

1 **Mice lacking triglyceride synthesis enzymes in adipose tissue are resistant to diet-induced**
2 **obesity**

3

4 Chandramohan Chitraju^{1, 2}, Alexander W. Fischer^{1, 2}, Yohannes A. Ambaw^{1, 2, 5}, Kun Wang^{1, 2}, Bo
5 Yuan¹, Sheng Hui¹, Tobias C. Walther^{1, 2, 3, 4, 5*} and Robert V. Farese, Jr.^{1, 2, 3, 5*}

6

7 ¹Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115,
8 USA

9 ²Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA

10 ³Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA

11 ⁴Howard Hughes Medical Institute, Boston, MA 02115, USA

12 *These authors contributed equally

13 ⁵Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York,
14 NY, USA

15

16

17

18

19 Correspondence should be addressed to:

20 Tobias C. Walther and Robert V. Farese, Jr.

21 twalther@mskcc.org and rfarese@mskcc.org

22

23 **SUMMARY**

24 Triglycerides (TG) in adipocytes provide the major stores of metabolic energy in the body. Optimal
25 amounts of TG stores are desirable as insufficient capacity to store TG, as in lipodystrophy, or
26 exceeding the capacity for storage, as in obesity, results in metabolic disease. We hypothesized that
27 mice lacking TG storage in adipocytes would result in excess TG storage in cell types other than
28 adipocytes and severe lipotoxicity accompanied by metabolic disease. To test this hypothesis, we
29 selectively deleted both TG-synthesis enzymes, DGAT1 and DGAT2, in adipocytes (ADGAT DKO
30 mice). As expected with depleted energy stores, ADGAT DKO mice did not tolerate fasting well and,
31 with prolonged fasting, entered torpor. However, ADGAT DKO mice were unexpectedly otherwise
32 metabolically healthy and did not accumulate TGs ectopically or develop associated metabolic
33 perturbations, even when fed a high-fat diet. The favorable metabolic phenotype resulted from
34 activation of energy expenditure, in part via BAT activation and beiging of white adipose tissue. Thus,
35 the ADGAT DKO mice provide a fascinating new model to study the coupling of metabolic energy
36 storage to energy expenditure.

37

38

39

40

41

42

43

44

45 INTRODUCTION

46 Because energy sources are not always available from the environment, many metazoan organisms
47 have evolved the ability to store large amounts of metabolic energy as triglycerides (TG) in adipose
48 tissue. TG is particularly optimal for energy storage because it serves as stores of highly reduced
49 carbon and does not require water for its storage. In cells, such as adipocytes, TGs are stored in
50 organelles called lipid droplets (LDs). In adipocytes of mammals, TGs are stored in a unilocular
51 adipocyte that fills the majority of the aqueous cytoplasm. Although TGs can also be found in LDs in
52 other cell types (i.e., myocytes, hepatocytes, enterocytes), adipocytes represent by far the major
53 energy depots in mammals.

54 Abundant evidence from many studies suggests that there is an optimal range for adipocyte TG
55 storage in an organism. Exceeding the capacity to store TG in adipocytes occurs in obesity and is often
56 accompanied by deposition of TG in other tissues and metabolic diseases, such as diabetes mellitus or
57 non-alcoholic fatty liver disease. Conversely, insufficient TG storage such as occurs in lipodystrophy is
58 usually associated with adipocyte endocrine deficiency and similar metabolic derangements.

59 Here, we sought to test the requirement for TG storage in adipocytes in murine physiology at
60 baseline and in response to high-fat feeding. We generated mice lacking both known TG synthesis
61 enzymes, DGAT1 and DGAT2^{1,2}, in adipocytes. We expected to generate a mouse model similar to
62 those of classic lipodystrophy due to defects of TG storage in adipose tissue. Moreover, we
63 hypothesized that these mice would have accumulation of TGs in other tissues, such as the liver or
64 skeletal muscle, resulting in lipotoxicity and metabolic derangements, such as insulin resistance or fatty
65 liver disease. To our surprise, we found the opposite result. We report here that selectively impairing
66 TG storage in adipocytes leads to a unique murine model in which depletion of energy stores is not
67 accompanied by metabolic derangements but instead results in protection from adverse metabolic
68 effects, even with high-fat diet (HFD) feeding, due to activation of energy dissipation pathways.

69

70

71 **RESULTS**

72 **ADGAT DKO mice have reduced fat mass and triglycerides in adipose tissue**

73 To generate mice lacking TGs in adipose tissue (ADGAT DKO), we crossed adipose tissue-specific
74 *Dgat1* knockout mice (Cre-transgene expressed under control of the mouse adiponectin promoter³)
75 with *Dgat2* flox mice⁴. Validation of gene knockouts showed mRNA levels of *Dgat1* were decreased by
76 ~95% and *Dgat2* by ~90% in both inguinal white adipose tissue (iWAT) and interscapular brown
77 adipose tissue (BAT) (*Figure 1–figure supplement 1A*). Western blot analysis showed that DGAT1
78 and DGAT2 proteins were absent in iWAT and BAT (*Figure 1–figure supplement 1B*). *In vitro* DGAT
79 activity in lysates of adipose tissue of ADGAT DKO mice was decreased by ~80% in iWAT and ~95% in
80 BAT (*Figure 1–figure supplement 1C*). Similarly, *in vitro* DGAT activity in isolated adipocytes of iWAT
81 was decreased by ~80% (*Figure 1–figure supplement 1D*).

82 ADGAT DKO mice appeared healthy (*Figure 1A*) and yielded offspring with the predicted
83 Mendelian ratio of genotypes. Nuclear magnetic resonance imaging showed that fat depots were
84 decreased in chow-fed ADGAT DKO mice (*Figure 1B*). Body weights of 12-week-old chow-fed control
85 mice (*Dgat1* and *Dgat2* double-floxed mice, D1D2 flox) and ADGAT DKO mice were similar (*Figure*
86 *1C*), but dual-energy X-ray absorptiometry (DEXA) analysis revealed that the fat mass was decreased
87 by ~60% in ADGAT DKO mice. The reduction in fat mass was persistent: DEXA analysis of 1-year-old
88 ADGAT DKO mice showed that the fat mass was reduced by ~75% and that lean mass was increased
89 by ~15% (*Figure 1–figure supplement 1E*). Visceral white adipose tissue depots (gonadal,
90 mesenteric, pericardial, and perirenal fat depots) were markedly atrophied in ADGAT DKO mice
91 (*Figure 1D*, *Figure 1–figure supplement 1F*). Gonadal adipose tissue (gWAT) and subcutaneous
92 inguinal WAT (iWAT) in ADGAT DKO mice appeared distinctly “beige” in color (*Figure 1D*, *Figure 1–*
93 *figure supplement 1F*). In ADGAT DKO mice, iWAT and BAT were denser, as demonstrated by their
94 sinking in a liquid fixative (*Figure 1F*).

95 The interscapular BAT depot in ADGAT DKO mice appeared darker brown than that in control
96 mice (*Figure 1–figure supplement 2A*). TGs and lipid droplets (LD) were undetectable in BAT of

97 ADGAT DKO mice (**Figure 1–figure supplement 2B,C**). Positron emission tomography-computed
98 tomography scanning using 18 -fluoro-deoxyglucose (18 -FDG-PET/CT) showed that, after injection of β -
99 3-adrenoceptor agonist (CL 316,243), BAT of chow-fed ADGAT DKO mice took up more glucose than
100 BAT of control mice (**Figure 1–figure supplement 2D**), presumably to fuel thermogenesis. In
101 agreement with increased glucose uptake, glycogen levels in BAT of ADGAT DKO mice were
102 increased in all conditions except 4°C cold exposure (**Figure 1–figure supplement 2E**). The latter
103 condition may reflect increased glycogen requirements in BAT of ADGAT DKO mice to maintain
104 thermogenesis. This phenotype of DGAT-deficient BAT exhibiting increased glucose uptake and
105 glycogen stores as an alternate fuel is consistent with our previous findings of BAT-specific knockout of
106 both DGAT enzymes⁵.

107

108 **ADGAT DKO mice gradually activate an alternative mechanism to synthesize and store**
109 **triglycerides**

110 DGAT1 and DGAT2 appear to account for most of TG synthesis in mice. Newborn mice lacking both
111 DGAT enzymes have >95% reduction in whole body TGs⁶, and adipocytes derived from fibroblasts
112 lacking both enzymes fail to accumulate TGs or LDs⁷. In agreement with this, histological analysis of
113 WAT of 8-week-old ADGAT DKO mice showed fewer and much smaller LDs than control WAT (**Figure**
114 **1E**). However, by age 15 weeks, ADGAT DKO mice exhibited more LDs in iWAT than 8-week-old
115 ADGAT DKO mice, suggesting that they activate alternate pathways to accumulate neutral lipids
116 (**Figure 1–figure supplement 3A**). This finding was more prominent in iWAT than in BAT. The neutral
117 lipid that accumulated was BODIPY-positive (**Figure 1G**), and TLC analysis of adipose tissue lipids
118 from 15-week-old ADGAT DKO mice revealed the lipids to be TGs (**Figure 1H**). Feeding ADGAT DKO
119 mice a HFD increased levels of TGs by ~twofold in iWAT at age 15 weeks, but the TG content of iWAT
120 remained ~70% less than control mice (**Figure 1–figure supplement 3A, Figure 4–figure**
121 **supplement 1A**). The mass reduction of iWAT fat pads was accounted for predominantly by a
122 decrease in TG mass per fat pad (**Figure 1I**); protein levels per fat pad were similar to controls, and no

123 other neutral lipids were detected. Lipid analyses of iWAT by mass spectrometry revealed that TG
124 levels were reduced by ~80% across all detected TG species (**Figure 1I, Figure 1–figure supplement**
125 **3C**). In contrast, several phospholipids were substantially increased in iWAT of ADGAT DKO mice
126 (**Figure 1I**), which may have contributed to the residual fat mass of the iWAT fat pads. Enzyme assays
127 revealed that adipose tissues and isolated white adipocytes from 15-week-old chow-diet-fed ADGAT
128 DKO mice had detectable (~20% of normal) DGAT activity in iWAT that was not inhibited by DGAT1- or
129 DGAT2-specific inhibitors (**Figure 1–figure supplement 1C,D**). These data suggest that deletion of
130 DGAT1 and DGAT2 in WAT induces a DGAT activity from an alternative enzyme, possibly from other
131 candidates in the DGAT2 gene family ⁸. mRNA levels for MGAT1 and MGAT2, enzymes in the same
132 protein family as DGAT2, were increased in iWAT of ADGAT DKO mice and thus these proteins are
133 candidates for this activity (**Figure 1–figure supplement F, G**).

134

135 **Adipose tissue TG stores are required to maintain activity and body temperature during fasting**
136 Because ADGAT DKO mice have severely decreased TG stores, we expected that they would not
137 tolerate fasting well. After 14 hours of fasting, 15-week-old ADGAT DKO mice had lost 10% of body
138 weight (vs. control mice) (**Figure 2A**) and entered a torpor-like state with decreased physical activity
139 and huddling together (**Figure 2–figure supplement movie 1**). Fasting of ADGAT DKO mice also
140 resulted in hypothermia, with body temperatures dropping to ~30°C (**Figure 2B**), a phenotype
141 exacerbated by cold exposure (**Figure 2E,F**). This differs from the phenotype of BAT DGAT DKO mice,
142 which maintain body temperature during fasting ⁵, presumably because energy stores in WAT are
143 present. Fasting levels of ketone bodies were ~10% lower, and glucose levels were moderately higher
144 in ADGAT DKO mice than control mice (**Figure 2C,D**), possibly reflecting their greater dependency on
145 glucose as fuel. Thus, as expected, deletion of TG stores in adipose tissue resulted in reduced fuel
146 stores that dramatically altered the physiological responses of the mice to fasting or cold.

147

148

149

150 **Endocrine function of WAT is maintained in ADGAT DKO mice**

151 Lipodystrophy is a metabolic disease characterized by altered fat distribution, often with severely
152 reduced amounts of adipose tissue and TG storage. Classically, lipodystrophy in humans and mice is
153 accompanied by reduced levels of adipocyte-derived endocrine hormones and often results in insulin
154 resistance and diabetes ⁹⁻¹¹. ADGAT DKO mice share an impaired capacity to store TG in adipose
155 tissue with lipodystrophy models. However, despite this, in these mice adiponectin and leptin mRNA
156 levels were moderately increased in iWAT (*Figure 3A*), whereas the mRNA levels of *Plin1* were
157 unchanged (*Figure 3A*), and plasma levels of adiponectin and leptin were normal and 40% decreased,
158 respectively (*Figure 3B*). When normalized to adipose tissue weight, leptin levels were similar to
159 control mice (*Figure 3C*). Glucose levels in ADGAT DKO mice fasted for 4 h were slightly lower ($169 \pm$
160 16 mg/dl vs. 144 ± 14 mg/dl, respectively, $p<0.01$) than in control mice, and insulin levels were not
161 different (*Figure 3D*). Analysis of plasma metabolites showed a ~30% reduction in non-esterified fatty
162 acids, a ~15% reduction in glycerol (*Figure 3E*), and a ~50% reduction in ketones in chow-diet-fed
163 ADGAT DKO mice (*Figure 3F*). Glucose and insulin tolerances were similar in chow-diet-fed ADGAT
164 DKO and control mice (*Figure 3G,H*). Thus, despite the impairment of fat storage in adipose tissue,
165 ADGAT DKO mice had substantial levels of adipocyte-derived endocrine hormones and apparently
166 normal glucose metabolism.

167 Lipodystrophy is also typically accompanied by ectopic lipid deposition, particularly manifesting
168 as hepatic steatosis ¹²⁻¹⁴. In contrast, livers of ADGAT DKO mice appeared normal (*Figure 3I*), with
169 moderately increased weights in 15-week-old chow-diet-fed mice (1.7 ± 0.2 g vs. 2.1 ± 0.3 g, $p<0.05$).
170 TG levels were only modestly increased (~10%) in livers of ADGAT DKO mice and were unchanged in
171 skeletal muscle (*Figure 3J*). Thus, ADGAT DKO mice, with markedly reduced TG storage in
172 adipocytes, were remarkably metabolically healthy, with essentially none of the metabolic
173 derangements typically associated with lipodystrophy.

