. We

present an elaborate discussion on our experimental finding,

the connection and relevance of our work as compared to state-

of-the-art methods for tinnitus prognosis. In Section VI, we

provide the concluding comments.

II. METHODS

In this section, we introduce the sMRI datasets used in our

analysis. We further discuss the details on data collection and

preprocessing steps.

A. Dataset

A total of 379 subjects provided the training dataset (T1w

and T2w images) from two recruitment sites - University of

California San Francisco (UCSF) and University of Minnesota.

In total there were 183 tinnitus patients and 196 normal controls

(Table I, top and middle rows show site distributions). As 44

UCSF subjects underwent two data acquisition sessions, data

from the first or second session was chosen for use as the

independent validation dataset (Table I, bottom row). Tinnitus

or control binary labels and their corresponding structural

images were fed into the model for the classification task.

Further, there were 240 subjects from the training dataset also

completed the Tinnitus Functional Index (TFI) [47], which

measures tinnitus on a continuous scale from 0 to 100. Data

from those subjects were fed into the regression model. There

were 24 subjects from the independent validation dataset with

TFI scores that were used for the further model evaluation.

B. Data Processing

All T1w and T2w sMRI images are subjected to the same

processing steps for quality control and image alignment. The

clinical MRI scans contain irrelevant bony skull, soft tissue,

and cervical regions, and variations in spatial orientation of

acquired images that may affect clinical tool performance.

Several steps for data co-registration are performed in order to

align the images into the template space and exclude irrelevant

or unnecessary regions. The FSL toolbox [48] is used for co-

registration. Mask generation is the standard method, which

has been proven to be reliable and consistent. The three steps

are: 1) structural images are processed with a skullstrip step

that removes the skull and other soft tissue regions that are not

considered to be brain, 2) skullstripped images are registered

into a MNI-152 2mm template space that aligns the structural

data spatially, and 3) registered image data are processed

with the intensity normalization step. These operations remove

artifacts due to magnetic field inhomogeneity from different

MRI scanners. These processed data are treated as the 3D

volumetric input of the classification and regression task.

To identify and compare the features that drive performance

in the volumetric whole-brain images and the brain region

segmentations, we use the FSL toolbox [48], [49] to generate

cerebrospinal fluid (CSF), grey matter (GM) and white matter

(WM) regions. The segmentation process in Fig. 1 is applied to

all available T1w and T2w images. We note that segmentation

routine of FSL is based on a hidden Markov random field

model that is optimized using the expectation-maximization

algorithm. We take the skullstripped images (not containing

skull and other soft tissue regions that are not considered to be

in brain) as discussed above as the input for the segmentation

routine. The pipeline takes into account the spatial information

in terms of mutual information in local neighborhoods. It also

includes a step of correcting the spatial intensity variations to

overcome the bias field. Finally, the segmentation pipeline of

FSL is able to classify the voxels of the structural MRIs of

brain into white matter, gray matter and CSF. Note that we

follow same form of FSL segmentation on both T1w and T2w

images for both classification and regression tasks.

III. ALGORITHM

We start this section with the architecture of our proposed

multitask algorithm. This is followed by a novel loss function

to train the network for multi-tasking. Subsequently, we discuss

the implementation details including data augmentation and

transfer learning. The performance metrics to evaluate the
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TABLE I

DEMOGRAPHIC AND CLINICAL INFORMATION OF THE TRAINING/VALIDATION AND INDEPENDENT DATASET.

Tinnitus Control

UCSF
Number of subjects 95 84
Female/male 33/62 41/43
Age (mean ± SEM) 56.4 ± 13.6 44.3 ± 18.0

University of Minnesota
Number of subjects 88 112
Female/male 39/49 64/48
Age (mean ± SEM) 50.5 ± 15.2 34.5 ± 13.8

Independent Validation

Dataset (UCSF)

Number of subjects 24 20
Female/male 6/18 10/10
Age (mean ± SEM) 57.3 ± 14.3 42.8 ± 19.1

Fig. 1. The workflow of brain segmentation process with FSL toolbox
[49] to generate cerebrospinal fluid (CSF), grey matter (GM) and white
matter (WM) segmentations.

performance of classification and TFI score prediction are

also described. We also provide brief details of benchmark

comparison algorithms which are compared later.

A. Proposed Architecture

The algorithm for joint classification and regression tasks for

tinnitus is built on ResNet-18 deep neural network architecture

[42], which includes the residual information extracted from

the previous layer and mitigates the adverse performance by

using large number of layers. While we use the ResNet-18

architecture as our backbone, we then significantly modify

it to incorporate both multiple modalities of imaging and

the multi-tasking goals of our network. One attractive aspect

of our method is the efficient integration of both modalities

in structural MRI of each subject. In particular, the network

consists of two parallel feature extraction sub-networks: one

for T1w and another for T2w. The outputs from both sub-

networks are concatenated. The fused composite features

are further processed for joint tasking as shown in Fig. 2.

Each of the sub-networks consists of 17 convolutional layers.

The first convolutional layer takes the input and applies

filters for the following convolutional layer input. Sixteen

convolutional layers are wrapped into four convolutional blocks

with four layers in each block. A detailed description of each

convolutional block is displayed in Fig. 2. Note that same

number of convolutional filters are used in each of convolutional

blocks. For example, there are 64 filters in each convolutional

layer of the first convolutional block. Each convolutional

layer (within each convolutional block) follows with a batch

normalization and a ReLu layer for more efficient gradient

convergence (i.e. accelerate the training process) and only

allows the positive values to pass to the next layer. Further,

after each convolutional block, extracted features are pooled.

The output from the fourth convolutional block of the two

sub-networks are the features extracted from T1w and T2w

data separately. We flatten each feature map into 1-D array

to combine features. Next, we concatenate two 1-D arrays

into a longer length of feature array. This simple fusion step

essentially creates a double length fused feature array. The

extended feature array is passed through two fully connected

layers with different dimensions. The output layer of the final,

fully connected layer FC-2 in Fig. 2(A) is used for multi-

tasking: to simultaneously predict the class probability (via

soft-max) and estimate the TFI score. The proposed deep

learning method is referred to as multimodal multi-tasking

convolutional network (MMCN).

B. Proposed Multi-tasking Loss Function

1) Loss Function for Classification: We experimented with

two loss functions to optimize the classification performance,

specifically, cross-entropy and focal loss [31]. Let the training

set consisting of N number of subjects defined as X =
{Xn}

N
n=1

. Each subject has a label ycn, c = {0, 1} which

indicates whether the subject is a healthy control or a tinnitus

patient. In cross-entropy loss, the entropy H(X) is calculated

for a random variable with a set of x in X discrete states and

the corresponding probability P(x) as:

−
2

∑

c=1

1

N

∑

Xn∈X

1{ycn = c} log
(

P (ycn = c|Xn;W )
)
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Fig. 2. Overview of the proposed multimodal multi-tasking convolutional network (MMCN) for joint classification and regression of tinnitus. The
pipeline takes the volumetric sMRI for both T1w and T2w as input in the first convolutional layer. There are four convolutional blocks in each
sub-network. In each block, there are four convolutional layers that take the learned features from the previous block. Each convolutional layer in the
block follows with a batch normalization and a ReLu layer to converge the gradient more efficiently and accelerate the training process. A pooling
layer is applied at the end of each convolutional block to down sample and retain useful features. The filter size of each convolutional block are 64,
128, 256 and 512, respectively. A fusion step is applied after the final convolutional block to concatenate the features from each of the sub-networks.
Further, two fully connected layers are used to learn non-linear combinations from the feature map. In the output layer, soft-max is used for tinnitus
classification and ReLu is adapted for the regression task tinnitus severity prediction based on TFI scores.

where 1{·} is an indicator function; W is the collection of

learned network coefficients and P (ycn = c|Xn;W ) indicates

the probability of subject Xn being correctly classified as the

correct label ycn. Note that 1{·} = 1 if the condition {·} is true

and 0 otherwise.