174

175

176

177 **ADGAT DKO mice are resistant to diet-induced obesity and associated metabolic derangements**

178 We next tested whether the metabolically healthy phenotype of ADGAT DKO mice would persist with
179 feeding of a western-type high-fat diet (HFD), which normally causes obesity and insulin resistance. We
180 hypothesized that fatty acids from the HFD would not be stored in adipocytes of ADGAT DKO mice and
181 as a consequence ectopically accumulate, resulting in tissue lipotoxicity. However, after feeding
182 ADGAT DKO mice a HFD for 12 weeks, they appeared healthy and remained relatively lean, with both
183 male and female mice gaining ~40% less body weight than control D1D2 flox mice (*Figure 4A–C*). The
184 reduction in body weight was due to a ~70% reduction in fat mass (*Figure 4C*). Food intake during
185 HFD feeding was similar (*Figure 4D*), implying ADGAT DKO mice have increased energy expenditure.
186 This was validated by indirect calorimetry, where ADGAT DKO mice exhibited increased energy
187 expenditure that was particularly prominent during night-time, when the mice were eating (*Figure 4E*).
188 The respiratory exchange ratio (RER) was lower in ADGAT DKO mice during HFD feeding (*Figure 4F*),
189 consistent with increased fat oxidation. We did not measure caloric loss in the feces of ADGAT DKO
190 mice and would not expect this with adipocyte-specific deletions of DGAT1 and DGAT2.

191 We also examined metabolic parameters in the HFD-fed ADGAT DKO mice. Plasma glucose
192 levels were slightly lower in ADGAT DKO, and insulin levels were not different (*Figure 4–figure*
193 *supplement 1B,C*). ADGAT DKO mice were protected from HFD-induced glucose intolerance (*Figure*
194 *4G*). The insulin response was similar in ADGAT DKO and control mice, although the ADGAT DKO
195 mice basal levels of glucose were reduced (*Figure 4H*). Liver weights and hepatic TG levels were
196 markedly increased with HFD in both ADGAT DKO mice and controls and were ~20% and ~10% higher
197 in ADGAT DKO mice, respectively (*Figure 4I*). Hepatic cholesterol levels were similar (*Figure 4I*).
198 HFD-induced activation of ER-stress response in the livers was similar to control mice (*Figure 4–figure*
199 *supplement 1D*). Thus, surprisingly, despite not being able to robustly store TGs in adipocytes,

200 ADGAT DKO mice were resistant to most effects of an HFD, and our studies indicate that they activate
201 compensatory mechanisms of energy expenditure that increase fat oxidation.

202

203 **ADGAT DKO mice activate energy dissipation mechanisms, including adipocyte beiging in WAT**

204 We next investigated the mechanisms for improved metabolic health in ADGAT DKO mice. Browning or
205 beiging of adipose tissue is associated with improved metabolic health in mice and humans ¹⁵⁻¹⁸, and
206 the “beige” appearance in iWAT and gWAT depots of ADGAT DKO mice (*Figure 1D,E*) suggested that
207 beiging adaptations may be present. Histological examination showed almost all adipocytes in both
208 iWAT and gWAT contained multi-locular LDs (*Figure 5A,C*). mRNA levels of signature genes of
209 adipocyte beiging, such as *Ucp1* (~600-fold), *Idea* (~20-fold), *Ppara* (~10-fold), and *Pgc1α* (~sixfold),
210 were markedly increased in iWAT and gWAT of room temperature housed chow-fed ADGAT DKO mice
211 (*Figure 5B,D*). Fatty acid levels were decreased; intermediates of glycolysis and Krebs cycle were
212 enriched in both iWAT and BAT of ADGAT DKO mice, consistent with increased glycolysis and fatty
213 acid oxidation (*Figure 5-figure supplement 1A,B*). Protein levels of UCP1 and respiratory complex
214 proteins were also markedly greater in iWAT of room-temperature-housed chow-fed ADGAT DKO mice
215 than controls and were even further increased under HFD conditions (*Figure 5E*). Beiging of
216 adipocytes in iWAT appeared independent of ambient temperature and was also present in ADGAT
217 DKO mice after 6 weeks of thermoneutral housing (*Figure 5F*), and blood glucose levels were
218 moderately lower in thermoneutral housed male and female mice (*Figure 5G*). Beiging appeared to be
219 non-cell-autonomous, as the changes found in beige fat were largely absent in cells differentiated from
220 pre-adipocytes, with the exception of a twofold increase of *Ucp1* mRNA levels (*Figure 5-figure
221 supplement 2A-D*), suggesting that beiging in ADGAT DKO mice is activated in part through the
222 sympathetic nervous system (SNS) ^{19,20}. Hormones, such as FGF21, also can activate beiging, either
223 via the SNS ^{21,22} or in a paracrine manner ^{21,23}. FGF21 mRNA levels were increased by ~twofold and
224 ~sixfold in liver and iWAT of ADGAT DKO mice, respectively (*Figure 5-figure supplement 3A*), and
225 plasma levels of FGF21 were increased ~threefold in ADGAT KO mice (*Figure 5-figure supplement*

226 3B). However, plasma FGF21 levels were similar in ADGAT DKO mice and controls that were fed an
227 HFD, suggesting an endocrine FGF21 effect is not responsible for the increased beiging of iWAT
228 (**Figure 5-figure supplement 3B-D**).

229

230 DISCUSSION

231 We report a novel mouse model with impaired TG synthesis in adipocytes. The resultant defect in TG
232 stores had both expected and surprising effects on murine physiology. First, as expected, ADGAT DKO
233 mice did not tolerate fasting well. At room temperature, fasted ADGAT DKO mice entered a torpor-like
234 state, characterized by decreased ambulation and a drop in body temperature. Torpor is a physiological
235 state that enables conservation of metabolic energy and the signals to induce this state are poorly
236 understood²⁴. The phenotype of ADGAT DKO mice suggests that depletion of adipocyte TG stores is
237 sufficient to induce energy conservation and is somehow sensed.

238 A surprising feature of this mouse model is the apparent metabolic health, despite the reduced
239 capacity to store lipids in the adipose tissue. Typically, loss of white adipose tissue (WAT) leads to a
240 condition known as lipodystrophy^{25,26}. Lipodystrophy patients nearly always present with many
241 metabolic derangements, including ectopic lipid accumulation in the liver (hepatic steatosis),
242 hypertriglyceridemia, and insulin resistance or diabetes²⁷⁻²⁹. A characteristic feature of lipodystrophy is
243 the decrease in levels of adipose tissue-derived hormones, such as leptin^{30,31}, and many
244 derangements of lipodystrophies are corrected by leptin therapy^{9,32}.

245 Remarkably, the lipodystrophic ADGAT DKO mice with marked reductions in fat storage were
246 metabolically healthy and did not develop metabolic derangements, such as diabetes or hepatic
247 steatosis, even when fed an HFD. The metabolic health of the ADGAT DKO mice likely is due to their
248 intact ability to make adipose tissue and to maintain adipose tissue endocrine function. These findings
249 are consistent with previous data showing that cultured adipocytes differentiate normally in the absence
250 of TG storage⁷. Adipose tissue of ADGAT DKO mice maintained the ability to synthesize and secrete
251 adipose-derived hormones, such as leptin, which is crucially absent in typical lipodystrophy³²⁻³⁵. Leptin

252 levels often correlate with adiposity and TG stores³⁶, but ADGAT DKO mice exhibit a dissociation of
253 TG stores with leptin expression, thereby showing that these parameters appear not to be causally
254 related. Instead, leptin levels may be better correlated with other adipose properties, such as the
255 number of adipocytes, as reflected in the observed correlation of leptin with adipose tissue mass.

256 Our studies revealed that, in response to the compromised ability to store TG in white and
257 brown adipose tissue, mice activate pathways of energy expenditure, including the generation of beige
258 adipocytes and activation of BAT. Aspects of this phenotype were present even at thermoneutral
259 conditions. The mechanisms underlying the activation of energy expenditure and beiging in ADGAT-
260 DKO mice are presently unclear, but may involve SNS stimulation. The lack of fatty acids in adipocytes
261 may result in other available fuels (fatty acids and glucose) being routed to the BAT and beige
262 adipocytes to maintain body temperature. One possible mechanism for the beiging and increased
263 energy expenditure is that the ADGAT DKO mice secrete a factor (or factors) that activates the SNS
264 and beiging pathway. Although currently such a factor remains to be identified, this model is
265 reminiscent of global DGAT1 knockout mice³⁷, which exhibit increased energy expenditure, enhanced
266 glucose metabolism, protection from diet-induced obesity, and increased leptin sensitivity³⁸⁻⁴⁰. For
267 global DGAT1 knockout mice, fat transplant studies suggested the adipose tissue is the source of such
268 factors³⁹.

269 Hormones that activate beiging, such as FGF21, are also testable candidate factors that may
270 contribute to the ADGAT DKO phenotype. Many of the beneficial metabolic effects that we found in
271 ADGAT DKO mice, including increased energy expenditure, increased glucose uptake by BAT, and
272 torpor and browning, are found in murine models with increased levels of FGF21^{21,22,41,42}. However, an
273 endocrine effect of FGF21 seems unlikely in these mice due to similar levels of the hormone in plasma
274 of HFD-fed mice. We note, however, that a paracrine effect is not excluded. Crossing ADGAT DKO
275 mice with FGF21 knockout mice would further test FGF21's contribution to the metabolic phenotype of
276 these mice. It would also be interesting to inhibit both DGAT enzymes at early or late time points in

277 adipocyte differentiation and determine if endocrine or paracrine factors were altered, which might
278 explain the systemic effect on metabolism.

279 In summary, ADGAT DKO mice represent an intriguing model in which a marked reduction in
280 the ability to store TG in adipocytes triggers organismal pathways of energy dissipation. This suggests
281 that exceeding the capacity to store energy in adipocytes is somehow sensed and triggers
282 thermogenesis in adipose tissue. This phenotype likely requires an intact adipocyte endocrine system,
283 which was found in ADGAT DKO mice but often deficient in other models of lipodystrophy. The exact
284 mechanism for how a TG storage defect triggers energy dissipation is currently unclear, but unraveling
285 of this mechanism could lead to new strategies for treating or reducing obesity.

286

287 **ACKNOWLEDGMENTS**

288 We thank members of the Farese & Walther laboratory for helpful comments and G. Howard for
289 editorial assistance. We thank Karen Inouye and Sarah Mitchell for helping with indirect calorimetry
290 analysis. Nathan Heinzman for helping with metabolomics experiment and the Longwood small animal
291 imaging facility at Beth Israel Deaconess Medical Center for PET/CT analysis. This work was supported
292 in part by NIH grant R01GM124348 (to R.F.). T.C.W is an investigator of the Howard Hughes Medical
293 Institute.

294

295 **CONTRIBUTIONS**

296 C.C., R.V.F., and T.C.W. planned the study and designed the experiments. C.C. generated DGAT2
297 flox, DGAT double flox and ADGAT DKO mice. C.C. performed most of the experiments. A.W.F.
298 performed denervation of mice. K.W. analyzed metabolomics data. Y.A. performed lipidomics analysis.
299 B.Y. and S.H. performed metabolomics. C.C., R.V.F., and T.C.W. wrote the manuscript. All authors
300 read and edited the manuscript.

301

302 **DECLARATION OF INTERESTS**

303 T.C.W. is a consultant for Third Rock Ventures, and a founder and chairman of the scientific advisory
304 board of Antora Bio. R.V.F. has consulted gratis for Third Rock Ventures on lipodystrophy.

305

306

307

308

309

310 **FIGURE LEGENDS**

311 **Figure 1. ADGAT DKO mice have reduced fat mass and triglycerides in adipose tissue.**

312 (A) Chow-diet-fed ADGAT DKO mice appear normal. Representative photographs of control and
313 ADGAT DKO female mice fed a chow diet.

314 (B) Fat depots were decreased in ADGAT DKO mice. Nuclear magnetic resonance imaging of chow-
315 diet-fed male mice.

316 (C) ADGAT DKO mice have decreased fat mass. Dual-energy X-ray absorptiometry (DEXA) analysis of
317 lean mass and fat mass of chow-diet-fed male mice (n=8).

318 (D) Fat depots were atrophied in ADGAT DKO mice. Representative photographs of iWAT and gWAT
319 from male mice (n=8).

320 (E) gWAT and iWAT of ADGAT DKO mice contain multilocular lipid droplets in adipocytes. H&E-stained
321 sections of gWAT and iWAT from chow-diet-fed male mice (n=6). Scale bars, 50 μ m.

322 (F) WAT and BAT of ADGAT DKO mice were denser than controls and sink in an aqueous buffer with
323 fixative (1.25% formaldehyde, 2.5% glutaraldehyde and 0.03% picric acid in 0.1 M sodium cacodylate
324 buffer, pH 7.4, density = 1.01 g/mL) used to fix tissue for electron microscopy.

325 (G) LDs in iWAT of ADGAT DKO mice stain with BODIPY. Confocal fluorescence microscopy images
326 of adipose tissue. LDs were stained by BODIPY 493/503. Scale bar, 25 μ m.

327 (H) WAT of ADGAT DKO mice contain triglycerides. Thin layer chromatography analysis of lipids from
328 iWAT of male mice (n=4). TG, triglycerides; CE, cholesterol esters, FFA, free fatty acids; DAG,
329 diacylglycerol.

330 (I) Increased phospholipid levels in iWAT of ADGAT DKO mice. Lipids in iWAT were extracted and
331 quantified by mass spectrometry (n=8).

332 Data are presented as mean \pm SD. *p<0.05, ***p<0.001.

333

334 **Figure 2. Adipose tissue TG stores are required to prevent a torpor-like state during fasting.**

335 (A) Body weights of male mice fed *ad libitum* or fasted 14 h (n=10). Ad lib., *ad libitum* fed.

336 (B) Core body temperature of male mice housed at room temperature and fed *ad libitum* or fasted for
337 14 h (n=10).

338 (C) Blood glucose levels in male and female mice fed *ad libitum* or fasted for 14 h (n=8).

339 (D) Levels of plasma ketone bodies in male mice fed *ad libitum* or fasted for 14 h (n=8).

340 (E and F) Core body temperature of male mice housed in cold (5° Celsius) with or without food (n=10).

341 Data are presented as mean \pm SD. *p<0.05, **p<0.01, ***p<0.001.

342

343 **Figure 3. Lipodystrophy is uncoupled from detrimental metabolic effects in ADGAT DKO mice.**

344 (A) Adiponectin and leptin mRNA levels were moderately increased in iWAT of ADGAT DKO mice.

345 Relative mRNA levels of leptin and adiponectin in iWAT of chow-diet-fed male mice (n=6).

346 (B) Plasma levels of adiponectin were normal, and leptin levels were moderately decreased in *ad*
347 *libitum* chow-diet-fed male mice (n=8).