The labels of classification task in our setting are either

tinnitus patient or healthy control. However, an imbalance

dataset may lead to suboptimal training of the network. To deal

with the limitation of class imbalance in the dataset, we further

use focal loss, which is a modified version of the commonly

used cross-entropy. Focal loss uses a modulating factor on top

of the original cross-entropy equation, with tunable focusing

parameter λ ≥ 0. It is denoted as follows:

LC = −
2

∑

c=1

1

N

∑

Xn∈X

1{ycn = c}
(

1− p
)λ

log
(

p
)

,

where p = P (ycn = c|Xn;W ). We empirically choose λ = 2.

In fact, we experiment with different values of λ. Finally, we

found λ = 2 to produce the most consistent results.

2) Loss Function for Regression Task: To guide the training

of regression task, we minimize L2 distance between the

predicted and actual TFI scores. Suppose, there are K numbers

of discrete TFI scores in our datasets such that q = {qkn}, (k =
1, 2, . . . ,K). The mean squared loss between the estimated

TFI score and the ground truth is

LR =
1

K

K
∑

k=1

1

N

∑

Xn∈X

(qkn − f(Xn,W ))2, (1)

where f(Xn,W ) is the predicted TFI score of subject n.

3) Loss Function for Multi-tasking: The training operation

in the multi-task network is controlled by a loss function

which could jointly penalize the error of both classification and

regression tasks. In fact, we consider a convex combination

of the cross-entry (or focal) and L2 loss. In particular, we use

the following two composite losses:

LM = αLC + (1− α)LR,

where α ∈ [0, 1] is a coefficient tuned using cross-validation.

The convex combination controlled by α leverages an improved

joint learning. The optimal value of α is set using cross-

validation. We note that α could vary depending class imbalance

and distribution of the ground-truth TFI scores in the datasets

used. However, the protocal of setting α using cross-validation

ensures the best possible training of the deep network.
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C. Implementation Details

The implementation of the proposed CNN model is based

on the Pytorch library. The experiments were conducted on a

NVIDIA GTX TITAN 16 GB GPU. We optimized the learning

rate, and found the optimal value to be 10−4. We used a

stochastic gradient descent (SGD) approach for optimization

[50]. The network gradients while performing optimization are

combined with the backpropagation algorithm. The learning

rate for SGD are empirically set to 10−3.

We adopted the transfer learning to overcome the challenges

with limited number of subjects. Transfer learning is widely

used for obtained the weights for problems in the same

domain to reduce the training time, to improve the overall

performance, and to decrease overfitting. Here, we used pre-

trained parameters from MedicalNet [51] as weights for all four

convolutional blocks. Therefore, we only learnt the weights of

the subsequent portions of the network. We followed the same

form of transfer learning for both classification and regression

prediction tasks. In summary, our proposed MCNN network

learns the fully connected layers with transfer learning applied

to the convolutional weights.

Data Augmentation: Availability of sufficient amount of

data for adequately training a deep network is often a real

concern in medical imaging. In fact, it is recommended to have

at least 1000 samples of each class to train a classification

model. To overcome the limited of this high data requirement,

we performed data augmentation which also helps to avoid

data over-fitting during the training. The goal of evaluating

classification performance using an independent dataset was

to validate the robustness of training.

We performed on-the-fly data augmentation using two strate-

gies, i.e., i) randomly flipping the sMRI for each subject, and ii)

randomly distorting the sMRI with non-linear transformation

for each subject. The operation of randomly shifts introduces

a reasonable perturbation to the training data for the network

to learn the useful features. When combined with the first

two operations, it could effectively augment the number and

variability of available samples for training our MMCN model.

We examined the effectiveness of the proposed framework

for the multi-modal multitask learning based test data and the

independent dataset. To prevent the introduction of potential

bias for not including the entire dataset, we constructed non-

overlapping 5-fold cross validation in the training process.