348 (C) Plasma leptin levels normalized per gram of WAT mass (n = 8).

349 (D) ADGAT DKO mice had normal glucose and insulin levels. Glucose and insulin levels in *ad libitum*
350 chow-diet-fed male mice (n=8).

351 (E) Decreased free fatty acids in ADGAT DKO mice. Levels of plasma metabolites in *ad libitum* chow-
352 diet-fed male mice (n=8).

353 (F) Decreased ketones in *ad libitum* chow-diet-fed ADGAT DKO male mice (n=8).
354 (G and H) Glucose- and insulin-tolerance tests were normal in chow-diet-fed male mice (n=10).
355 (I) ADGAT DKO mice had non-steatotic livers. Representative photographs of livers from chow-diet-fed
356 mice.
357 (J) Triglyceride were moderately increased in livers of ADGAT DKO mice. Triglyceride levels in livers
358 and skeletal muscle of chow-diet-fed male mice (n=6).

359 Data are presented as mean \pm SD. *p<0.05, **p<0.01, ***p<0.001.

360

361

362 **Figure 4. ADGAT DKO mice are resistant to diet-induced obesity and glucose intolerance.**

363 (A) ADGAT DKO mice stay lean on an HFD. Representative photographs of male mice fed on HFD for
364 12 weeks.

365 (B) Both male and female ADGAT DKO mice gained ~40% less body weight than control mice. Body
366 weights of mice fed on a chow-diet or HFD (n=15 for males, n=12 for females).

367 (C) ADGAT DKO mice had decreased fat mass on HFD feeding. DEXA analysis of lean mass and fat
368 mass of HFD fed male mice (n=10).

369 (D) ADGAT DKO male mice had normal food intake during HFD feeding (n=5).

370 (E and F) ADGAT DKO mice had increased energy expenditures. Energy expenditure and respiratory
371 quotient on HFD-fed male mice measured by indirect calorimetry. Values were normalized to lean mass
372 (n=4).

373 (G and H) ADGAT DKO mice were protected from HFD-induced glucose intolerance and insulin
374 resistance. Glucose- and insulin-tolerance tests were performed on HFD-fed (for 9 or 10 weeks,
375 respectively) male mice (n=10). AUC; area under the curve.

376 (I) Liver weights and triglyceride levels were moderately increased in HFD-fed ADGAT DKO male mice
377 (n=6).

378 Data are presented as mean \pm SD. *p<0.05, **p<0.01, ***p<0.001.

379

380 **Figure 5. Beiging of WAT in ADGAT DKO mice.**

381 (A) ADGAT DKO mice contain multi-locular LDs in adipocytes of iWAT. H&E-stained sections of iWAT
382 from male mice fed a chow diet and housed at room temperature (n=6). Scale bars, 50 μ m.

383 (B) Increased expression of thermogenic marker genes in iWAT of ADGAT DKO mice. Relative mRNA
384 levels of thermogenic genes in iWAT of male mice fed a chow diet and housed at room temperature
385 (n=6).

386 (C) ADGAT DKO mice contain multi-locular LDs in adipocytes of gWAT. H&E-stained sections of gWAT
387 from male mice fed a chow diet and housed at room temperature (n=6). Scale bars, 50 μ m.

388 (D) Increased expression of thermogenic marker genes in gWAT of ADGAT DKO mice. Relative mRNA
389 levels of thermogenic genes in gWAT of male mice fed a chow diet and housed at room temperature
390 (n=6).

391 (E) HFD feeding increases levels of UCP1 in iWAT of ADGAT DKO mice. Immunoblot analysis of
392 UCP1 and OXPHOS proteins in iWAT of male mice fed either a chow diet or an HFD (n=3). Mice were
393 housed at room temperature.

394 (F) Beiging was intact in iWAT of thermoneutral-housed ADGAT DKO mice. Relative mRNA levels of
395 thermogenic genes in iWAT of chow-diet-fed male mice housed at thermoneutral temperature for 6
396 weeks (n=6).

397 (G) Blood glucose levels were normal in thermoneutral housed ADGAT DKO mice. Glucose levels in
398 male mice fed a chow diet and housed at thermoneutral temperature for 6 weeks (n=8).

399 Data are presented as mean \pm SD. *p<0.05, **p<0.01, ***p<0.001.

400

401

402

403 **STAR★METHODS**

404 • KEY RESOURCES TABLE

405 • CONTACT FOR REAGENT AND RESOURCE SHARING

406 • EXPERIMENTAL MODEL AND SUBJECT DETAILS

407 o Generation of ADGAT DKO mice

408 o Animal Husbandry

409 o Cold exposure Studies

410 • METHOD DETAILS

411 o DGAT Activity Assay

412 o Tissue Lipid Analysis

413 o Microscopy and Image Processing

414 o [¹⁸F]-FDG-PET/CT Analysis

415 o RNA extraction and Quantitative Real-Time PCR

416 o Immunoblotting

417 o Comprehensive Lab Animal Monitoring System (CLAMS)

418 o Denervation of Adipose Tissue

419 • QUANTIFICATION AND STATISTICAL ANALYSIS

420

421 **CONTACT FOR REAGENT AND RESOURCES SHARING**

422 Further information and request for reagents and resources should be mailed to Robert V. Farese, Jr.
423 (robert@hsph.harvard.edu) and Tobias C. Walther (twalther@hsph.harvard.edu).

424

425 **EXPERIMENTAL PROCEDURES**

426 **Generation of ADGAT DKO Mice**

427 To generate adipose tissue-specific *Dgat1* and *Dgat2* double-knockout (ADGAT DKO) mice, we first
428 generated *Dgat1* and *Dgat2* double-floxed mice (D1D2 flox) by crossing *Dgat1*^{flox/flox} mice⁴³ (Jackson

429 Laboratory stock number: 017322) with *Dgat2*^{flox/flox} mice ⁴ (Jackson Laboratory stock number: 033518).
430 To generate ADGAT DKO mice, we crossed D1D2 flox mice with transgenic mice expressing Cre
431 recombinase under control of the murine adiponectin promoter ³ (Jackson Laboratory stock number:
432 028020).

433 **Animal Husbandry**

434 All mouse experiments were performed under the guidelines from Harvard Center for Comparative
435 Medicine. Mice were maintained in a barrier facility, at room temperatures (22–23°C), on a regular 12-h
436 light and 12-h dark cycle and had *ad libitum* access to food and water unless otherwise stated. For
437 thermoneutral studies, mice were housed at 29°C. Mice were fed on standard laboratory chow diet
438 (PicoLab® Rodent Diet 20, 5053; less than 4.5% crude fat) or Western-type high-fat diet (Envigo,
439 TD.88137; 21.2% fat by weight, 42% kcal from fat).

440 **Cold-Exposure Studies**

441 For cold-exposure experiments (at 5°C), mice were single-housed in the morning around 8:00 am. Mice
442 had free access to food and water unless otherwise stated. Core body temperatures were recorded
443 using a rectal probe thermometer.

444 **DGAT Activity Assay**

445 DGAT enzymatic activity was measured in WAT and BAT lysates at V_{max} substrate concentrations.
446 Assay mixture contained 20 µg of adipose tissue lysate, 100 µM of 1,2-dioleoyl-sn-glycerol, 25 µM of
447 oleoyl-CoA, which contained [¹⁴C] oleoyl-CoA as tracer, and 5 mM MgCl₂ in an assay in buffer
448 containing 100 mM Tris-HCl (pH 7.4) and protease inhibitors. Reactions were carried out as described
449 ^{2,44}. After stopping the reaction, lipids were extracted and separated by TLC using a hexane:diethyl
450 ether:acetic acid (80:20:1) solvent system. The TLC plates were exposed to phosphor imager screen
451 and developed.

452 **Tissue Lipid Analysis**

453 Approximately 50 mg of adipose tissue was homogenized in 1 mL of lysis buffer (250 mM sucrose, 50
454 mM Tris Cl, pH 7.0, with protease inhibitor cocktail (11873580001, Roche)). The homogenate was
455 mixed with 5 ml of chloroform: methanol (3:2 v:v) and extracted for 2 h by vigorous shaking. Upon
456 centrifugation at 3000 x g at room temperature for 10 min, 100 µL of lower organic phase was collected
457 and dried in a speed vac. To the dried lipids, 100–300 µL of 0.1% Triton X-100 was added, and the
458 solution was sonicated using ultrasonic homogenizer (Biologics, Inc., model 3000MP) for 10 sec with
459 30% amplitude. The total TG content was measured using the Infinity TM triglycerides reagent (Thermo
460 Scientific) according to the manufacturer's protocol. TG and total cholesterol were measured using
461 Infinity TM triglycerides reagent (Thermo Scientific) and a cholesterol E kit (Wako Diagnostics),
462 respectively, according to manufacturer's protocol. For plasma lipids measurement, 5 µL of plasma was
463 used directly.

464

465 **Microscopy and Image Processing**

466 Microscopy was performed on spinning disk confocal microscope (Yokogawa CSU-X1) set up on a
467 Nikon Eclipse Ti inverted microscope with a 100× ApoTIRF 1.4 NA objective (Nikon) in line with 2x
468 amplification. BODIPY 493/503 fluorophore was exited on 561-nm laser line. Fluorescence was
469 detected by an iXon Ultra 897 EMCCD camera (Andor). Acquired images were processed using FIJI
470 software (<http://fiji.sc/Fiji>).

471 **RNA Extraction and Quantitative Real-Time PCR (qRT-PCR)**

472 Total RNA from tissues was isolated with the Qiazol lysis reagent and using the protocol of the RNeasy
473 Kit (Qiagen). Complementary DNA was synthesized using the iScript cDNA Synthesis Kit (Bio-Rad),
474 and qPCRs were performed using the SYBR Green PCR Master Mix Kit (Applied Biosystems).

475 **Immunoblotting**

476 Tissues were lysed using RIPA lysis buffer (25 mM Tris Cl, pH 7.6, 150 mM NaCl, 1% NP-40, 1%
477 sodium deoxycholate, 0.1% SDS) containing protease inhibitors (11873580001, Roche). Proteins were

478 denatured in Laemmli buffer and separated on 10% SDS-PAGE gels and transferred to PVDF
479 membranes (Bio-Rad). The membranes were blocked with blocking buffer for 1 h in TBST containing
480 5% BSA or 5% milk, and then incubated with primary antibodies overnight. The membranes were then
481 washed three times with TBST for 10 min, and incubated in mouse secondary antibodies (Santa Cruz
482 Biotechnology) at 1:5000 dilutions in blocking buffer. Membranes was washed again three times with
483 TBST for 10 min, and revealed using the Super Signal West Pico kit (Thermo Scientific).

484 **Comprehensive Lab Animal Monitoring System (CLAMS)**

485 Mice were housed individually and acclimatized for 2 days. Oxygen consumption, carbon dioxide
486 release, energy expenditure, and activity were measured using a Columbus Instruments' Oxymax
487 Comprehensive Lab Animal Monitoring System (CLAMS) system according to guidelines for measuring
488 energy metabolism in mice ⁴⁵.

489 **Lipidomics Analysis**

490 For lipidomic analysis of iWAT, ~50 mg of iWAT was homogenized in 1 mL ice-cold phosphate-buffered
491 saline using a bead mill homogenizer. Tissue lysates (50 µg) were transferred to a pyrex glass tubes
492 with a PTFE-liner cap. Lipids were extracted by Folch method ⁴⁶, briefly, 6 mL of ice-cold chloroform-
493 methanol (2:1 v/v) and 1.5 mL of water were added to the samples, and tubes were vortexed
494 thoroughly to mix the samples homogenously with a polar and non-polar solvent. SPLAH mix internal
495 standards were spiked in before the extraction. The organic phase of each sample was normalized by
496 total soluble protein amounts and measured by BCA assay (Thermo Scientific, 23225, Waltham, MA).
497 After vortexing, samples were centrifuged for 30 min at 1100 rpm at 4°C to separate the organic and
498 inorganic phases. Using a sterile glass pipette, the lower organic phase was transferred into a new
499 glass tube, taking care to avoid the intermediate layer of cellular debris and precipitated proteins. The
500 samples were dried under nitrogen flow until the solvents were completely dried. Samples were
501 resuspended in 250 µL of chloroform: methanol 2:1 and stored in -80 until mass spectrometer (MS)
502 analysis. Lipids were separated using ultra-high-performance liquid chromatography (UHPLC) coupled

503 with tandem MS. Briefly, UHPLC analysis was performed on a C30 reverse-phase column (Thermo
504 Acclaim C30, 2.1 x 250 mm, 3 μ m operated at 55° C; Thermo Fisher Scientific) connected to a Dionex
505 UltiMate 3000 HPLC system and a QExactive orbitrap MS (Thermo Fisher Scientific) equipped with a
506 heated electrospray ionization probe. 5 μ L of each sample was analyzed separately, using positive and
507 negative ionization modes. Mobile phase contained 60:40 water:acetonitrile (v:v), 10 mM ammonium
508 formate and 0.1% formic acid, and mobile phase B consisted of 90:10 2-propanol/acetonitrile, also
509 including 10 mM ammonium formate and 0.1% formic acid. MS spectra of lipids were acquired in full-
510 scan/data-dependent MS2 mode. For the full-scan acquisition, the resolution was set to 70,000, the
511 AGC target was 1e6, the maximum injection time was 50 msec, and the scan range was m/z = 133.4–
512 2000. For data-dependent MS2, the top 10 ions in each full scan were isolated with a 1.0 Da window,
513 fragmented at a stepped normalized collision energy of 15, 25, and 35 units, and analyzed at a
514 resolution of 17,500 with an AGC target of 2e5 and a maximum injection time of 100 msec. Peak
515 identification and data analysis were carried out using Lipid Search software version 4.1 SP (Thermo
516 Fisher Scientific) ⁴⁷.

517 Metabolomic Analysis

518 BAT and iWAT was snap frozen in liquid nitrogen and ground at cryogenic temperature with a cyromill
519 (Retsch, Newtown, PA). The tissue was extracted with -20°C 40: 40: 20 methanol: acetonitrile: water at
520 a concentration of 25 mg/mL. Samples were vigorously vortexed and centrifuged at 4 °C at 16,000 g for
521 10 min, and the supernatant was transferred to LC-MS vials for analysis. Chromatographic separation
522 was performed using XBridge BEH Amide XP Column (2.5 μ m, 2.1 mm x 150 mm) with associated
523 guard column (2.5 μ m, 2.1 mm X 5 mm) (Waters, Milford, MA). The mobile phase A was 95% water
524 and 5% acetonitrile, containing 10 mM ammonium hydroxide and 10 mM ammonium acetate. The
525 mobile phase B was 80% acetonitrile and 20% water, with 10 mM ammonium hydroxide and 10 mM
526 ammonium acetate. The linear elution gradient was: 0 ~ 3 min, 100% B; 3.2 ~ 6.2 min, 90% B; 6.5. ~
527 10.5 min, 80% B; 10.7 ~ 13.5 min, 70% B; 13.7 ~ 16 min, 45% B; and 16.5 ~ 22 min, 100% B. The flow
528 rate was 0.3 mL/ min. The autosampler was maintained at 4°C. The injection volume was 5 μ L, and

529 needle wash was performed between samples using 40: 40: 20 methanol: acetonitrile: water. The MS
530 used was Q Exactive HF (Thermo Fisher Scientific, San Jose, CA), and scanned from 70 to 1000 *m/z*
531 with switching polarity. The resolution was 120,000. Metabolites were identified based on accurate
532 mass and retention time using an in-house library, and the software used was EI-Maven (Elucida, Cambridge, MA). Data was analyzed using R software (version 4.2.0). The ion intensity of each sample
533 was first normalized to the corresponding sample protein content. Differentially abundant metabolites
534 were analyzed with the limma R/Bioconductor package, and the multiple comparisons were corrected
535 using the Benjamini-Hochberg procedure (adjusted *p* value; *q* value). The volcano plots were generated
536 using the ggplot and ggrepel packages.
537

538

539

540 Statistical Analyses

541 Data are presented as mean \pm SD (standard deviation). Statistical significance was evaluated by
542 unpaired two-tailed Student's t-test or two-way ANOVA with Bonferroni's multiple comparison test.
543 Significant differences are annotated as follows: **p* < 0.05, ***p* < 0.01, ****p* < 0.001.

544

545 REFERENCES

- 546 1. Cases, S., Smith, S.J., Zheng, Y.W., Myers, H.M., Lear, S.R., Sande, E., Novak, S., Collins, C., Welch, C.B., Lusis, A.J., et al. (1998). Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci U S A 95, 13018-13023.
- 547 2. Cases, S., Stone, S.J., Zhou, P., Yen, E., Tow, B., Lardizabal, K.D., Voelker, T., and Farese, R.V., Jr. (2001). Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem 276, 38870-38876. 10.1074/jbc.M106219200.
- 548 3. Eguchi, J., Wang, X., Yu, S., Kershaw, E.E., Chiu, P.C., Dushay, J., Estall, J.L., Klein, U., Maratos-Flier, E., and Rosen, E.D. (2011). Transcriptional control of adipose lipid handling by IRF4. Cell Metab 13, 249-259. 10.1016/j.cmet.2011.02.005.
- 549 4. Chitruju, C., Walther, T.C., and Farese, R.V., Jr. (2019). The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. J Lipid Res 60, 1112-1120. 10.1194/jlr.M093112.
- 550 5. Chitruju, C., Fischer, A.W., Farese, R.V., Jr., and Walther, T.C. (2020). Lipid Droplets in Brown Adipose Tissue Are Dispensable for Cold-Induced Thermogenesis. Cell Rep 33, 108348. 10.1016/j.celrep.2020.108348.

561 6. Stone, S.J., Myers, H.M., Watkins, S.M., Brown, B.E., Feingold, K.R., Elias, P.M., and Farese, R.V., Jr.
562 (2004). Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. *J Biol Chem* 279, 11767-
563 11776. 10.1074/jbc.M311000200.

564 7. Harris, C.A., Haas, J.T., Streepere, R.S., Stone, S.J., Kumari, M., Yang, K., Han, X., Brownell, N., Gross,
565 R.W., Zechner, R., and Farese, R.V., Jr. (2011). DGAT enzymes are required for triacylglycerol synthesis
566 and lipid droplets in adipocytes. *J Lipid Res* 52, 657-667. 10.1194/jlr.M013003.

567 8. Yen, C.L., Brown, C.H.t., Monetti, M., and Farese, R.V., Jr. (2005). A human skin multifunctional O-
568 acyltransferase that catalyzes the synthesis of acylglycerols, waxes, and retinyl esters. *J Lipid Res* 46,
569 2388-2397. 10.1194/jlr.M500168-JLR200.

570 9. Oral, E.A., Simha, V., Ruiz, E., Andewelt, A., Premkumar, A., Snell, P., Wagner, A.J., DePaoli, A.M.,
571 Reitman, M.L., Taylor, S.I., et al. (2002). Leptin-replacement therapy for lipodystrophy. *N Engl J Med* 346,
572 570-578. 10.1056/NEJMoa012437.

573 10. Reue, K., and Phan, J. (2006). Metabolic consequences of lipodystrophy in mouse models. *Curr Opin
574 Clin Nutr Metab Care* 9, 436-441. 10.1097/01.mco.0000232904.82038.db.

575 11. Peterfy, M., Phan, J., Xu, P., and Reue, K. (2001). Lipodystrophy in the fld mouse results from mutation of
576 a new gene encoding a nuclear protein, lipin. *Nat Genet* 27, 121-124. 10.1038/83685.

577 12. Cui, X., Wang, Y., Tang, Y., Liu, Y., Zhao, L., Deng, J., Xu, G., Peng, X., Ju, S., Liu, G., and Yang, H.
578 (2011). Seipin ablation in mice results in severe generalized lipodystrophy. *Hum Mol Genet* 20, 3022-
579 3030. 10.1093/hmg/ddr205.

580 13. Moitra, J., Mason, M.M., Olive, M., Krylov, D., Gavrilova, O., Marcus-Samuels, B., Feigenbaum, L., Lee,
581 E., Aoyama, T., Eckhaus, M., et al. (1998). Life without white fat: a transgenic mouse. *Genes Dev* 12,
582 3168-3181. 10.1101/gad.12.20.3168.

583 14. Shimomura, I., Hammer, R.E., Richardson, J.A., Ikemoto, S., Bashmakov, Y., Goldstein, J.L., and Brown,
584 M.S. (1998). Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in
585 adipose tissue: model for congenital generalized lipodystrophy. *Genes Dev* 12, 3182-3194.
586 10.1101/gad.12.20.3182.

587 15. Becher, T., Palanisamy, S., Kramer, D.J., Eljalby, M., Marx, S.J., Wibmer, A.G., Butler, S.D., Jiang, C.S.,
588 Vaughan, R., Schoder, H., et al. (2021). Brown adipose tissue is associated with cardiometabolic health.
589 *Nat Med* 27, 58-65. 10.1038/s41591-020-1126-7.

590 16. Wu, J., Bostrom, P., Sparks, L.M., Ye, L., Choi, J.H., Giang, A.H., Khandekar, M., Virtanen, K.A., Nuutila,
591 P., Schaart, G., et al. (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and
592 human. *Cell* 150, 366-376. 10.1016/j.cell.2012.05.016.

593 17. van Marken Lichtenbelt, W.D., Vanhommerig, J.W., Smulders, N.M., Drossaerts, J.M., Kemerink, G.J.,
594 Bouvy, N.D., Schrauwen, P., and Teule, G.J. (2009). Cold-activated brown adipose tissue in healthy men.
595 *N Engl J Med* 360, 1500-1508. 10.1056/NEJMoa0808718.

596 18. Kazak, L., Chouchani, E.T., Jedrychowski, M.P., Erickson, B.K., Shinoda, K., Cohen, P., Vetrivelan, R.,
597 Lu, G.Z., Laznik-Bogoslavski, D., Hasenfuss, S.C., et al. (2015). A creatine-driven substrate cycle
598 enhances energy expenditure and thermogenesis in beige fat. *Cell* 163, 643-655.
599 10.1016/j.cell.2015.09.035.

600 19. Kajimura, S., Spiegelman, B.M., and Seale, P. (2015). Brown and Beige Fat: Physiological Roles beyond
601 Heat Generation. *Cell Metab* 22, 546-559. 10.1016/j.cmet.2015.09.007.

602 20. Harms, M., and Seale, P. (2013). Brown and beige fat: development, function and therapeutic potential.
603 *Nat Med* 19, 1252-1263. 10.1038/nm.3361.

604 21. Fisher, F.M., Kleiner, S., Douris, N., Fox, E.C., Mepani, R.J., Verdeguer, F., Wu, J., Kharitonov, A.,
605 Flier, J.S., Maratos-Flier, E., and Spiegelman, B.M. (2012). FGF21 regulates PGC-1alpha and browning
606 of white adipose tissues in adaptive thermogenesis. *Genes Dev* 26, 271-281. 10.1101/gad.177857.111.

607 22. Owen, B.M., Ding, X., Morgan, D.A., Coate, K.C., Bookout, A.L., Rahmouni, K., Kliewer, S.A., and
608 Mangelsdorf, D.J. (2014). FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure,
609 and weight loss. *Cell Metab* 20, 670-677. 10.1016/j.cmet.2014.07.012.

610 23. Abu-Odeh, M., Zhang, Y., Reilly, S.M., Ebadat, N., Keinan, O., Valentine, J.M., Hafezi-Bakhtiari, M.,
611 Ashayer, H., Mamoun, L., Zhou, X., et al. (2021). FGF21 promotes thermogenic gene expression as an
612 autocrine factor in adipocytes. *Cell Rep* 35, 109331. 10.1016/j.celrep.2021.109331.

613 24. Gavrilova, O., Leon, L.R., Marcus-Samuels, B., Mason, M.M., Castle, A.L., Refetoff, S., Vinson, C., and
614 Reitman, M.L. (1999). Torpor in mice is induced by both leptin-dependent and -independent mechanisms.
615 *Proc Natl Acad Sci U S A* 96, 14623-14628. 10.1073/pnas.96.25.14623.

616 25. Mann, J.P., and Savage, D.B. (2019). What lipodystrophies teach us about the metabolic syndrome. *J
617 Clin Invest* 129, 4009-4021. 10.1172/JCI129190.

618 26. Patni, N., and Garg, A. (2015). Congenital generalized lipodystrophies--new insights into metabolic
619 dysfunction. *Nat Rev Endocrinol* 11, 522-534. 10.1038/nrendo.2015.123.

620 27. Lawrence, R.D. (1946). Lipodystrophy and hepatomegaly with diabetes, lipaemia, and other metabolic
621 disturbances; a case throwing new light on the action of insulin. (concluded). *Lancet* 1, 773.
622 10.1016/s0140-6736(46)91599-1.

623 28. Misra, A., and Garg, A. (2003). Clinical features and metabolic derangements in acquired generalized
624 lipodystrophy: case reports and review of the literature. *Medicine (Baltimore)* 82, 129-146.
625 10.1097/00005792-200303000-00007.

626 29. Reitman, M.L. (2002). Metabolic lessons from genetically lean mice. *Annu Rev Nutr* 22, 459-482.
627 10.1146/annurev.nutr.22.010402.102849.

628 30. Lim, K., Haider, A., Adams, C., Sleigh, A., and Savage, D.B. (2021). Lipodystrophy: a paradigm for
629 understanding the consequences of "overloading" adipose tissue. *Physiol Rev* 101, 907-993.
630 10.1152/physrev.00032.2020.

631 31. Friedman, J.M. (2019). Leptin and the endocrine control of energy balance. *Nat Metab* 1, 754-764.
632 10.1038/s42255-019-0095-y.

633 32. Shimomura, I., Hammer, R.E., Ikemoto, S., Brown, M.S., and Goldstein, J.L. (1999). Leptin reverses
634 insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. *Nature* 401, 73-76.
635 10.1038/43448.

636 33. Savage, D.B. (2009). Mouse models of inherited lipodystrophy. *Dis Model Mech* 2, 554-562.
637 10.1242/dmm.002907.

638 34. Garg, A. (2004). Acquired and inherited lipodystrophies. *N Engl J Med* 350, 1220-1234.
639 10.1056/NEJMra025261.

640 35. Wang, M.Y., Chen, L., Clark, G.O., Lee, Y., Stevens, R.D., Ilkayeva, O.R., Wenner, B.R., Bain, J.R.,
641 Charron, M.J., Newgard, C.B., and Unger, R.H. (2010). Leptin therapy in insulin-deficient type I diabetes.
642 *Proc Natl Acad Sci U S A* 107, 4813-4819. 10.1073/pnas.0909422107.

643 36. Maffei, M., Halaas, J., Ravussin, E., Pratley, R.E., Lee, G.H., Zhang, Y., Fei, H., Kim, S., Lallone, R.,
644 Ranganathan, S., and et al. (1995). Leptin levels in human and rodent: measurement of plasma leptin
645 and ob RNA in obese and weight-reduced subjects. *Nat Med* 1, 1155-1161. 10.1038/nm1195-1155.

646 37. Smith, S.J., Cases, S., Jensen, D.R., Chen, H.C., Sande, E., Tow, B., Sanan, D.A., Raber, J., Eckel,
647 R.H., and Farese, R.V., Jr. (2000). Obesity resistance and multiple mechanisms of triglyceride synthesis
648 in mice lacking Dgat. *Nat Genet* 25, 87-90. 10.1038/75651.

649 38. Chen, H.C., Smith, S.J., Ladha, Z., Jensen, D.R., Ferreira, L.D., Pulawa, L.K., McGuire, J.G., Pitas, R.E.,
650 Eckel, R.H., and Farese, R.V., Jr. (2002). Increased insulin and leptin sensitivity in mice lacking acyl
651 CoA:diacylglycerol acyltransferase 1. *J Clin Invest* 109, 1049-1055. 10.1172/JCI14672.

652 39. Chen, H.C., Jensen, D.R., Myers, H.M., Eckel, R.H., and Farese, R.V., Jr. (2003). Obesity resistance and
653 enhanced glucose metabolism in mice transplanted with white adipose tissue lacking acyl
654 CoA:diacylglycerol acyltransferase 1. *J Clin Invest* 111, 1715-1722. 10.1172/JCI15859.

655 40. Chen, H.C., Rao, M., Sajan, M.P., Standaert, M., Kanoh, Y., Miura, A., Farese, R.V., Jr., and Farese, R.V.
656 (2004). Role of adipocyte-derived factors in enhancing insulin signaling in skeletal muscle and white
657 adipose tissue of mice lacking Acyl CoA:diacylglycerol acyltransferase 1. *Diabetes* 53, 1445-1451.
658 10.2337/diabetes.53.6.1445.