Specifically, we randomly selected 20% of the sample size

from each class as the testing dataset, while the remaining 80%

of the subjects were treated as the training dataset. This way

we could utilize the existing available subjects to produce an

unbiased performance.

D. Performance Metrics

Classification performance was evaluated by five metrics,

including classification accuracy (ACC), sensitivity (SENS),

specificity (SPEC), positive predictive values (PPV), and

negative predictive values (NPV). These standard metrics are

defined as [19]:

ACC =
TP + TN

TP + TN + FP + FN

SENS =
TP

TP + FN

SPEC =
TN

TN + FP

PPV =
TP

TP + FP

NPV =
TN

TN + FN

where TP, TN, FP, and FN denote the true positive, true

negative, false positive, and false negative values respectively.

For all of these five metrics, a higher value indicates a better

classification performance.

Regression performance was evaluated using an r-squared

(r2) metric, which is a statistical measure that represents

the proportion of the variance for a dependent variable

that’s explained by an independent variable or variables in

a regression model [52]. The definition of the coefficient of

determination is as follows. Suppose the ground-truth and

predicted TFI scores of n-th subject are given by qn and q̂n.

There are total N subjects used for testing to evaluate the

regression performance. Also, we refer the mean of the ground-

truth scores of all subjects as q. Then, the r-squared (r2) metric

is defined as:

r2 =
(

1−

∑N

n=1
(qn − q̂n)

2

∑N

n=1
(qn − q)2

)

. (2)

We clearly see from the above expression in (2) that it will

take values between 0 and 1. At perfect prediction of TFI

scores, by setting qn = q̂n for all n in (2), we obtain r2 = 1.

In summary, a higher value of r2 indicates a better regression

performance achieved by the proposed method.

E. Influence of Structural Regions on Multi-tasking

We perform detailed study to understand whether it is the

whole brain MRI or a particular structural regions such as

CSF, WM or GM that plays a dominant role in the multimodal

multi-tasking performance of our method. In particular, both

T1w and T2w images are first segmented into respective GM,

WM, and CSF components. Thus, including whole brain (WB),

we got total 4 sets of data for each subject. The detailed

steps of using WB data into our network are explained in

Fig. 2. For the analysis using these three structural segments,

we simply substitute the respective segment of both T1w and

T2w images. For example, to perform the joint tasking based

on gray matter (GM), we use GMs derived from T1w and

T2w respectively as inputs. We follow simlar steps for both

WM and CSF based joint tasking. Note that we perform the

training and test for these four cases completely independently.

Therefore, the independent way of training the network allows

to learn the joint tasking selection parameter α at best possible

fraction. However, we use same form of transfer learning and

data augmentation for all four cases.
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F. Benchmark Methods

The proposed MMCN method was first compared against two

conventional learning-based methods - least squares support

vector machine (LS-SVM) [53] and K-nearest neighbor (KNN)

[54]. Beyond this, MMCN was compared with a state-of-the-

art deep-learning method, the hierarchical fully convolutional

network (H-FCN) [19], which has been used to extract useful

features from imaging data to classify Alzheimer’s disease. To

the best of our knowledge, there is no existing deep learning

methods for tinnitus classification or severity prediction. We

now briefly summarize the three benchmark methods.

1) LS-SVM: We use a modified version of support vector

machine (SVM), a widely used classification model in

neuroimaging analysis [53], [55]. We directly train a least

squares SVM model on T1w whole brain volumetric MRI

images that contains all available structural information.

The trained model is applied on the test data to obtain

final classification results in the test sample.

2) KNN: K-nearest neighbor is another popular, classical

method used for performing unsupervised classification.

This simple machine learning algorithm is based on the

distance between feature vectors [54]. The k-NN algorithm

classifies new unknown data points by finding the most

common class among the k-closest centroids. In our case,

T1w whole brain volumetric MRI of each subject is treated

as sample points for k-NN algorithm. Test subjects are

classified based on neighborhood of the learned centers

(k-means).