659 41. Inagaki, T., Dutchak, P., Zhao, G., Ding, X., Gautron, L., Parameswara, V., Li, Y., Goetz, R., Mohammadi,
660 M., Esser, V., et al. (2007). Endocrine regulation of the fasting response by PPARalpha-mediated
661 induction of fibroblast growth factor 21. *Cell Metab* 5, 415-425. 10.1016/j.cmet.2007.05.003.

662 42. Kwon, M.M., O'Dwyer, S.M., Baker, R.K., Covey, S.D., and Kieffer, T.J. (2015). FGF21-Mediated
663 Improvements in Glucose Clearance Require Uncoupling Protein 1. *Cell Rep* 13, 1521-1527.
664 10.1016/j.celrep.2015.10.021.

665 43. Shih, M.Y., Kane, M.A., Zhou, P., Yen, C.L., Streeper, R.S., Napoli, J.L., and Farese, R.V., Jr. (2009).
666 Retinol Esterification by DGAT1 Is Essential for Retinoid Homeostasis in Murine Skin. *J Biol Chem* 284,
667 4292-4299. 10.1074/jbc.M807503200.

668 44. Chitraju, C., Mejhert, N., Haas, J.T., Diaz-Ramirez, L.G., Grueter, C.A., Imbriglio, J.E., Pinto, S., Koliwad,
669 S.K., Walther, T.C., and Farese, R.V., Jr. (2017). Triglyceride Synthesis by DGAT1 Protects Adipocytes
670 from Lipid-Induced ER Stress during Lipolysis. *Cell Metab* 26, 407-418 e403.
671 10.1016/j.cmet.2017.07.012.

672 45. Tschop, M.H., Speakman, J.R., Arch, J.R., Auwerx, J., Bruning, J.C., Chan, L., Eckel, R.H., Farese, R.V.,
673 Jr., Galgani, J.E., Hambly, C., et al. (2011). A guide to analysis of mouse energy metabolism. *Nat
674 Methods* 9, 57-63. 10.1038/nmeth.1806.

675 46. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of
676 total lipides from animal tissues. *J Biol Chem* 226, 497-509.
677 47. Taguchi, R., and Ishikawa, M. (2010). Precise and global identification of phospholipid molecular species
678 by an Orbitrap mass spectrometer and automated search engine Lipid Search. *J Chromatogr A* 1217,
679 4229-4239. 10.1016/j.chroma.2010.04.034.

680

681

682

683

684

685

686

687

688

689 **SUPPLEMENTAL INFORMATION**

690 **FIGURE LEGENDS FOR SUPPLEMENTAL FIGURES**

691 **Figure 1—figure supplement 1.**

692 (A) *Dgat1* and *Dgat2* transcripts levels were decreased in iWAT and BAT of ADGAT DKO mice.
693 Relative mRNA levels in iWAT and BAT of male mice fed a chow diet (n=6).
694 (B) DGAT1 and DGAT2 proteins were absent in iWAT and BAT of ADGAT DKO mice. Western blot
695 analysis of DGAT1 and DGAT2 in iWAT and BAT of male mice fed a chow diet (n=4).
696 (C) *In-vitro* DGAT activity was decreased in lysates of iWAT and BAT of ADGAT DKO male mice (n=4).
697 (D) *In-vitro* DGAT activity was decreased in isolated adipocytes from iWAT of ADGAT DKO male mice
698 (n=4).
699 (E) Body weights, lean mass and fat mass analysis of 1-year-old male mice fed a chow diet (n=10).
700 (F) Gross appearance of WAT depots in male mice. **p<0.01, ***p<0.001.

701 (G) Relative mRNA levels of MGAT enzymes in iWAT of male mice fed a chow diet (n=6).

702

703 **Figure 1—figure supplement 2.**

704 (A) Gross appearance of BAT.

705 (B) H&E-stained sections of iBAT (n=6). Scale bars, 50 μ m.

706 (C) Triglycerides and total cholesterol levels in BAT (n=6).

707 (D) [18 F]-FDG-PET/CT scans of male mice administered CL 316,243.

708 (E) Glycogen levels in iBAT of male mice (n=6).

709 Data are presented as mean \pm SD. ***p<0.001.

710

711 **Figure 1—figure supplement 3.**

712 (A) Triglycerides were decreased in iWAT of ADGAT DKO male mice (n=6). Triglyceride levels were
713 measured using Infinity triglyceride reagent.

714 (B) Diacylglycerol and mono alkyl-diacylglycerol were decreased in iWAT of ADGAT DKO mice (n=6).
715 Lipids were quantified by mass spectrometry.

716 (C) Triglyceride molecular species were decreased in iWAT of ADGAT DKO mice (n=6). Lipids were
717 quantified by mass spectrometry.

718 Data are presented as mean \pm SD. *p<0.05, **p<0.01, ***p<0.001.

719

720 **Figure 4—figure supplement 1.**

721 (A) LDs isolated from iWAT of mice fed an HFD.

722 (B) Blood glucose levels in high-fat-diet fed male mice (n=8).

723 (C) Insulin levels in high-fat-diet fed male mice (n=8).

724 (D) Relative mRNA levels in livers of HFD mice (n=6).

725 Data are presented as mean \pm SD. *p<0.05, **p<0.01, ***p<0.001.

726

727 **Figure 5—figure supplement 1.**

728 (A) Volcano plot showing differentially abundant metabolites in iWAT of chow-diet-fed male mice (n=8).
729 (B) Volcano plot showing differentially abundant metabolites in iBAT of chow-diet-fed male mice (n=8).
730 Orange dots represent metabolites with more than twofold change (adjusted p values or q<0.05)). Blue
731 dots represent metabolites with more than twofold change but not statistically significant. Grey dots
732 represent metabolites that were unchanged between control and ADGAT DKO mice.

733

734 **Figure 5—figure supplement 2.**

735 (A) Primary adipocytes differentiated from stromal vascular fraction of iWAT from ADGAT DKO male
736 mice contain lipid droplets. LDs were stained by BODIPY 493/503.
737 (B and C) Western blot analysis of DGATs and UCP1 in primary adipocytes (n=3).
738 (D) Relative mRNA levels in day-8 primary adipocytes loaded with oleic acid for 16 h (n=3).
739 Data are presented as mean \pm SD. *p<0.05, **p<0.01, ***p<0.001.

740 **Figure 5—figure supplement 3.**

741 (A) FGF21 transcript levels were increased in iWAT and livers of ADGAT DKO mice. Relative mRNA
742 levels of FGF21 in iWAT and livers of chow-diet fed male mice (n=6).
743 (B) FGF21 levels were increased in ADGAT DKO mice. Plasma levels of FGF21 in chow-diet-fed (*ad*
744 *libitum* fed or 14 h fasted) or HFD-fed male mice (n=8).
745 (C) FGF21 transcript levels in livers of chow-diet- or HFD-fed male mice (n=6).
746 (D) Triglyceride levels in livers of chow-diet- or HFD-fed male mice (n=6).
747 Data are presented as mean \pm SD. *p<0.05, **p<0.01, ***p<0.001.

748

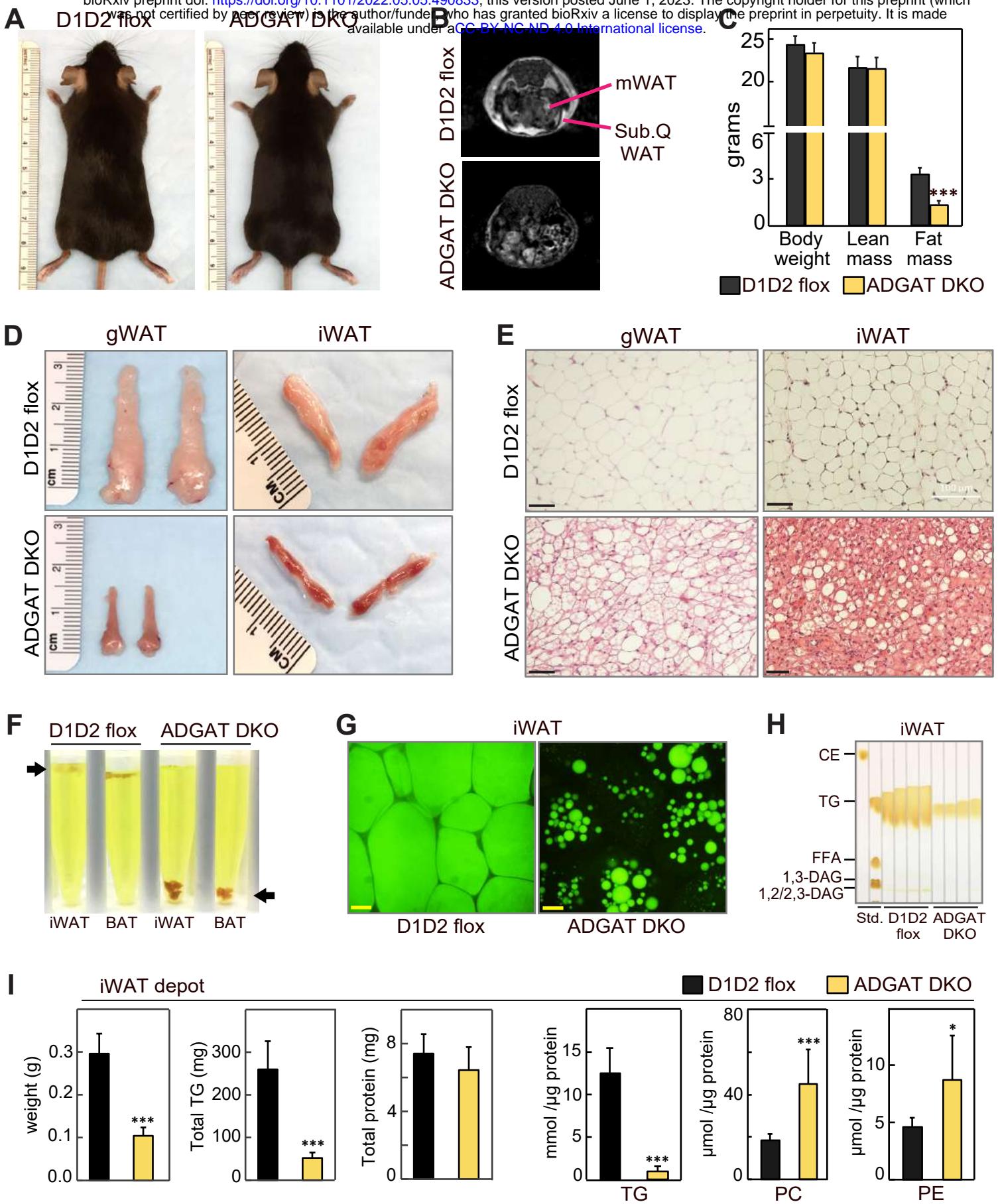
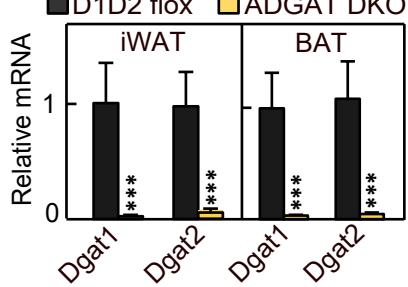
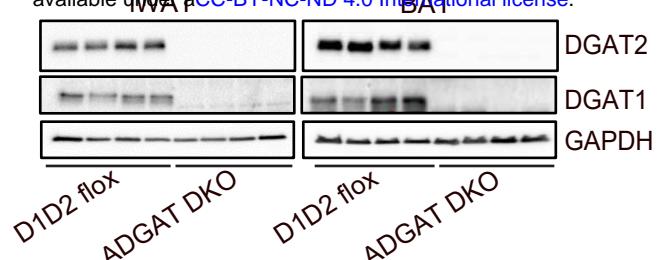
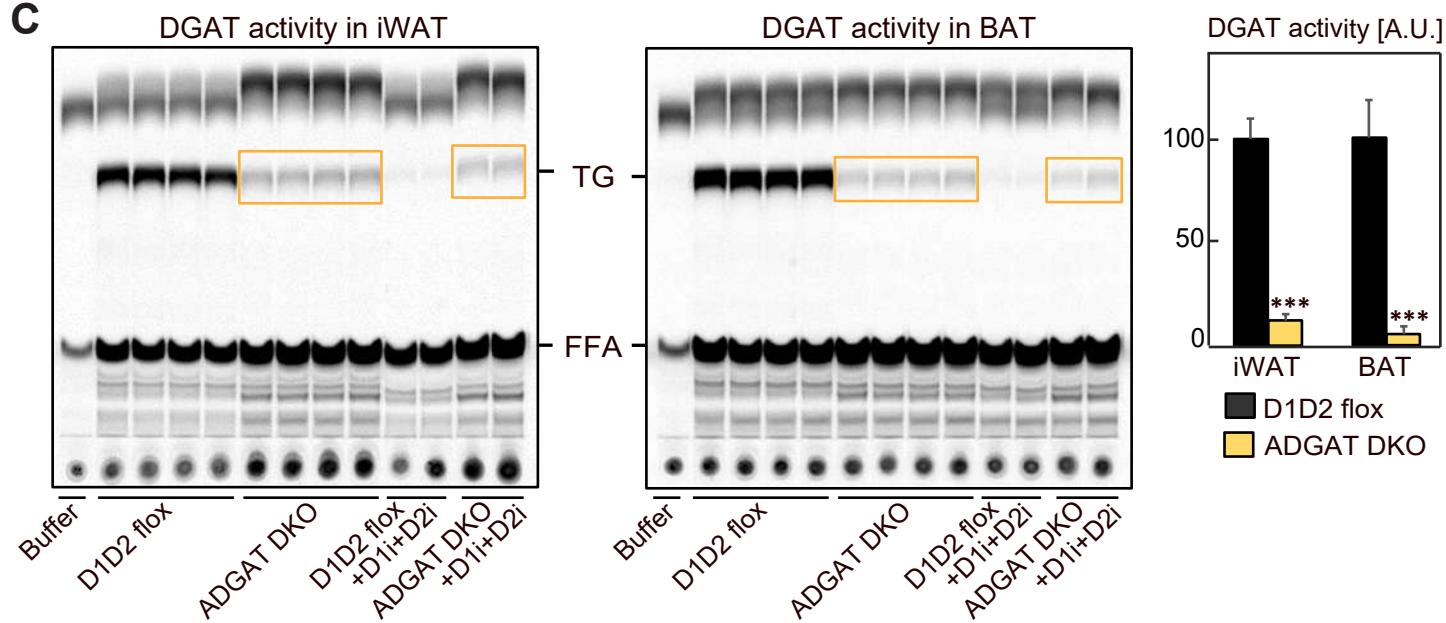
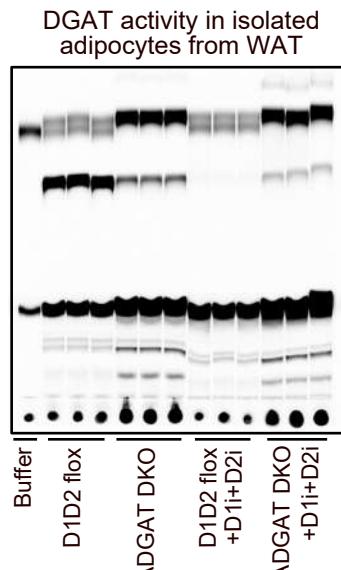
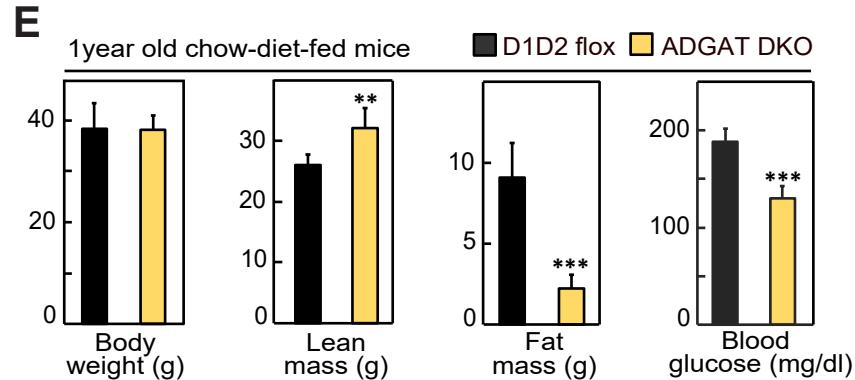
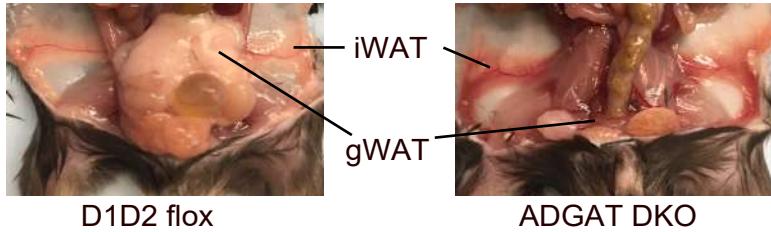




Figure 1


A


B


C


D

E

F

G

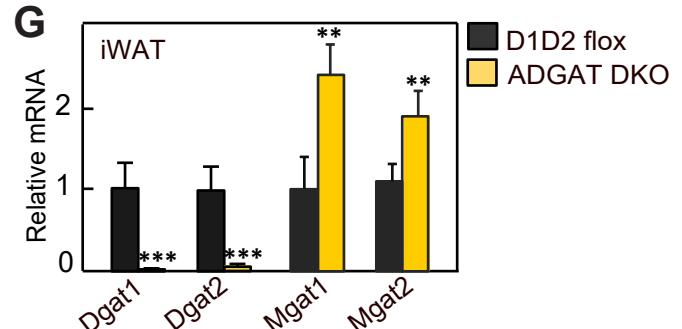
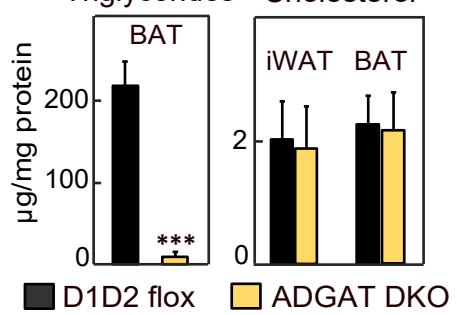
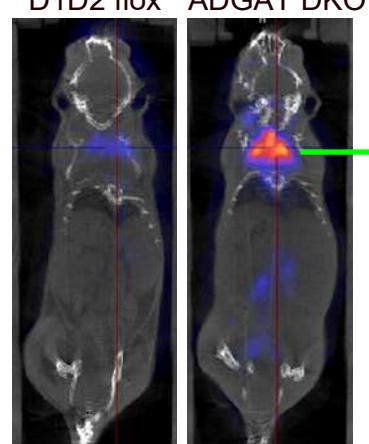


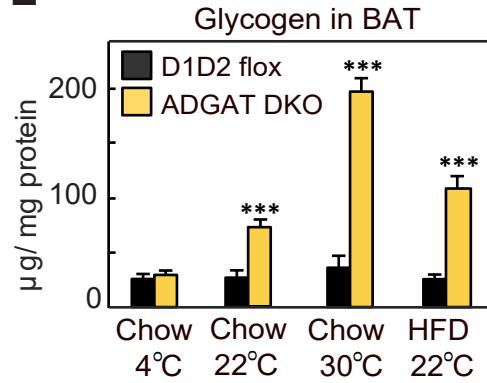
Figure 1 - figure supplement 1

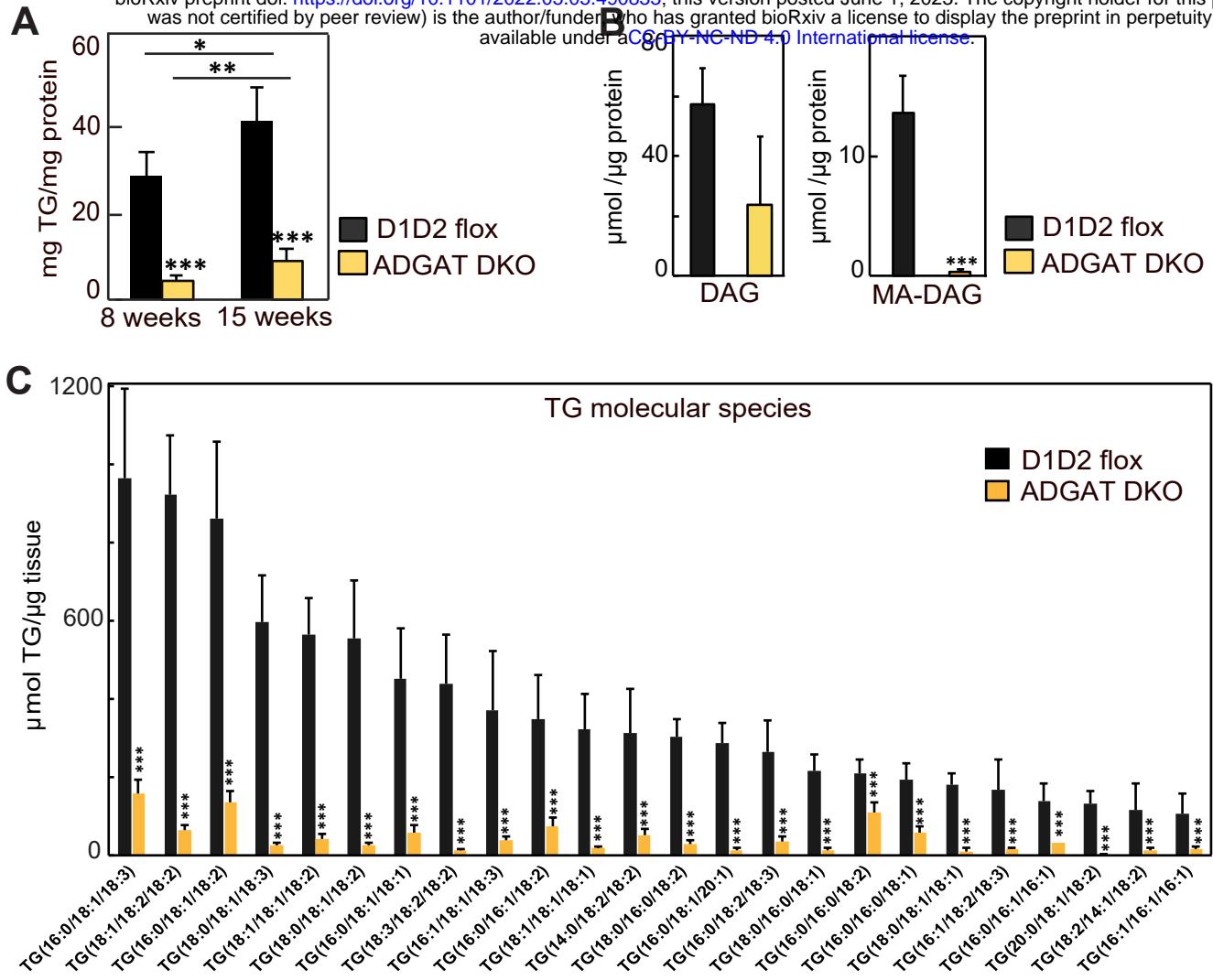
A



D1D2 flox
ADGAT DKO


B BAT


C Triglycerides Cholesterol


D

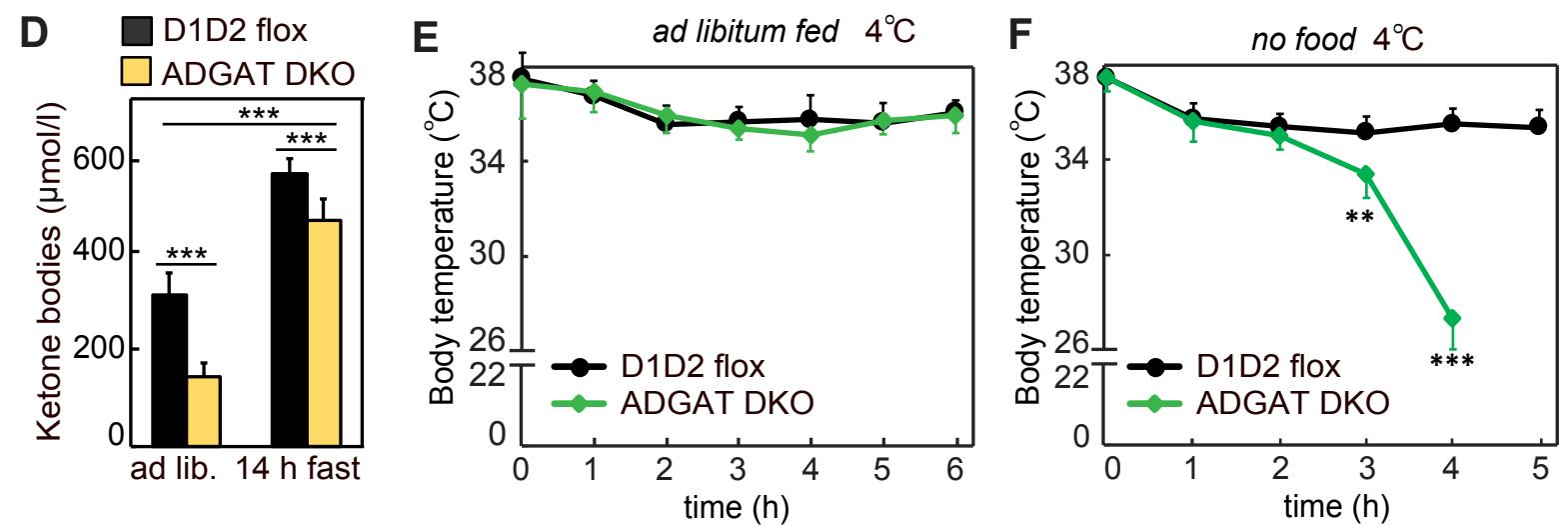
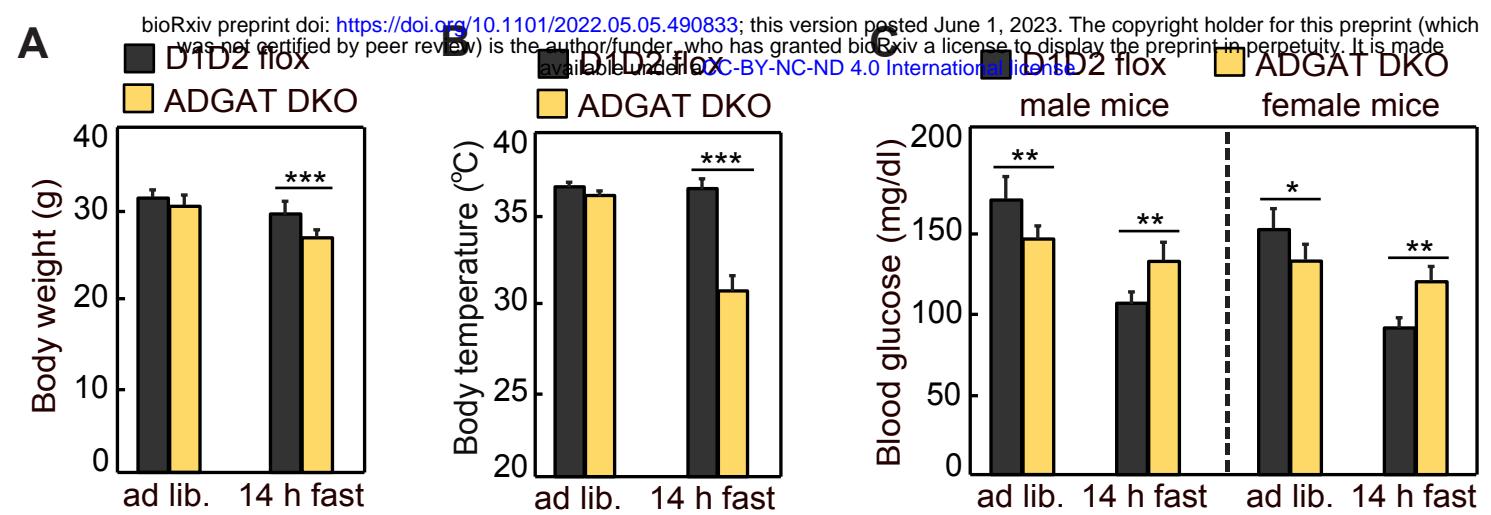