3) H-FCN: H-FCN was a recent deep learning network with

a unified discriminative feature extraction algorithm for

successful classification of Alzheimer’s disease (AD) using

volumetric 3D sMRI data [19]. The hierarchical fully

convolutional network (H-FCN) method uses the same

data format as our method, MMCN, and motivates a

comparison.

IV. RESULTS

A. Classification Performance

In this section, we focus on classification performance of

the proposed MMCN deep model and compare performance

against contemporary methods. We focus on three aspects: 1)

exhibit performance of our proposed MCNN pipeline with

different segmented regions, 2) compare performance against

benchmarks, and 3) evaluate the classification accuracy on an

independent dataset.

Tinnitus classification results for whole-brain and segmented

brain regions, specifically CSF, GM and WM, are summarized

in Table II. For all metrics, higher values indicate better

performance. The bolded best performance metric highlights

the corresponding structural region. Overall the whole brain

outperforms the other three segmented brain regions. In

particular, it achieves 72.9% in accuracy, 70.8% in sensitivity,

75.4% in specificity, 69.7% in positive predictive value, and

75.1% in negative predictive value, and the highest r2 value.

Gray matter sMRI input has best performance metrics in

sensitivity (77.7%) and positive predictive value (70.6%). While

whole brain sMRI images provide the most useful features

to drive the performance, other brain regions retain partial

information.

In Figure 3, we show the classification performance on the

independent dataset. Note that our proposed MMCN method

achieves around 70% accuracy using whole brain 3D data (both

T1w and T2w). Here whole brain data refers to the case where

no segmentation is performed on the 3D sMRI images. To

further investigate the impact of segmented brain regions, we

report the results using CSF, GM, and WM. The bar plots in

Fig. 3 indicates that among these three brain regions, WM

offers superior performance with respect to accuracy, sensitivity

and specificity. WM segmented from sMRI images captures

more prominent and representative features of tinnitus.

Taken together, the proposed MMCN method offers best

performance results using the whole brain in terms of all

metrics except SENS and NPV. That said, GM achieves

superior performance in terms of SENS and NPV. Based on this

experiment, we conclude that GM contains tinnitus descriptive

features at best among three structural regions. Whole brain

3D structural image data for input to MMCN appears to be

the single best choice.

B. Regression Performance

The task in regression modelling is to predict tinnitus

severity based on TFI scores from the sMRI data. In Figure 4,

we provide the scatter plots of whole brain, and the other

three brain segmented regions, CSF, GM and WM, with

corresponding prediction versus ground truth values. The x-

axis shows the actual TFI scores (0 to 80) and the y-axis

shows the predicted TFI scores (0 to 100). The shaded area

represents the 95% confidence interval of the corresponding

linear approximation. The slope in each scatter plot reveals

whether the regression exhibits a positive or negative trend.

The evidence of positive slope in each case validates our

method can predict TFI scores reasonably well from sMRI

images. The r2 value is the percentage of the variance in the

dependent variable that the independent variable can explain.

Whole brain outperforms the other three segmented regions

with r2 = 0.429. This resonates with superior whole brain

classification performance.

C. Benchmark Comparisons

We compare our MMCN method with two classical ma-

chine learning methods and one state-of-the-art deep learning

approach in Table III. Note that our method is capable of

performing both tasks: tinnitus classification and tinnitus

severity. In addition, it is a multimodal methods approach,

handling two modalities of sMRI data as input in parallel. In

contrast, the three existing approaches are unimodal - they are

capable of classification based on only one modality at a time,

either T1w or T2w.

MMCN has superior classification performance compared

to the best performance of these three methods. LS-SVM

and KNN produce best performance using T1w images;

whereas H-FCN produces best performance using T2w images.

Notice that our MMCN method outperforms both classical

machine learning methods by a large margin across all five
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TABLE II

INFLUENCE OF STRUCTURAL REGIONS OF BRAIN ON MULTI-TASKING PERFORMANCE USING OUR MULTIMODAL METHOD.

Structural Regions ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%) r
2

Whole Brain
(WB)

72.9 ± 4.2 70.8 ± 1.8 75.4 ± 2.1 69.7 ± 3.7 75.1 ± 3.9 0.429

Cerebrospinal Fluid
(CSF)

71.2 ± 4.0 73.7 ± 4.2 64.3 ± 2.8 66.9 ± 5.1 74.7 ± 1.6 0.235

Gray Matter
(GM)

72.0 ± 2.5 77.7 ± 2.0 66.9 ± 4.1 70.6 ± 4.2 73.7 ± 3.6 0.380

White Matter
(WM)

70.1 ± 3.9 72.1 ± 3.5 68.1 ± 3.0 67.5 ± 2.8 74.6 ± 2.6 0.356

Fig. 3. The MCNN performance on UCSF independent dataset.

Fig. 4. Scatter plots of measured TFI scores with predicted TFI scores.

TABLE III

COMPARISON OF CLASSIFICATION PERFORMANCE. NOTE THAT ALL THE EXISTING METHODS CAN SUPPORT ONLY A SINGLE MODALITY. FOR THESE

METHODS WE REPORT THE BEST PERFORMANCE USING EITHER T1W OR T2W. OUR PROPOSED APPROACH MMCN TAKES BOTH BOTH T1W AND

T2W AS INPUTS.

ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%)

LS-SVM 56.3 ± 3.1 57.8 ± 2.1 53.1 ± 2.1 57.3 ± 1.3 53.2 ± 3.4

KNN 53.2 ± 2.6 52.4 ± 2.9 55.2 ± 2.5 50.7 ± 1.9 58.1 ± 1.1

H-FCN 67.6 ± 3.4 70.1 ± 4.2 65.0 ± 2.9 69.2 ± 3.6 62.3 ± 4.5

MMCN 72.9 ± 4.2 70.8 ± 1.8 75.4 ± 2.1 69.7 ± 3.7 75.1 ± 3.9

metrics (Table III). In direct comparison to the state-of-the-

art H-FCN method, our MMCN method outperforms in all

five metrics. The proposed MMCN achieves superior state-

of-the-art classification performance. Two key factors may

be contributing to superior performance. First, the proposed

MMCN method jointly learns the discriminative features of
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structural MRI along with the classifier and regressor, and thus

those learned features can be more suitable for subsequent

classifiers/regressors. The proposed deep architecture perhaps

can capture the discriminative features from the samples more

accurately than H-FCN. Second, MMCN explicitly integrates

both T1w and T2w modalities of sMRI data. Our multimodal

deep network MMCN efficiently exploits cross-information

present in both modalities.

V. DISCUSSION

Deep convolutional neural network (CNN) methods have

achieved extraordinary success in medical image alaysis by

extracting and adapting the highly discrimative features present

in the images. One key research focus in deep learning

based image analysis is on further improving the classification

accuracy by applying insightful architectures and modules. In

this work, we introduce a novel deep learning framework for

classification of tinnitus subjects from its structural MRI data.

Besides the intuitive (binary) classification result, the method

can also output TFI scores as an indicator of the severity

of the disease. From mathemitical point of view, this deep

module provides a data-driven nonlinear relationship between

MRI volume (consists of thousands of voxels) and TFI score.

A remarkable aspect of the proposed network is that both

classification and score prediction are achieved by same set

of learnt deep features and nonlinear weights. Finally, our

proposed multi-task deep model could be an efficient tool

for structural MRI analysis to determine whether a patient is

having tinnitus or not and if so, also to predict the severity of

the disorder. Thus, we provide a fast and efficient diagnostic

tool is essential early detection, monitoring clinical trails and

tracking the progression of tinnitus.

Considering the lack of interpretability for CNN-extracted

features, it is difficult to directly connect the classifica-

tion/prediction results with the morphological attributes of

MRI data. To improve the interpretability of our deep network

module, we made an attempt by segmenting the MRI data into

three micro-structural components - gray matters, white matters

and cerebrospinal fluid (CSF). Then, we studied the multi-

tasking performance by using each of these micro-structural

components separately and compare them with the results

obtained from unsegmented (whole brain) data.