E

Figure 1 - figure supplement 2

Figure 1 - figure supplement 3

Figure 2

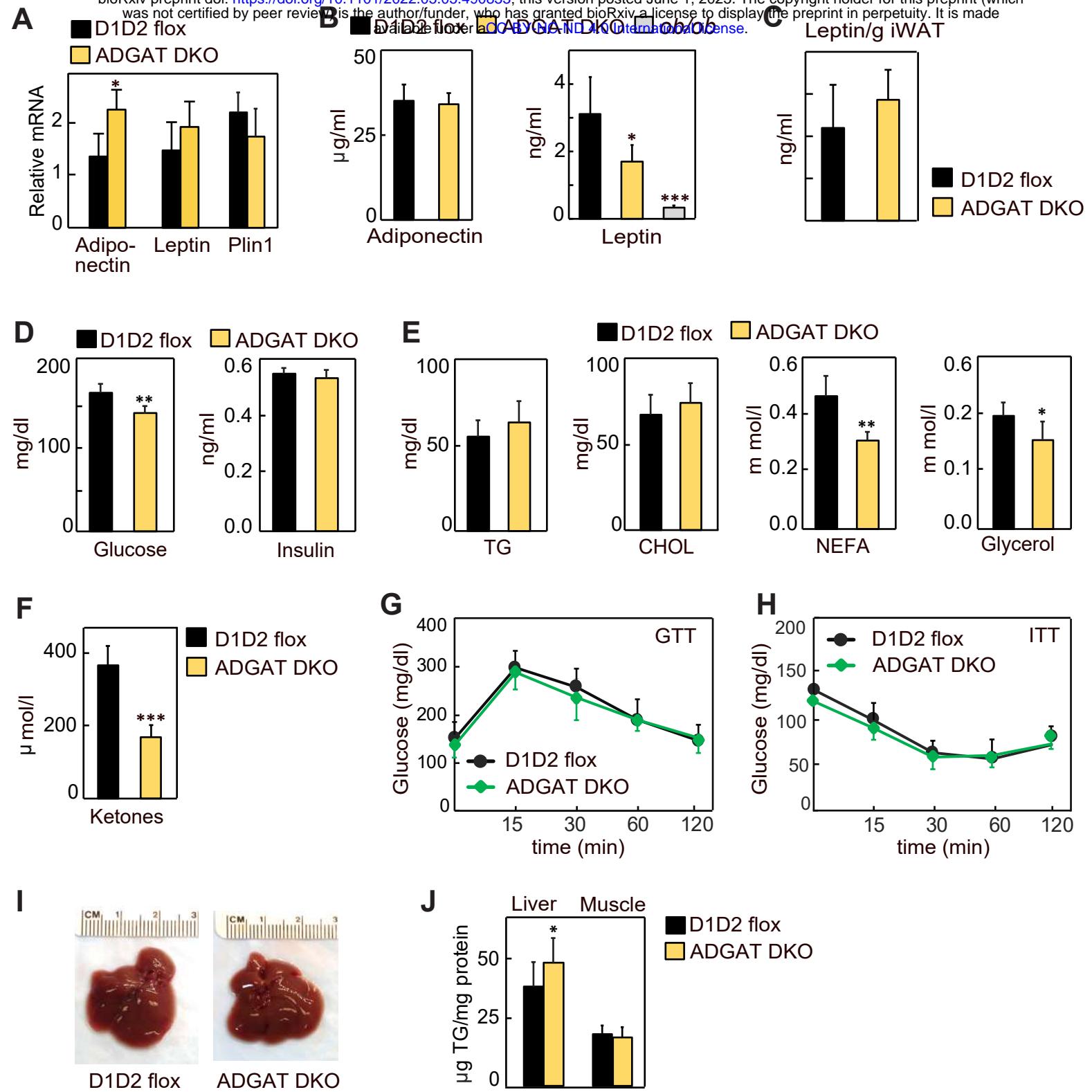
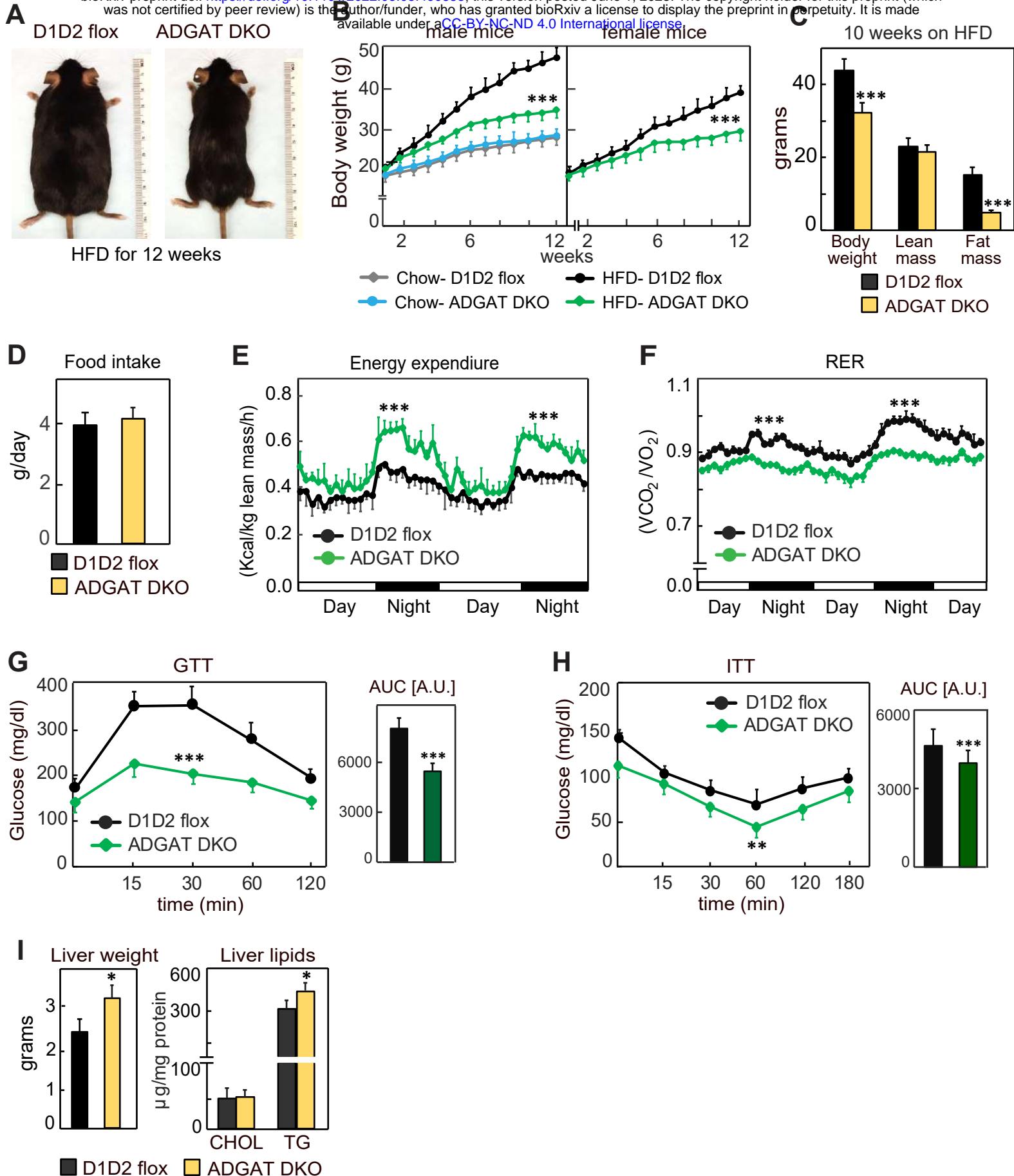



Figure 3

Figure 4

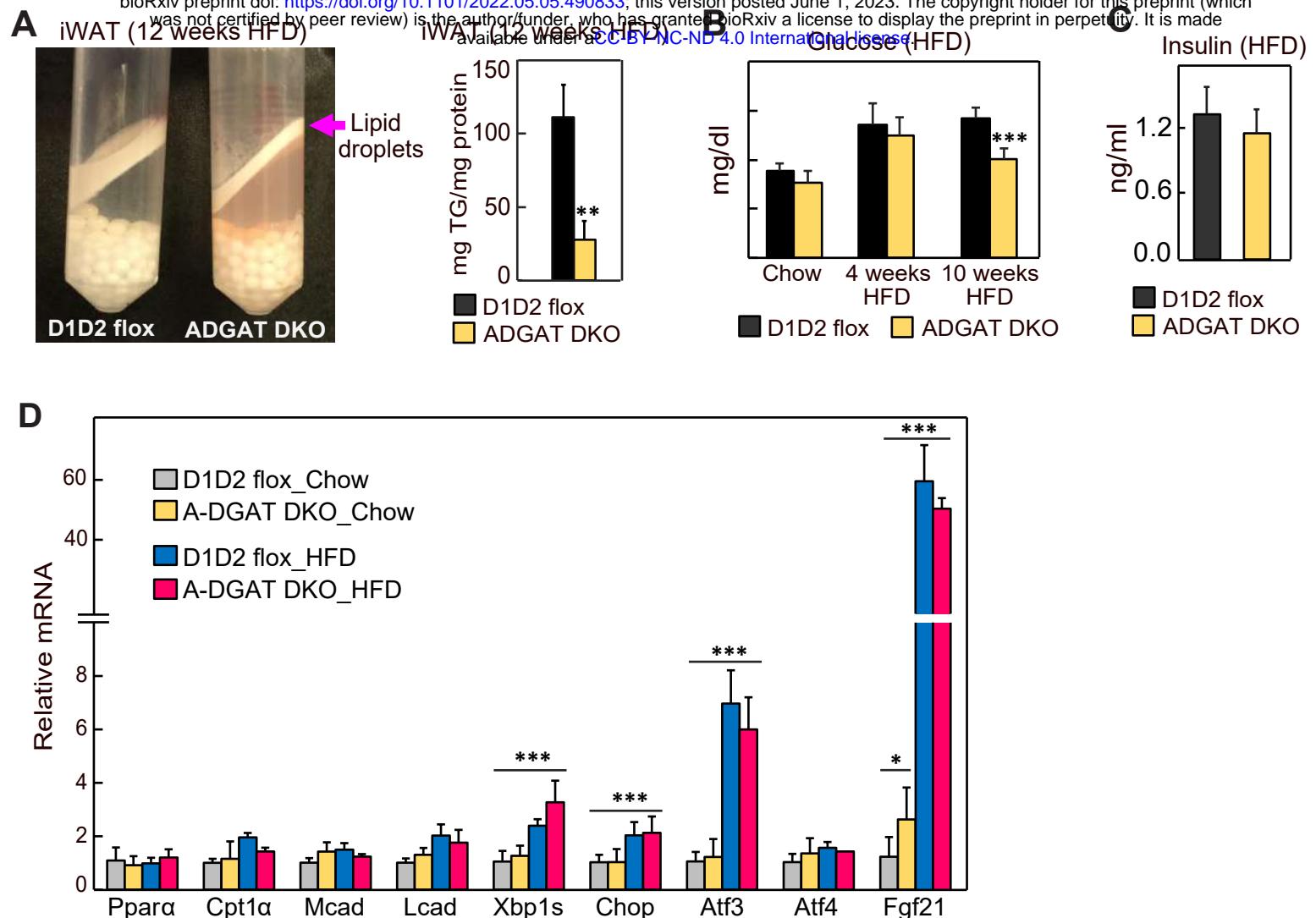
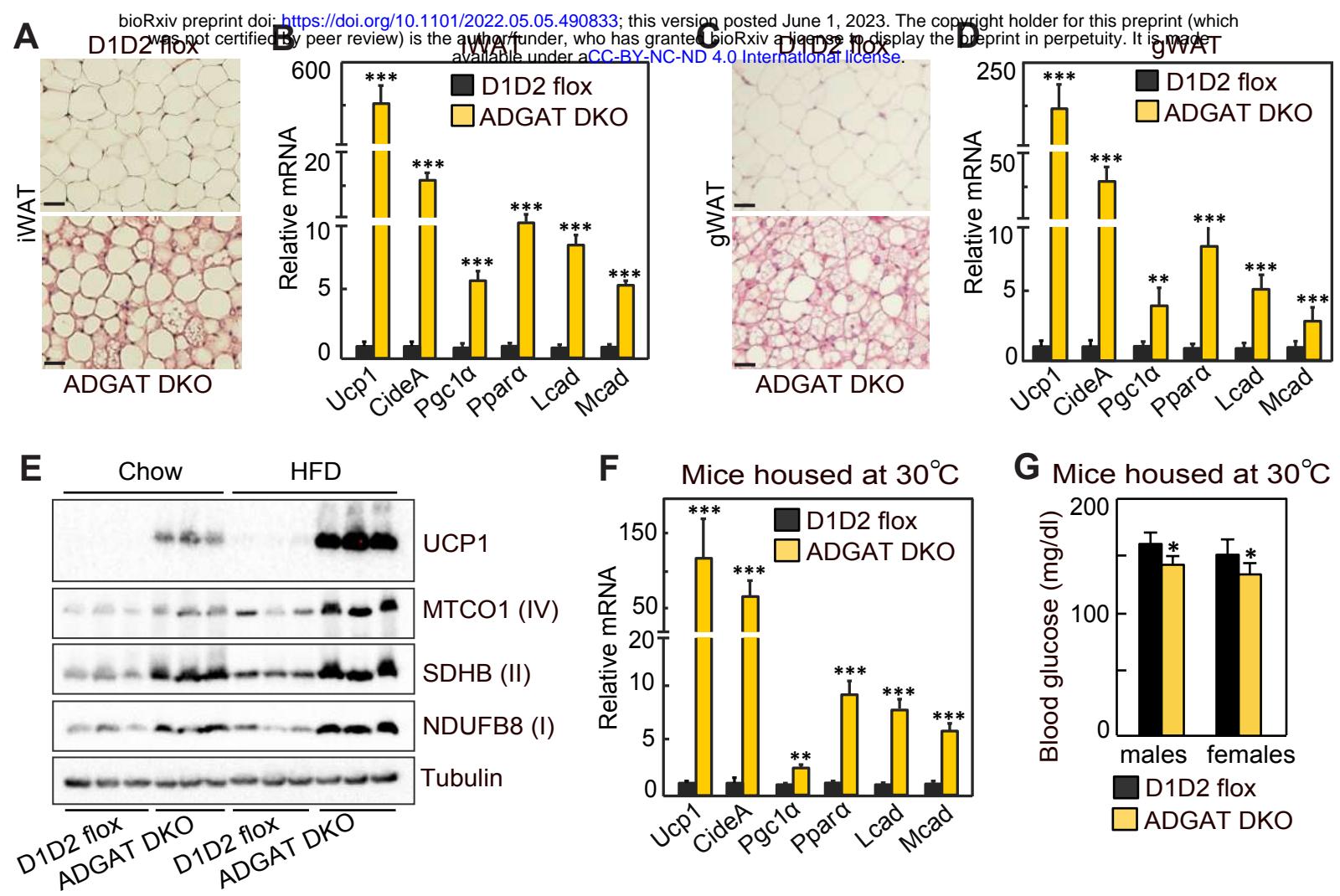
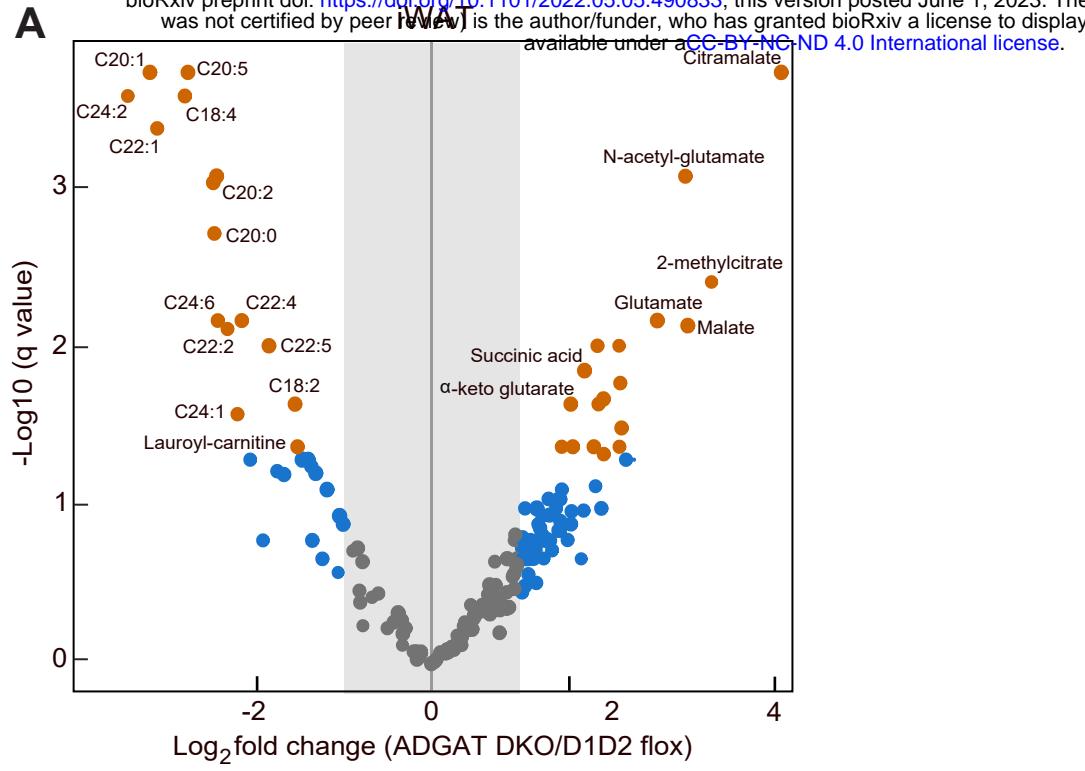