One important aspect of our proposed method is the

integration of multimodal structural MRI data within out joint

framework to capitalize on the strength of both T1w and T2w

modalities. The multimodal fusion of deep features allowed to

exploit cross-modal information. Finally, we are able to achieve

superior performance rather than the one obtained from each

modality separately. By maximizing joint information available

in both modalities, we integrate the learned features within

our pipeline. We note that none of the methods compared in

Section IV can support multiple modality for classification. We

also add that our proposed method does not require much of

preprocessing of the input data, unlike multi-tasking scheme in

[20], which includes computationally intensive step of landmark

patch extraction.

VI. CONCLUSION

In this paper, we introduced a novel deep learning framework

for simultaneous tinnitus classification and tinnitus severity

prediction using structural MR imaging data. In particular, we

integrated deep features from of two modalities - T1w and

T2w of the available MRI data. Experiment results confirmed

that the proposed method MMCN outperforms several recent

methods for both tinnitus classification. In future, the proposed

framework may potentially be deployed in real-time health

care settings to confirm tinnitus, track change in severity, and

monitor treatment response.
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[44] F. Calivá, A. P. Leynes, R. Shah, U. U. Bharadwaj, S. Majumdar, P. E.
Larson, and V. Pedoia, “Breaking speed limits with simultaneous ultra-
fast MRI reconstruction and tissue segmentation,” in Medical Imaging

with Deep Learning. PMLR, 2020, pp. 94–110.
[45] R. Kijowski, F. Liu, F. Caliva, and V. Pedoia, “Deep learning for

lesion detection, progression, and prediction of musculoskeletal disease,”
Journal of Magnetic Resonance Imaging, vol. 52, no. 6, pp. 1607–1619,
2020.

[46] T.-Y. Lin and G. Priya Goyalár, “Focal loss for dense object detection,”
Proc. IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2980–2988, 2017.

[47] M. B. Meikle, J. A. Henry, S. E. Griest, B. J. Stewart, H. B. Abrams,
R. McArdle, P. J. Myers, C. W. Newman, S. Sandridge, D. C. Turk
et al., “The tinnitus functional index: development of a new clinical
measure for chronic, intrusive tinnitus,” Ear and Hearing, vol. 33, no. 2,
pp. 153–176, 2012.

[48] S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E.
Behrens, H. Johansen-Berg, P. R. Bannister, M. De Luca, I. Drobnjak,
D. E. Flitney et al., “Advances in functional and structural MR image
analysis and implementation as FSL,” Neuroimage, vol. 23, pp. S208–
S219, 2004.

[49] Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR images
through a hidden markov random field model and the expectation-
maximization algorithm,” IEEE Transactions on Medical Imaging, vol. 20,
no. 1, pp. 45–57, 2001.

[50] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[51] S. Chen, K. Ma, and Y. Zheng, “Med3d: Transfer learning for 3d medical
image analysis,” arXiv preprint arXiv:1904.00625, 2019.

[52] R. Anderson-Sprecher, “Model comparisons and r
2,” The American

Statistician, vol. 48, no. 2, pp. 113–117, 1994.
[53] J. A. Suykens and J. Vandewalle, “Least squares support vector machine

classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999.
[54] Y. Dang, N. Jiang, H. Hu, Z. Ji, and W. Zhang, “Image classification

based on quantum K-Nearest-Neighbor algorithm,” Quantum Information

Processing, vol. 17, no. 9, pp. 1–18, 2018.
[55] M. Liu, D. Zhang, D. Shen, and A. D. N. Initiative, “View-centralized

multi-atlas classification for Alzheimer’s disease diagnosis,” Human Brain

Mapping, vol. 36, no. 5, pp. 1847–1865, 2015.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2022. ; https://doi.org/10.1101/2022.05.07.491000doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.07.491000
http://creativecommons.org/licenses/by-nc-nd/4.0/