Figure 4 - figure supplement 1

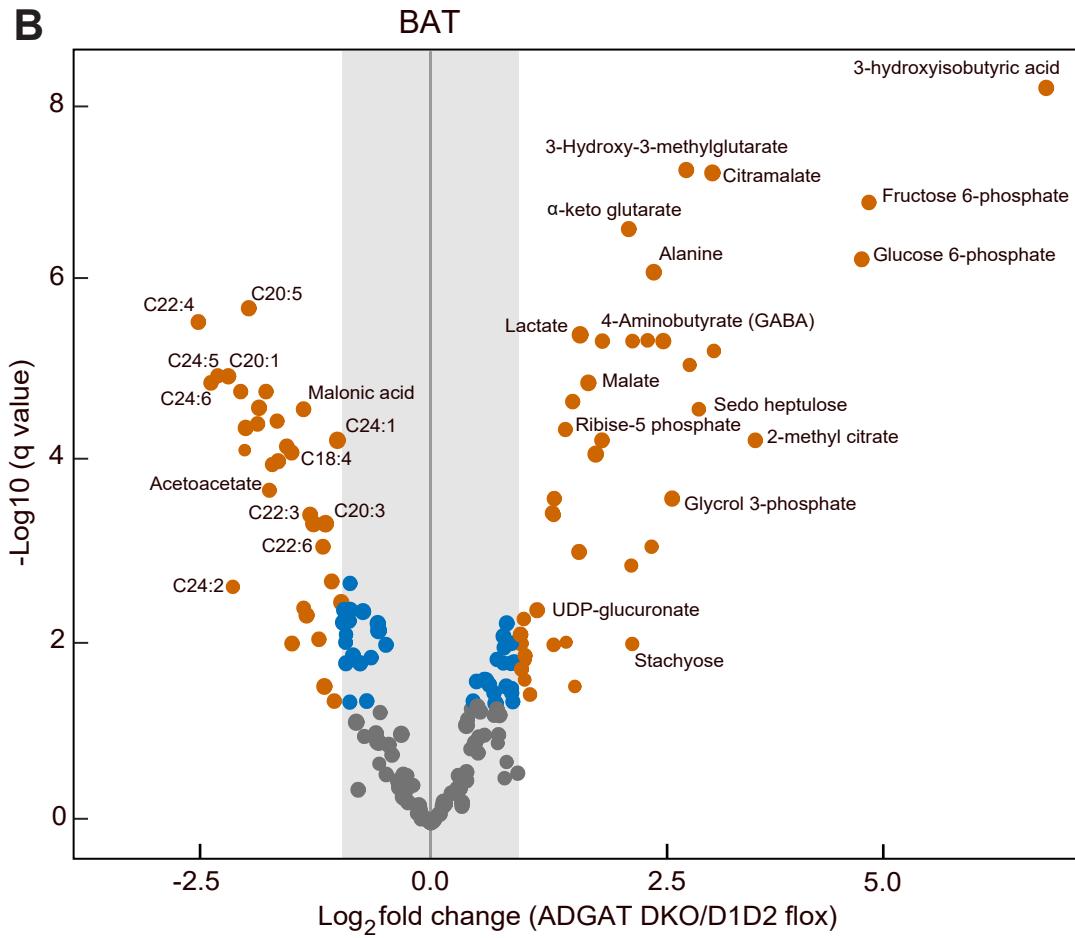
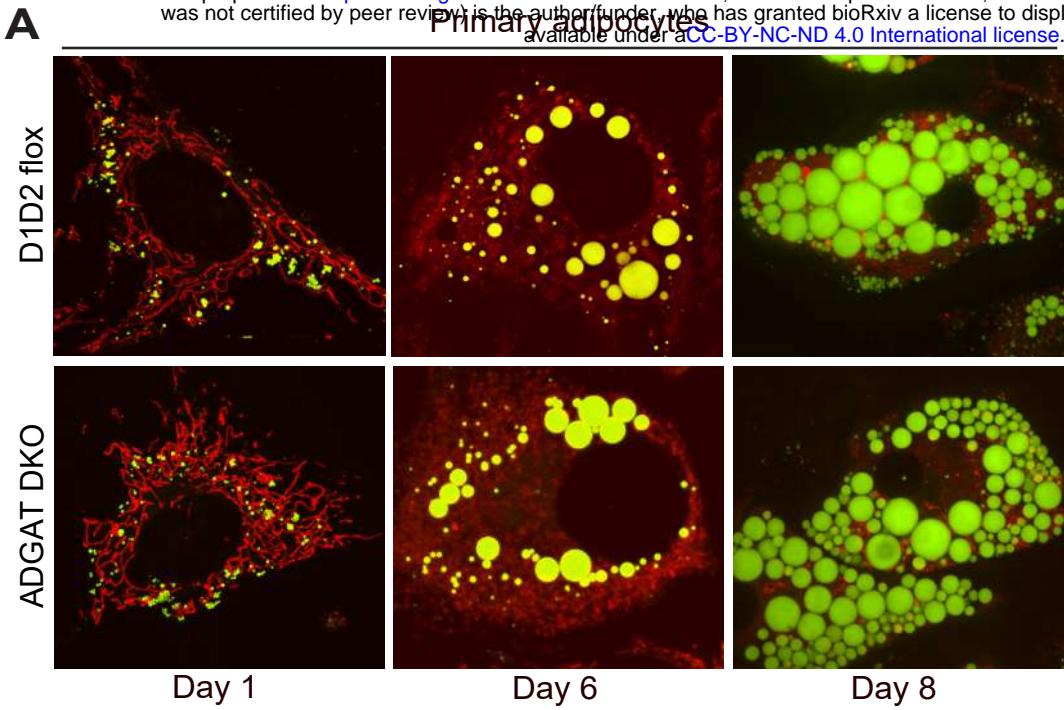


Figure 5

A



B

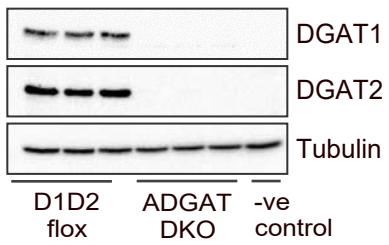
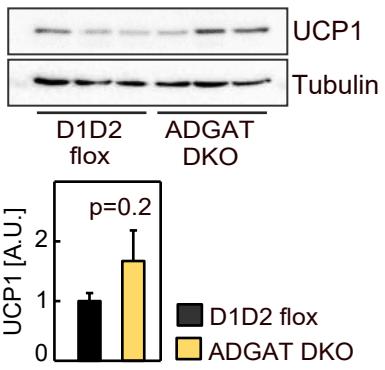
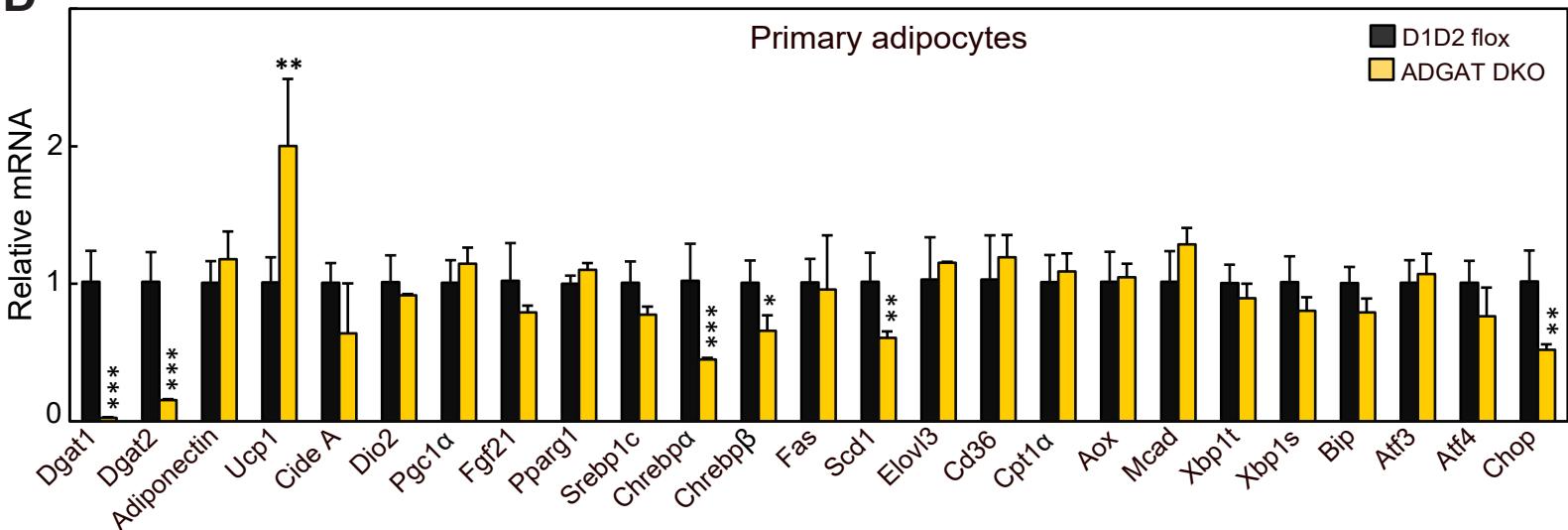
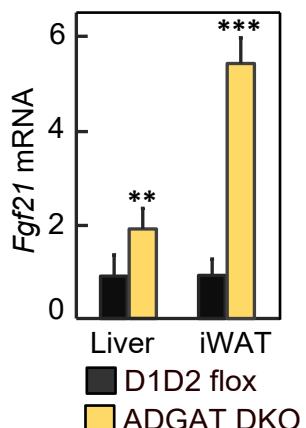


Figure 5 - figure supplement 1


A


B Primary adipocytes (day8)

C



D

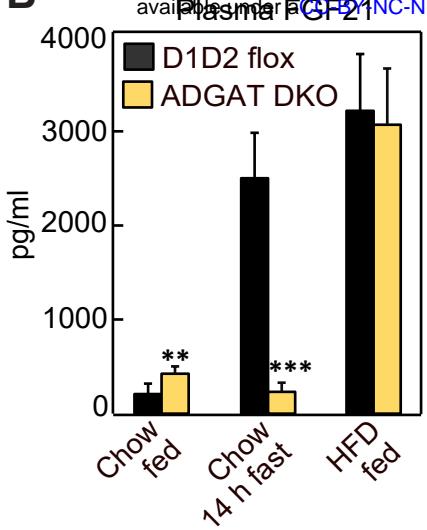
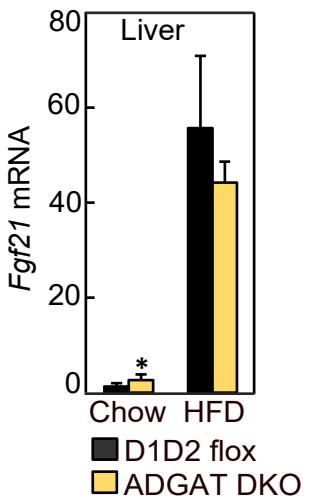
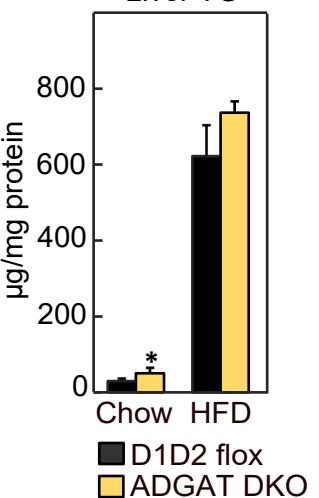


Figure 5 - figure supplement 2


A


B

C

D

Figure 5 - figure supplement 3